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ABSTRACT

Multimodal Large Language Models (MLLMs) hold promise for accelerating sci-
entific discovery by interpreting complex experimental procedures. However,
their true capabilities are poorly understood, as existing benchmarks neglect the
fine-grained and long-horizon nature of authentic laboratory work, especially in
wet-lab settings. To bridge this gap, we introduce ExpVid, the first benchmark
designed to systematically evaluate MLLMs on scientific experiment videos. Cu-
rated from peer-reviewed video publications, ExpVid features a new three-level
task hierarchy that mirrors the scientific process: (1) Fine-grained Perception of
tools, materials, and actions; (2) Procedural Understanding of step order and com-
pleteness; and (3) Scientific Reasoning that connects the full experiment to its pub-
lished conclusions. Our vision-centric annotation pipeline, combining automated
generation with multi-disciplinary expert validation, ensures that tasks require vi-
sual grounding. We evaluate 19 leading MLLMs on ExpVid and find that while
they excel at coarse-grained recognition, they struggle with disambiguating fine
details, tracking state changes over time, and linking experimental procedures to
scientific outcomes. Our results reveal a notable performance gap between propri-
etary and open-source models, particularly in high-order reasoning. ExpVid not
only provides a diagnostic tool but also charts a roadmap for developing MLLMs
capable of becoming trustworthy partners in scientific experimentation.

1 INTRODUCTION

Scientific progress is driven by careful experimentation. In wet-lab settings such as biology, chem-
istry, and medicine, researchers need to execute fine-grained actions with exacting precision, adhere
to stepwise protocols, and reason from procedures to results (Gabrieli et al.| 2025} |Yagi et al.|[2025).
Yet understanding and reproducing these procedures is time-consuming for practitioners and opaque
to newcomers. Recent advances in Multimodal Large Language Models (MLLMs) (OpenAl, 2025
DeepMind, 2025b; Bai et al. 2025b) make it tempting to delegate parts of this workflow to arti-
ficial intelligence: perceiving experimental manipulations, checking procedural fidelity, and even
connecting observed operations to scientific conclusions. Regarding this, a question remains: how
well do current MLLMs understand real experimental footage?

Despite steady progress on video-based benchmarks (Li et al., 2024aj Hu et al., 2025 [Hasson et al.,
2025), most existing datasets emphasize general actions or activities or medical computer vision
scenarios rather than authentic laboratory experimentation. These settings lack the distinctive chal-
lenge of wet-lab work: visually subtle operations (e.g., pipetting microliter volumes), small and of-
ten occluded tools, fine-grained materials and states, and long-horizon dependencies that link early
preparation steps to downstream results. To our knowledge, there is no systematic evaluation target-
ing the spectrum of capabilities needed for assisting research from operational perception through
procedural understanding to higher-order scientific analysis in genuine experiment videos.

We introduce ExpVid, a benchmark for scientific experiment video understanding and reasoning.
It spans 13 disciplines and centers on wet-lab experiments; a small number of dry-lab or field en-
gineering videos are included for breadth and completeness, while purely computational and most
physics experiments are excluded. Each video is paired with a peer-reviewed publication to ensure
scientific rigor and to support annotations linking video experiments to innovations and conclusions.



Under review as a conference paper at ICLR 2026

1. Material

“\Level-1: Fine-grained Perception

11. Tool

I11. Quantity

Iv. Operation

Question
What material is presented?

A. Drosophila pupae
B. Zebrafish embryos
C. Drosophila larvae
D. Tribolium pupae

Question
What tool is being used?

A. Hamilton syringe
B. Standard syringe
C. Micropipette

D. Gas-tight syringe

Question

‘What's ethanol’s conc.?

A. 70%
B. 50%
C. 80%
D.90%

Question
What happend to the tape?

A. Remove tape from ...
B. Attach clips to the ...
C. Secure both Petri ...

D. Apply tape only to ...

‘. Level-2: Procedural Understanding

[14] Prepare CO2 ...

[15] Select vials ...

[16] Insert needle into...

Fly vial preparation, adult removal, and incubation

— — cee —a —
%

[18] Drop flies ...

[19] Incubate vial ...

Step List

[1] Pour 100ml ...

k/ 5 ,J [14] Prepare CO2 ...
\ ) q
- 7 [15] Select vials ...

[57] Analyze ...

What is the correct sequence?

A. Drop -> Incube - Prepare - Select - ...
B. Prepare - Select = ... - Drop —> Incube
C. Select = ...= Prepare = Drop - Incube
D. Prepare -> Drop -> Incube -5 ...—> Select

Given the {clip step list}, which step was
not performed in the video?
: Clipped Step
Correct Answer
Invert vial and insert needle.

Based on the {full step list},determine the
steps performed in the video.

Correct Answer
1. Prepare, 2. Select, 3. Inject, ...

V. Step Ordering VI. Completeness Verification VII. Sequence Generation VIII. Step Prediction
Question Question Question Question

Based on the {full step list},infer the step
about to take place in the video.
. '_‘,: Clipped Step

Correct Answer
Incubate vial at 25 °C, 60% RH.

2 Level-3: Scientific Reasoning

Fecal Deposit Analysis of Drosophila for the Assessment of Antidiarrheal Drugs and Plant Extracts

6 - -0—-9@ -O@® -O

Preparation and storage of food mixture. Fly vial preparation and incubation. Post-rearing cleanup.

IX. Experimental Analysis

Relative to normal food, flies fed Psidium guajava extract showed significantly fewer fecal deposits, smaller total deposit area, and lower
10D, and this effect was seen in both virgin males and females.

X. Scientific Discovery

In a standardized Drosophila fecal deposit assay, feeding flies with Psidium guajava extract demonstrated that the platform can be used
for antidiarrheal screening, since reductions in fecal parameters were achieved without affecting solid-food intake.

Figure 1: Ilustration of three-level task hierarchy in ExpVid.

In term of sources, ExpVid is curated from online peer-reviewed research collection (JoVE), whose
exo-view recordings capture real-world laboratory manipulations with detailed narration.

To assess models across both temporal and analysis difficulty granularity, ExpVid organizes data
into three tiers: single-step perceptions within seconds, multi-step understanding over minutes, and
full-experiment as scientific reasoning across extended workflows. In this regard, we define a task
hierarchy that mirrors how scientists work. At the operational level, models must recognize tools,
materials, quantities, and fine-grained actions in short clips. At the procedural level, models predict
over stage-level segments by ordering steps, verifying completeness, and predicting next moves.
At the reasoning level, models integrate visual evidence across the full video and relate it to the
accompanying paper to answer questions about motivation, significance, and conclusions.

Specifically, we adopt a vision-centric annotation method to generate viable question—answer pairs
at multiple temporal scales, and then introduce human expertise to secure the correctness. Questions
are constructed so that visual cues, instead of background knowledge alone, are necessary, along
with carefully designed distractors that are semantically and visually plausible. Multidisciplinary
experts then validate, refine, and balance the items to ensure domain fidelity and diversity across
disciplines and procedures. This combination of automated construction and expert verification
yields a relatively scalable yet rigorous benchmark tailored to the realities of experimental science.

We use ExpVid to evaluate 19 popular MLLMs (with both open-source and proprietary). The find-
ings (in Sec. ) reveal clear strengths in coarse object recognition and short-horizon reasoning, but
persistent challenges in (i) disambiguating visually similar tools and materials under occlusion, (ii)
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tracking quantities and states across steps, and (iii) connecting procedural evidence to scientifically
valid conclusions. These also emphasize that reliable visual grounding and structured reasoning are
most urgently needed in real laboratory settings (mostly wet-lab tasks). We believe these chart a
roadmap for MLLM research toward trustworthy assistants or agents that can perceive, verify, and
reason about real experiments rather than stylized demonstrations.

