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Abstract

The quality of radiographs is of major importance for diagnosis and treatment planning.
While most research regarding automated radiograph quality assessment uses technical
features such as noise or contrast, we propose to use anatomical structures as more appro-
priate features. We show that based on such anatomical features, a modular deep-learning
framework can serve as a quality control mechanism for the diagnostic quality of ankle
radiographs. For evaluation, a dataset consisting of 950 ankle radiographs was collected
and their quality was labeled by radiologists. We obtain an average accuracy of 94.1%,
which is better than the expert radiologists are on average.
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1. Introduction

As one of the most frequently used imaging modalities, radiographs are of significant impor-
tance for diagnosis and treatment planning. For these tasks, a diagnostic-adequate image
quality is mandatory.

Currently, radiographers have to decide if the quality of the radiograph suffices for the
diagnosis or if the imaging process must be repeated. To not be able to immediately judge
the diagnostic quality correctly can result in various disadvantages including unnecessary
radiation exposure. Reasons for misjudging image quality as sufficient may be time pressure,
inexperience or overtiredness, in which case the treating radiologist has to schedule a new
examination resulting in additional effort. In the worst case, the radiographer would take
a second radiograph although the first one was sufficient and thereby re-expose the patient
to radiation. To prevent these errors and to establish a quality control mechanism, an
automated quality assessment can help.

While there is extensive research assessing radiograph quality based on technical factors
such as contrast and noise (Esses et al., 2018; Takaki et al., 2020; Wang et al., 2020), these
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parameters are less important with digital radiography. A more important quality criterion,
is the alignment of the body part to be X-rayed relative to the X-ray machine. A radiograph
may be of perfect technical quality but can nevertheless be worthless for diagnostic purposes
if relevant anatomical structures are not visible due to misalignment. To our knowledge,
previous approaches do not assess the quality of a radiograph based on this criterion.

In this paper, we propose a framework based on classification and segmentation Neural
Networks, which assesses the diagnostic quality of ankle radiographs based on anatomical
features. Furthermore, we test the framework on a new dataset containing radiographs of
ankles, with 950 radiographs in two different radiographic views (anterior posterior and
lateral), all labeled by four radiologists. Using this framework, radiographers will be able
to immediately get a first quality assessment of the taken radiographs without relying on a
radiologist. Besides reducing the described judgment errors, the framework can be used as
a quality control mechanism to detect causes for low quality radiographs.

2. Related Work

In recent years, deep learning has become more common in radiology (Choy et al., 2018;
Saba et al., 2019). Scientists working on radiographs successfully applied Neural Networks
to detect fractures (Lindsey et al., 2018; Thian et al., 2019), classify body parts (Agunwa
et al., 2019), and radiographic views (Fang et al., 2020), to facilitate the work process in
radiology. Although our proposed framework also includes radiographic view recognition,
these steps are only part of the preprocessing for assessing diagnostic quality. Distinct to
Fang et al. (2020), where only a single step is used for recognition, we use multiple steps
containing different networks and resign to recognize laterality.

Esses et al. (2018) and (Wang et al., 2020) focus on automated diagnostic quality evalu-
ation of MRT images using Neural Networks. Due to the different modalities of the imaging
systems one can not easily transfer the results to radiographs.

Approaches that automatically asses the perceptual quality of radiographs only take
technical parameters such as noise and contrast into account and rely on conventional
computer vision methods (Samei et al., 2014; Willis et al., 2018). Takaki et al. (2020) present
a deep learning approach to calculate the target exposure index for chest radiographs based
on perceptual quality of small patches.

To our knowledge, there are no studies considering anatomical features for the diagnostic
quality of radiographs in a deep-learning framework.

3. Proposed Framework

To solve the challenge of diagnostic quality assessment and to standardize the required steps,
we propose a framework of several Neural Networks that is able to process radiographs of
ankles and to output their diagnostic quality. It consists of the following steps: Recognition
of radiographic view, extraction of the region of interest (ROI), and quality assessment.

