

000 EXPVID: A BENCHMARK FOR EXPERIMENT VIDEO 001 002 UNDERSTANDING & REASONING 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

011 Multimodal Large Language Models (MLLMs) hold promise for accelerating sci-
012 entific discovery by interpreting complex experimental procedures. However,
013 their true capabilities are poorly understood, as existing benchmarks neglect the
014 fine-grained and long-horizon nature of authentic laboratory work, especially in
015 wet-lab settings. To bridge this gap, we introduce ExpVid, the first benchmark
016 designed to systematically evaluate MLLMs on scientific experiment videos. Cu-
017 rated from peer-reviewed video publications, ExpVid features a new three-level
018 task hierarchy that mirrors the scientific process: (1) Fine-grained Perception of
019 tools, materials, and actions; (2) Procedural Understanding of step order and com-
020 pleteness; and (3) Scientific Reasoning that connects the full experiment to its pub-
021 lished conclusions. Our vision-centric annotation pipeline, combining automated
022 generation with multi-disciplinary expert validation, ensures that tasks require vi-
023 sual grounding. We evaluate 19 leading MLLMs on ExpVid and find that while
024 they excel at coarse-grained recognition, they struggle with disambiguating fine
025 details, tracking state changes over time, and linking experimental procedures to
026 scientific outcomes. Our results reveal a notable performance gap between propri-
027 etary and open-source models, particularly in high-order reasoning. ExpVid not
028 only provides a diagnostic tool but also charts a roadmap for developing MLLMs
029 capable of becoming trustworthy partners in scientific experimentation.

030 031 1 INTRODUCTION 032

033 Scientific progress is driven by careful experimentation. In wet-lab settings such as biology, chem-
034 istry, and medicine, researchers need to execute fine-grained actions with exacting precision, adhere
035 to stepwise protocols, and reason from procedures to results (Gabrieli et al., 2025; Yagi et al., 2025).
036 Yet understanding and reproducing these procedures are time-consuming for practitioners and
037 opaque to newcomers. Recent advances in Multimodal Large Language Models (MLLMs) (Ope-
038 nAI, 2025; DeepMind, 2025b; Bai et al., 2025b) make it tempting to delegate parts of this workflow
039 to artificial intelligence: perceiving experimental manipulations, checking procedural fidelity, and
040 even connecting observed operations to scientific conclusions. Regarding this, a question remains:
041 how well do current MLLMs understand real experimental footage?

042 Despite steady progress on video-based benchmarks (Li et al., 2024a; Hu et al., 2025; Hasson et al.,
043 2025), most existing datasets emphasize general actions or activities or medical computer vision
044 scenarios rather than authentic laboratory experimentation. These settings lack the distinctive chal-
045 lenge of wet-lab work: visually subtle operations (e.g., pipetting microliter volumes), small and of-
046 ten occluded tools, fine-grained materials and states, and long-horizon dependencies that link early
047 preparation steps to downstream results. To our knowledge, there is no systematic evaluation target-
048 ing the spectrum of capabilities needed for assisting research from operational perception through
049 procedural understanding to higher-order scientific analysis in genuine experiment videos.

050 We introduce ExpVid, a benchmark for scientific experiment video understanding and reasoning.
051 It spans 13 disciplines and centers on wet-lab experiments; a small number of dry-lab or field en-
052 gineering videos are included for breadth and completeness, while purely computational and most
053 physics experiments are excluded. Each video is paired with a peer-reviewed publication to ensure
scientific rigor and to support annotations linking video experiments to innovations and conclusions.

Figure 1: Illustration of three-level task hierarchy in ExpVid.

In term of sources, ExpVid is curated from online peer-reviewed research collection (JoVE), whose exo-view recordings capture real-world laboratory manipulations with detailed narration.

To assess models across both temporal and analysis difficulty granularity, ExpVid organizes data into three tiers: single-step perceptions within seconds, multi-step understanding over minutes, and full-experiment as scientific reasoning across extended workflows. In this regard, we define a task hierarchy that mirrors how scientists work. At the operational level, models must recognize tools, materials, quantities, and fine-grained actions in short clips. At the procedural level, models predict over stage-level segments by ordering steps, verifying completeness, and predicting next moves. At the reasoning level, models integrate visual evidence across the full video and relate it to the accompanying paper to answer questions about motivation, significance, and conclusions.

Specifically, we adopt a vision-centric annotation method to generate viable question–answer pairs at multiple temporal scales, and then introduce human expertise to secure the correctness. Questions are constructed so that visual cues, instead of background knowledge alone, are necessary, along with carefully designed distractors that are semantically and visually plausible. Multidisciplinary experts then validate, refine, and balance the items to ensure domain fidelity and diversity across disciplines and procedures. This combination of automated construction and expert verification yields a relatively scalable yet rigorous benchmark tailored to the realities of experimental science.

We use ExpVid to evaluate 19 popular MLLMs (with both open-source and proprietary). The findings (in Sec. 4) reveal clear strengths in coarse object recognition and short-horizon reasoning, but persistent challenges in (i) disambiguating visually similar tools and materials under occlusion, (ii)

tracking quantities and states across steps, and (iii) connecting procedural evidence to scientifically valid conclusions. These also emphasize that reliable visual grounding and structured reasoning are most urgently needed in real laboratory settings (mostly wet-lab tasks). We believe these chart a roadmap for MLLM research toward trustworthy assistants or agents that can perceive, verify, and reason about real experiments rather than stylized demonstrations.

In summary, our contributions are given as:

- We present ExpVid, to our best knowledge, the first benchmark that systematically evaluates MLLMs on scientific experimental footage across three hierarchical levels: fine-grained perception, procedural understanding, and scientific reasoning.
- We design a scalable vision-centric annotation pipeline that constructs multi-level tasks from videos, associated ASR transcripts and peer-reviewed papers, followed by rigorous multi-disciplinary expert validation and refinement.
- We benchmark 19 leading MLLMs on ExpVid and provide [an analysis of our results](#). We show ExpVid can work as a foundation for measuring and advancing MLLMs in real laboratory settings.

2 RELATED WORK

Multimodal Large Language Models (MLLMs). MLLMs extend LLMs to multimodal domains by combining visual perception with linguistic reasoning. Both closed-source models (e.g., GPT-5 (OpenAI, 2025), Gemini 2.5 Pro (DeepMind, 2025b)) and open-source models (Chen et al., 2024b; Zhu et al.; Bai et al., 2025b; Hong et al., 2025) demonstrate strong reasoning capabilities on multimodal inputs. Some further address ultra-long video understanding, enabling reasoning over hours of content (Bai et al., 2025b; Wang et al., 2025b; Li et al., 2024b). To advance scientific discovery, Intern-S1 (Bai et al., 2025a) is tailored for scientific domains. Nevertheless, MLLMs’ ability to understand and reason over laboratory experiment videos remains underexplored.

Video understanding benchmarks. Existing video benchmarks evaluate video models on general video understanding tasks, including for example, action recognition (Caba Heilbron et al., 2015; Sigurdsson et al., 2016; Mangalam et al., 2023), dense captioning (Das et al., 2013; Rohrbach et al., 2015; Chai et al., 2024), and temporal grounding (Gao et al., 2017; Lei et al., 2021; Liu et al., 2024). Video-MME (Fu et al., 2025) and MVBench (Li et al., 2024a) provide comprehensive evaluations on short video clips with multi-choice questions, while several works such as MLVU (Zhou et al., 2024), LVbench (Wang et al., 2024c), VRBench (Yu et al., 2025), evaluate MLLMs on long video comprehension or introduce narrative-driven dataset for multi-step reasoning in extended video contexts. These benchmarks advance perception and temporal reasoning, but remain agnostic to domain-specific scientific knowledge and experimental contexts.

Knowledge-driven and scientific benchmarks. Another stream of work emphasizes knowledge-intensive evaluation, requiring models to integrate discipline knowledge beyond perception. Chem-Bench (Alampara et al., 2025), MathVision (Wang et al., 2024b), and MathVista (Lu et al., 2023) are for specific domains. Broader efforts (Yue et al., 2024; Zhao et al., 2025; Wang et al., 2024d; Chen et al., 2024a) target expert-level, multi-disciplinary tasks, with Video-MMMU (Hu et al., 2025) extending this to domain knowledge from videos. Recently, SCI-VID (Hasson et al., 2025) and SFE (Zhou et al., 2025) further introduce scientific benchmarks, but focus on outcome recognition (e.g., medical images), rather than understanding whole experiments. Yet real-world scientific discovery critically depends on lab experiments, where step-wise operations and tools drive results.

3 EXPVID: A SCIENTIFIC EXPERIMENT VIDEO BENCHMARK

We develop a benchmark to assess the performance of MLLMs on experimental footage. Specifically, we mostly focus on wet experiments related to biology, chemistry and medicine. Only a few dry ones (e.g., field engineering) are included [while most computational examples, or examples from physics](#) are excluded. Since wet experiments commonly own higher operational costs and complexity than dry ones, they demand more intelligent assistance and analysis. In the following, we first describe ExpVid’s data curation (Sec. 3.1), then present its task hierarchy (Sec. 3.2) and finally detail the annotation (Sec. 3.3). An overview of the benchmark construction pipeline is illustrated in Fig. 2.

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
Table 1: Comparison between ExpVid and some MLLM benchmarks. A and M indicate automatic and manual annotation, respectively.

Benchmark	#QA Pairs	#Videos	Avg. Sec.	#Task Types	Annotation	Domain
<i>General Video Benchmarks</i>						
MVBBench (Li et al., 2024a)	4,000	3,641	16.0	20	A+M	General
Video-MME (Fu et al., 2025)	2,700	900	1,017.9	1	M	General
MLVU (Zhou et al., 2024)	3,102	1,730	930.0	9	M	Narrative
VRBench (Yu et al., 2025)	9,468	960	5,796.0	1	M	Narrative
<i>Knowledge-driven Benchmarks</i>						
MMVU (Zhao et al., 2025)	3,000	1,529	51.4	2	M	Multi-disc.
Video-MMMU (Hu et al., 2025)	900	300	506.2	3	M	Multi-disc.
MathVision (Wang et al., 2024b)	3,040	–	–	1	M	Math
MathVista (Lu et al., 2023)	6,141	–	–	31	M	Math
MMMU (Yue et al., 2024)	11,500	–	–	2	M	Multi-disc.
ScienceQA (Saikh et al., 2022)	21,208	–	–	1	M	Science
SciBench (Wang et al., 2023)	789	–	–	1	M	Science
MMStar (Chen et al., 2024a)	1,500	–	–	6	M	Multi-disc.
SFE (Zhou et al., 2025)	830	–	–	66	M	Science
ExpVid	7,800	390	489.0	10	A+M	Science

3.1 EXPERIMENT DATA CURATION

Collection. We collect scientific experiment videos, automatic speech recognition (ASR) transcripts, and corresponding papers from the Research section of JoVE (Journal of Visualized Experiments), a multi-disciplinary, peer-reviewed video journal. JoVE publishes step-by-step experimental protocols in video format, allowing viewers to observe the fine-grained manipulations and precise procedures. Its exo-view recordings of lab experiments yield high-quality visual content, while associated ASR transcripts offer detailed procedural descriptions, which are well-suited for annotation. The paired peer-reviewed papers further allow us to design challenging reasoning tasks that bridge experimental procedures to research conclusions and scientific findings.

Filtering. For quality control, we apply a multi-dimensional scoring process to ASR transcripts via DeepSeek-R1 (Guo et al., 2025a). Each transcript is rated on five criteria (0-5 scale): 1) **Continuity**: whether covers the video without temporal gaps or missing segments. 2) **Alignment**: whether its timestamps align with the actual video duration; 3) **Clarity**: its logical coherence, domain-appropriate terminology, and overall readability; 4) **Integrity**: whether it records an entire experimental workflow, including distinct procedural stages; 5) **Focus**: whether centers on procedures rather than background, lectures, or unrelated context.

