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Abstract

Instruction tuning, a specialized technique to001
enhance large language model (LLM) perfor-002
mance via instruction datasets, relies heavily on003
the quality of the employed data. Existing qual-004
ity improvement methods alter instruction data005
through dataset expansion or curation. How-006
ever, the expansion method introduces the risk007
of data deficiency and redundancy, potentially008
compromising the correctness and accuracy of009
the LLM’s knowledge, while the curation ap-010
proach confines the LLM’s potential to the orig-011
inal dataset. Our aim is to surpass the original012
data quality without confronting these short-013
comings. To achieve this, we propose LIFT014
(LLM Instruction Fusion Transfer), a novel015
and versatile paradigm designed to elevate the016
instruction quality to new heights. LIFT strate-017
gically broadens data distribution to encompass018
more high-quality subspaces and eliminates re-019
dundancy, concentrating on high-quality seg-020
ments across overall data subspaces. Exper-021
imental results demonstrate that, even with a022
limited quantity of high-quality instruction data023
selected by our paradigm, LLMs not only con-024
sistently uphold robust performance across nat-025
ural language understanding and code genera-026
tion tasks but also surpass many state-of-the-art027
results, highlighting the significant improve-028
ment in instruction quality achieved by our029
paradigm.030

1 Introduction031

In recent years, Large Language Models (LLMs)032

have gained prominence for their remarkable effec-033

tiveness in natural language comprehension tasks034

(OpenAI, 2023; Yang et al., 2023; Qi et al., 2023).035

High-quality pretrained LLMs are readily available,036

facilitating their customization for versatile appli-037

cations (Wei et al., 2021; Huang et al., 2023). One038

popular fine-tuning approach, known as instruction039

tuning (Wei et al., 2022; Ouyang et al., 2022), in-040

volves fine-tuning pre-trained LLMs using datasets041

accompanied by natural language instructions. Its042

relative simplicity and affordability make it a pre- 043

ferred method for improving LLMs’ performance 044

on specific tasks. 045

The quality of current instruction datasets, 046

whether manually crafted or generated by LLMs, 047

often falls short of the desired standard. Human- 048

crafted datasets depend on human annotators to 049

generate a substantial corpus with human instruc- 050

tions, resulting in a lack of detailed context and ex- 051

planation within the instruction dataset. Addition- 052

ally, these datasets may contain vague or subjective 053

descriptions. On the other hand, LLM-generated 054

datasets utilize advanced LLMs to generate or com- 055

plete instructions and responses but lack supervi- 056

sion regarding the diversity and quality of the gen- 057

erated data. 058

The concern surrounding the quality of instruc- 059

tion datasets has prompted researchers to explore 060

methods aimed at enhancing their overall quality. 061

Current approaches to instruction quality enhance- 062

ment can be broadly categorized into two groups: 063

data expansion and data curation. Data expansion 064

methods involve leveraging advanced LLMs with 065

a suitable prompt template to generate new instruc- 066

tions and corresponding answers based on the orig- 067

inal dataset (Xu et al., 2023; Luo et al., 2023; Taori 068

et al., 2023). On the other hand, data curation meth- 069

ods entail the meticulous selection of high-quality 070

data from the original dataset, employing specific 071

quality evaluation criteria (Zhou et al., 2023; Du 072

et al., 2023). 073

However, both existing methods exhibit limita- 074

tions that hinder their ability to further enhance 075

performance. Expansion methods introduce redun- 076

dancy into the dataset (Xu et al., 2023; Luo et al., 077

2023) as the newly generated instructions typically 078

derive from the original ones. While the effec- 079

tiveness of curation methods heavily relies on the 080

quality of the original dataset, limiting the quality 081

of the curated dataset (Du et al., 2023; Li et al., 082

2023a). These limitations necessitate a reliance on 083
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specific expansion or curation strategies to achieve084

superior performance on certain benchmarks, at085

the expense of losing the ability to generalize the086

approach.087

In this paper, we delve into the distribution of088

instruction quality to address the mentioned issues.089

We posit that both current methods essentially func-090

tion as data distribution transfers: expansion en-091

ables the distribution to cover a broader range of092

data subspaces, typically characterized by higher093

quality, while curation concentrates the distribution094

on a higher-quality subset of the original dataset.095

Building on this perspective, we propose a novel096

paradigm for improving LLM instruction quality,097

termed LIFT (LLM Instruction Fusion Transfer).098

LIFT is designed to amalgamate the advantages099

of data expansion and curation, mitigating their100

shortcomings to generate a diverse and high-quality101

dataset while significantly reducing quantity. Our102

paradigm consists of two phases. Firstly, we em-103

ploy "Dataset Distribution Expansion", broadening104

the data distribution to cover more high-quality sub-105

spaces. Then, we utilize "Dataset Variety and Qual-106

ity Curation" to eliminate redundancy and densify107

the data distribution, focusing on the high-quality108

segments of overall data subspaces. The data dis-109

tribution transfer patterns of three methods are de-110

scribed in Fig.1.111
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Figure 1: Different Instruction Data Distribution Trans-
fer Patterns.