In summary, our contributions are given as:

* We present ExpVid, to our best knowledge, the first benchmark that systematically evaluates
MLLMs on scientific experimental footage across three hierarchical levels: fine-grained percep-
tion, procedural understanding, and scientific reasoning.

* We design a scalable vision-centric annotation pipeline that constructs multi-level tasks from
videos, associated ASR transcripts and peer-reviewed papers, followed by rigorous multi-
disciplinary expert validation and refinement.

* We benchmark 19 leading MLLMs on ExpVid and provide their corresponding analysis. We show
ExpVid can work as a foundation for measuring and advancing MLLMs in real laboratory settings.

2 RELATED WORK

Multimodal Large Language Models (MLLMs). MLLM:s extend LLMs to multimodal domains
by combining visual perception with linguistic reasoning. Both closed-source models (e.g., GPT-
5 (OpenAlL 2025)), Gemini 2.5 Pro (DeepMind, 2025b))) and open-source models (Chen et al.|[2024bj
Zhu et al.; Bai et al.| 2025bj; [Hong et al.,|2025) demonstrate strong reasoning capabilities on multi-
modal inputs. Some further address ultra-long video understanding, enabling reasoning over hours
of content (Bai et al., [2025bj [Wang et al.l [2025b; [Li et al., [2024b)). To advance scientific discovery,
Intern-S1 (Bai et al., [2025a)) is tailored for scientific domains. Nevertheless, MLLMs’ ability to
understand and reason over laboratory experiment videos remains underexplored.

Video understanding benchmarks. Existing video benchmarks evaluate video models on general
video understanding tasks, including for example, action recognition (Caba Heilbron et al., 2015
Sigurdsson et al., 2016;|Mangalam et al.,|2023)), dense captioning (Das et al.,|2013; Rohrbach et al.,
20155 Chai et al.,[2024), and temporal grounding (Gao et al., 2017; Lei et al.,|[2021}; |Liu et al.|[2024)).
Video-MME (Fu et al.} [2025) and MVBench (Li et al.| [2024a)) provide comprehensive evaluations
on short video clips with multi-choice questions, while several works such as MLVU (Zhou et al.,
2024)), LVBench (Wang et al., 2024c), VRBench (Yu et al., 2025), evaluate MLLMs on long video
comprehension or introduce narrative-driven dataset for multi-step reasoning in extended video
contexts. These benchmarks advance perception and temporal reasoning, but remain agnostic to
domain-specific scientific knowledge and experimental contexts.

Knowledge-driven and scientific benchmarks. Another stream of work emphasizes knowledge-
intensive evaluation, requiring models to integrate discipline knowledge beyond perception. Chem-
Bench (Alampara et al., 2025), MathVision (Wang et al.,|2024b), and MathVista (Lu et al.,|2023)) are
for specific domains. Broader efforts (Yue et al.l 2024} |[Zhao et al., [2025} [Wang et al., [2024d; (Chen
et al., [2024a) target expert-level, multi-disciplinary tasks, with Video-MMMU (Hu et al. [2025)
extending this to domain knowledge from videos. Recently, SCI-VID (Hasson et al.| 2025) and
SFE (Zhou et al.l 2025) further introduce scientific benchmarks, but focus on outcome recogni-
tion (e.g., medical images), rather than understanding whole experiments. Yet real-world scientific
discovery critically depends on lab experiments, where step-wise operations and tools drive results.

3 EXPVID: A SCIENTIFIC EXPERIMENT VIDEO BENCHMARK

We develop a benchmark to assess the performance of MLLMs on experimental footage. Specif-
ically, we mostly focus on wet experiments related to biology, chemistry and medicine. Only a
few dry ones (e.g., field engineering) are included while most of it in computation and physics are
excluded. Since wet experiments commonly own higher operational costs and complexity than dry
ones, they demand more in intelligent assistance and analysis. In the following, we first describe
ExpVid’s data curation (Sec. 3.1)), then present its task hierarchy (Sec. [3.2) and finally detail the
annotation (Sec.[3.3). An overview of the benchmark construction pipeline is illustrated in Fig.
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Table 1: Comparison between ExpVid and some MLLM benchmarks. A and M indicate automatic
and manual annotation, respectively.

Benchmark #QA Pairs #Videos Avg. Sec. #Task Types Annotation  Domain
General Video Benchmarks
MVBench (Li et al.|[2024a) 4,000 3,641 16.0 20 A+M General
Video-MME (Fu et al.|[2025) 2,700 900 1,017.9 1 M General
MLVU (Zhou et al.[[2024) 3,102 1,730 930.0 9 M Narrative
VRBench (Yu et al.|[2025) 9,468 960 5,796.0 1 M Narrative
Knowledge-driven Benchmarks

MMVU (Zhao et al.||2025) 3,000 1,529 514 2 M Multi-disc.
Video-MMMU (Hu et al.[[2025) 900 300 506.2 3 M Multi-disc.
MathVision (Wang et al.[[2024b) 3,040 - — 1 M Math
MathVista (Lu et al.[[2023) 6,141 - - 31 M Math
MMMU (Yue et al.|[2024) 11,500 - - 2 M Multi-disc.
ScienceQA (Saikh et al.|[2022) 21,208 - - 1 M Science
SciBench (Wang et al.||2023) 789 - - 1 M Science
MMStar (Chen et al.||2024a) 1,500 - — 6 M Multi-disc.
SFE (Zhou et al.[[2025) 830 - — 66 M Science
ExpVid 7,800 390 489.0 10 A+M Science

3.1 EXPERIMENT DATA CURATION

Collection. We collect scientific experiment videos, automatic speech recognition (ASR) tran-
scripts, and corresponding papers from the Research section of JoVE (Journal of Visualized Experi-
ments), a multi-disciplinary, peer-reviewed video journal. JoVE publishes step-by-step experimental
protocols in video format, allowing viewers to observe the fine-grained manipulations and precise
procedures. Its exo-view recordings of lab experiments yield high-quality visual content, while asso-
ciated ASR transcripts offer detailed procedural descriptions, which are well-suited for annotation.
The paired peer-reviewed papers further allow us to design challenging reasoning tasks that bridge
experimental procedures to research conclusions and scientific findings.

Filtering. For quality control, we apply a multi-dimensional scoring process to ASR transcripts
via DeepSeek-R1 (Guo et al.| 2025a)). Each transcript is rated on five criteria (0-5 scale): 1) Con-
tinuity: Whether covers the video without temporal gaps or missing segments. 2) Alignment:
Whether its timestamps align with the actual video duration; 3) Clarity: Its logical coherence,
domain-appropriate terminology, and overall readability; 4) Integrity: Whether records an entire
experimental workflow, including distinct procedural stages; 5) Focus: Whether centers on proce-
dures rather than background, lectures, or unrelated context.

An overall score is obtained by averaging across five dimensions, and only those scored at least
4 overall with no dimension below 3.5 are retained, yielding a high-quality subset. Additionally,
videos are constrained to the interquartile range of durations (25th—75th percentiles, 378—728s) to
remove outliers. Within each scientific discipline, experiments are ranked by overall scores and man-
ually reviewed to exclude videos that predominantly feature computer-screen displays or lack actual
laboratory footage. Further, multi-disciplinary experts select 30 top-ranked experiments from each
of the 13 disciplines, yielding 390 videos with ASR transcripts averaging 1,026 words. This ensures
ExpVid remains balanced and diverse. Detailed statistics, along with the list of all 13 disciplines,
are reported in Appendix

Preprocessing. For a systematical evaluation across temporal scales, we process all videos into a
three-level hierarchy to probe distinct capabilities.