The first step relies on the fact that radiographs can be ordered hierarchically by ra-
diographic view. A prediction of quality strongly depends on the view since corresponding
criteria for radiographic views may differ. The second step prepares the input for quality
assessment by removing unnecessary information.
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Figure 1: Schematic flow of a radiograph through the framework. For each radiograph the
framework decides first which radiographic view was used. Depending on that
decision the radiograph is passed to the corresponding region of interest (ROI)
segmentation network. After segmentation, the resulting ROI is fed into the final
quality prediction network, which outputs the quality assessment.

Each individual step can be used independently. But only within the whole framework
they provide the possibility to decide whether an ankle radiograph is of high or low diag-
nostic quality, thereby directly supporting the radiographers in their decision process. A
complete overview of the framework can be seen in Figure 1. In the following, we describe
each step in more detail.

3.1. Recognition of the Radiographic View

The first step of the proposed framework consists of recognizing the radiographic view of the
radiograph. This classification task is mandatory since radiographs of various radiographic
views differ in quality assessment characteristics, as shown in Figure 2. By dividing the
quality assessment task for an ankle radiograph into a view-specific task, we facilitate the
learning process of our networks, since the radiographs now belong to the same domain.

3.2. Extraction of the ROI

While the entire radiograph is relevant for diagnosis, only a fraction is needed for assessing
the quality of the standard projection (red marks in Figure 2). Based on this fact, the next
step in the framework is to segment this ROI which contains the most information relevant
for the diagnostic quality. An example ROI is shown in Figure 3. Since there are different
quality characteristics in the radiographic views, we trained Neural Networks individually
for each view. Besides removing irrelevant information, the benefit of extracting ROIs is
that the subsequent quality assessment can operate on a standardized size and resolution
of the relevant image part.
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3.3. Quality Assessment

Getting standardized ROIs of a particular radiographic view is the basis for assessing the
diagnostic quality with high accuracy. We use two different Neural Networks, one for each of
the two radiographic views. These are trained individually on the anterior posterior (AP)
and lateral (LAT ) ROI, respectively and output the quality on a continuous scale from 1
to 3 (see Section 4.2).

4. Datasets

To test the framework presented in Section 3 two datasets were created. The first one is a
collection of ankle radiographs as DICOM images and associated metadata. The second one,
which to our knowledge did not exist previously in this or similar form, contains radiographs
labeled by radiologists according to diagnostic quality based on anatomical features. Both
datasets contain radiographs from five different X-ray machines.

(a) (b)

Figure 2: In (a) the most relevant anatomical struc-
tures in the AP radiographic view are
highlighted. These include the joint gap
between medial malleolus and talus as well
as lateral malleolus and talus. In (b) the
joint space between the distal tibia and
the talus is highlighted as the most rele-
vant structure for the LAT view.

(a) (b)

Figure 3: (a) shows an example ROI
of a radiograph in AP view
with perfect alignment in
the upper row and strong
misalignment in the lower.
(b) shows the same for the
LAT view.

4.1. Weakly Labeled Dataset for Recognition of the Radiographic View

We used a dataset of 26542 ankle radiographs provided by the University Hospital Schleswig-
Holstein, Campus Lübeck. From those radiographs we extracted labels for the radiographic
view (LAT or AP) with a keyword matching on the metadata. The resulting dataset
contains roughly 12000 radiographs for each view. Since creating the metadata is mostly
done manually and the content is not standardized, we assume that not all labels are
accurate.
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4.2. Diagnostic Quality Dataset

In order to learn the relationship between the radiographs and the quality, an annotated
dataset is needed. To create such a dataset, four radiologists labeled 950 ankle radiographs,
containing 475 for LAT and AP each.