An overall score is obtained by averaging across five dimensions, and only those scored at least 4 overall with no dimension below 3.5 are retained, yielding a high-quality subset. Additionally, videos are constrained to the interquartile range of durations (25th–75th percentiles, 378–728s) to remove outliers. Within each scientific discipline, experiments are ranked by overall scores and manually reviewed to exclude videos that predominantly feature computer-screen displays or lack actual laboratory footage. Further, multi-disciplinary experts select 30 top-ranked experiments from each of the 13 disciplines, yielding 390 videos with ASR transcripts averaging 1,026 words. This ensures ExpVid remains balanced and diverse. Detailed statistics, along with the list of all 13 disciplines, are reported in Appendix B.1.

Preprocessing. For a systematical evaluation across temporal scales, we process all videos into a three-level hierarchy to probe distinct capabilities.

- **Level-1: Action-level Clips.** We obtain $\sim 10k$ clip-text pairs (with each lasting $\sim 8s$ on average). Specifically, we segment ASR transcripts by punctuation and align each sentence with its timestamp to cut the video. This yields clip-ASR sentence pairs that provide step-wise experimental narrations, well-suited for perception-oriented tasks such as action or material recognition.
- **Level-2: Stage-level Segments.** We get $\sim 3.5k$ segment-text pairs with an average duration of $\sim 48s$. We divide each experiment into semantically coherent stages (e.g., preparation, main procedures, post handling). We use DeepSeek-R1 to generate stage-level boundaries for each ASR transcript, guided by prompts that enforces both logical and causal continuity across operations.

Figure 2: An overview of ExpVid construction pipeline.

Each ASR paragraph is constrained to 20–60s to preserve temporal coherence while avoiding excessive context length. From each paragraph, DeepSeek-R1 further extracts step-level operation descriptions to form a segment step list. Concatenating all segment step lists reconstructs a full step list, which serves a suitable basis for procedural understanding tasks.

- **Level-3: Full Procedure Videos.** We directly preserve the full experiment videos (average ~ 8 minutes). In certain cases, we remove concluding slides, figures, and data-analysis segments to avoid potential shortcuts (e.g., models exploiting textual conclusions) and ensure evaluation relies on procedural content. This level targets long visual context and structural reasoning, requiring models to integrate information across extended experimental workflows.

3.2 TASK HIERARCHY IN EXPVID

Based on the processed videos of varied lengths, we define ExpVid’s three-level task hierarchy, benchmarking MLLMs on scientific experiment videos, ranging from short-term perception to long-term reasoning. This design allows us to progressively evaluate models’ abilities: whether they can recognize fine-grained visual details, predict over coherent experimental procedures, and ultimately reason scientific conclusions over lab experiments. Fig. 1 illustrates this hierarchy.

Level-1: Fine-grained Perception. It evaluates whether MLLMs can visually ground essential elements in short clips of individual steps through four **Multi-Choice Question (MCQ)** tasks:

- **Material Recognition:** Distinguish the target experimental material and distinguish it from other plausible substances commonly encountered in laboratory settings.
- **Tool Recognition:** Identify the tools that appear in the scene and reject visually or functionally similar distractors.
- **Quantity Recognition:** Choose the correct numerical attribute (e.g., *dosage*, *temperature*) by visually interpreting scales, amounts, or counts.
- **Operation Recognition:** Recognize the specific action being performed in the video and differentiate it from confusable but incorrect operations in the similar setup (e.g., *Insert* \rightarrow *Attach*).

270 **Level-2: Procedural Understanding.** This type of task evaluate models on their reasoning about
 271 logical and temporal order across multiple steps within stage-level clips, including:
 272

- 273 • **Step Ordering:** Select the correct step execution order when the original sequence is perturbed
 274 into plausible but incorrect arrangements.
- 275 • **Sequence Generation:** Given the candidates, find out the ordered steps that appear in the clip.
- 276 • **Completeness Verification:** Given the candidates, detect the missing step in the clip.
- 277 • **Step Prediction:** Given the first $n - 1$ steps of an experiment stage, predict the next step n .

279 **Level-3: Scientific Reasoning.** It has two tasks that require models to integrate visual experiment
 280 processes with domain knowledge to draw conclusions, in the form of fill-in-the-blank questions:
 281

- 282 • **Experimental Analysis:** Infer crucial conclusions from experimental data, e.g., compare current
 283 results with existing studies, highlight new findings, and explain the corresponding mechanisms.
- 284 • **Scientific Discovery:** Reason over the entire experiment video, move beyond current outcomes,
 285 and abstract broader insights, such as linking results or innovations to larger scientific phenomena,
 286 interpreting the significance in filling blanks of which domain or potential application values, and
 287 proposing improved solutions for the current limitations and new directions for this area.

288 3.3 VISION-CENTRIC ANNOTATION WITH KNOWLEDGE GUIDANCE

290 Our annotation pipeline adopts a semi-automatic strategy that combines LLM assistance with human
 291 expert verification. To ensure benchmark *vision-centric*, we deliberately avoid encoding contextual
 292 cues from the narration that could directly reveal answers during QA construction. Moreover, dis-
 293 tractors are crafted to be semantically or visually plausible, forcing models to rely on visuals rather
 294 than purely leveraging LLM priors and textual cues. To minimize the LLM bias, LLM is limited to
 295 extracting experimental entities (e.g., subjects, actions, tools) from ASR transcripts and transform-
 296 ing them into QA candidates. Human experts then review, refine, and validate these annotations for
 297 correctness. Building upon the hierarchy given in Sec. 3.1 and 3.2, we construct them as follows.

298 **Fine-grained Perception.** For the four perception tasks *Material*, *Tool*, *Quantity*, and *Operation*,
 299 candidate entities or actions are first extracted from ASR sentences by DeepSeek-R1 as targets and
 300 aligned with video clips, with a Qwen2.5-VL captioner providing visual triggers to verify their vis-
 301 ibility. Normalization preserves critical states of materials and essential identifiers of tools, while
 302 excluding under-specified or generic terms. Then, these resulting targets are converted into four-
 303 option multiple-choice questions (MCQs), where distractors are generated by DeepSeek-R1 follow-
 304 ing task-specific prompt rules: for *Material* and *Tool*, distractors reflect visual/functional similarity
 305 or common confusions; for *Quantity*, they lie in the same numeric range to mimic perceptual errors;
 306 and for *Operation*, they are plausible but incorrect within the same experimental setting. This design
 307 forces models to ground their answers in visual signals.

308 **Procedural Understanding.** These four sequential tasks are built on step lists derived from ASR,
 309 The first is *Step Ordering*, where each segment’s step sequence is converted into a four-option MCQ
 310 with distractors generated by DeepSeek-R1 as plausible but incorrect permutations that still follow
 311 experimental logic. The other three are formulated by embedding step list into question templates.
 312 *Sequence Generation* and *Step Prediction* use the full step list as the candidate set, where *Step*
 313 *Prediction*, additionally, the final step and its video are removed, with only segments containing at
 314 least three preceding steps retained; *Completeness Verification* instead uses the segment step list and
 315 randomly removes a non-final step as the target answer.

316 **Scientific Reasoning.** For *Experimental Analysis* and *Scientific Discovery*, we construct annotations
 317 for each full experiment video based on its corresponding peer-reviewed paper. The paper
 318 is first processed with MinerU (Wang et al., 2024a) to extract key sections (Introduction, Results,
 319 Discussion), and GPT-5 is used to summarize findings as anchors for annotation. PhD-level expert
 320 annotators then design two types of fill-in-the-blank question based on experiment videos and cor-
 321 responding paper, under the following principles: 1) Solvable only through visual observation and
 322 requiring reasoning across the full experiment. 2) Should not be answerable without the video. 3)
 323 Constrained to a single precise answer, minimizing ambiguity and synonym overlap. 4) **Should an-**
 324 **note multi-blank questions, where each question contains multiple blanks that capture several key**
 325 **information points.**

324 **Expert Verification.** The given annotations are all human verified. We build an online annotation
 325 platform (see Appendix E) and recruit PhD-level experts in biology, medicine, chemistry, and related
 326 disciplines to ensure annotation accuracy. Each level has different verification standards.
 327

328 Concerning fine-grained perception, experts verify targets are indeed visible or inferable in the clip,
 329 and distractors are scientifically plausible and visually confusable. For procedural understanding,
 330 they check consistency between step lists and segments by removing unobserved steps, correcting
 331 timestamp errors, refining vague descriptions, and adding missing operations to ensure completeness.
 332 Regarding scientific reasoning, experts ensure that fill-in-the-blank questions demand genuine
 333 reasoning over full experimental workflows, with prompts designed to avoid textual shortcuts and
 334 answers constrained to a single unambiguous choice.
 335

336 Across all levels, experts validate that questions are answerable from the corresponding video content,
 337 filter out invalid items, and revise those with minor errors (e.g., inaccurate distractors or im-
 338 perfect phrasing). This iterative process continues until all items meet our quality standards. On
 339 average, annotation requires 0.3 hours per question for Level-1, 0.5 hours for Level-2, and 1.2 hours
 340 for Level-3, yielding 7,800 QA pairs across 10 tasks under 13 disciplines. Details of benchmark
 341 statistics are in the Appendix B.2.
 342

343 4 EXPERIMENTS

344 **Evaluation models.** We evaluate MLLMs covering both open-source and proprietary models, and
 345 reasoning ones or not. On the open-source side, we include Qwen2.5-VL (Bai et al., 2025b),
 346 InternVL3 (Zhu et al.), InternVL3.5 (Wang et al., 2025a), GLM4.5V (Hong et al., 2025), Kimi-
 347 VL (Team et al., 2025), and Intern-S1 (Bai et al., 2025a). For closed-source ones, we benchmark
 348 Seed-1.5-VL (Guo et al., 2025b), Gemini-2.5-Flash (DeepMind, 2025a), Gemini-2.5-Pro (Deep-
 349 Mind, 2025b), Claude-Sonnet-4 (Anthropic, 2025), and GPT-5 (OpenAI, 2025). A full description
 350 of the evaluated models’ configurations can be found in Appendix F.
 351

352 **Metrics.** ExpVid employs hierarchical evaluation metrics aligned with tasks. For **Level-1**, all
 353 types of recognition tasks are formulated as multiple-choice questions, measured by *Top-1 Accuracy*.
 354 **Level-2** tasks like step ordering, completeness verification and step prediction are evaluated by
 355 *Top-1 Accuracy*, while sequence generation is evaluated using *Jaccard similarity coefficient* at the
 356 sequence level. **Level-3** tasks are evaluated by comparing each predicted blank with the ground-
 357 truth answer using a lightweight LLM (Phi-3-mini (Abdin et al., 2024)), and reporting *per-blank*
 358 accuracy, defined as the ratio of correctly judged blanks to the total number of blanks.
 359

360 **Human performance.** We recruited 15 undergraduate students without specialized backgrounds
 361 in biomedical or related sciences. They represent participants with general knowledge and com-
 362 mon sense rather than domain expertise, providing a realistic reference point for non-expert human
 363 understanding. Notably, for Level-3 open-ended cloze tasks, participants reported being unable to
 364 complete the questions without specialized training, so no human baseline is reported for this level.
 365

366 4.1 RESULTS

367 We evaluate 19 MLLMs on ExpVid, as detailed in Tab. 2. Frontier closed-source models, notably
 368 GPT-5 and the Gemini-2.5 series, clearly outperform the human baseline. Gemini-2.5-Flash-Think
 369 reaches 60.2 on the Level-1 (L1) average, and GPT-5 scores 57.5 on the Level-2 (L2) average, well
 370 above the human averages of 37.6 and 42.1, respectively.
 371