* Level-1: Action-level Clips. We obtain ~10k clip-text pairs (with each lasting ~8s on average).
Specifically, we segment ASR transcripts by punctuation and align each sentence with its times-
tamp to cut the video. This yields clip—ASR sentence pairs that provide step-wise experimental
narrations, well-suited for perception-oriented tasks such as action or material recognition.

* Level-2: Stage-level Segments. We get ~3.5k segment-text pairs with an average duration of
~48s. We divide each experiment into semantically coherent stages (e.g., preparation, main pro-
cedures, post handling). We use DeepSeek-R1 to generate stage-level boundaries for each ASR
transcript, guided by prompts that enforces both logical and causal continuity across operations.
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Figure 2: An overview of ExpVid construction pipeline.

Each ASR paragraph is constrained to 20—60s to preserve temporal coherence while avoiding ex-
cessive context length. From each paragraph, DeepSeek-R1 further extracts step-level operation
descriptions to form a segment step list. Concatenating all segment step lists reconstructs a full
step list, which serves a suitable basis for procedural understanding tasks.

* Level-3: Full Procedure Videos. We directly preserve the full experiment videos (average ~8
minutes). In certain cases, we remove concluding slides, figures, and data-analysis segments to
avoid potential shortcuts (e.g., models exploiting textual conclusions) and ensure evaluation relies
on procedural content. This level targets long visual context and structural reasoning, requiring
models to integrate information across extended experimental workflows.

3.2 TASK HIERARCHY IN EXPVID

Based on the processed videos of varied lengths, we define ExpVid’s three-level task hierarchy,
benchmarking MLLMs on scientific experiment videos, ranging from short-term perception to long-
term reasoning. This design allows us to progressively evaluate models’ abilities: whether they can
recognize fine-grained visual details, predict over coherent experimental procedures, and ultimately
reason scientific conclusions over lab experiments. Fig. [T]illustrates this hierarchy.

Level-1: Fine-grained Perception. It evaluates whether MLLMs can visually ground essential
elements in short clips of individual experimental steps through four MCQ tasks:

* Material Recognition: Distinguish the target experimental material and distinguish it from other
plausible substances commonly encountered in laboratory settings.

* Tool Recognition: Identify the appeared tools from the scene and reject visually or functionally
similar distractors.

* Quantity Recognition: Choose the correct numerical attribute (e.g., dosage, temperature) by
visually interpreting scales, amounts, or counts.

* Operation Recognition: Recognize the specific action being performed in the video and differ-
entiate it from confusable but incorrect operations in the similar setup (e.g., Insert — Attach).
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Level-2: Procedural Understanding. This type of task evaluate models on their reasoning about
logical and temporal order across multiple steps within stage-level clips, including:

» Step Ordering: Select the correct step execution order when the original sequence is perturbed
into plausible but incorrect arrangements.

* Sequence Generation: Given the candidates, find out the ordered steps that appear in the clip.
* Completeness Verification: Given the candidates, detect the missing step in the clip.

 Step Prediction: Given the first n — 1 steps of an experiment stage, predict the next step n.

Level-3: Scientific Reasoning. It has two tasks that require models to integrate visual experiment
processes with domain knowledge to draw conclusions, in the form of fill-in-the-blank questions:

* Experimental Analysis: Infer crucial conclusions from experimental data, e.g. compare current
results with existing studies, highlight new findings, and explain the corresponding mechanisms.

* Scientific Discovery: Reason over the entire experiment video, move beyond current outcomes,
and abstract broader insights, such as linking results or innovations to larger scientific phenomena,
interpreting the significance in filling blanks of which domain or potential application values, and
proposing improved solutions for the current limitations and new directions for this area.

3.3 VISION-CENTRIC ANNOTATION WITH KNOWLEDGE GUIDANCE

Our annotation pipeline adopts a semi-automatic strategy that combines LLM assistance with human
expert verification. To ensure benchmark vision-centric, we deliberately avoid encoding contextual
cues from the narration that could directly reveal answers during QA construction. Moreover, dis-
tractors are crafted to be semantically or visually plausible, forcing models to rely on visuals rather
than purely leveraging LLM priors and textual cues. To minimize LLM bias, LLM is limited to
extracting experimental entities (e.g., subjects, actions, tools) from ASR transcripts and transform-
ing them into QA candidates. Human experts then review, refine, and validate these annotations for
correctness. Building upon the hierarchy given in Sec. and[3.2] we construct them as follows.

Fine-grained Perception. For the four perception tasks Material, Tool, Quantity, and Operation,
candidate entities or actions are first extracted from ASR sentences by DeepSeek-R1 as targets and
aligned with video clips, with a Qwen2.5-VL captioner providing visual triggers to verify their vis-
ibility. Normalization preserves critical states of materials and essential identifiers of tools, while
excluding under-specified or generic terms. Then, these resulting targets are converted into four-
option multiple-choice questions (MCQs), where distractors are generated by DeepSeek-R1 follow-
ing task-specific prompt rules: for Material and Tool, distractors reflect visual/functional similarity
or common confusions; for Quantity, they lie in the same numeric range to mimic perceptual errors;
and for Operation, they are plausible but incorrect within the same experimental setting. This design
forces models to ground their answers in visual signals.

Procedural Understanding. These four sequential tasks are built on step lists derived from ASR,
The first is Step Ordering, where each segment’s step sequence is converted into a four-option MCQ
with distractors generated by DeepSeek-R1 as plausible but incorrect permutations that still follow
experimental logic. The other three are formulated by embedding step list into question templates.
Sequence Generation and Step Prediction use the full step list as the candidate set, where Step
Prediction, additionally, the final step and its video are removed, with only segments containing at
least three preceding steps retained; Completeness Verification instead uses the segment step list and
randomly removes a non-final step as the target answer.

Scientific Reasoning. For Experimental Analysis and Scientific Discovery, we construct annota-
tions for each full experiment video based on its corresponding peer-reviewed paper. The paper
is first processed with MinerU (Wang et al.l [2024a) to extract key sections (Introduction, Results,
Discussion), and GPT-5 is used to summarize findings as anchors for annotation. PhD-level expert
annotators then design two types of fill-in-the-blank question based on experiment videos and cor-
responding paper, under the following principles: 1) Solvable only through visual observation and
requiring reasoning across the full experiment. 2) Should not be answerable without the video. 3)
Constrained to a single precise answer, minimizing ambiguity and synonym overlap. 4) Encouraging
multi-blank settings to probing several key points within one question.

6
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Expert Verification. The given annotations are all human verified. We build an online annotation
platform (see Appendix[D) and recruit PhD-level experts in biology, medicine, chemistry, and related
disciplines to ensure annotation accuracy. Each level has different verification standards.

Concerning fine-grained perception, experts verify targets are indeed visible or inferable in the clip,
and distractors are scientifically plausible and visually confusable. For procedural understanding,
they check consistency between step lists and segments by removing unobserved steps, correcting
timestamp errors, refining vague descriptions, and adding missing operations to ensure complete-
ness. Regarding scientific reasoning, experts ensure that fill-in-the-blank questions demand genuine
reasoning over full experimental workflows, with prompts designed to avoid textual shortcuts and
answers constrained to a single unambiguous choice.