The radiologists determined which objective criteria a radiograph of an ankle has to
fulfill, to be of high diagnostic quality. One important criterion, for instance, is the complete
visibility of the joint gap between medial malleolus and talus. A high diagnostic quality is
a prerequisite for the radiologist to make a correct diagnosis. According to that criteria,
each radiograph was labeled by each radiologist as 1 if the radiograph fulfilled the criteria
perfectly, 2 if partly and 3 if the criteria were not met, and a new radiograph would have
to be taken. In order to determine whether a radiograph can be used for a diagnosis, the
classes 1 and 2 were grouped under the label diagnostic and the class 3 was labeled as not
diagnostic. If the labels differed greatly, the radiologists had a consensus meeting. Of the
475 · 4 labels assigned for the AP radiographs, 37% are 1 s, 53% 2 s and 10% 3 s. For the
LAT view 17% of the assigned labels are 1 s, 55% 2 s and 28% 3 s. Examples for the three
classes can be seen in the Appendix in Figure 5 (a-c) for the AP view and Figure 6 (a-c)
for the LAT view.

Additionally, each of the 950 radiographs was labeled with a ROI. As described in
Section 3.2 only a fraction of the radiograph is relevant for the diagnostic quality. Therefore,
the ROI was labeled as a square containing only the most relevant information. This can
be seen in Figure 3. In Figure 4, which shows examples of ground truth ROI labels, it can
be seen that the size of each ROI is highly dependent on the image content.

5. Experiments and Results

To evaluate the framework described in Section 3, each step was implemented using PyTorch
and evaluated on the datasets of Section 4. To improve quality control measurements,
we tested each step individually. Because of the relatively small datasets, we used the
EfficientNet-B0 (Tan and Le, 2019) for classification. For segmentation a DeepLabV3 (Chen
et al., 2017) with a ResNet-50 (He et al., 2016) backbone was used. Both networks were
not pretrained. For all experiments we padded the input radiograph with zeros to get
the desired size while maintaining the aspect ratio. Furthermore, the training radiographs
were augmented with random cropping, histogram normalization, Gaussian noise, blurring,
horizontal flipping and rotation. Training and test datasets were split with an 80/20 ratio.

5.1. Recognition of the Radiographic View

For the recognition of different radiographic views, the dataset described in Section 4.1 was
used. Therefore, the last layer of the EfficientNet-B0 was modified to output two classes,
either LAT or AP, which was followed by a softmax layer to obtain class probabilities. The
model was trained using the cross-entropy as loss function and stochastic gradient descent
(SGD) as optimizer using a learning rate of 1 · 10−3, a momentum of 0.9, a weight decay
of 1 · 10−5, and a batch size of 8 over 500,000 iterations. To reduce possible overfitting,
the drop connect (Wan et al., 2013) rate was set to 0.4. The resulting input size of the
radiographs, after augmentation, was 224 × 224 pixels.
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Training with these parameters resulted in an accuracy of 98.4% for the test set and
98.5% for the training set. The results must be interpreted with a certain caution due to
the potentially incorrectly assigned labels in the weakly labeled dataset. It may be that
(i) the model predicts the correct class but the label is assigned incorrectly or that (ii) the
model predicts the incorrect class and the label is also assigned incorrectly. Reviewing
the resulting radiographs for case (ii) revealed 54 wrong labels for the test set and 244 for
the trainings set. Taking this into account the accuracy increased to 99.5%, respectively
to 99.7% for the training set. Although the actual accuracy may be slightly lower due to
errors of case (i), these results clearly demonstrate that a recognition of the radiographic
view can be achieved with high precision.

5.2. Extraction of the ROI

To segment the ROI, a DeepLabV3 was trained with the labels described in Section 4.2.
The target feature map is binary, with 0 for not ROI and 1 for ROI. As segmentation output
we used a single feature map, followed by a sigmoid function, to get pixel-wise outputs from
0 to 1. For the training we used the mean over the pixel wise squared error, optimized with
the Adam optimizer, a learning rate of 1 · 10−4, a weight decay of 1 · 10−4, and a batch size
of 4 over 50,000 iterations. For this task the input size after augmentation was 400 × 400
pixels. This training was done separately for LAT and AP views. Given the small dataset
we used a random sub-sampling validation over 12 different dataset splits.