To validate the effectiveness of LIFT, we em-112

ploy the finally curated instructions for fine-tuning113

open-source LLMs. Through extensive experi-114

ments evaluating the performance of these fine-115

tuned LLMs in both natural language understand-116

ing (NLU) tasks and code generation tasks, the117

results consistently demonstrate that LLMs achieve118

robust SOTA or nearly-SOTA performance even119

with a limited quantity of high-quality instruction120

data. Furthermore, they even outperform models121

trained on larger datasets on certain benchmarks.122

To summarize, our main contribution are: 123

• We propose a highly effective and versatile 124

paradigm, LIFT, which challenges the conven- 125

tional single-mode enhancement for instruc- 126

tion datasets. LIFT rethinks data quality by 127

focusing on data distribution transfer. It aims 128

to elevate the quality of the instruction dataset 129

to new heights, overcoming redundancy and 130

quality limitations present in current methods. 131

• Throughout the expansion and curation phases 132

of the paradigm, we prioritize both variety and 133

quality as essential goals for quality enhance- 134

ment. Unlike existing works that concentrate 135

on only one stage, we posit that considering 136

these characteristics at both stages is crucial 137

for incorporating more high-quality data. 138

• Our extensive experiments demonstrate that 139

with a significantly reduced quantity of high- 140

quality instructions selected by our paradigm, 141

LLMs consistently achieve SOTA perfor- 142

mance on many NLU tasks and code genera- 143

tion tasks. This provides valuable insights, 144

suggesting that a selective approach based 145

on the principles of data distribution trans- 146

fer is not only more effective but also cost- 147

effective compared to the indiscriminate feed- 148

ing of large volumes of data. 149

2 Related Works 150

The current methods for enhancing instruction qual- 151

ity can be broadly categorized into two types based 152

on how data is manipulated: dataset expansion and 153

curation. 154

2.1 Instruction Dataset Expansion 155

The original instruction dataset often consists of 156

concise and straightforward prompts, yielding sim- 157

plistic responses with limited semantic informa- 158

tion. To address this limitation, researchers have 159

proposed using LLMs to expand these original in- 160

structions to introduce more high-quality data. Al- 161

paca (Taori et al., 2023) suggested adopting the 162

self-instruct method, utilizing ChatGPT to generate 163

data for fine-tuning. Vicuna (Chiang et al., 2023) 164

employed data collected from ShareGPT.com, a 165

platform where users share their conversations with 166

ChatGPT, for fine-tuning their models. WizardLM 167

(Xu et al., 2023) and WizardCoder (Luo et al., 168
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2023) introduced the Evol-Instruct method, involv-169