372 Closed-source models also maintain a clear lead over open-source ones as shown in Tab. 2, a gap that
 373 widens with task complexity. In basic perception such as recognizing tools, materials, quantities,
 374 and operations, closed-source models hold a notable lead. The top-performing Gemini-2.5-Flash
 375 (with “think”) scores 60.2 on average. The best open-source models, InternVL3-78B and Intern-S1,
 376 achieve commendable but lower scores of 50.9 and 49.9, respectively. This indicates that while the
 377 gap exists, leading open-source models are becoming increasingly competitive in fundamental visual
 378 perception. Concerning procedural understanding, the gap becomes more pronounced. GPT-5 leads
 379 with an average of 57.5, followed closely by Gemini-2.5-Pro at 54.3. The top open-source model,
 380 InternVL3-78B, lags with an average of 41.9. A deeper look reveals nuances: InternVL3-78B excels
 381 at Step Ordering (87.1), even outperforming GPT-5 (85.1). However, it falls short on more generative
 382

378 Table 2: Performance of evaluated models on the ExpVid across 10 tasks under three levels.
379

380 Model	381 Think	382 Level-1					383 Level-2					384 Level-3		
		385 Tool	386 Mat.	387 Quan.	388 Oper.	389 Avg.	390 Ord.	391 Gen.	392 Veri.	393 Pred.	394 Avg.	395 Anal.	396 Disc.	397 Avg.
388 Human Performance		17.5	15.9	61.3	55.5	37.6	69.8	31.2	45.6	21.8	42.1	–	–	–
<i>Open-source MLLMs</i>														
389 Qwen2.5-VL-7B-Instruct	390 ×	32.0	33.9	49.0	62.4	42.6	56.2	20.8	20.7	1.3	24.6	25.2	21.4	23.3
391 MiMo-VL-7B-RL	392 ×	34.2	33.7	44.2	62.4	42.4	43.9	28.5	18.5	11.4	27.4	28.7	25.9	27.3
393 MiMo-VL-7B-RL	394 ✓	36.1	29.1	53.6	67.8	44.3	64.8	32.3	24.9	15.6	34.3	29.3	27.3	28.3
395 InternVL3-8B	396 ×	27.5	31.0	38.8	65.6	39.4	43.4	20.4	20.2	3.9	23.9	29.2	25.3	27.2
397 InternVL3.5-8B	398 ×	27.3	30.8	45.5	64.8	40.3	82.3	25.8	23.7	4.8	34.0	22.6	18.4	20.5
399 Intern-S1-mini	400 ✓	33.3	31.2	52.5	61.4	42.5	73.6	14.3	16.8	8.3	28.1	33.5	28.3	30.9
401 Keye-VL-8B-Preview	402 ✓	16.6	22.4	38.9	60.8	32.6	25.4	12.4	19.1	1.7	14.6	9.5	6.7	8.1
403 Keye-VL-1.5-8B	404 ✓	21.0	23.4	51.3	64.0	37.0	56.7	9.5	20.0	2.8	22.1	8.4	6.1	7.2
405 GLM-4.1V-9B	406 ✓	30.8	29.8	47.5	59.6	40.1	64.1	18.2	25.0	7.4	28.6	28.1	26.5	27.3
407 GLM-4.5V	408 ✓	35.5	33.6	61.5	62.3	45.6	71.9	34.9	27.2	12.9	36.6	33.3	32.5	32.9
409 Kimi-VL-A3B-Thinking	410 ✓	34.6	32.6	40.7	59.5	40.8	32.3	18.2	23.3	6.2	20.0	24.6	21.8	23.2
411 InternVL3.5-38B	412 ✓	35.9	34.0	46.7	65.3	44.0	65.8	36.7	23.0	19.0	36.0	33.1	30.8	31.9
413 InternVL3-78B	414 ✓	35.1	34.3	73.2	75.8	50.9	87.1	45.5	19.8	15.5	41.9	40.3	35.3	37.7
415 Qwen2.5-VL-72B-Instruct	416 ×	30.5	34.7	54.5	64.5	43.9	86.3	34.1	23.8	0.3	35.9	31.9	29.3	30.6
417 Intern-S1	418 ✓	38.9	35.2	58.9	73.8	49.9	82.2	45.0	24.1	15.4	36.0	43.0	36.3	39.6
<i>Closed-source MLLMs</i>														
419 Seed-VL-1.5	420 ✓	32.9	24.6	43.9	69.2	40.7	73.9	48.6	19.8	27.9	42.5	32.0	29.4	30.7
421 Claude-Sonnet-4	422 ×	25.6	31.2	54.3	61.9	40.8	78.7	37.6	16.5	11.6	36.0	29.1	30.1	29.6
423 Gemini-2.5-Flash	424 ×	52.7	50.1	65.2	72.6	58.6	86.0	50.5	24.1	40.2	50.1	47.2	41.1	44.1
425 Gemini-2.5-Flash	426 ✓	52.7	50.7	71.9	73.3	60.2	85.1	54.3	22.3	38.0	49.8	44.8	41.3	43.0
427 Gemini-2.5-Pro	428 ×	53.1	45.9	64.3	80.8	59.2	83.7	61.3	26.8	49.6	53.8	50.6	45.2	47.9
429 Gemini-2.5-Pro	430 ✓	51.3	44.3	63.8	74.4	56.7	84.2	59.9	26.8	46.9	54.3	50.1	44.8	47.4
431 GPT-5	432 ✓	51.6	37.8	59.5	71.9	53.3	85.1	66.9	26.8	51.8	57.5	55.4	57.4	56.4

433 and predictive tasks like Sequence Generation (45.5 vs. GPT-5’s 66.9) and Step Prediction (15.5 vs. 434 GPT-5’s 51.8). This highlights that while open-source models can master specific structured tasks, 435 they struggle with more holistic procedural reasoning. In Level-3 (L3) scientific reasoning, GPT-5 436 achieves a leading average score of 56.4, with strong results in both Experimental Analysis (55.4) 437 and Scientific Discovery (57.4), well ahead of all competitors. By contrast, the best open-source 438 model, Intern-S1, reaches only 39.6, falling nearly 17 points short of GPT-5. It underscores the 439 advanced reasoning capabilities of frontier closed-source models, which remain a clear target for 440 the open-source community.

441 4.2 MORE ANALYSIS

442 **Scaling Effects in Open-Source Models.** A clear and consistent trend found among open-source 443 models is the positive correlation between model scale and performance. The InternVL family 444 serves as an excellent case study. As the model size increases from InternVL3-8B (L1: 39.4, L2: 445 23.9, L3: 27.2) to InternVL3.5-38B (L1: 44.0, L2: 36.0, L3: 31.9) and finally to InternVL3-78B 446 (L1: 50.9, L2: 41.9, L3: 37.7), performance improves across all three levels. This demonstrates 447 that increasing model scale directly contributes to enhanced capabilities in perception, procedural 448 understanding, and scientific reasoning tasks, validating scaling as a crucial axis for experiment 449 video understanding in the open-source ecosystem.

450 **Potential Unbalanced Capabilities.** The results also shed light on the relative difficulty of 451 different tasks. Within L2, models consistently score highest on Step Ordering, indicating a strong 452 ability to rearrange provided information. In contrast, scores for Completeness Verification and Step 453 Prediction are significantly lower across all models, revealing a weakness in identifying missing 454 information and forecasting future actions. The extremely low score of Qwen2.5-VL-72B-Instruct on 455 Step Prediction (0.3) despite its strong performance on Step Ordering (86.3) exemplifies the brittleness 456 and uneven capabilities of current MLLMs.

Figure 3: Effect of input video frames.

Effect of thinking. In Tab. 2, we find *Thinking* does not consistently improve results and can even degrade it on some tasks. Regarding this, we analyze error cases where Gemini-2.5-Flash with Thinking_Budget=8,192 fails but the NoThinking mode succeeds. The Thinking model often adopts a logic-oriented style: abstracting the problem, reasoning step by step, and proposing a “reasonable” workflow. Yet it drifts from the actual video sequence and relies on priors. By contrast, the NoThinking model remains video-grounded, directly matching steps to visual order and producing concise, faithful descriptions. For example, NoThinking answers typically begin with “*The video shows...*”, whereas Thinking answers start with “*...identify the most logical workflow...*”, revealing reasoning beyond visuals (see Appendix F.5).

Vision centric. We compare Gemini-2.5-Flash with and without frame inputs on all L1 and L2 tasks (the left of Fig. 3). As a result, inputting frames consistently boosts performance, with some tasks such as Step Prediction becoming unsolvable without visual cues. Even for tasks like Step Ordering, where models can sometimes infer the correct answer from scientific priors alone, adding video inputs still yields clear gains. This validates the vision-centric design of ExpVid.

For long-video reasoning tasks in L3, we ablate frame counts in Fig. 3 right. Results show that visuals are indispensable: accuracy is near zero without frames and increases as more are added. However, models benefit differently. InternVL3.5 peaks early (~ 128 frames) and then declines, suggesting saturation or distraction from redundant inputs, whereas MiMo-VL and Kimi-VL steadily improve up to 256 frames, reflecting stronger ability to leverage extended temporal context. This indicates MLLMs like InternVL3.5, trained mainly for image–text alignment, gain little from extended sequences. In contrast, Kimi-VL and MiMo-VL, which incorporated long-video data during long-context activation training, continue to improve with more frames. Overall, these findings highlight the critical role of vision and the varying optimal frame budgets across models.

Limitation. ExpVid currently focuses on wet-lab experiments, not covering the full spectrum of scientific inquiry. Domains such as physics, which often involve distinct experimental apparatus (e.g., optical tables, particle detectors) and abstract phenomena, or purely computational experiments and large-scale engineering tests, remain underexplored. Reasoning tasks in Level-3 assess outcomes but do not illuminate the underlying reasoning process (e.g., chain-of-thought) that links experiments to conclusions.

5 CONCLUSION

This paper presents ExpVid, the first benchmark dedicated to scientific experiment videos. With its three-level task hierarchy, vision-centric annotation pipeline, and expert-guided validation, ExpVid gives a systematic evaluation of MLLMs across fine-grained perception, procedural understanding, and scientific reasoning. Our empirical studies demonstrate both the progress and the persistent limitations of current models, highlighting directions for advancing trustworthy AI in experimental science.

486 ETHICS STATEMENT
487

488 Our work involves the collection and annotation of scientific experiment videos sourced from JoVE,
489 a peer-reviewed video journal. All data are publicly available under JoVE’s license, and we do not
490 involve any private, sensitive, or personally identifiable information. The benchmark focuses on
491 laboratory procedures rather than human subjects, and no clinical or personally invasive data are
492 included. Annotation was conducted by PhD-level domain experts with clear guidelines to ensure
493 accuracy, fairness, and scientific integrity. Potential risks such as misuse for non-scientific or unsafe
494 experimental replication are mitigated by providing the dataset strictly for research purposes. We
495 adhere to the ICLR Code of Ethics in all aspects of this work, including dataset release, annotation
496 transparency, and reporting of model limitations.

497
498 REPRODUCIBILITY STATEMENT
499

500 We have taken several steps to ensure reproducibility of our benchmark and experiments. Sec. 3.1
501 and Appendix B.1 describe data collection and filtering criteria, including quantitative thresholds.
502 Sec. 3.1 details preprocessing pipelines for constructing our benchmark. Sec. 3.3, Appendix E
503 and G outline annotation templates, distractor generation heuristics, and expert verification
504 processes. Evaluation protocols and metrics for all tasks are specified in Sec. 4 and Appendix F. All
505 code for preprocessing, annotation generation, and evaluation, along with benchmark data (under
506 appropriate license agreements), will be released in anonymized form to facilitate reproduction and
507 extension by the community.

508
509 REFERENCES

510 Marah Abdin, Jyoti Aneja, Hany Awadalla, and Phi-3 technical report: A highly capable lan-
511 guage model locally on your phone. *arXiv preprint arXiv:2404.14219*, 2024.

512 Nawaf Alampara, Mara Schilling-Wilhelmi, Martíño Ríos-García, Indrajeet Mandal, Pranav
513 Khetarpal, Hargun Singh Grover, NM Anoop Krishnan, and Kevin Maik Jablonka. Probing the
514 limitations of multimodal language models for chemistry and materials research. *Nature compu-*
515 *tational science*, pp. 1–10, 2025.