To measure the accuracy of the predicted ROIs the Dice score was calculated. If a
pixel value of the output feature map was above a threshold of 0.7, the pixel was classified
as part of the ROI. Over all 12 dataset splits the mean Dice score was 94.17% on the
AP views and 85.91% on the LAT views. A reason for the worse result on the LAT
views might be that the ROIs on the LAT views are significantly smaller than on the
AP view and thus harder to predict. Regardless of this difference in the Dice score the
resulting segmentations are sufficient to get bounding boxes of the ROIs, which can be seen
in Figure 4. To extract bounding boxes based on the segmentation, first the smallest fitting
rectangle of the segmentation is calculated and then rotated to be horizontal. Examples
with the labeled and the predicted ROIs can be seen in Figure 4.

5.3. Quality Assessment

For the quality assessment task an EfficientNet-B0 was used. To preserve the intrinsic
order of the classes we modeled the task as a regression. One benefit of using regression is
that we obtain intermediate scores. We also trained classification networks using the earth
mover’s distance but this led to slightly worse results. The model was trained using the
mean squared error (MSE) as loss and the mean label of the four radiologist as target. The
loss was minimized by SGD using a learning rate of 1 · 10−3, a momentum of 0.9, a weight
decay of 1 · 10−3, and a batch size of 16 over 500,000 iterations. As in Section 5.1 the input
size was 224 × 224 pixels. The same random sub-sampling validation as in Section 5.2 was
used for testing.

To evaluate the accuracy of the model, an output was classified as correct if the nearest
class to the continuous output was the class of the label. Evaluation on the test set resulted
in a mean accuracy of 93.0% for the AP view and 95.1% for the LAT view, with a mean
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(a) (b)

Figure 4: In (a) two radiographs in the AP view are shown. Their labeled ROI is marked
with a blue box and the predicted ROI with a red box. The predicted segmenta-
tion mask used to construct the red box is highlighted. The same is shown in (b)
for the LAT view. Both examples also show that the proportion of ROI in the
radiograph can vary greatly.

absolute error of 0.19 for AP and 0.20 for LAT. Over the 12 runs the standard deviation is
0.025 and 0.02 and the median accuracy 93.4% and 95.4% for AP and LAT, respectively.
The classification into diagnostic and non-diagnostic (see Section 4.2) resulted in an accu-
racy of 97.8% for the AP view and 93.2% for the LAT view. This accuracy shift is because
there are different distributions of 1 s and 3 s in the AP and LAT parts of the dataset.

To evaluate whether the accuracy of the quality assessment benefits from the steps
described in Sections 3.1 and 3.2, we repeated the training with and without these steps.
The results, which are given in Table 1, show, that each step of the pipeline improves
the accuracy. Overall, the mean accuracy improves from 82.4% to 94.1% when all steps
are included. While the benefit of training separately for the different views is small, the
extraction of ROIs seems to be necessary to obtain high accuracy. When trained without
the previous view recognition, a single model is trained on the combined AP and LAT data
to predict the quality of both views. For this each view is sampled equally often.

To get an estimation on how accurate the labels are, we tested each labeling radiologist
against the others, taking one label as prediction and the mean of the remaining three as
ground truth. If the difference between prediction and ground truth was at least 1, the
prediction was counted as wrong. This resulted in a mean accuracy of 92.6% for AP and
90.1% for LAT. Across the four radiologists the standard deviation is 0.026 and 0.037 for
AP and LAT, respectively. The mean accuracy over both views is 94.1% for the networks
and 91.4% for the radiologists. Although our method, for evaluating the performance of
the radiologists, is based on only four experts it should suffice as a first estimate.

A visual comparison of the expert labels and framework predictions on the unlabeled
dataset can be seen in the Appendix in Figure 5 for the AP view and Figure 6 for the LAT
view. For further illustration the ROIs with the highest error between expert label and
predicted quality are shown in Figure 7. Note that there is no clear pattern that explains
the deviation.