Across all levels, experts validate that questions are answerable from the corresponding video con-
tent, filter out invalid items, and revise those with minor errors (e.g., inaccurate distractors or im-
perfect phrasing). This iterative process continues until all items meet our quality standards. On
average, annotation requires 0.3 hours per question for Level-1, 0.5 hours for Level-2, and 1.2 hours
for Level-3, yielding 7,800 QA pairs across 10 tasks under 13 disciplines. Details of benchmark
statistics are in the Appendix

4 EXPERIMENTS

Evaluation models. We evaluate MLLMs covering both open-source and proprietary models, and
reasoning ones or not. On the open-source side, we include Qwen2.5-VL (Bai et al., [2025b),
InternVL3 (Zhu et al.), InternVL3.5 (Wang et al., |2025a), GLM4.5V (Hong et al., [2025), Kimi-
VL (Team et al.l 2025), and Intern-S1 (Bai et al., 2025a). For closed-source ones, we benchmark
Seed-1.5-VL (Guo et al.l |2025b), Gemini-2.5-Flash (DeepMind, [2025a)), Gemini-2.5-Pro (Deep-
Mind| [2025b)), Claude-Sonnet-4 (Anthropic, 2025)), and GPT-5 (OpenAl [2025)). A full description
of the evaluated models’ configurations can be found in Appendix [E]

Metrics. ExpVid employs hierarchical evaluation metrics aligned with tasks. For Level-1, all
types of recognition tasks are formulated as multiple-choice questions, measured by Top-1 Accuracy.
Level-2 tasks like step ordering, completeness verification and step prediction are evaluated by
Top-1 Accuracy, while sequence generation is evaluated using Jaccard similarity coefficient at the
sequence level. Level-3 tasks are evaluated by comparing each predicted blank with the ground-
truth answer using a lightweight LLM (Phi-3-mini (Abdin et all 2024))), and reporting per-blank
accuracy, defined as the ratio of correctly judged blanks to the total number of blanks.

Human performance. We recruited 15 undergraduate students without specialized backgrounds
in biomedical or related sciences. They represent participants with general knowledge and com-
mon sense rather than domain expertise, providing a realistic reference point for non-expert human
understanding. Notably, for Level-3 open-ended cloze tasks, participants reported being unable to
complete the questions without specialized training, so no human baseline is reported for this level.

4.1 RESULTS

We evaluate 19 MLLMs on ExpVid, as detailed in Tab. @ Frontier closed-source models, notably
GPT-5 and the Gemini-2.5 series, clearly outperform the human baseline. Gemini-2.5-Flash-Think
reaches 60.2 on the Level-1 (L1) average, and GPT-5 scores 57.5 on the Level-2 (L2) average, well
above the human averages of 37.6 and 42.1, respectively.

Closed-source models also maintain a clear lead over open-source ones as shown in Tab. |2} a gap that
widens with task complexity. In basic perception such as recognizing tools, materials, quantities,
and operations, closed-source models hold a notable lead. The top-performing Gemini-2.5-Flash
(with “think”) scores 60.2 on average. The best open-source models, InternVL3-78B and Intern-S1,
achieve commendable but lower scores of 50.9 and 49.9, respectively. This indicates that while the
gap exists, leading open-source models are becoming increasingly competitive in fundamental visual
perception. Concerning procedural understanding, the gap becomes more pronounced. GPT-5 leads
with an average of 57.5, followed closely by Gemini-2.5-Pro at 54.3. The top open-source model,
InternVL3-78B, lags with an average of 41.9. A deeper look reveals nuances: InternVL3-78B excels
at Step Ordering (87.1), even outperforming GPT-5 (85.1). However, it falls short on more generative
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Table 2: Performance of evaluated models on the ExpVid across 10 tasks under three levels.

Level-1 Level-2 Level-3

Model Think
Tool Mat. Quan. Oper. Avg. Ord. Gen. Veri. Pred. Avg. Anal. Disc. = Avg.

Human Performance 175 159 613 555 376 698 312 456 21.8 42.1 - - -

Open-source MLLMs

Qwen2.5-VL-7B-Instruct X 320 339 490 624 426 562 208 207 13 246 252 214 233
MiMo-VL-7B-RL X 342 337 442 624 424 439 285 185 114 274 287 259 273
MiMo-VL-7B-RL v 36.1 29.1 53.6 678 443 648 323 249 156 343 293 273 283
InternVL3-8B X 27.5 31.0 388 656 394 434 204 202 39 239 292 253 272
InternVL3.5-8B X 273 30.8 455 648 403 823 258 237 48 340 226 184 205
Intern-S1-mini v 333 312 525 614 425 736 143 168 83 281 335 283 309
Keye-VL-8B-Preview v 16.6 224 389 608 326 254 124 191 17 146 95 6.7 8.1
Keye-VL-1.5-8B v 21.0 234 513 640 370 567 95 200 28 221 84 6.1 7.2
GLM-4.1V-9B v 30.8 298 475 596 40.1 641 182 250 74 286 28.1 265 273
GLM-4.5V v 355 336 615 623 456 719 349 272 129 36.6 333 325 329
Kimi-VL-A3B-Thinking v 346 326 407 595 40.8 323 182 233 62 200 246 21.8 | 232
InternVL3.5-38B v 359 340 467 653 440 658 367 23.0 190 36.0 331 30.8 319
InternVL3-78B v 35.1 343 732 758 509 87.1 455 198 155 419 403 353 | 377
Qwen2.5-VL-72B-Instruct X 305 347 545 645 439 863 341 238 03 359 319 293 306
Intern-S1 v 389 352 589 738 499 822 450 241 154 36.0 430 363 39.6
Closed-source MLLMs
Seed-VL-1.5 v 329 246 439 692 407 739 486 198 279 425 320 294 307
Claude-Sonnet-4 X 256 312 543 619 40.8 787 376 165 11.6 360 29.1 30.1 29.6
Gemini-2.5-Flash X 5277 50.1 652 726 58.6 86.0 505 24.1 402 50.1 472 41.1 44.1
Gemini-2.5-Flash v 527 507 719 733 60.2 851 543 223 380 498 448 413 430
Gemini-2.5-Pro X 53.1 459 643 808 592 837 613 268 49.6 538 506 452 479
Gemini-2.5-Pro v 513 443 638 744 567 842 599 268 469 543 50.1 448 474
GPT-5 X 51.6 378 595 719 533 851 669 268 518 575 554 574 564

and predictive tasks like Sequence Generation (45.5 vs. GPT-5’s 66.9) and Step Prediction (15.5 vs.
GPT-5’s 51.8). This highlights that while open-source models can master specific structured tasks,
they struggle with more holistic procedural reasoning. In Level-3 (L3) scientific reasoning, GPT-5
achieves a leading average score of 56.4, with strong results in both Experimental Analysis (55.4)
and Scientific Discovery (57.4), well ahead of all competitors. By contrast, the best open-source
model, Intern-S1, reaches only 39.6, falling nearly 17 points short of GPT-5. It underscores the
advanced reasoning capabilities of frontier closed-source models, which remain a clear target for
the open-source community.

4.2 MORE ANALYSIS

Scaling Effects in Open-Source Models. A clear and consistent trend found among open-source
models is the positive correlation between model scale and performance. The InternVL family
serves as an excellent case study. As the model size increases from InternVL3-8B (L1: 39.4, L2:
23.9, L3: 27.2) to InternVL3.5-38B (L1: 44.0, L2: 36.0, L3: 31.9) and finally to InternVL3-78B
(L1: 50.9, L2: 41.9, L3: 37.7), performance improves across all three levels. This demonstrates
that increasing model scale directly contributes to enhanced capabilities in perception, procedural
understanding, and scientific reasoning tasks, validating scaling as a crucial axis for experiment
video understanding in the open-source ecosystem.