516 Anthropic. Claude sonnet 4. <https://www.anthropic.com/clause/sonnet>, 2025. Ac-
517 cessed: 2025-09-21.

518 Lei Bai, Zhongrui Cai, Maosong Cao, Weihan Cao, Chiyu Chen, Haojiong Chen, Kai Chen,
519 Pengcheng Chen, Ying Chen, Yongkang Chen, et al. Intern-s1: A scientific multimodal foun-
520 dation model. *arXiv preprint arXiv:2508.15763*, 2025a.

521 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
522 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
523 2025b.

524 Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem, and Juan Carlos Niebles. Activitynet:
525 A large-scale video benchmark for human activity understanding. In *Proceedings of the ieee*
526 *conference on computer vision and pattern recognition*, pp. 961–970, 2015.

527 Wenhao Chai, Enxin Song, Yilun Du, Chenlin Meng, Vashisht Madhavan, Omer Bar-Tal, Jenq-
528 Neng Hwang, Saining Xie, and Christopher D Manning. Auroracap: Efficient, performant video
529 detailed captioning and a new benchmark. *arXiv preprint arXiv:2410.03051*, 2024.

530 Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Jiaqi
531 Wang, Yu Qiao, Dahua Lin, et al. Are we on the right way for evaluating large vision-language
532 models? *Advances in Neural Information Processing Systems*, 37:27056–27087, 2024a.

533 Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shen-
534 glong Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source
535 multimodal models with model, data, and test-time scaling. *arXiv preprint arXiv:2412.05271*,
536 2024b.

540 Pradipto Das, Chenliang Xu, Richard F Doell, and Jason J Corso. A thousand frames in just a
 541 few words: Lingual description of videos through latent topics and sparse object stitching. In
 542 *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 2634–2641,
 543 2013.

544 Google DeepMind. Gemini 2.5 flash. <https://deepmind.google/models/gemini/flash/>, 2025a. Accessed: 2025-09-24.

545 Google DeepMind. Gemini 2.5 pro. <https://deepmind.google/technologies/gemini/>, 2025b. Accessed: 2025-09-21.

546 Chaoyou Fu, Yuhang Dai, Yongdong Luo, Lei Li, Shuhuai Ren, Renrui Zhang, Zihan Wang, Chenyu
 547 Zhou, Yunhang Shen, Mengdan Zhang, et al. Video-mme: The first-ever comprehensive eval-
 548 uation benchmark of multi-modal llms in video analysis. In *Proceedings of the Computer Vision
 549 and Pattern Recognition Conference*, pp. 24108–24118, 2025.

550 Gianmarco Gabrieli, Irina Espejo Morales, Dimitrios Christofidellis, Mara Graziani, Andrea Gio-
 551 vannini, Federico Zipoli, Amol Thakkar, Antonio Foncubierta, Matteo Manica, and Patrick W
 552 Ruch. Activity recognition in scientific experimentation using multimodal visual encoding. *Dig-
 553 ital Discovery*, 4(2):393–402, 2025.

554 Jiyang Gao, Chen Sun, Zhenheng Yang, and Ram Nevatia. Tall: Temporal activity localization via
 555 language query. In *Proceedings of the IEEE international conference on computer vision*, pp.
 556 5267–5275, 2017.

557 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 558 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 559 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025a.

560 Dong Guo, Faming Wu, Feida Zhu, Fuxing Leng, Guang Shi, Haobin Chen, Haoqi Fan, Jian Wang,
 561 Jianyu Jiang, Jiawei Wang, et al. Seed1. 5-vl technical report. *arXiv preprint arXiv:2505.07062*,
 562 2025b.

563 Yana Hasson, Pauline Luc, Liliane Momeni, Maks Ovsjanikov, Guillaume Le Moing, Alina
 564 Kuznetsova, Ira Ktena, Jennifer J Sun, Skanda Koppula, Dilara Gokay, et al. Scivid: Cross-
 565 domain evaluation of video models in scientific applications. *arXiv preprint arXiv:2507.03578*,
 566 2025.

567 Wenyi Hong, Wenmeng Yu, Xiaotao Gu, Guo Wang, Guobing Gan, Haomiao Tang, Jiale Cheng,
 568 Ji Qi, Junhui Ji, Lihang Pan, et al. Glm-4.1 v-thinking: Towards versatile multimodal reasoning
 569 with scalable reinforcement learning. *arXiv e-prints*, pp. arXiv–2507, 2025.

570 Kairui Hu, Penghao Wu, Fanyi Pu, Wang Xiao, Yuanhan Zhang, Xiang Yue, Bo Li, and Ziwei
 571 Liu. Video-mmmu: Evaluating knowledge acquisition from multi-discipline professional videos.
 572 *arXiv preprint arXiv:2501.13826*, 2025.

573 JoVE. Jove: Journal of visualized experiments. <https://www.jove.com>. Accessed: 2025-09-
 574 12.

575 Jie Lei, Tamara L Berg, and Mohit Bansal. Detecting moments and highlights in videos via natural
 576 language queries. *Advances in Neural Information Processing Systems*, 34:11846–11858, 2021.

577 Kunchang Li, Yali Wang, Yinan He, Yizhuo Li, Yi Wang, Yi Liu, Zun Wang, Jilan Xu, Guo Chen,
 578 Ping Luo, et al. Mvbench: A comprehensive multi-modal video understanding benchmark. In
 579 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 580 22195–22206, 2024a.

581 Xinhao Li, Yi Wang, Jiashuo Yu, Xiangyu Zeng, Yuhang Zhu, Haian Huang, Jianfei Gao, Kunchang
 582 Li, Yinan He, Chenting Wang, et al. Videochat-flash: Hierarchical compression for long-context
 583 video modeling. *arXiv preprint arXiv:2501.00574*, 2024b.

584 Ye Liu, Zongyang Ma, Zhongang Qi, Yang Wu, Ying Shan, and Chang W Chen. Et bench: To-
 585 wards open-ended event-level video-language understanding. *Advances in Neural Information
 586 Processing Systems*, 37:32076–32110, 2024.

594 Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
 595 Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning of
 596 foundation models in visual contexts. *arXiv preprint arXiv:2310.02255*, 2023.

597

598 Kartikeya Mangalam, Raiymbek Akshulakov, and Jitendra Malik. Egoschema: A diagnostic bench-
 599 mark for very long-form video language understanding. *Advances in Neural Information Process-
 600 ing Systems*, 36:46212–46244, 2023.

601 OpenAI. Gpt-5. <https://openai.com/gpt-5>, 2025. Accessed: 2025-09-21.

602

603 Anna Rohrbach, Marcus Rohrbach, Niket Tandon, and Bernt Schiele. A dataset for movie descrip-
 604 tion. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 605 3202–3212, 2015.

606

607 Tanik Saikh, Tirthankar Ghosal, Amish Mittal, Asif Ekbal, and Pushpak Bhattacharyya. Scienceqa:
 608 A novel resource for question answering on scholarly articles. *International Journal on Digital
 609 Libraries*, 23(3):289–301, 2022.

610

611 Gunnar A Sigurdsson, Gü̈l Varol, Xiaolong Wang, Ali Farhadi, Ivan Laptev, and Abhinav Gupta.
 612 Hollywood in homes: Crowdsourcing data collection for activity understanding. In *European
 613 conference on computer vision*, pp. 510–526. Springer, 2016.

614

615 Kimi Team, Angang Du, Bohong Yin, Bowei Xing, Bowen Qu, Bowen Wang, Cheng Chen,
 616 Chenlin Zhang, Chenzhuang Du, Chu Wei, et al. Kimi-vl technical report. *arXiv preprint
 617 arXiv:2504.07491*, 2025.

618

619 Bin Wang, Chao Xu, Xiaomeng Zhao, Linke Ouyang, Fan Wu, Zhiyuan Zhao, Rui Xu, Kaiwen Liu,
 620 Yuan Qu, Fukai Shang, et al. Mineru: An open-source solution for precise document content
 621 extraction. *arXiv preprint arXiv:2409.18839*, 2024a.

622

623 Ke Wang, Junting Pan, Weikang Shi, Zimu Lu, Houxing Ren, Aojun Zhou, Mingjie Zhan, and Hong-
 624 sheng Li. Measuring multimodal mathematical reasoning with math-vision dataset. *Advances in
 625 Neural Information Processing Systems*, 37:95095–95169, 2024b.

626

627 Weihan Wang, Zehai He, Wenyi Hong, Yean Cheng, Xiaohan Zhang, Ji Qi, Xiaotao Gu, Shiyu
 628 Huang, Bin Xu, Yuxiao Dong, et al. Lvbench: An extreme long video understanding benchmark.
 629 *arXiv preprint arXiv:2406.08035*, 2024c.

630

631 Weiyun Wang, Zhangwei Gao, Lixin Gu, Hengjun Pu, Long Cui, Xingguang Wei, Zhaoyang Liu,
 632 Linglin Jing, Shenglong Ye, Jie Shao, et al. Internvl3. 5: Advancing open-source multimodal
 633 models in versatility, reasoning, and efficiency. *arXiv preprint arXiv:2508.18265*, 2025a.

634

635 Xiaoxuan Wang, Ziniu Hu, Pan Lu, Yanqiao Zhu, Jieyu Zhang, Satyen Subramaniam, Arjun R
 636 Loomba, Shichang Zhang, Yizhou Sun, and Wei Wang. Scibench: Evaluating college-level sci-
 637 entific problem-solving abilities of large language models. *arXiv preprint arXiv:2307.10635*, 2023.

638

639 Yi Wang, Xinhao Li, Ziang Yan, Yinan He, Jiashuo Yu, Xiangyu Zeng, Chenting Wang, Changlian
 640 Ma, Haian Huang, Jianfei Gao, et al. Internvideo2. 5: Empowering video mllms with long and
 641 rich context modeling. *arXiv preprint arXiv:2501.12386*, 2025b.

642

643 Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
 644 Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging multi-
 645 task language understanding benchmark. *Advances in Neural Information Processing Systems*,
 646 37:95266–95290, 2024d.

647

648 Takuma Yagi, Misaki Ohashi, Yifei Huang, Ryosuke Furuta, Shungo Adachi, Toutai Mitsuyama,
 649 and Yoichi Sato. Finebio: A fine-grained video dataset of biological experiments with hierarchical
 650 annotation. *International Journal of Computer Vision*, pp. 1–16, 2025.

651

652 Jiashuo Yu, Yue Wu, Meng Chu, Zhifei Ren, Zizheng Huang, Pei Chu, Ruijie Zhang, Yinan He,
 653 Qirui Li, Songze Li, et al. Vrbench: A benchmark for multi-step reasoning in long narrative
 654 videos. *arXiv preprint arXiv:2506.10857*, 2025.

648 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens,
649 Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multi-
650 modal understanding and reasoning benchmark for expert agi. In *Proceedings of the IEEE/CVF*
651 *Conference on Computer Vision and Pattern Recognition*, pp. 9556–9567, 2024.

652 Yilun Zhao, Haowei Zhang, Lujing Xie, Tongyan Hu, Guo Gan, Yitao Long, Zhiyuan Hu, Weiyuan
653 Chen, Chuhan Li, Zhijian Xu, et al. Mmvu: Measuring expert-level multi-discipline video un-
654 derstanding. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp.
655 8475–8489, 2025.

656 Junjie Zhou, Yan Shu, Bo Zhao, Boya Wu, Shitao Xiao, Xi Yang, Yongping Xiong, Bo Zhang,
657 Tiejun Huang, and Zheng Liu. Mlvu: A comprehensive benchmark for multi-task long video
658 understanding. *arXiv e-prints*, pp. arXiv–2406, 2024.