ing the evolution of existing instruction data to170

generate more diverse and complex data.171

2.2 Instruction Dataset Curation172

One challenge in the instruction tuning process173

arises from the observation that fine-tuning with174

larger expanded instruction datasets does not al-175

ways guarantee better results, yet demanding more176

computational resources. To address this, some re-177

searchers have focused on filtering out low-quality178

data during the fine-tuning stage. LIMA (Zhou179

et al., 2023) demonstrates that fine-tuning a robust180

pre-trained language model on 1000 high-quality,181

human-curated examples can yield remarkable and182

competitive results. Instruction Mining (Cao et al.,183

2023) introduces a linear rule for selecting high-184

quality instruction data, eliminating the need for hu-185

man annotation. Du et al. (2023) present a model-186

oriented data selection (MoDS) approach, which187

selects instruction data based on new criteria con-188

sidering three aspects: quality, coverage, and ne-189

cessity. Li et al. (2023a) introduce a self-guided190

methodology for LLMs to autonomously discern191

and select cherry-picked samples from vast open-192

source datasets, effectively minimizing manual cu-193

ration and potential costs.194

3 LLM Instruction Fusion Transfer195

3.1 Data Distribution Transfer196

Current methods for enhancing instruction quality,197

either through data expansion or curation, do en-198

hance the original dataset to some extent. However,199

the effectiveness of these methods is constrained by200

inherent limitations. To scrutinize these limitations201

and explore innovative approaches to break from202

conventional enhancement modes, we propose a203

novel perspective for rethinking instruction data204

quality: data distribution transfer.205

3.1.1 Rethinking Existing Methods from Data206

Distribution Perspective207

Our hypothesis is that, during the process of en-208

hancing instruction quality, there is a transfer of209

data distribution from the original dataset to the210

final enhanced dataset. This transfer increases the211

quantity or proportion of high-quality data. In212

data expansion, generating high-quality instruc-213

tions based on the original ones effectively ex-214

tends the coverage of the high-quality data sub-215

space within the original data distribution, thereby216

increasing the quantity of high-quality data in the 217

final distribution. On the other hand, in data cura- 218

tion, by using carefully designed quality evaluation 219

metrics, low-quality components are removed from 220

the final distribution, directing the distribution to 221

concentrate on high-quality data and increasing its 222

proportion in the final distribution. 223

From this perspective, we can delve into the ori- 224

gin of limitations in these processes. For expansion, 225

the areas around the original instructions may con- 226

tain similar ones, leading to redundancy in the final 227

distribution. Moreover, low-quality instructions 228

and those derived from them persist in the final dis- 229

tribution, maintaining a proportion similar to the 230

original dataset. On the other hand, curation se- 231

lects a portion of high-quality instructions from the 232

original dataset, resulting in a decrease in the total 233

number of high-quality instructions. If the origi- 234

nal dataset has a limited number of high-quality 235

instructions, the quality of the curated dataset will 236

significantly decrease. 237

3.1.2 Fusing Expansion and Curation 238

Analyzing the data distribution transfer patterns 239

of expansion and curation, we propose that their 240

integration can effectively address their individual 241

limitations. Data expansion broadens subspaces, 242

enabling the curation method to explore beyond 243

the original distribution. Conversely, data curation 244

assists in identifying duplicates and low-quality 245

items from the expansion, contributing to a more 246

concentrated and refined distribution. 247

Building on these insights, we introduce a novel 248

paradigm called LIFT (LLM Instruction Fusion 249

Transfer). Comprising two phases, this paradigm 250

orchestrates the distribution of instruction data as 251

follows: in the "Dataset Distribution Expansion" 252

phase, we broaden the data distribution to encom- 253

pass more diverse and high-quality subspaces, ac- 254

knowledging the presence of duplications at this 255

stage. Subsequently, in the "Dataset Variety and 256

Quality Curation" phase, we systematically elim- 257

inate redundancy and low-quality elements, cre- 258

ating a densified distribution for the final curated 259

dataset. In contrast to the existing works, which 260

require intricate strategies to focus on the original 261

dataset, our paradigm offers a versatile perspective 262

to surpass the limitations of the original dataset’s 263

quality. These two phases are intricately connected, 264

ensuring a smooth transfer of data from the original 265

dataset to the final curated dataset. 266
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3.2 Paradigm LIFT267

As described in Fig.2, our paradigm LIFT follows268

a two-stage structure. In both stages, we value the269

diversity and quality as the crucial criterion and270

we believe the "Dataset Distribution Expansion"271

and "Dataset Variety and Quality Curation" equally272

contribute to the quality enhancement.273
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Figure 2: Instruction Dataset Curation Paradigm LIFT

3.2.1 Dataset Distribution Expansion274

The goal of dataset distribution expansion is to275

encompass a more diverse and high-quality range276

of data within the distribution, while ensuring a277

certain distance from the original instructions. To278

achieve this, it is crucial to employ carefully de-279

signed instruction-generation prompts. Drawing280

inspiration from the instruction rewrite method pro-281

posed by Xu et al. (2023) and Luo et al. (2023),282

our approach focuses on generating diverse and283

intricate instructions. We guide GPT-4 to act as a284

prompt re-writer, generating challenging instruc-285

tions based on specified generation rules. Consider-286

ing the variation in content for NLU and code gen-287

eration tasks within the instruction dataset, we con-288

figure distinct settings for GPT prompts to enhance289

complexity. For further details, refer to Appx.A.290

We iterate this process for k rounds, merging the ex-291

panded datasets with the original dataset to create292

the final expanded dataset.293

3.2.2 Dataset Variety and Quality Curation294

An effective curation method ought to eliminate du-295

plicated or low-quality instructions from the orig-296

inal dataset, while preserving representative and297

high-quality ones. To meet this criterion, curation298

should be approached with meticulous attention to299

both variety and quality.300

Variety Curation. Current variety curation typi-301

cally involves clustering methods such as k-means302

or spectral clustering, which initially segment the303

original data distribution into several small groups, 304

followed by the selection of representative items 305

from these groups (Du et al., 2023; Wei et al., 2023). 306

We argue that this approach may lack generalizabil- 307

ity and be less effective when dealing with new 308

datasets. This is because these methods require 309

prior knowledge of the number of clusters, and 310

choosing cluster numbers that are either too large 311

or too small may reduce their effectiveness in se- 312

lecting representatives. 313

Our variety curation method take another route, 314

as depicted in Fig.3. Initially, GPT generates 315

embeddings with 1536 dimensions for each item, 316

which proves unwieldy for analysis. To address 317

this, we aim to reduce the embedding dimension 318

and devise a method to represent data differenti- 319

ation. We achieve this by calculating the covari- 320

ance matrix of the given features and performing 321

eigenvalue decomposition on the covariance ma- 322

trix to obtain eigenvalues and eigenvectors. We 323

then choose the top k eigenvectors corresponding 324

to the largest k eigenvalues, where k is the target 325

reduced dimension. We set k to a value that pre- 326

serves nearly 95% of the variance of the original 327

embeddings, ensuring the retention of a significant 328

amount of information. 329

This process allows us to analyze row variance 330

on the dimension-reduced features to identify items 331

with significant differences. Row variance mea- 332

sures variability in the reduced space, and high vari- 333

ance suggests substantial positional changes along 334

that dimension, aiding in identifying diverse data 335

points. We select items with the highest 20% row 336

variances to construct the variety-curated dataset. 337

Our method doesn’t require any prior statistical 338

knowledge of the dataset, making it versatile and 339

effective for all tasks. 340

Quality Curation. Following variety curation is 341

the quality curation phase, where we discern high- 342

quality instruction data. Rating instruction quality 343

is challenging due to the lack of official quantita- 344

tive metrics. Employing professional annotators for 345

scoring is impractical due to dataset size and costs. 346

Therefore, we use GPT-4 as an instruction scorer, 347

generating GPT quality scores across four dimen- 348

sions: accuracy, explanation, clarity, and difficulty, 349

with proportions based on their contributions to 350

overall quality. The guiding template for GPT-4 351

scores is in Appx.B. 352

In our practical experience, we observed that 353

GPT-4 consistently assigns high total scores to all 354
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Figure 3: Variety Curation with Dimension Reduction and Row Variances