Potential Unbalanced Capabilities. The results also shed light on the relative difficulty of dif-
ferent tasks. Within L2, models consistently score highest on Step Ordering, indicating a strong
ability to rearrange provided information. In contrast, scores for Completeness Verification and Step
Prediction are significantly lower across all models, revealing a weakness in identifying missing in-
formation and forecasting future actions. The extremely low score of Qwen2.5-VL-72B-Instruct on
Step Prediction (0.3) despite its strong performance on Step Ordering (86.3) exemplifies the brittle-
ness and uneven capabilities of current MLLMs.
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Figure 3: Effect of input video frames.

Effect of thinking. In Tab. 2| we find Thinking does not consistently improve results and can
even degrade it on some tasks. Regarding this, we analyze error cases where Gemini-2.5-Flash
with Thinking_Budget=8,192 fails but the NoThinking mode succeeds. The Thinking model often
adopts a logic-oriented style: abstracting the problem, reasoning step by step, and proposing a “rea-
sonable” workflow. Yet it drifts from the actual video sequence and relies on priors. By contrast,
the NoThinking model remains video-grounded, directly matching steps to visual order and pro-
ducing concise, faithful descriptions. For example, NoThinking answers typically begin with “The
video shows...”, whereas Thinking answers start with “... identify the most logical workflow...”,
revealing reasoning beyond visuals (see Appendix [E.3).

Vision centric. We compare Gemini-2.5-Flash with and without frame inputs on all L1 and L2
tasks (the left of Fig.[3). As a result, inputting frames consistently boosts performance, with some
tasks such as Step Prediction becoming unsolvable without visual cues. Even for tasks like Step
Ordering, where models can sometimes infer the correct answer from scientific priors alone, adding
video inputs still yields clear gains. This validates the vision-centric design of ExpVid.

For long-video reasoning tasks in L3, we ablate frame counts in Fig. |3| right. Results show that
visuals are indispensable: accuracy is near zero without frames and increases as more are added.
However, models benefit differently. InternVL3.5 peaks early (~128 frames) and then declines, sug-
gesting saturation or distraction from redundant inputs, whereas MiMo-VL and Kimi-VL steadily
improve up to 256 frames, reflecting stronger ability to leverage extended temporal context. This
indicates MLLMs like InternVL3.5, trained mainly for image—text alignment, gain little from ex-
tended sequences. In contrast, Kimi-VL and MiMo-VL, which incorporated long-video data during
long-context activation training, continue to improve with more frames. Overall, these findings
highlight the critical role of vision and the varying optimal frame budgets across models.

Limitation. ExpVid currently focuses on wet-lab experiments, not covering the full spectrum of
scientific inquiry. Domains such as physics, which often involve distinct experimental apparatus
(e.g., optical tables, particle detectors) and abstract phenomena, or purely computational experi-
ments and large-scale engineering tests, remain underexplored. Reasoning tasks in Level-3 assess
outcomes but do not illuminate the underlying reasoning process (e.g., chain-of-thought) that links
experiments to conclusions.

5 CONCLUSION

This paper presents ExpVid, the first benchmark dedicated to scientific experiment videos. With its
three-level task hierarchy, vision-centric annotation pipeline, and expert-guided validation, ExpVid
gives a systematic evaluation of MLLMs across fine-grained perception, procedural understanding,
and scientific reasoning. Our empirical studies demonstrates both the progress and the persistent
limitations of current models, highlighting directions for advancing trustworthy Al in experimental
science.
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ETHICS STATEMENT

Our work involves the collection and annotation of scientific experiment videos sourced from JoVE,
a peer-reviewed video journal. All data are publicly available under JOVE’s license, and we do not
involve any private, sensitive, or personally identifiable information. The benchmark focuses on
laboratory procedures rather than human subjects, and no clinical or personally invasive data are
included. Annotation was conducted by PhD-level domain experts with clear guidelines to ensure
accuracy, fairness, and scientific integrity. Potential risks such as misuse for non-scientific or unsafe
experimental replication are mitigated by providing the dataset strictly for research purposes. We
adhere to the ICLR Code of Ethics in all aspects of this work, including dataset release, annotation
transparency, and reporting of model limitations.

REPRODUCIBILITY STATEMENT

We have taken several steps to ensure reproducibility of our benchmark and experiments. Sec. [3.1]
and Appendix describe data collection and filtering criteria, including quantitative thresholds.
Sec. [3.1] details preprocessing pipelines for constructing our benchmark. Sec. 3.3] Appendix [D]
and [H outline annotation templates, distractor generation heuristics, and expert verification pro-
cesses. Evaluation protocols and metrics for all tasks are specified in Sec. ] and Appendix [E] All
code for preprocessing, annotation generation, and evaluation, along with benchmark data (under
appropriate license agreements), will be released in anonymized form to facilitate reproduction and
extension by the community.
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A THE USAGE OF LARGE LANGUAGE MODELS (LLMS)

In our work, LLMs are employed to assist the automated data annotation pipeline, with the resulting
annotations subsequently reviewed and refined by human researchers. In addition, LLMs are used to
support proofreading of the manuscript. All content presented in this paper is rigorously verified to
ensure faithful representation of the authors’ original intent and to eliminate any factual inaccuracies
or hallucinations that might be introduced by the models.
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Figure 4: Data statistics in ExpVid collection and filtering. (a) Number of experiment videos per
discipline before filtering. (b) Video duration distribution with mean 489s and median 505s, showing
long-tail outliers beyond 2,000s. (c) Boxplot of video duration by discipline (whiskers at 1.5xIQR).
(d) Boxplot of video duration by quality based on the multi-dimensional scoring process.

In this section, we present key statistics of ExpVid and its curation process.

B.1 STATISTICS IN DATA COLLECTION AND FILTERING

Fig. 4] shows the overall video duration distribution, the number of experiments across disciplines,
and the results of the multi-dimensional scoring process. As illustrated, the source collection (JoVE)
initially contains tens of thousands of videos, with biology, medicine, and neuroscience among the
largest disciplines. The raw duration distribution centers around 489s on average (median 505s), but
includes long-tail outliers exceeding 2,000s.

To ensure high quality, we retain only experiments with an overall score of at least 4 and no in-
dividual dimension score below 3.5, resulting in 5,879 videos (37.2%). To further align with our

14



Under review as a conference paper at ICLR 2026

task hierarchy and maintain temporal diversity, we exclude videos outside the interquartile range
(378s—728s). After this coarse filtering guided by LLM-based ASR scoring, a multidisciplinary ex-
pert team manually curated the final dataset. To balance disciplines, control annotation cost, and
keep a manageable benchmark size, we preserve 30 experiments per discipline across 13 fields,
yielding 390 experiments in total.

The 13 disciplines include: Genetics, Environment, Behavior, Cancer Research, Engineering,
Chemistry, Biochemistry, Developmental Biology, Bioengineering, Immunology and Infection,
Neuroscience, Medicine, and Biology.
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Figure 5: Data statistics of video duration and annotations in ExpVid. (a) Average video/clip dura-
tion and standard deviation across the three levels (log scale). (b) Number of annotations for each
task. (c) Average number of words per annotation with standard deviation. (d) Average number of
annotations per full experimental video across different tasks, with standard deviation.