659 Yuhao Zhou, Yiheng Wang, Xuming He, Ruoyao Xiao, Zhiwei Li, Qiantai Feng, Zijie Guo, Yuejin
660 Yang, Hao Wu, Wenxuan Huang, et al. Scientists’ first exam: Probing cognitive abilities of mllm
661 via perception, understanding, and reasoning. *arXiv preprint arXiv:2506.10521*, 2025.

662 Jinguo Zhu, W Wang, Z Chen, Z Liu, S Ye, L Gu, H Tian, Y Duan, W Su, J Shao, et al. Internvl3:
663 Exploring advanced training and test-time recipes for open-source multimodal models, 2025. *URL*
664 <https://arxiv.org/abs/2504.10479>, 9.

665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 A THE USAGE OF LARGE LANGUAGE MODELS (LLMs)

704 In our work, LLMs are employed to assist the automated data annotation pipeline, with the resulting
 705 annotations subsequently reviewed and refined by human researchers. In addition, LLMs are used to
 706 support proofreading of the manuscript. All content presented in this paper is rigorously verified to
 707 ensure faithful representation of the authors' original intent and to eliminate any factual inaccuracies
 708 or hallucinations that might be introduced by the models.

710 B DATASET STATISTICS

741 Figure 4: Data statistics in ExpVid collection and filtering. (a) Number of experiment videos per
 742 discipline before filtering. (b) Video duration distribution with mean 489s and median 505s, showing
 743 long-tail outliers beyond 2,000s. (c) Boxplot of video duration by discipline (whiskers at $1.5 \times \text{IQR}$).
 744 (d) Boxplot of video duration by quality based on the multi-dimensional scoring process.

745 In this section, we present key statistics of ExpVid and its curation process.

748 B.1 STATISTICS IN DATA COLLECTION AND FILTERING

750 Fig. 4 shows the overall video duration distribution, the number of experiments across disciplines,
 751 and the results of the multi-dimensional scoring process. As illustrated, the source collection (JoVE)
 752 initially contains tens of thousands of videos, with biology, medicine, and neuroscience among the
 753 largest disciplines. The raw duration distribution centers around 489s on average (median 505s), but
 754 includes long-tail outliers exceeding 2,000s.

755 To ensure high quality, we retain only experiments with an overall score of at least 4 and no individual dimension score below 3.5, resulting in 5,879 videos (37.2%). To further align with our

task hierarchy and maintain temporal diversity, we exclude videos outside the interquartile range (378s–728s). After this coarse filtering guided by LLM-based ASR scoring, a multidisciplinary expert team manually curated the final dataset. To balance disciplines, control annotation cost, and keep a manageable benchmark size, we preserve 30 experiments per discipline across 13 fields, yielding 390 experiments in total.

The 13 disciplines include: Genetics, Environment, Behavior, Cancer Research, Engineering, Chemistry, Biochemistry, Developmental Biology, Bioengineering, Immunology and Infection, Neuroscience, Medicine, and Biology.

Figure 5: Data statistics of video duration and annotations in ExpVid. (a) Average video/clip duration and standard deviation across the three levels (log scale). (b) Number of annotations for each task. (c) Average number of words per annotation with standard deviation. (d) Average number of annotations per full experimental video across different tasks, with standard deviation.

B.2 STATISTICS IN CURATED BENCHMARK

We further provide detailed statistics of the annotated dataset in Fig. 5. As shown in Fig. 5 (a), our preprocessing splits videos into three levels with relatively stable durations and small standard deviations. In particular, the small variance at Level-3 benefits from the filtering process, which controls video length during selection. The progressively longer durations across the three levels naturally support our design for evaluating different capabilities, emphasizing not only linguistic reasoning but also reasoning across temporal scales.

Fig. 5 (c) reports the token counts of annotated tasks. Sequence generation and step prediction at Level-2 contain significantly more tokens than other tasks, since their questions include the predefined full step list as context. This indicates that models must reason over multi-step procedures in video while simultaneously handling long textual contexts.

810
 811 Fig. 5 (d) shows the number of annotations per experiment across disciplines. Since we balance
 812 the number of experiments per discipline in filtering, the small variance here reflects that ExpVid
 813 spans diverse domains while maintaining annotation consistency, ensuring fair evaluation of models'
 814 cross-disciplinary capabilities.

815 **C PERFORMANCE BY DISCIPLINE**
 816

817 We visualize the averaged performance on each task by discipline in Fig. 6. The figure shows that,
 818 because these disciplines are closely related and primarily consist of web-based experiments, the
 819 performance differences across disciplines remain limited.
 820

836 Figure 6: Three level performance averaged across models by disciplines.
 837

838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863

864 **D EXAMPLES OF EACH TASK**
865

866 In this section, we provide representative QA examples for every task across all three levels. We also
867 release additional examples, covering various question types, along with the corresponding videos
868 and annotations at the following anonymous link: https://anonymous.4open.science/r/ExpVid_examples-5DC2.
869

870 For Level-1, we include video frame snapshots to facilitate clearer visual interpretation, as shown in
871 Fig. 7. In particular, for the Quantity Recognition task, we provide multiple examples accompanied
872 by the human annotators’ accepted reasoning and supporting evidence from the corresponding video
873 frames, illustrating how the task is grounded in fine-grained visual cues.
874

875 For Level-2 and Level-3, due to the substantially longer temporal scale of the videos, we present key
876 frames for each QA example in Figs. 8, 9, and 10. The complete video examples can be accessed
877 through the anonymous link provided above.

878 Material	879 Tool	880 Operation
<p>881 Question 882 What material appears in the researcher’s work 883 in this video segment? 884 A: tracheal cannula B: heart-lung block C: perfusion circuit tubing D: lung biopsy sample 885 Answer 886 B</p>	<p>887 Question 888 Which tool is being used in this experimental step? 889 A: microscopy slide B: Petri dish C: coverslip D: 24-well plate 890 Answer 891 A</p>	<p>892 Question 893 What is the person doing with the sieve? 894 A: Tapping vertically to dislodge material B: Sifting horizontally over a container C: Stirring contents inside a container D: Holding stationary while pouring material through it 895 Answer 896 B</p>
<p>897 Question 898 How many trocars are used in the procedure? 899 A: 5 B: 3 C: 6 D: 4 900 Answer 901 A 902 Reason Five trocars are clearly visible in the video.</p>	<p>903 Question 904 What speed is set on the orbital shaker? 905 A: 40 RPM B: 60 RPM C: 55 RPM D: 50 RPM 906 Answer 907 D 908 Reason The lower-left display shows 0.5 RPM × 100, indicating 909 the shaker is set to 50 RPM.</p>	<p>910 Question 911 How many stitches are placed around the trachea? 912 A: 2 B: 4 C: 5 D: 3 913 Answer 914 D 915 Reason Three knots are visible in the video, indicating three 916 stitches were placed.</p>
<p>917 Question 918 How many wells are visible in the plate? 919 A: 16 B: 6 C: 20 D: 12 920 Answer 921 D 922 Reason The plate is clearly a 3×4 layout, corresponding to 923 a 12-well plate.</p>	<p>924 Question 925 How many glass coverslips are placed? 926 A: 4 B: 2 C: 6 D: 1 927 Answer 928 D 929 Reason The video shows a single glass coverslip being placed 930 into the well.</p>	<p>931 Question 932 What is the volume of the test tube used? 933 A: 100 mL B: 50 mL C: 15 mL D: 25 mL 934 Answer 935 B 936 Reason The visible “40” marking on the tube corresponds to the 937 scale of a standard 50 mL conical tube.</p>

916 **Figure 7: Level-1 QA examples, including Material, Tool, Operation and Quantity Recognition.**
917

918
919
920
921
922
923
924
925
926
927
928

929
930
931
932
933
934
935

Sequence Generation

Question

Based on the full experimental procedure list shown below, determine the numbers of steps performed in the video

- 1 Weigh out 2-Chlorotriptyl chloride resin
- 2 Place resin in 50 mL fritted medium porosity synthesis vessel
- ...
- 59 Combine sonicated mixture with ether solution from precipitation step
- 60 Cover flask and refrigerate overnight to maximize precipitation
- 61 Collect precipitated material by vacuum filtration
- 62 Use fine or medium pour size center disk filter funnel for filtration
- 63 Wash precipitate twice with 5–10 milliliters of cold ether to remove residual organics

Answer

[“60”, “61”, “62”, “63”]

936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Step Ordering

Question

What is the correct sequence of steps performed in the video?

A:
Collect precipitated material by vacuum filtration
Cover flask and refrigerate overnight to maximize precipitation
Use fine or medium-pore filter funnel for filtration
Wash precipitate twice with 5–10 milliliters of cold ether to remove residual organics

B:
Cover flask and refrigerate overnight to maximize precipitation
Collect precipitated material by vacuum filtration
Use fine or medium-pore filter funnel for filtration
Wash precipitate twice with 5–10 milliliters of cold ether to remove residual organics

C:
Cover flask and refrigerate overnight to maximize precipitation
Use fine or medium-pore filter funnel for filtration
Wash precipitate twice with 5–10 milliliters of cold ether
Collect precipitated material by vacuum filtration

D:
Use fine or medium-pore filter funnel for filtration
Cover flask and refrigerate overnight to maximize precipitation
Collect precipitated material by vacuum filtration
Wash precipitate twice with cold ether to remove residual organics

Answer

B

Figure 8: Level-2 QA examples, including Step Ordering and Sequence Generation.

1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025

Figure 9: Level-2 QA examples, including Completeness Verification and Step Prediction. Target steps are clipped in the give video segments.

Figure 10: Level-3 QA examples, including Experimental Analysis and Scientific Discovery fill-in-blanks.

1026 **E EXPERT VERIFICATION**
10271028 In this section, we first detail the entire Expert Verification Workflow.
10291030 **Personnel Capacity.** We maintained a pool of roughly 15 domain-prepared annotators per major
1031 scientific category (e.g., medicine, biology), with a total team size of about 50 annotators, enabling
1032 balanced and timely distribution of tasks across disciplines.
10331034 **Annotation Interface.** To ensure consistent and scalable annotation across heterogeneous tasks,
1035 we built a dedicated annotation platform with task-specific interfaces tailored to each question type.
1036 These interfaces guide annotators through the rubric and enforce correct use of the annotation
1037 schema. Each annotation requires a brief justification, even for approvals, ensuring transparency
1038 and quality control.
10391040 **Criteria.** Annotators follow unified criteria across all tasks:
10411042

- **Video-grounded:** All questions must be solvable using the visual evidence in the video.
- **No leakage or shortcuts:** Stems must not reveal answers; distractors must be scientifically
1043 plausible.
- **Concrete, step-level fidelity:** Only visually verifiable actions are retained; abstract or un-
1044 observable descriptions are revised or removed.
- **Consistent formatting and clarity:** Wording avoids unverifiable details and ensures each
1045 question has a unique, unambiguous answer.
- **Justified verification:** Annotators provide reasons for all accepted or corrected items.

10461047 **Time Cost.** Each annotator first reviews the full experiment video and its accompanying paper
1048 (~40 minutes per item). Annotation time then varies by task type:
10491050

- **Level-1:** ~6–8 minutes per question
- **Level-2:** ~13 minutes per question
- **Level-3:** ~18 minutes per question

10511052 The overall expert verification process included a one-month pilot phase for iterative feedback and
1053 guideline alignment, followed by one month of formal annotation to complete the benchmark.
10541055 We further present the online annotation platform that supports expert verification across all tasks.
1056 Experts follow standardized guidelines: watch source videos and related materials, review annotations,
1057 and refine them to meet task-specific criteria. For any modifications, they must also provide
1058 justifications to ensure transparency and traceability.
10591060 Figs. 11, 12, and 13 show representative cases from each level. Experts validate annotations, correct
1061 errors, and refine question–answer pairs to ensure accuracy and domain fidelity. Level-3 is distinct
1062 in requiring annotators to also consult the corresponding research papers when designing questions.
1063 The entire process is iterative: low-quality annotations can be returned for revision until they fully
1064 satisfy the benchmark’s standards.
10651066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133

jove_L1_biology_test standard Answered questions

Scoring Guidelines
 This screen aims to perform quality inspection on the generated multiple-choice questions to ensure the quality of the constructed questions.
 See more
 1. The questions need to be answerable by observing the video (Q).
 a. Object names can be recognized based on OOS, or objects can be recognized based on visual forms such as color and shape.
 2. The questions need to be answerable based on the video and scientific common sense (Q).
 a. Object names can be recognized based on the video and scientific common sense (Q).
 b. The question needs to be answerable based on the video and scientific common sense (Q).
 3. Inferrence (inference: inferring answers that must be consistent with scientific common sense and may exist in the experiment). Non-existent materials or tools cannot be mentioned out of thin air.
 A. Correct answers (the correct answer to be inferred directly based on scientific knowledge sense without matching the video are not allowed).