instruction data, posing a challenge by reducing355

differentiation in GPT quality scores. To address356

this, we implement the following steps for more357

reasonable and differentiated scores: first we in-358

struct GPT-4 to provide a comprehensive rationale359

along with a score yields more reasonable results,360

preventing indiscriminate high-level assessments.361

Mandating GPT-4 to articulate its reasoning offers362

an additional self-checking opportunity. Secondly,363

before scoring instruction items, we present manu-364

ally scored examples as guidelines. Offering three365

examples with scores representing poor, average,366

and high quality helps GPT-4 recognize low-quality367

data and understand how to appropriately score it.368

Recognizing that total length indicates informa-369

tion richness, we also incorporate this into the qual-370

ity score calculation. A positively correlated map-371

ping function derives a lengthwise semantic score372

based on instruction data’s length. Combining GPT373

quality score and lengthwise semantic score pro-374

duces the final quality score. High-quality scores375

compose the final quality-curated dataset, as illus-376

trated in Fig.4. Appx.C presents total quality score377

distributions. Meticulous efforts ensure substantial378

differentiation in quality scores for precise identifi-379

cation and selection of high-quality data.380

4 Experiments381

To validate the effectiveness of our paradigm, we382

apply our method to two extensively studied tasks:383

Natural Language Understanding (NLU) tasks and384

Code Generation tasks, where we conduct compre-385

hensive experiments to evaluate the performance386

of our paradigm.387

4.1 Experiments Setup388

4.1.1 Basic Foundation Models and Base389

Datasets390

We adopt distinct foundation models and base391

dataset configurations for the two tasks under con-392

sideration. In NLU tasks, we employ the SOTA 393

foundation model Mistral 7B (Jiang et al., 2023), 394

known for its exceptional performance relative to 395

other 7B models and its ability to surpass larger 396

models in specific benchmarks. Our base dataset 397

for NLU tasks is the Open Platypus dataset (Lee 398

et al., 2023), comprising 25k curated examples fo- 399

cused on enhancing LLMs’ STEM and logic knowl- 400

edge. While in the realm of code generation tasks, 401

we harness the capabilities of StarCoder 15B (Li 402

et al., 2023b), a widely-utilized code LLM trained 403

on a diverse array of sources encompassing over 404

80 programming languages, Git commits, GitHub 405

issues, and Jupyter notebooks. Our base dataset, 406

Code Alpaca (Chaudhary, 2023), consists of 20k 407

instruction-following code instances for fine-tuning 408

Code LLMs. 409

For comprehensive implementation details per- 410

taining to instruction tuning in both tasks, please 411

refer to Appx. D. 412

4.2 Benchmarks and Metrics 413

We have chosen six widely-recognized benchmarks 414

spanning both tasks. In the domain of NLU tasks, 415

we have incorporated HellaSwag, ARC Challenge, 416

TruthfulQA, and MMLU. For code generation 417

tasks, our selection encompasses HumanEval and 418

MBPP. Detailed information about these bench- 419

marks is provided in Appx. E.1. 420

For NLU tasks, we adopt accuracy as the metric, 421

aligning with the methodology embraced by other 422

researchers. This metric is calculated as the number 423

of correct questions divided by the total number of 424

questions. 425

In code generation tasks, our metric of choice is 426

pass@k, defined in the same manner as by Chen 427

et al. (2021). The formula for calculating pass@k 428

is presented as: 429

pass@k := Eproblems[1−
C(n− c, k)

C(n, k)
] 430
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Here, n represents the number of generated an-431