B.2 STATISTICS IN CURATED BENCHMARK

We further provide detailed statistics of the annotated dataset in Fig.[5} As shown in Fig. 3] (a),
our preprocessing splits videos into three levels with relatively stable durations and small standard
deviations. In particular, the small variance at Level-3 benefits from the filtering process, which
controls video length during selection. The progressively longer durations across the three levels
naturally support our design for evaluating different capabilities, emphasizing not only linguistic
reasoning but also reasoning across temporal scales.

Fig. [5 (c) reports the token counts of annotated tasks. Sequence generation and step prediction at
Level-2 contain significantly more tokens than other tasks, since their questions include the prede-
fined full step list as context. This indicates that models must reason over multi-step procedures in
video while simultaneously handling long textual contexts.
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Fig. [5] (d) shows the number of annotations per experiment across disciplines. Since we balance
the number of experiments per discipline in filtering, the small variance here reflects that ExpVid
spans diverse domains while maintaining annotation consistency, ensuring fair evaluation of models’
cross-disciplinary capabilities.

C PERFORMANCE BY DISCIPLINE

We visualize the averaged performance on each task by discipline in Fig.[6] The figure shows that,
because these disciplines are closely related and primarily consist of web-based experiments, the
performance differences across disciplines remain limited.

Levell Level2 Level3

0.40 034

029 L o0s

033 035

Figure 6: Three level performance averaged across models by disciplines.
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D EXPERT VERIFICATION

In this section, we present the online annotation platform that supports expert verification across all
tasks. Experts follow standardized guidelines: watch source videos and related materials, review
annotations, and refine them to meet task-specific criteria. For any modifications, they must also
provide justifications to ensure transparency and traceability.

We recruit PhD-level experts across biology, chemistry, medicine, and related fields to annotate
within their domains of expertise. Figs. [7] [8] and [0] show representative cases from each level.
Experts validate annotations, correct errors, and refine question—answer pairs to ensure accuracy
and domain fidelity. Level-3 is distinct in requiring annotators to also consult the corresponding
research papers when designing questions. The entire process is iterative: low-quality annotations
can be returned for revision until they fully satisfy the benchmark’s standards.

Jove_L1_blology.teststandard [ sraere e stz e

Biology.

L1 Neurosciance_Test Label 1] s e

top to the bottom al

Figure 7: Expert annotation example of Level-1 task.
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E EVALUATION DETAILS
In this section, we detail evaluation settings, model configurations and inference prompts below.

E.1 EVALUATION METRICS

Level 1. Each task is presented as a four-choice multiple-choice question (MCQ). Model perfor-
mance is evaluated using Top-1 Accuracy, defined as the ratio of correctly answered questions to
the total number of questions across all Level 1 tasks.

Level 2. This level contains four tasks:
* Sequence Ordering: A standard four-choice MCQ.

* Completeness Verification: An MCQ where the candidate options correspond to all steps within a
specific video segment. The number of options thus varies across instances (see Fig. [T0|left).

* Step Prediction: An MCQ where the candidate options are drawn from all steps in the full experi-
mental procedure. The number of options also varied (see Fig. [I0]right).

» Sequence Generation: A task that requires generating an ordered step sequence, evaluated by
measuring the similarity between generated sequence and the ground-truth sequence.

For the MCQ tasks, performance is measured by Top-1 Accuracy. For the Sequence generation
task, we use the Jaccard index (ranging from O to 1) to assess the overlap between the predicted
and ground-truth step sequences. The average score for Level 2 is computed as the total number
of correct answers (or similarity scores in the case of Sequence Generation) divided by the total
number of questions.

Level 3. This level consists of two tasks: Experimental Analysis and Scientific Discovery. All ques-
tions are formulated as fill-in-the-blank. We employ a lightweight language model to compare model
outputs with reference answers. Each blank is worth one point. The evaluation metric is Blank-level
Accuracy, calculated as the number of correctly filled blanks divided by the total number of blanks.

E.2 EXPERIMENT SETTINGS

For frame selection, we use 8 frames for Level 1 tasks and 32 frames for Level 2 tasks, which
approximately correspond to a sampling rate of 1 fps given the average duration of the videos in
these tasks. For Level 3 tasks, we adopt either the recommended number of frames or the maximum
number of frames that can be accommodated within the model’s context window and available GPU
memory. Frames are uniformly sampled from the raw videos and resized to 224x224 to ensure fair
comparison across models.

For inference, we allocate a maximum of 8192 tokens to each model to ensure that complete answers
can be generated in the vast majority of instances. The temperature is fixed at 0.1 for all models to
reduce randomness in generation.
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E.3 CONFIGURATIONS OF EVALUATED MODELS

The detailed configurations of evaluated MLLMs, including model versions and visual frame inputs,

are given in Tab.[3]

Table 3: Details of evaluated MLLMs used in ExpVid. The “# Frames” column represents the
default number of input frames in level3 tasks, chosen from {96, 128, 256, 512}. “HF” means
Hugging Face inference, “vLLM” indicates vLLM engine, and “API” denotes proprietary API call.

Level3

Organization Model Release  Version # Frames Pipeline
Closed-source MLLMs
OpenAl GPT-5 2025-8 GPT-5 128 API
Google Gemini-2.5-Flash 2025-5 Gemini-2.5-Flash 128 API
£ Gemini-2.5-Pro 2025-3  Gemini-2.5-Pro 128 API
Anthropic Claude-Sonnet-4 2025-5 Claude-Sonnet-4 96 API
Seed Seed1.5-VL 2025-5 Seedl.5-VL 256 API
Open-source MLLMs
Alibaba Qwen2.5-VL-7B 2025-1 Qwen2.5-VL-7B-Instruct 128 vLLM
Qwen2.5-VL-72B 2025-1 Qwen2.5-VL-72B-Instruct 128 vLLM
~ IntemVL3-8B 20254  Internvi3-sB 256 ~ HF
OpenGVLab InternVL3.5-8B 2025-9 InternVL3.5-8B 256 HF
pentvia InternVL3.5-38B 2025-9  InternVL3.5-38B 256 HF
InternVL3-78B 2025-4 InternVL3-78B 256 HF
R Corr o Intern-Sl-mini 20257 Intern-Sl-mini 128  HF
Shanghai ATLab 1,0 51 20257 Intern-si 128 HF
Kwai Keye-VL-8B-Preview 2025-6  Keye-VL-8B-Preview 256 HF
Keye-VL-1.5-8B 2025-9 Keye-VL-1.5-8B 256 HF
Moonshot Kimi-VL-A3B-Thinking  2025-6 ~ Kimi-VL-A3B-Thinking-2506 256 vLLM
" Xigomi ~ MiMo-VL-7B-RL  2025-8 MiMo-VL-7B-RL-2508 512 vLLM
ZhipuAl GLM-4.1V-9B-Thinking ~ 2025-7 GLM-4.1V-9B-Thinking 256 HF
P GLM-4.5V 2025-8  GLM-4.5V 256 API
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E.4 PROMPT FOR INFERENCE

We provide prompt templates across all tasks and examples below.

Prompt for Level 1 Tasks

Full Prompt
{task_instruction}
{question}

Task Instruction
Solve the multiple choice question based on the video. Provide your final answer as a single letter
enclosed in \boxed{}.