Discipline: Biology
 video

Video subtitle: Add 500 microliters of vitronectin solution into each well containing the cover slip.
 Note: The translation is for reference only and is translated by deepspeed. The video subtitles are only for the annotator to understand. The following questions need to be answered only from the video screen.

What laboratory tool is being used in this research step?
 A) Centrifuge
 B) Erlenmeyer flask
 C) Petri dish
 D) Test tube

jove_L1_Neuroscience_Test_Label Answered questions

Scoring Guidelines
 This screen aims to perform quality inspection on the generated multiple-choice questions to ensure the quality of the constructed questions.
 See more
 1. The questions need to be answerable by observing the video (Q).
 a. Object names can be recognized based on OOS, or objects can be recognized based on visual forms such as color and shape.
 2. The questions need to be answerable based on the video and scientific common sense (Q).
 a. Object names can be recognized based on the video and scientific common sense (Q).
 b. The question needs to be answerable based on the video and scientific common sense (Q).
 3. Inferrence (inference: inferring answers that must be consistent with scientific common sense and may exist in the experiment). Non-existent materials or tools cannot be mentioned out of thin air.
 A. Correct answers (the correct answer to be inferred directly based on scientific knowledge sense without matching the video are not allowed).

Discipline: Neuroscience
 video

Video caption: Slowly move the scanner around the subject's head following aed swaths from the top to the bottom to record the physical locations of all sensors.
 Note: The translation is for reference only and is translated by deepspeed. The video subtitles are only for the annotator to understand. The following questions need to be answered only from the video screen.

What material appears in this process?
 A) Brain model
 B) Human brain
 C) Calibration phantom
 D) Subject's head

Annotations:

Annotations:

Figure 11: Expert annotation example of Level-1 task.

1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241

jove L3 Trial Annotation, Biochemistry [Check](#) Answered questions [...](#)

For complete scientific experiment videos and their accompanying papers, annotations are required to design high-quality fill-in-the-blank questions based on the paper content (Introduction, Results, Discussion, etc.) and the video footage. These fill-in-the-blank questions are used to assess scientific reasoning ability that relies heavily on understanding video images, and require that the questions reflect the correspondence between the experimental video and scientific findings and conclusions.

Fill-in-the-blank question format

Write a complete sentence and copy the designed fill-in-the-blank.

Type 1: Experimental conclusion questions

- Source: Section: Results / Discussion
- Objective: To determine whether viewers understand the specific conclusions drawn after the experiment is completed.
- Key points: The question focuses on experimental results (e.g., survival rate, complications). The answer must be evident from the video presentation or experimental comparison.

Example

In the results presented in the video, the (LAPB) surgery group had a shorter hospital stay than the (LGH) surgery group.

Type 2: Scientific discovery questions

- Source: Section: Introduction / Discussion
- Goal: To highlight the scientific significance or findings behind the experiment.
- Key points: For question setting, the content of the question should revolve around the purpose, significance or scientific background of the experimental design.

Example

The LARH surgical method proposed in this study complies with the "tumor-free principle" by reducing contact and compression.

pdf url
<https://jovebenchmark.osm-shanghai.aliyun.com/pdf/55504.pdf>

video

Annotation results

Experimental conclusion fill-in-the-blank questions

Question 1

It is concluded that the kinase activity of the ERK2 (catalytic tyrosine) mutant (K52R) is completely abolished, which generally means that this site is essential for catalytic functions.

Question 2

It is concluded that in the absence of [MERSAT], all purified EN2 fractions (R44-47) showed only low MIP phosphorylation activity.

Scientific discovery fill-in-the-blank questions

Question 1

This study proposes a method for measuring protein kinase activity using radiolabeled ATP, whose half-life is 14.3 days. The most critical step in this method is reaction assembly, ensuring that all reaction components are added simultaneously to prevent premature initiation of the reaction.

Question 2

The reaction system in this experiment must include kinase, substrate, [metal] ion and ATP. At the beginning of the reaction, [cold] ATP and [hot] ATP need to be added to ensure that the reactions start at the same time.

Figure 13: Expert annotation example of Level-3 task.

Figure 14: Distribution of # options of Completion Verification and Step Prediction.

F EVALUATION DETAILS

In this section, we detail evaluation settings, model configurations and inference prompts below.

F.1 EVALUATION METRICS

Level 1. Each task is presented as a four-choice multiple-choice question (MCQ). Model performance is evaluated using **Top-1 Accuracy**, defined as the ratio of correctly answered questions to the total number of questions across all Level 1 tasks.

Level 2. This level contains four tasks:

- *Sequence Ordering*: A standard four-choice MCQ.
- *Completeness Verification*: An MCQ where the candidate options correspond to all steps within a specific video segment. The number of options thus varies across instances (see Fig. 14 left).
- *Step Prediction*: An MCQ where the candidate options are drawn from all steps in the full experimental procedure. The number of options also varied (see Fig. 14 right).
- *Sequence Generation*: A task that requires generating an ordered step sequence, evaluated by measuring the similarity between generated sequence and the ground-truth sequence.

For the MCQ tasks, performance is measured by **Top-1 Accuracy**. For the Sequence generation task, we use the **Jaccard index** (ranging from 0 to 1) to assess the overlap between the predicted and ground-truth step sequences. The average score for Level 2 is computed as the total number of correct answers (or similarity scores in the case of Sequence Generation) divided by the total number of questions.

Level 3. This level consists of two tasks: *Experimental Analysis* and *Scientific Discovery*. All questions are formulated as fill-in-the-blank. We employ a lightweight language model to compare model outputs with reference answers. Each blank is worth one point. The evaluation metric is **Blank-level Accuracy**, calculated as the number of correctly filled blanks divided by the total number of blanks.

F.2 EXPERIMENT SETTINGS

For frame selection, we use 8 frames for Level 1 tasks and 32 frames for Level 2 tasks, which approximately correspond to a sampling rate of 1 fps given the average duration of the videos in these tasks. For Level 3 tasks, we adopt either the recommended number of frames or the maximum number of frames that can be accommodated within the model’s context window and available GPU memory. Frames are uniformly sampled from the raw videos and resized to 224x224 to ensure fair comparison across models.

For inference, we allocate a maximum of 8192 tokens to each model to ensure that complete answers can be generated in the vast majority of instances. The temperature is fixed at 0.1 for all models to reduce randomness in generation.

1296 F.3 CONFIGURATIONS OF EVALUATED MODELS
12971298 The detailed configurations of evaluated MLLMs, including model versions and visual frame inputs,
1299 are given in Tab. 3.1300 Table 3: Details of evaluated MLLMs used in ExpVid. The “# Frames” column represents the
1301 default number of input frames in level3 tasks, chosen from {96, 128, 256, 512}. “HF” means
1302 Hugging Face inference, “vLLM” indicates vLLM engine, and “API” denotes proprietary API call.
1303

1304 Organization	1305 Model	1306 Release	1306 Version	1306	1306 Level3	1306 Pipeline
Closed-source MLLMs						
1307 OpenAI	1308 GPT-5	2025-8	GPT-5	1308	128	API
1309 Google	Gemini-2.5-Flash	2025-5	Gemini-2.5-Flash	1309	128	API
1310 Anthropic	Gemini-2.5-Pro	2025-3	Gemini-2.5-Pro	1310	128	API
1311 ByteDance	Claude-Sonnet-4	2025-5	Claude-Sonnet-4	1311	96	API
	Seed1.5-VL	2025-5	Seed1.5-VL		256	API
Open-source MLLMs						
1313 Alibaba	Qwen2.5-VL-7B	2025-1	Qwen2.5-VL-7B-Instruct	1313	128	vLLM
	Qwen2.5-VL-72B	2025-1	Qwen2.5-VL-72B-Instruct		128	vLLM
1315	InternVL3-8B	2025-4	InternVL3-8B	1315	256	HF
1316	InternVL3.5-8B	2025-9	InternVL3.5-8B	1316	256	HF
1317 Shanghai AI Lab	InternVL3.5-38B	2025-9	InternVL3.5-38B	1317	256	HF
1318	InternVL3-78B	2025-4	InternVL3-78B	1318	256	HF
1319	Intern-S1-mini	2025-7	Intern-S1-mini	1319	128	HF
	Intern-S1	2025-7	Intern-S1		128	HF
1320 Kwai	Keye-VL-8B-Preview	2025-6	Keye-VL-8B-Preview	1320	256	HF
	Keye-VL-1.5-8B	2025-9	Keye-VL-1.5-8B		256	HF
1321 Moonshot	Kimi-VL-A3B-Thinking	2025-6	Kimi-VL-A3B-Thinking-2506	1321	256	vLLM
1322 Xiaomi	MiMo-VL-7B-RL	2025-8	MiMo-VL-7B-RL-2508	1322	512	vLLM
1323 ZhipuAI	GLM-4.1V-9B-Thinking	2025-7	GLM-4.1V-9B-Thinking	1323	256	HF
	GLM-4.5V	2025-8	GLM-4.5V		256	API

1350 F.4 PROMPT FOR INFERENCE
13511352 We provide prompt templates across all tasks and examples below.
13531354 **Prompt for Level 1 Tasks**1355 **Full Prompt**1356 {task_instruction}
1357

1358 {question}

1359 **Task Instruction**1360 Solve the multiple choice question based on the video. Provide your final answer as a single letter
1361 enclosed in \boxed{}.
13621363 **Question**1364 **Materials**1365 Question: Which material appears in this experimental step?
1366

1367 Options:

1368 A: collected pellets
1369 B: agarose beads
1370 C: silica gel packets
1371 D: lyophilized powder1372 **Operation**1373 Question: What is the person doing with the pipette to the cell plate wells?
1374

1375 Options:

1376 A: Removing the medium
1377 B: Pouring fresh medium
1378 C: Injecting PBS solution
1379 D: Mixing the contents1380 **Quantity**1381 Question: How many pellets are gathered?
1382

1383 Options:

1384 A: 10 pellets
1385 B: 8 pellets
1386 C: 12 pellets
1387 D: 15 pellets1388 **Tool**1389 Question: Which tool is being used in this experimental step?
1390

1391 Options:

1392 A: plastic bag
1393 B: ziplock bag
1394 C: desiccator
1395 D: weigh boat

1396

1397

1398

1399

1400

1401

1402

1403

1404
1405**Prompt for Level 2 Tasks**

1406

Sequence Generation

1407

Task Instruction

1408

Solve the following question based on the video. Provide your final answer as a list of numbers (comma-separated) enclosed in `\boxed{}`.

1409

Question Based on the full step list, determine the step numbers shown in the video.

1410

Full Step List:

1411

1. Use laryngoscope to expose vocal cords through mouth of 25–30g female Yorkshire pig

1412

2. Spray vocal cords with two puffs of 2% lidocaine topical solution

1413

...

1414

39. Suture flap skin panel to cervical midline skin incision

1415

40. Close abdominal skin incision

1416

Step Ordering

1417

Task Instruction

1418

Solve the multiple choice question based on the video. Provide your final answer as a single letter enclosed in `\boxed{}`.