swers for each question, and c denotes the number432

of correct answers for each question. In our ex-433

periments, we specifically choose pass@1 as the434

designated metric.435

4.3 Experiment Results436

To validate the effectiveness of our paradigm, we437

conduct comparisons between models fine-tuned438

on LIFT’s final curated dataset and other SOTA pre-439

trained LLMs as well as instruction-tuned LLMs440

across both tasks. The details of the selected mod-441

els for comparison are provided in Appx. E.2.442

4.3.1 NLU Tasks443

Tab.1 presents the NLU task comparison results.444

Notably, our final 7B instruction-tuned model con-445

sistently outperforms other 7B models on all bench-446

marks. Comparing with 13B models, our 7B447

model even outperforms in all benchmarks ex-448

cept TruthfulQA. With only 7 billion parameters449

and 15k instructions, significantly fewer than other450

instruction-tuned models, our model achieves the451

highest average benchmark score at 0.656.452

4.3.2 Code Generation Tasks453

As illustrated in Table 2, our paradigm’s fine-tuned454

model consistently outperforms most models in455

code generation tasks. Although our model trails456

the current state-of-the-art 15B model, Wizard-457

Coder, by approximately 2% on both benchmarks,458

it is noteworthy that our paradigm utilizes only459

about one-eighth of the instruction data employed460

by WizardCoder. Considering the disparity in the461

size of the instruction dataset, our paradigm demon-462

strates robust performance, highlighting its capa-463

bility to achieve performance levels close to the464

state-of-the-art with a significantly smaller amount 465

of data. 466

We also compared our paradigm’s final curated 467

dataset with a randomly selected dataset of the 468

same size in both tasks. The results demonstrate 469

that merely reducing the dataset quantity, without 470

accounting for the diversity and quality in the per- 471

spective of data distribution, does not lead to per- 472

formance improvement. These experiments affirm 473

our paradigm’s versatile effectiveness in NLU and 474

code generation tasks. The paradigm excels in gen- 475

erating diverse, high-quality data, leveraging it in 476

the instruction-tuning process to achieve SOTA or 477

near-SOTA performance. 478

4.4 Paradigm Ablation Experiments Results 479

Our paradigm ablation experiment begins with the 480

original base dataset serving as the input for LIFT. 481

Subsequently, we generate the expanded dataset, 482

variety-curated dataset, and the quality-curated 483

dataset. These datasets are then utilized for fine- 484

tuning the basic foundation models. We assess the 485

benchmark performance of these models to vali- 486

date the effectiveness of each component of our 487

paradigm. 488

4.4.1 NLU Tasks 489

Tab.3 presents our paradigm experiment results on 490

four NLU benchmarks. For data expansion, we 491

iteratively perform the expansion step 3 times, re- 492

sulting in a 100k size instruction dataset. 493

The table results affirm our paradigm’s effective- 494

ness in NLU. Despite a reduction in size by 10k 495

instances compared to the original dataset, our fi- 496

nal curated dataset maintains robust performance, 497

showing improvements ranging from nearly 2% to 498

4% on each benchmark. Furthermore, we observe 499

6



Table 1: LLMs Performance Comparison in NLU Tasks

Model Fine-tuning Data Size HellaSwag ARC TruthfulQA MMLU
LLaMA-7B

Pretrained

0.778 0.509 0.343 0.357
LLaMA-13B 0.809 0.561 0.395 0.476
LLaMA2-7B 0.771 0.432 0.333 0.444
LLaMA2-13B 0.807 0.488 0.419 0.556
Mistral-7B 0.823 0.602 0.426 0.627
Vicuna-7B 70k conversations 0.775 0.537 0.489 0.456
Vicuna-13B 70k conversations 0.801 0.530 0.518 0.513
WizardLM-7B 70k instructions 0.771 0.516 0.447 0.427
WizardLM-13B 70k instructions 0.777 0.572 0.505 0.523
Platypus2-13B 25k instructions 0.826 0.613 0.449 0.567
Camel-Platypus2-13B 25k instructions 0.836 0.608 0.496 0.565
Stable-Platypus2-13B 25k instructions 0.822 0.627 0.525 0.583
Mistral+Random-7B 15k instructions 0.820 0.607 0.438 0.625
Mistral+LIFT-7B 15k instructions 0.844 0.643 0.490 0.645

Table 2: LLMs Performance Comparison in Code Gen-
eration Tasks (pass@1)

Model Data Size HumanEval MBPP
CodeT5+

-*
0.309 -

CodeLLaMA 0.360 0.470
StarCoder 0.336 0.436
InstructCodeT5+ 20k 0.350 -
WizardCoder 78k 0.573 0.518
StarCoder+Random 10k 0.381 0.431
StarCoder+LIFT 10k 0.550 0.495
* Pretrained models

a consistent improvement in model performance on500

both benchmarks after each step of the paradigm.501

This implies that the instruction’s quality is steadily502

increasing at each stage.503

It’s crucial to note that the Open Platypus (Lee504

et al., 2023) dataset for NLU tasks is already care-505

fully curated. The results for this dataset under-506

score that our paradigm is effective not only for507

LLM-generated datasets but also in elevating the508

quality of already high-quality datasets, contribut-509

ing to improved fine-tuned model performance510

while reducing the dataset size.511

4.4.2 Code Generation Tasks512

Tab.4 provides an overview of the paradigm exper-513

iments conducted on code generation tasks. For514

data expansion, we repeatedly perform the expan-515

sion step 2 times, resulting in a 60k size instruction516

dataset.517

The table illustrates our paradigm leads to a sig-518

nificant enhancement in the performance of the519

fine-tuned model across both benchmarks. Notably,520

our final curated dataset, although roughly half the 521

size of the original dataset, outperforms the lat- 522

ter by nearly 15% on the HumanEval and 3% on 523

the MBPP. The observed pattern of performance 524

improvement in NLU tasks also extends to code 525

generation tasks, where each step contributes to 526

enhancing data quality. This further underscores 527

that each component of our paradigm plays a vital 528

role in elevating the overall instruction quality. 529

5 Discussions 530

5.1 Composition of The Final Curated Dataset 531

We take a step further to analyze the composition 532

of the final curated dataset, unraveling the origins 533

of diverse and high-quality instruction items. Fig.5 534

presents the source proportions of the final curated 535

dataset for NLU and code generation tasks, yield- 536

ing several noteworthy conclusions. 537

For LLM-generated instruction datasets like 538

Code Alpaca, only a small proportion of the final 539

dataset emanates from the original dataset (Fig.5b). 540

The majority of high-quality data is derived from 541

our paradigm’s first step—the expanded dataset. 542

This emphasizes our paradigm’s significant role in 543

generating and covering a diverse and high-quality 544

dataset, especially for datasets without meticulous 545

curation. 546

In contrast, for a curated and high-quality in- 547

struction dataset like Open Platypus, the portion of 548

the original dataset in the final dataset increases 549

(Fig.5a). The proportions of the final curated 550

dataset in NLU tasks reveal an almost equal distri- 551

bution among the four sub-datasets, demonstrating 552
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Table 3: Paradigm Ablation Experiment Results in NLU Tasks