Question

Materials

Question: Which material appears in this experimental step?
Options:

A: collected pellets

B: agarose beads

C: silica gel packets

D: lyophilized powder

Operation

Question: What is the person doing with the pipette to the cell plate wells?
Options:

A: Removing the medium

B: Pouring fresh medium

C: Injecting PBS solution

D: Mixing the contents

Quantity

Question: How many pellets are gathered?
Options:

A: 10 pellets

B: 8 pellets

C: 12 pellets

D: 15 pellets

Tool

Question: Which tool is being used in this experimental step?
Options:

A: plastic bag

B: ziplock bag

C: desiccator

D: weigh boat
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Prompt for Level 2 Tasks

Sequence Generation

Task Instruction

Solve the following question based on the video. Provide your final answer as a list of numbers
(comma-separated) enclosed in \boxed{}.

Question Based on the full step list, determine the step numbers shown in the video.

Full Step List:

1. Use laryngoscope to expose vocal cords through mouth of 25-30g female Yorkshire pig

2. Spray vocal cords with two puffs of 2% lidocaine topical solution

39. Suture flap skin panel to cervical midline skin incision
40. Close abdominal skin incision

Step Ordering
Task Instruction
Solve the multiple choice question based on the video. Provide your final answer as a single letter
enclosed in \boxed{}.
Question What is the correct sequence of steps shown in the video?
Options:
A: 1. Thoroughly mix equal proportions of epoxy and hardener
2. Leave mixture for one hour

B: 1. Place ZIF-8 membrane on 24mm steel disc with Smm diameter center hole
2. Thoroughly mix equal proportions of epoxy and hardener

C: 1. Thoroughly mix equal proportions of epoxy and hardener
2. Place ZIF-8 membrane on 24mm steel disc with Smm diameter center hole

D: 1. Thoroughly mix equal proportions of epoxy and hardener
2. Leave mixture for one hour

Completeness Verification

Task Instruction

Solve the multiple choice question based on the video. Provide your final answer as a single letter
enclosed in \boxed{}.

Question Given the complete step list, which step was not performed in the video?

Step List:

1. Withdraw 1 milliliter of isoprene solution using syringe

2. Rinse syringe three times with isoprene solution prior to final withdrawal

7. Introduce flow of 2 standard liters per minute of purified air
Options:
A:1 B:2 C:3 D:4 ES5 F6 G7

Step Prediction

Task Instruction

Solve the following question based on the video. Provide your final answer as a single number
enclosed in \boxed{}.

Question Given all steps of the experiment, please predict the next operation that will take place
after this video segment.

Full Step List:

1. Cut high purity copper foil into 4 x4 cm pieces

2. Draw a line 0.5 cm from one edge of each square foil

44. Calculate permeance in Excel using mass spectrum data after steady state establishment
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Prompt for Level 3 Tasks

Full Prompt
{task_instruction }
{question}

Task Instruction
Solve the following fill-in-the-blank question based on the video. Provide your final answer as a
list of words or phrases (comma-separated) enclosed in \boxed{}.

Question
Experimental Analysis

Title: [(DPEPhos)(bcp)Cu]PFs: A General and Broadly Applicable Copper-Based Photoredox
Catalyst

Discipline: Chemistry

Question: In this study, the direct C2 arylation of N-methylpyrrole with 4-iodobenzonitrile at
room temperature proceeded using ____ under ____ irradiation to afford the product in ____ yield
after ____.

Scientific Discovery

Title: Novel Object Recognition Test for the Investigation of Learning and Memory in Mice
Discipline: Behavior

Question: In the mouse object recognition task, inhibitors of ____ produced a dose-dependent
improvement in memory when administered 30 minutes before training, immediately after
training, or 30 minutes before recall, implying that this target modulates ____, ____and ____.
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E.5 ERROR CASES

We provide an output example of an Step Ordering Question from Gemini-2.5-Flash in both No-
Thinking and Thinking_Budget=8192 modes. Since the full outputs are too lengthy, we present only
key excerpts to highlight the distinct answering styles of the two modes.

NoThinking Response (Correct, A):

The video shows a precursor vaporization setup experiment.

The steps involved are:

1. Withdraw 1 milliliter of isoprene solution using syringe...
2. Rinse syringe three times with isoprene solution prior...

Let’s analyze the options:
Option A: 1, 2, 3, 4, 5, 6, 7. This sequence aligns with the
logical progression of the experiment.

The video shows the following sequence of actions:

Preparation of the syringe (drawing and rinsing the solution).
Insertion of the syringe into the syringe pump.

Insertion of the syringe needle into the flask.

Heating of the flask.

Activation of the syringe pump.

Introduction of the carrier gas.

o Ul WD

Comparing this with option A:

1. Withdraw 1 milliliter of isoprene solution using syringe. (Matches)
2. Rinse syringe three times with isoprene solution prior to final
withdrawal. (Matches)

The final answer is $\boxed{A}S....
Thinking Response (Incorrect, D):

In considering the question regarding the correct sequence of steps for
the Precursor Vaporization Setup experiment, I’ve reviewed the provided
options and the implicit logic of laboratory procedures for such setups.
My thought process has been to deconstruct each option, evaluate the
scientific rationale behind the order of operations, and ultimately
identify the most logical and efficient workflow.

Initially, I recognized that the experiment involves vaporizing a
precursor (isoprene solution) using a heated flask and a syringe pump
for controlled delivery, likely in conjunction with a carrier gas. This
immediately suggested a general workflow: prepare the sample, set up
the apparatus, prepare the reaction environment, introduce the sample,
and initiate the process.

I then systematically analyzed each proposed sequence:

*%Option Axx: I found this option plausible but noted potential issues.
Specifically, preheating the flask after inserting the syringe seemed
less efficient, and introducing the carrier gas as the very last step
raised concerns about optimal sweeping of the vaporized sample.
Considering the logical flow, D presents the most coherent sequence:
1. Prepare the sample in the syringe.

Place the syringe into the syringe injector.

Preheat the flask.

Insert the syringe needle into the flask.

Introduce the carrier gas.

Turn on the syringe injection.

o U1 W N

The final answer is $\boxed{D}S....
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F PROMPTS FOR ANNOTATION
In this section, we provide detailed prompts used in each annotation task.

F.1 LEVEL-1

Prompts for Level-1 tasks are provided as follows.

F.1.1 MATERIAL EXTRACTION

SYSTEM_PROMPT = “
You are an expert in scientific experimental procedure analysis, specializing in extracting
**materials** from experimental procedure text. Please strictly follow the instructions by users.

29

USER_PROMPT_TEMPLATE = *

### Task Objective:

Extract the list of scientific **materials** mentioned in the following ASR transcript, preserving
critical states and specifications.

You are given:

- An experimental step transcription (ASR caption): semantically accurate.

- A visual scene description from a vision-language model (Qwen caption): rough but helps
verify visibility of the material.

### Material Definition:

- Biological specimens (with preparation state)

- Chemicals/reagents (with concentrations/forms)
- Solutions/mixtures (when specifically named)

- Gases/substrates

### Extraction Rules (Critical):

1. **Preserve essential descriptors** that define:

- Biological state (e.g., “anesthetized mouse”, “fixed tissue’)

- Preparation form (e.g., “trimmed hair”, “lyophilized powder”)

- Anatomical parts when manipulated (e.g., “mouse’s head”, “renal cortex”)

2. Normalization guidelines:

- Keep singular/plural as in original context

- Remove non-essential modifiers (e.g., “carefully”, “gently”)
- Retain:

* Mixture states (e.g., “OVA-alum emulsified”)

* Biological conditions (e.g., “post-mortem brain”)

3. Exclusion criteria:

- Instruments/tools (e.g., “shaver”, “pipette”)

- Generic containers (e.g., “tube”, “well plate”)
- Unspecified solutions (e.g., just “solution’)

### Output Format:
{ “materials”: [“materiall”, “material2”, ...] }

ASR caption: “{asr_caption}”
Qwen caption: “{qwen_caption}”
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F.1.2 MCQ ANNOTATION FOR MATERIAL RECOGNITION

SYSTEM_PROMPT = “

You are a scientific researcher creating multiple-choice questions (MCQs) for material recogni-
tion in scientific videos.