7
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Table 1: Accuracy of quality assessment
depending on the steps View
Recognition (Section 3.1) and
ROI Extraction (Section 3.2).
Not training separately for AP
and LAT and not extracting the
ROI leads to the lowest accu-
racy. Both steps on their own
increased the accuracy, while
using both provided the best re-
sult.

View
Recog.

ROI
Ext.

Accuracy

mean AP LAT

7 7 82.4% 80.3% 84.5%
3 7 85.1% 82.9% 87.2%
7 3 92.4% 92.2% 92.5%
3 3 94.1% 93.0% 95.1%

Table 2: Overview of all steps in the frame-
work and their results. The results
for the View Recognition and the
Quality Assessment are the achieved
accuracy. For the ROI Extraction
the result is the achieved Dice score.
The AP and LAT results are not
from the same model, because we
trained individually for each view.
Since this is not the case for the View
Recognition, there is only a single ac-
curacy.

Step Accuracy or Dice

mean AP LAT

View Recognition 99.5% – –
ROI Extraction 90.1% 94.2% 85.9%
Quality Assessment 94.1% 93.0% 95.1%

6. Discussion

The aim of this paper was to develop a framework for automatic quality assessment and to
evaluate how well it performs. We were able to show that the accuracies of the predicted
quality (93.0% anterior posterior, 95.1% lateral) are better than those made by radiologists
(92.6% anterior posterior, 90.1% lateral). The results of the individual steps included in
the framework are summarized in Table 2. With this framework it is now possible for
radiographers to immediately get a first feedback on the same level of expertise as they
would get from a radiologist. These results support our view that anatomical features can
be learned and are therefore suitable for the automatic assessment of diagnostic quality.
In order to achieve these results, an initial separation of the radiographs into lateral and
anterior posterior was necessary. This task could be achieved with an accuracy of 99.5%.

If our framework had been already in place when capturing the 950 radiographs of
our dataset, 80.0% of the non-diagnostic radiographs would have been immediately and
correctly recognized as such. Since 12.9% of the dataset are non-diagnostic radiographs,
for every 100 radiographs the number of additional needed appointments for examinations
could have been decreased from 13 to only 3.

Regarding scalability, our experiments show that about 500 labeled radiographs per
radiographic view are sufficient to train a network to the accuracy level of an expert. We
assume that the framework can be transferred to radiographs of other body parts. In
addition to its use in day-to-day operations, the framework can potentially help to comply
with quality standards and optimize the clinical routine.
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Appendix A. Example ROI Images

(a) (b) (c) (d) (e) (f )

Figure 5: Each column shows five example ROIs of the labeled dataset in the anterior
posterior view with the expert label 1 (a), 2 (b), and 3 (c); and five examples of
unlabeled ROIs for which our framework predicts the quality classes 1 (d), 2 (e),
and 3 (f ).
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(a) (b) (c) (d) (e) (f )

Figure 6: Each column shows five example ROIs of the labeled dataset in the lateral view
with the expert label 1 (a), 2 (b), and 3 (c); and five examples of unlabeled ROIs
for which our framework predicts the quality classes 1 (d), 2 (e), and 3 (f ).
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Appendix B. Failure Cases

(a) (b) (c) (d) (e) (f )

Figure 7: Each column shows five ROIs of the labeled dataset in the anterior posterior
view with the expert label 1 (a), 2 (b), and 3 (c); and five examples of ROIs in
the lateral view with the expert label 1 (d), 2 (e), and 3 (f ). The quality assessed
by our framework is printed on each ROI. For each class and view the five ROIs
with the highest error between expert label and predicted quality are shown.

13


	Introduction
	Related Work
	Proposed Framework
	Recognition of the Radiographic View
	Extraction of the ROI
	Quality Assessment

	Datasets
	Weakly Labeled Dataset for Recognition of the Radiographic View
	Diagnostic Quality Dataset

	Experiments and Results
	Recognition of the Radiographic View
	Extraction of the ROI
	Quality Assessment

	Discussion
	Example ROI Images
	Failure Cases