Dataset Type Dataset Size HellaSwag ARC Challenge TruthfulQA MMLU
Base Platypus Dataset 25k 0.82788 0.61543 0.44481 0.62619
Data Expansion 100k 0.83308 0.62372 0.44718 0.63065
Variety Compress 20k 0.83947 0.63311 0.45615 0.64199
Quality Compress 15k 0.84415 0.64334 0.48985 0.64519

Table 4: Paradigm Ablation Experiment Results
(Pass@1) in Code Generation Tasks

Dataset Type Size HumanEval MBPP
Base Dataset 20k 0.4091 0.4662
Data Expansion 60k 0.5342 0.4874
Variety Curation 12k 0.5412 0.4887
Quality Curation 10k 0.5503 0.4949

that even for an initially high-quality dataset, our553

paradigm also excels in generating and selecting554

numerous high-quality data points based on the555

original dataset.556

These conclusions affirm that the bulk of the final557

dataset primarily comprises data from the expanded558

dataset. While proportions of original dataset data559

contributing to the final dataset may vary based on560

the original dataset’s quality, our paradigm consis-561

tently showcases its ability to extract high-quality562

segments from the original dataset and augment563

them with diverse and high-quality data subspaces.564

5.2 Limitations and Future Works565

The main limitation of our paradigm lies in the566

subjectivity of our quality evaluation process, as567

it heavily relies on GPT quality evaluation. De-568

spite we carefully design some criteria, additional569

statistical analysis beyond the length factor could570

also enhance the precision of high-quality data se-571

lection. Future work will involve integrating more572

comprehensive metrics such as information entropy573

analysis, coherence analysis, and word frequency574

analysis to provide a more nuanced assessment of575

instruction quality.576

6 Conclusions577

This paper presents a novel paradigm, LIFT, that578

departs from the traditional single-mode quality en-579

hancement approach for instruction datasets, opting580

for a fresh perspective on data quality through data581

distribution transfer. By combining the strengths of582

data expansion and curation while mitigating their583

limitations, LIFT significantly enhances elevate the584

(a) Source of the final curated 15k dataset in NLU tasks

(b) Source of the final curated 10k dataset in code generation
tasks

Figure 5: Composition of The Final Curated Dataset

quality of the instruction dataset to new heights. Ex- 585

tensive experimental results demonstrate that our 586

fine-tuned models consistently attain either SOTA 587

or nearly SOTA performance in both NLU and 588

code generation. These experiments underscore 589

the paradigm’s versatile effectiveness, showcasing 590

its capacity to encompass and select diverse and 591

high-quality data. The integration of the curated 592

data into the instruction-tuning process empowers 593

LLMs to achieve superior performance across vari- 594

ous tasks and benchmarks. 595
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A GPT Prompt Templates For Data824