1419

Question What is the correct sequence of steps shown in the video?

1420

Options:

1421

A: 1. Thoroughly mix equal proportions of epoxy and hardener
2. Leave mixture for one hour

1422

...

1423

B: 1. Place ZIF-8 membrane on 24mm steel disc with 5mm diameter center hole
2. Thoroughly mix equal proportions of epoxy and hardener

1424

...

1425

C: 1. Thoroughly mix equal proportions of epoxy and hardener
2. Place ZIF-8 membrane on 24mm steel disc with 5mm diameter center hole

1426

...

1427

D: 1. Thoroughly mix equal proportions of epoxy and hardener
2. Leave mixture for one hour

1428

...

1429

Completeness Verification

1430

Task Instruction

1431

Solve the multiple choice question based on the video. Provide your final answer as a single letter enclosed in `\boxed{}`.

1432

Question Given the complete step list, which step was *not* performed in the video?

1433

Step List:

1434

1. Withdraw 1 milliliter of isoprene solution using syringe

1435

2. Rinse syringe three times with isoprene solution prior to final withdrawal

1436

...

1437

7. Introduce flow of 2 standard liters per minute of purified air

1438

Options:

1439

A: 1 B: 2 C: 3 D: 4 E: 5 F: 6 G: 7

1440

Step Prediction

1441

Task Instruction

1442

Solve the following question based on the video. Provide your final answer as a single number enclosed in `\boxed{}`.

1443

Question Given all steps of the experiment, please predict the next operation that will take place after this video segment.

1444

Full Step List:

1445

1. Cut high purity copper foil into 4×4 cm pieces

1446

2. Draw a line 0.5 cm from one edge of each square foil

1447

...

1448

44. Calculate permeance in Excel using mass spectrum data after steady state establishment

1449

1458

Prompt for Level 3 Tasks

1459

1460

1461

Full Prompt

1462

{task_instruction}

1463

{question}

1464

Task Instruction

1465

Solve the following fill-in-the-blank question based on the video. Provide your final answer as a list of words or phrases (comma-separated) enclosed in \boxed{ }.

1466

1467

Question

1468

1469

Experimental Analysis

1470

1471

Title: [(DPEPhos)(bcp)Cu]PF₆: A General and Broadly Applicable Copper-Based Photoredox Catalyst

1472

Discipline: Chemistry

1473

Question: In this study, the direct C2 arylation of N-methylpyrrole with 4-iodobenzonitrile at room temperature proceeded using _____ under _____ irradiation to afford the product in _____ yield after _____.

1474

1475

1476

1477

1478

Scientific Discovery

1479

1480

Title: Novel Object Recognition Test for the Investigation of Learning and Memory in Mice

Discipline: Behavior

1481

1482

Question: In the mouse object recognition task, inhibitors of _____ produced a dose-dependent improvement in memory when administered 30 minutes before training, immediately after training, or 30 minutes before recall, implying that this target modulates _____, _____ and _____.

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512
1513

F.5 ERROR CASES

1514
1515
1516

We provide an output example of an Step Ordering Question from Gemini-2.5-Flash in both No-Thinking and Thinking_Budget=8192 modes. Since the full outputs are too lengthy, we present only key excerpts to highlight the distinct answering styles of the two modes.

1517

1518

NoThinking Response (Correct, A):

1519

The video shows a precursor vaporization setup experiment.

1520

The steps involved are:

1521

1. Withdraw 1 milliliter of isoprene solution using syringe...
2. Rinse syringe three times with isoprene solution prior...

1522

...

1523

Let's analyze the options:

1524

Option A: 1, 2, 3, 4, 5, 6, 7. This sequence aligns with the logical progression of the experiment.

1525

...

1526

The video shows the following sequence of actions:

1527

1. Preparation of the syringe (drawing and rinsing the solution).
2. Insertion of the syringe into the syringe pump.
3. Insertion of the syringe needle into the flask.
4. Heating of the flask.
5. Activation of the syringe pump.
6. Introduction of the carrier gas.

1528

Comparing this with option A:

1529

1. Withdraw 1 milliliter of isoprene solution using syringe. (Matches)
2. Rinse syringe three times with isoprene solution prior to final withdrawal. (Matches)

1530

...

1531

The final answer is \$\boxed{A}\$....

1532

Thinking Response (Incorrect, D):

1533

1534

1535

1536

In considering the question regarding the correct sequence of steps for the Precursor Vaporization Setup experiment, I've reviewed the provided options and the implicit logic of laboratory procedures for such setups. My thought process has been to deconstruct each option, evaluate the scientific rationale behind the order of operations, and ultimately identify the most logical and efficient workflow.

1537

1538

1539

Initially, I recognized that the experiment involves vaporizing a precursor (isoprene solution) using a heated flask and a syringe pump for controlled delivery, likely in conjunction with a carrier gas. This immediately suggested a general workflow: prepare the sample, set up the apparatus, prepare the reaction environment, introduce the sample, and initiate the process.

1540

1541

1542

1543

1544

I then systematically analyzed each proposed sequence:

1545

1546

1547

1548

1549

1550

Option A: I found this option plausible but noted potential issues. Specifically, preheating the flask after inserting the syringe seemed less efficient, and introducing the carrier gas as the very last step raised concerns about optimal sweeping of the vaporized sample.

Considering the logical flow, D presents the most coherent sequence:

1551

1. Prepare the sample in the syringe.

1552

2. Place the syringe into the syringe injector.

1553

3. Preheat the flask.

1554

4. Insert the syringe needle into the flask.

1555

5. Introduce the carrier gas.

1556

6. Turn on the syringe injection.

1557

...

1558

The final answer is \$\boxed{D}\$....

1559

1560

1561

1562

1563

1564

1565

1566 **G PROMPTS FOR ANNOTATION**
15671568 In this section, we provide detailed prompts used in each annotation task.
15691570 **G.1 LEVEL-1**
15711572 Prompts for Level-1 tasks are provided as follows.
15731574 **G.1.1 MATERIAL EXTRACTION**
15751576 **SYSTEM_PROMPT = “**1577 You are an expert in scientific experimental procedure analysis, specializing in extracting
1578 **“materials”** from experimental procedure text. Please strictly follow the instructions by users.
1579 “1580 **USER_PROMPT_TEMPLATE = “**1581 **### Task Objective:**1582 Extract the list of scientific **“materials”** mentioned in the following ASR transcript, preserving
1583 critical states and specifications.
1584

1585 You are given:

1586 - An experimental step transcription (ASR caption): semantically accurate.
1587 - A visual scene description from a vision-language model (Qwen caption): rough but helps
1588 verify visibility of the material.1589 **### Material Definition:**1590 - Biological specimens (with preparation state)
1591 - Chemicals/reagents (with concentrations/forms)
1592 - Solutions/mixtures (when specifically named)
1593 - Gases/substrates
15941595 **### Extraction Rules (Critical):**1596 1. **“Preserve essential descriptors”** that define:
1597 - Biological state (e.g., “anesthetized mouse”, “fixed tissue”)
1598 - Preparation form (e.g., “trimmed hair”, “lyophilized powder”)
1599 - Anatomical parts when manipulated (e.g., “mouse’s head”, “renal cortex”)1600 2. Normalization guidelines:
1601 - Keep singular/plural as in original context
1602 - Remove non-essential modifiers (e.g., “carefully”, “gently”)
1603 - Retain:
1604 * Mixture states (e.g., “OVA-alum emulsified”)
1605 * Biological conditions (e.g., “post-mortem brain”)1606 3. Exclusion criteria:
1607 - Instruments/tools (e.g., “shaver”, “pipette”)
1608 - Generic containers (e.g., “tube”, “well plate”)
1609 - Unspecified solutions (e.g., just “solution”)1610 **### Output Format:**
1611 { “materials”: [“material1”, “material2”, ...] }1612 —
1613 ASR caption: “{asr_caption}”
1614 Qwen caption: “{qwen_caption}”
1615 “

1620
1621

G.1.2 MCQ ANNOTATION FOR MATERIAL RECOGNITION

1622

SYSTEM_PROMPT = “

1623

You are a scientific researcher creating multiple-choice questions (MCQs) for material recognition in scientific videos.

1624

Your task is to generate 3 plausible distractors for a given material based on the experimental context.

1625

”

1626

USER_PROMPT_TEMPLATE = “

1627

You are generating a multiple-choice question (MCQ) for material recognition in scientific experiment videos.

1628

Given:

1629

- An experimental step transcription (ASR): “{asr_caption}”

1630

- A target material: “{target_material}”

1631

—

Your Task:

1632

Generate **3 scientifically plausible distractors** (i.e., incorrect but believable options) for the given material.

1633

Each distractor must meet the following constraints:

1634

1. Do not use distractors that only differ from the target material by quantity or concentration.

1635

2. Must be an **actual material or chemical** used in real laboratory settings.

1636

3. Must be **contextually plausible** in the described procedure — it should be reasonable that such a material might appear in this type of experiment.

1637

4. Distractors should fall into **different plausible confusion categories**:

1638

- **Visual similarity**: looks similar in appearance or form (e.g., transparent liquids)

1639

- **Functional similarity**: used for similar purposes (e.g., washing, dissolving, blocking)

1640

- **Common confusion**: frequently confused due to naming, function, or form

1641

5. Do **not invent fake materials** or use vague terms (e.g., “solution”, “fluid”).

1642

6. If the target material includes a modifier (e.g., “PBS buffer”, “deionized water”), keep the full original phrase from the ASR as the correct answer.

1643

—

1644

Output ONLY valid JSON in the following format:

{

1645

“question”: “{question_template}”,

1646

“options”: {

1647

“A”: “<correct answer with proper modifiers>”,

1648

“B”: “<distractor 1>”,

1649

“C”: “<distractor 2>”,

1650

“D”: “<distractor 3>”

1651

},

1652

“answer”: “A”,

1653

“target_material”: “{target_material}”,

1654

“distractor_types”: {

1655

“B”: “<visual/functional/confusion>”,

1656

“C”: “<visual/functional/confusion>”,

1657

“D”: “<visual/functional/confusion>”

1658

}

1659

}

1660

}

1661

Example for “PBS”:

1662

- A: “PBS” (correct)

1663

- B: “saline solution” (functional - both for cell washing)

1664

- C: “Tris buffer” (visual - similar buffer solutions)

1665

- D: “deionized water” (confusion - commonly mistaken)

1666

”

1667

1668

1669

1670

1671

1672

1673

1674 G.1.3 TOOL EXTRACTION
16751676 SYSTEM_PROMPT = “
1677 You are an expert in scientific experimental procedure analysis, specializing in extracting
1678 **tools** from experimental procedure text. Please strictly follow the instructions by users.
1679 ”1680 USER_PROMPT_TEMPLATE = “
1681 **### Task Objective:**
1682 Extract the list of scientific **tools** mentioned in the following ASR transcript.1683 You are given:
1684 - An experimental step transcription (ASR caption): semantically accurate.
1685 - A visual scene description from a vision-language model (Qwen caption): rough but helps
1686 verify visibility of the tool.
16871688 **### Tool Definition:**
1689 Any instrument, equipment, or container used directly during the experiment (e.g., pipette,
1690 centrifuge, test tube).1691 **### Standardization Rules:**
1692 1. Use lowercase and singular form (e.g., “gloves” → “glove”).
1693 2. Remove units or quantity descriptors (e.g., “1.5 milliliter microcentrifuge tube” → “micro-
1694 centrifuge tube”).
1695 3. Remove generic adjectives or modifiers not affecting tool identity (e.g., “sterile”, “clean”).
1696 Retain essential identifiers (e.g., “AVB Sepharose column”).
1697 4. Do not hallucinate. Only extract explicitly mentioned tools.
16981699 **### Output Format:**
1700 { “tools”: [“tool1”, “tool2”, …] }
1701 —
1702 ASR caption: “{asr_caption}”
1703 Qwen caption: “{qwen_caption}”
1704 ”
17051706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

1728
1729

G.1.4 MCQ ANNOTATION FOR TOOL RECOGNITION

1730

SYSTEM_PROMPT = “

1731

You are a scientific researcher creating multiple-choice questions (MCQs) for tool recognition in scientific videos. Your task is to generate 3 plausible distractors for a given tool based on the experimental context.