Expansion825

We adopt two different prompt settings for natural826

language understanding tasks and code generation827

tasks.828

A.1 Natural Language Understanding Tasks829

SYSTEM MESSAGE:830

I want you act as a professional prompt831

refinement specialist.832

USER PROMPTS:833

Your task is to transform a provided834

prompt into a more intricate version835

utilizing a structured data format,836

introducing complexity to challenge837

well-known AI systems. However, ensure838

that the revised prompt remains839

reasonable, comprehensible, and capable840

of being understood and addressed by841

humans.842

You can enhance the complexity through843

various methods, including but not844

limited to:845

(1) The depth and breadth of the inquiry846

can be increased.847

(2) Replace general concepts with more848

specific concepts.849

(3) If original problem can be solved850

with just a few simple thinking processes,851

you can rewrite it to explicitly request852

multiple-step reasoning.853

854

#Instruction#855

{Instruction}856

#Input#857

{Input}858

A.2 Code Generation Tasks859

SYSTEM MESSAGE:860

I want you act as a professional prompt861

refinement specialist.862

USER PROMPTS:863

Please increase the difficulty of the864

given programming test question a bit. You865

can increase the difficulty using, but not866

limited to, the following methods:867

(1) Add new constraints and requirements868

to the original problem, adding869

approximately 10 additional words.870

(2) Replace a commonly used requirement871

in the programming task with a less common872

and more specific one. 873

(3) If the original problem can be solved 874

with only a few logical steps, please add 875

more reasoning steps. 876

(4) Provide a piece of erroneous code as 877

a reference to increase misdirection. 878

(5) Propose higher time or space 879

complexity requirements, but please 880

refrain from doing so frequently. 881

882

#Instruction# 883

{Instruction} 884

#Input# 885

{Input} 886

B GPT Quality Score Template 887

SYSTEM MESSAGE: 888

We would like to request your feedback 889

on the performance of an AI assistant. 890

The assistant provides outputs for 891

instruction and input (if any). 892

USER PROMPTS: 893

Please score the response to the 894

instruction and input according to the 895

following criteria. 896

The maximum score is 100 points, and it 897

consists of 4 parts: 898

1. Clarity (15 points): Assign a score 899

based on how effectively the instruction 900

conveys the problem. High-quality, clear 901

questions score higher. 902

2. Difficulty (25 points): Rate the 903

complexity of the instruction's problem. 904

Higher difficulty should receive a higher 905

score. 906

3. Explanations (25 points): Assess if the 907

response includes detailed explanations 908

alongside any code provided. The more 909

comprehensive the explanation, the higher 910

the score. 911

4. Accuracy (35 points): Score the 912

response based on the accuracy and 913

correctness of the solution to the 914

instruction's problem. Higher accuracy 915

should receive a higher score. 916

Here's some examples and socres you can 917

follow: 918

### Example 1: 919

### Instruction: {EXAMPLE INSTRUCTION 1} 920

### Response: {EXAMPLE OUTPUT 1} 921

### Score for Example 1: {SCORE 1} 922
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### Example 2:923

### Instruction: {EXAMPLE INSTRUCTION 2}924

### Input: {EXAMPLE INPUT 2}925

### Response: {EXAMPLE OUTPUT 2}926

### Score for Example 2: {SCORE 2}927

### Example 3:928

### Instruction: {EXAMPLE INSTRUCTION 3}929

### Response: {EXAMPLE OUTPUT 3}930

### Score for Example 3: {SCORE 3}931

932

Please score the upcoming Instruction,933

Input and Response based on these examples934

across four dimensions, and then add the935

four scores together to get the total936

score. Try to avoid getting a full score937

as much as possible.938

Please first output a single line939

containing the total score number only.940

In the subsequent line, please provide941

a comprehensive explanation of your942

evaluation, avoiding any potential bias.943

### Instruction:944

{INSTRUCTION}945

### Input:946

{INPUT}947

### Response:948

{OUTPUT}949

C Quality Score Distribution950

We have gathered the quality scores for the variety951

curated dataset following our paradigm, both in952

NLU and code generation tasks. The score distri-953

butions are depicted in Fig.6. Notably, the quality954

scores exhibit an approximately normal distribu-955

tion within the score interval of 60 to 100 for both956

tasks. This observation validates the effectiveness957

of our scoring strategies in discerning low-quality958

data. It should be noted that the minor bumps near959

0 stem from connection errors or OpenAI API call-960

ing ratio constraints, resulting in GPT scores of 0961

for certain instructions.962

D Experiments Implementation Details963

For both foundation models, we conduct training964

on Azure Machine Learning Studio’s cluster 1, uti-965

lizing 4 nodes, each equipped with 8 V100 GPUs966

featuring DeepSpeed Zero-3 (Rajbhandari et al.,967

2019) offload. Specifically, during the fine-tuning968

of Mistral 7B, we employ LoRA (Hu et al., 2021).969

This strategy is chosen for its ability to ensure a970

1https://ml.azure.com/

(a) Quality Score Distribution in NLU Tasks (20k Data)

(b) Quality Score Distribution in Code Generation Tasks (12k
Data)

Figure 6: Quality Score Distribution

more steady convergence of loss, resulting in better 971

performance. The detailed fine-tuning arguments 972

are outlined in Tab.5. 973

E Benchmarks and Compared LLMs 974

E.1 Benchmarks 975

Large language model benchmarks serve as stan- 976

dardized tests to evaluate how well models under- 977

stand, generate, and manipulate human-like lan- 978

guage (Lu et al., 2021; Chen et al., 2021). Below 979

is an introduction to these chosen benchmarks: 980

• HellaSwag (Zellers et al., 2019). HellaSwag 981

is a challenge dataset containing 70k multiple- 982

choice questions for evaluating commonsense 983

Natural Language Inference (NLI). While its 984

questions may be trivial for humans (>95% 985

accuracy), they pose a challenge for state-of- 986

the-art models. 987

• ARC Challenge (Clark et al., 2018). The 988

AI2’s Reasoning Challenge (ARC) dataset is 989
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Table 5: Fine-tuning Arguments for StarCoder 15B and
Mistral 7B

Arguments StarCoder Mistral
model_max_length 1024 2048
batch_size 8 8
num_epoch 3 3
learning_rate 2e-5 2e-5
fp16 True True
lora_r - 16
lora_alpha - 32
lora_dropout - 0.05

a multiple-choice question-answering dataset990

containing questions from science exams rang-991

ing from grade 3 to grade 9. It is split into two992

partitions: Easy and Challenge. The Chal-993

lenge partition consists of 25k questions that994

require reasoning.995

• TruthfulQA (Lin et al., 2022). TruthfulQA996

is a benchmark designed to measure whether997

a language model is truthful in generating an-998

swers to questions. The benchmark comprises999

817 questions spanning 38 categories. Ques-1000

tions are crafted so that some humans might1001

answer falsely due to false beliefs or miscon-1002

ceptions.1003

• MMLU (Hendrycks et al., 2020). MMLU1004

(Massive Multitask Language Understanding)1005

is a new benchmark intended to measure1006

knowledge acquired during pretraining. It1007

evaluates models exclusively in zero-shot and1008

few-shot settings, making it more challenging1009

and akin to human evaluation. The bench-1010

mark covers 57 subjects across STEM, hu-1011

manities, social sciences, and more, ranging1012

in difficulty from elementary to advanced pro-1013

fessional levels, testing both world knowledge1014

and problem-solving ability.1015

• HumanEval (Chen et al., 2021). HumanEval1016

is utilized to gauge functional correctness in1017

synthesizing programs from docstrings. Com-1018

prising 164 original programming problems, it1019

assesses language comprehension, algorithms,1020

and simple mathematics.1021

• MBPP (Austin et al., 2021). The MBPP1022

(Mostly Basic Python Problems) dataset con-1023

sists of around 1,000 crowd-sourced Python1024

programming problems. These are designed1025

to be solvable by entry-level programmers, 1026

covering programming fundamentals and stan- 1027

dard library functionality. In our experiments, 1028

to align with others, we select 400 questions. 1029

E.2 Compared LLMs 1030

The selected models for comparison in NLU tasks 1031

include: 1032

• LLaMA (Touvron et al., 2023a). LLaMA is 1033

a collection of foundation language models 1034

trained on trillions of tokens from publicly 1035

available datasets. 1036

• LLaMA2 (Touvron et al., 2023b). Llama 2 is 1037

an updated version of Llama, trained on a new 1038

mix of publicly available data. It increased the 1039

size of the pretraining corpus by 40%, doubled 1040

the context length of the model, and adopted 1041

grouped-query attention in training. 1042

• Mistral (Jiang et al., 2023). Mistral is a 1043

state-of-the-art 7B foundational model, fast- 1044

deployed, easily customizable, and supports 1045

English and code with an 8k context length. 1046

It’s also one of the foundation models in our 1047

paradigm experiments. 1048

• Vicuna (Chiang et al., 2023). Vicuna is an 1049

open-source chatbot trained by fine-tuning 1050

LLaMA on 70K user-shared conversations 1051

collected from the ShareGPT website. 1052

• WizardLM (Xu et al., 2023). WizardLM is 1053

instruction fine-tuned on LLaMA with 70k 1054

instruction data generated through the Evol- 1055

Instruct strategy. 1056

• Platypus (Lee et al., 2023). Platypus is a fam- 1057

ily of fine-tuned and merged LLMs achiev- 1058

ing strong performance. It uses Open Platy- 1059

pus as its instruction dataset and applies the 1060

LoRA strategy to train adaptors that can be 1061

merged into different foundation models, cre- 1062

ating many variant models. 1063

The selected models for comparison in code gen- 1064

eration tasks include: 1065

• CodeT5+ & InstructionCodeT5+ (Wang 1066

et al., 2023). CodeT5+ is a new family of 1067

open code LLMs with an encoder-decoder ar- 1068

chitecture trained on various pretraining tasks. 1069

InstructionCodeT5+ is further fine-tuned on 1070

the Code Alpaca dataset. 1071
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• Code LLaMA (Rozière et al., 2023). Code1072

Llama is a code-specialized version of Llama21073

(Touvron et al., 2023b) trained on code-1074

specific datasets.1075

• StarCoder (Li et al., 2023b). StarCoder is1076

a widely-used large code language model1077

trained on diverse sources, including 80+ pro-1078

gramming languages, Git commits, GitHub1079

issues, and Jupyter notebooks. It’s also one of1080

the foundation models in our paradigm exper-1081

iments.1082

• WizardCoder (Luo et al., 2023). Wizard-1083

Coder is instruction fine-tuned on StarCoder1084

with 78k instruction data generated through1085

the application of Code Evol-Instruct.1086

F GPU Hours and Carbon Emission1087

Table 6: Analysis of GPU hours and Carbon Emission
with different dataset size. GPU hours in the table are
measured in hour, CO2 emission is in kg CO2 eq.

Dataset Size GPU Hours CO2 Emission
NLU Tasks
Original 25k 40.24 3.62
Expanded 100k 149.76 13.48
Curated 15k 23.71 2.13
Code Generation Tasks
Original 20k 50.82 4.58
Expanded 60k 185.6 16.7
Curated 10k 31.6 2.84

By compressing the size of the instruction1088

dataset, we aim to reduce the GPU hours required1089

for instruction tuning, contributing to a subsequent1090

decrease in carbon emissions. Tab.6 illustrates the1091

impact of different dataset sizes on GPU hours1092

and CO2 emissions. We consider three datasets1093

for each task: the original dataset, the expanded1094

dataset after the first step of our paradigm, and the1095

final curated dataset. GPU hours are calculated1096

under the same settings of training epoch and batch1097

size, while carbon emissions are computed using1098

an online machine learning CO2 calculator2.1099

The table shows a substantial reduction in GPU1100

hours and lower carbon emissions when fine-tuning1101

with the final curated dataset. Specifically, com-1102

pared to the original dataset, we observe a 36.8%1103

and 41.1% reduction in GPU hours for code genera-1104

tion and NLU tasks, respectively. This comparison1105

2https://mlco2.github.io/impact/#co2eq

demonstrates that our paradigm not only acceler- 1106

ates fine-tuning but also promotes environmental 1107

sustainability while maintaining robust high perfor- 1108

mance. 1109
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