1732

”

1733

USER_PROMPT_TEMPLATE = “

1734

You are generating a multiple-choice question (MCQ) for tool recognition in scientific experiment videos.

1735

Given:

1736

- ASR: “{asr_caption}”
- Target tool: “{target_tool}”

1737

—
Your task: Create 3 plausible distractors (wrong options) for the target tool.

1738

Requirements:

1739

- Options must be tools that could reasonably appear in this experimental context.
- Distractors should be visually similar, functionally related, or commonly confused tools.
- If the target tool has modifiers (e.g., “microcentrifuge tube”), use the full phrase.
- Ensure the target tool name matches the ASR context.

1740

Output Format:

1741

```
{
  "question": "{question_template}",
  "options": {
    "A": "<correct answer with proper modifiers>",
    "B": "<distractor 1>",
    "C": "<distractor 2>",
    "D": "<distractor 3>"
  },
  "answer": "A",
  "target_tool": "{target_tool}",
  "distractor_types": {
    "B": "<visual/functional/confusion>",
    "C": "<visual/functional/confusion>",
    "D": "<visual/functional/confusion>"
  }
}
```

1742

Example for “pipette”:

1743

- A: “pipette” (correct)
- B: “syringe” (functional - both for liquid transfer)
- C: “dropper” (visual - similar appearance)
- D: “burette” (confusion - precise liquid measurement)

1744

”

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782 G.1.5 QUANTITY RECOGNITION
 1783

1784 SYSTEM_PROMPT = “

1785 You are a scientific researcher creating multiple-choice questions (MCQs) for quantity recogni-
 1786 tion in scientific videos.
 1787 ”

1788 USER_PROMPT_TEMPLATE = “

1789 You are generating a multiple-choice question (MCQ) for **quantity recognition** via visual
 1790 observation.

1791 You are given:

- 1793 - An experimental step transcription (ASR caption).
- 1794 - A visual scene description from a vision-language model (Qwen caption).

1795 —

1796 ### Task:

1797 Generate exactly ONE quantity-focused MCQ where the correct answer can only be determined
 1798 by visually observing the video (e.g., volume, number of containers, temperature, duration).

1799 —

1800 ### Rules:

- 1802 1. Keep the question minimal and direct, focusing only on the quantity.
- 1803 2. The answer must be visually inferable (use Qwen caption to check visibility).
- 1804 3. Do not rely on textual or auditory clues.

1805 —

1806 ### Distractor Guidelines:

- 1807 - Options must be plausible in the context (realistic volumes, times, temperatures, counts).
- 1808 - Keep distractors in the same magnitude range.
- 1809 - Use visually confusable alternatives (e.g., 5 vs 7 tubes).
- 1810 - Avoid overly fine distinctions (e.g., 5.0 vs 5.2 mL).
- 1811 - Reflect common visual errors (slight miscounts, occlusion).

1812 —

1813 ### Output Format:

```
1814    {  

1815      "question": "<Clear, quantity-only question>",  

1816      "options": {  

1817        "A": "<correct answer>",  

1818        "B": "<distractor 1>",  

1819        "C": "<distractor 2>",  

1820        "D": "<distractor 3>"  

1821      },  

1822      "answer": "A"  

1823    }
```

1824 If the ASR caption has no quantity-related info, return:

```
1825    { "question": null }
```

1826 —

1827 Input:

```
1828    ASR caption: "{asr_caption}"  

1829    Qwen caption: "{qwen_caption}"  

  1830    "
```

1831

1832

1833

1834

1835

1836 G.1.6 OPERATION RECOGNITION (STAGE 1: ALIGNMENT SCORING)
18371838 USER_PROMPT_TEMPLATE = “
18391840 You will be given two inputs about the same video segment:
1841

- ASR caption (narration of experimental steps)
- Qwen caption (vision-language description of the visual scene)

1842 —
18431844 Your tasks:
18451846 1) Decide whether the segment contains experimental operation(s), preferably visible actions
1847 (e.g., pipetting, pouring, placing, transferring, cutting, mixing). If no experimental operation is
1848 present, or only background talking/intro without hands-on action, set the score to 0.
18492) If operation(s) are present, judge the alignment between ASR and Qwen descriptions, and
1849 produce a score from 1 to 5 (higher = better alignment of actions/tools/entities/sequence).
1850 —1850 Output JSON only with the fields:
1851 {
1852 “has_operation”: <true—false>,
1853 “visible_action”: <true—false>,
1854 “alignment_score”: <integer 0-5>
1855 }
18561857 Rules:
1858

- If no operation: set has_operation=false, visible_action=false, alignment_score=0.
- If operations present: set has_operation=true; set visible_action=true only if the action is likely visible.
- For operations present: alignment_score in [1..5].

1864 ASR caption: “{asr_caption}”
1865 Qwen caption: “{qwen_caption}”
1866 ”
1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890
1891

G.1.7 OPERATION RECOGNITION (STAGE 2: MCQ GENERATION)

1892
1893
1894
1895
1896
1897

USER_PROMPT_TEMPLATE = “

You are generating a multiple-choice question (MCQ) for scientific experiment video understanding given the ASR caption.

—

1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Task:

- Generate exactly ONE action-focused MCQ. The correct answer must describe a specific experimental operation stated in the ASR caption.
- Create 3 distractors that are plausible but incorrect variations of the action in the same tools/materials/setup context.

—
Question design rules:

1. Minimal and direct: focus only on the observable action.
2. Visually grounded: the correct answer must be verifiable via video.
3. Do NOT use audio/textual clues (e.g., ASR narration). Assume only visual content is available.

—
Distractor guidelines:

- Options must be plausible actions in the same context.
- Keep distractors in the same action/tool category (e.g., if pipetting is correct, distractors can be pouring, injecting, mixing).
- Avoid distractors that are too ambiguous or not visually distinguishable.
- Favor common mistakes or visually similar but incorrect operations (wrong hand, placing vs removing).

—
Output Format:

```
{
  "question": "<action-focused question strictly from ASR>",
  "options": {
    "A": "<correct action from ASR>",
    "B": "<plausible distractor>",
    "C": "<plausible distractor>",
    "D": "<plausible distractor>"
  },
  "answer": "A"
}
```

ASR caption: “{asr_caption}”

”

1944 G.2 LEVEL-2

1945

1946 Prompts for Level-2 tasks are provided as follows.

1947

1948 G.2.1 CLIP SEGMENTATION

1949

1950 SYSTEM_PROMPT = “

1951 You are a scientific video annotation assistant. Your task is to segment a scientific experiment
1952 video transcript (ASR subtitles) into meaningful procedural clips for multi-step understanding
1953 benchmark.

1954 ”

1955 USER_PROMPT_TEMPLATE = “

1956 The benchmark focuses on medium-length videos containing several consecutive experimental
1957 steps. Each clip should:1958

- Include multiple related actions (usually 2+)
- Correspond to a coherent workflow unit (preparation, execution, wrap-up)
- Reflect logical/causal continuity
- Be suitable for designing multi-step reasoning questions

1959 —

1960 Please identify clip boundaries where:

1961

- A major shift in experimental phase occurs
- The toolset, materials, or purpose changes significantly
- A natural grouping of steps can form a compact unit

1962 —

1963 **### Output Format:**

1964 Return a JSON list where each segment has:

1965

- “start_time”: exact timestamp where the segment begins
- “end_time”: exact timestamp where the segment ends
- “title”: short summary of the clip
- “description”: 1–2 sentences explaining the segment

1966 —

1967 **### Rules:**1968

1. Each segment must be 20–60 seconds long.
2. Start/end times must come directly from ASR (no invented timestamps).
3. Avoid over-segmentation of atomic actions; do not merge unrelated steps.

1969 —

1970 ASR transcript: “{asr_caption}”

1971 ”

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998
1999

G.2.2 STEP EXTRACTION

2000

SYSTEM_PROMPT = “

2001

You are an expert in scientific experiment procedure analysis. Your task is to break down complex experimental procedures into atomic steps.

2003

”

2004

USER_PROMPT_TEMPLATE = “

2005

You are an assistant tasked with decomposing scientific experiment procedures into atomic steps.

2006

Task:

2007

Break down the experimental procedure in the timestamped subtitles into a sequence of **atomic steps**. Each step should represent a single action and include the corresponding time window.

2008

Guidelines:

2009

- Only use the timestamped subtitles (ignore title/description).

2010

- Each step must be: specific, self-contained, sequential, precise, and timed.

2011

- Split compound actions into separate steps.

2012

- Use technical language suitable for scientific protocols.

2013

- If subtitles are ambiguous, make best effort with available info.

2014

- If subtitles contain no experimental operation, return **null**.

2015

Output Format:

2016

{

2017

“atomic_steps”: [

2018

{

2019

“step_number”: 1,

2020

“action”: “<concise action description>”,

2021

“start_time”: “<start_timestamp>”,

2022

“end_time”: “<end_timestamp>”

2023

}, ...

],

2024

“total_steps”: <integer>,

2025

“confidence”: “<high — medium — low>”

2026

}

2027

If no operations: return { null }.

2028

Example:

2029

Timestamped Subtitles:

2030

00:15.540 → 00:19.140: Take 200 microliters of

2031

00:19.140 → 00:20.640: your culture of interest

2032

00:22.590 → 00:23.940: And just make a spot.

2033

00:45.390 → 00:46.080: I can usually

2034

Expected Output:

2035

{

2036

“atomic_steps”: [

2037

{ “step_number”: 1, “action”: “Take 200 microliters of culture of interest”, “start_time”: “00:15.540”, “end_time”: “00:20.640” },

2038

{ “step_number”: 2, “action”: “Make sample spots on plate”, “start_time”: “00:22.590”, “end_time”: “00:51.080” }

2039

}

2040

“total_steps”: 3,

2041

“confidence”: “high”

2042

}

2043

Now analyze the given timestamped subtitles and generate atomic steps:

2044

- Title: {title}

2045

- Description: {description}

2046

- Timestamped Subtitles: {timestamped_subtitles}

”

2047

2048

2049

2050

2051

2052
2053 G.2.3 SEQUENCE ORDERING MCQ

2054 SYSTEM_PROMPT = “
2055 You are an expert in creating multiple-choice questions for scientific experiment step sequencing.
2056 ”
2057 USER_PROMPT_TEMPLATE = “
2058 You are creating a multiple-choice question about the correct sequence of experimental steps.
2059 —
2060 **### Context:**
2061 - Title: {title}
2062 - Description: {description}
2063 —
2064 **### Task:**
2065 Given the following correct sequence of atomic steps, create an MCQ with 4 options (A, B, C, D):
2066 - Option A = correct sequence
2067 - Options B, C, D = incorrect but plausible sequences
2068 —
2069 **### Correct Sequence:**
2070 {steps_text}
2071 —
2072 **### Requirements for incorrect options:**
2073 1. Maintain scientific plausibility.
2074 2. Keep logical procedural flow (no impossible orders).
2075 3. Introduce subtle ordering variations (swap/rearrange steps plausibly).
2076 4. Use the same steps — only reorder.
2077 —
2078 **### Output Format:**
2079 {
2080 “question”: “What is the correct sequence of steps for this experimental procedure?”,
2081 “options”: {
2082 “A”: “1. <correct step 1>2. <correct step 2>3. <correct step 3>...”,
2083 “B”: “1. <incorrect step 1>2. <...>”,
2084 “C”: “1. <incorrect step 1>2. <...>”,
2085 “D”: “1. <incorrect step 1>2. <...>”
2086 },
2087 “correct_answer”: “A”
2088 }
2089 —
2090 **Generate the MCQ now.**
2091 ”

2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105