Your task is to generate 3 plausible distractors for a given material based on the experimental
context.

USER_PROMPT_TEMPLATE = “

You are generating a multiple-choice question (MCQ) for material recognition in scientific
experiment videos.

Given:

- An experimental step transcription (ASR): “{asr_caption}”

- A target material: “{target_material }”

### Your Task:

Generate **3 scientifically plausible distractors** (i.e., incorrect but believable options) for the
given material.

### Each distractor must meet the following constraints:

1. Do not use distractors that only differ from the target material by quantity or concentration.

2. Must be an **actual material or chemical** used in real laboratory settings.

3. Must be **contextually plausible** in the described procedure — it should be reasonable that
such a material might appear in this type of experiment.

4. Distractors should fall into **different plausible confusion categories**:

- **Visual similarity**: looks similar in appearance or form (e.g., transparent liquids)

- **Functional similarity**: used for similar purposes (e.g., washing, dissolving, blocking)

- **Common confusion**: frequently confused due to naming, function, or form

5. Do **not invent fake materials** or use vague terms (e.g., “solution”, “fluid”).

6. If the target material includes a modifier (e.g., “PBS buffer”, “deionized water”), keep the full
original phrase from the ASR as the correct answer.

Output ONLY valid JSON in the following format:
{

“question”: “{question_template}”,

“options”: {

“A”: “<correct answer with proper modifiers>",
“B”: “<distractor 1>,

“C”: “<distractor 2>,

“D”: “<distractor 3>

}s

“answer’”: “A”,

“target_material”: “{target_material}”,
“distractor_types”: {

“B”: “<visual/functional/confusion>",

“C”: “<visual/functional/confusion>",

“D”: “<visual/functional/confusion>"

}

Example for “PBS™:

- A: “PBS” (correct)

- B: “saline solution” (functional - both for cell washing)
- C: “Tris buffer” (visual - similar buffer solutions)

- D: “deionized water” (confusion - commonly mistaken)

29
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F.1.3 TooL EXTRACTION

SYSTEM_PROMPT = *
You are an expert in scientific experimental procedure analysis, specializing in extracting
**tools** from experimental procedure text. Please strictly follow the instructions by users.

29

USER_PROMPT_TEMPLATE = “
### Task Objective:
Extract the list of scientific **tools** mentioned in the following ASR transcript.

You are given:

- An experimental step transcription (ASR caption): semantically accurate.

- A visual scene description from a vision-language model (Qwen caption): rough but helps
verify visibility of the tool.

### Tool Definition:
Any instrument, equipment, or container used directly during the experiment (e.g., pipette,
centrifuge, test tube).

### Standardization Rules:

1. Use lowercase and singular form (e.g., “gloves” — “glove”).

2. Remove units or quantity descriptors (e.g., “1.5 milliliter microcentrifuge tube” — “micro-
centrifuge tube”).

3. Remove generic adjectives or modifiers not affecting tool identity (e.g., “sterile”, “clean”).
Retain essential identifiers (e.g., “AVB Sepharose column”).

4. Do not hallucinate. Only extract explicitly mentioned tools.

### Output Format:

{ “tools”: [“tool1”, “tool2”, ...] }
ASR caption: “{asr_caption}”
Qwen caption: “{qwen_caption}”
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F.1.4 MCQ ANNOTATION FOR TOOL RECOGNITION

SYSTEM_PROMPT = “

You are a scientific researcher creating multiple-choice questions (MCQs) for tool recognition
in scientific videos. Your task is to generate 3 plausible distractors for a given tool based on the
experimental context.

USER_PROMPT_TEMPLATE = *

You are generating a multiple-choice question (MCQ) for tool recognition in scientific experi-
ment videos.

Given:

- ASR: “{asr_caption}”

- Target tool: “{target_tool}”

Your task: Create 3 plausible distractors (wrong options) for the target tool.

### Requirements:

- Options must be tools that could reasonably appear in this experimental context.

- Distractors should be visually similar, functionally related, or commonly confused tools.
- If the target tool has modifiers (e.g., “microcentrifuge tube”), use the full phrase.

- Ensure the target tool name matches the ASR context.

### Output Format:

{

“question”: “{question_template}”,

“options”: {

“A”: “<correct answer with proper modifiers>",

“B”: “<distractor 1>,

“C”: “<distractor 2>,

“D”: “<distractor 3>

},

“answer’”: “A”,

“target_tool”: “{target_tool}”,

“distractor_types™: {

“B”: “<visual/functional/confusion>",

“C”: “<visual/functional/confusion>",

“D”: “<visual/functional/confusion>"

}
}

Example for “pipette”:

- A: “pipette” (correct)

- B: “syringe” (functional - both for liquid transfer)

- C: “dropper” (visual - similar appearance)

- D: “burette” (confusion - precise liquid measurement)

2
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F.1.5 QUANTITY RECOGNITION

SYSTEM_PROMPT = “
You are a scientific researcher creating multiple-choice questions (MCQs) for quantity recogni-
tion in scientific videos.

29

USER_PROMPT_TEMPLATE = “
You are generating a multiple-choice question (MCQ) for **quantity recognition** via visual
observation.

You are given:
- An experimental step transcription (ASR caption).
- A visual scene description from a vision-language model (Qwen caption).

### Task:
Generate exactly ONE quantity-focused MCQ where the correct answer can only be determined
by visually observing the video (e.g., volume, number of containers, temperature, duration).

### Rules:

1. Keep the question minimal and direct, focusing only on the quantity.

2. The answer must be visually inferable (use Qwen caption to check visibility).
3. Do not rely on textual or auditory clues.

### Distractor Guidelines:

- Options must be plausible in the context (realistic volumes, times, temperatures, counts).
- Keep distractors in the same magnitude range.

- Use visually confusable alternatives (e.g., 5 vs 7 tubes).

- Avoid overly fine distinctions (e.g., 5.0 vs 5.2 mL).

- Reflect common visual errors (slight miscounts, occlusion).

### Output Format:

{

“question”: “<Clear, quantity-only question>",
“options”: {

“A”: “<correct answer>"",

“B”: “<distractor 1>,

“C”: “<distractor 2>,

“D”: “<distractor 3>

}

“answer”: “A”

}

If the ASR caption has no quantity-related info, return:
{ “question”: null }

Input:
ASR caption: “{asr_caption}”
Qwen caption: “{qwen_caption}”
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F.1.6 OPERATION RECOGNITION (STAGE 1: ALIGNMENT SCORING)

USER_PROMPT_TEMPLATE = “

You will be given two inputs about the same video segment:

- ASR caption (narration of experimental steps)

- Qwen caption (vision-language description of the visual scene)

Your tasks:

1) Decide whether the segment contains experimental operation(s), preferably visible actions
(e.g., pipetting, pouring, placing, transferring, cutting, mixing). If no experimental operation is
present, or only background talking/intro without hands-on action, set the score to 0.

2) If operation(s) are present, judge the alignment between ASR and Qwen descriptions, and
produce a score from 1 to 5 (higher = better alignment of actions/tools/entities/sequence).

Output JSON only with the fields:
“has_operation”: <true—false>,
“visible_action”: <true—false>,
“alignment_score”: <integer 0-5>

}

Rules:

- If no operation: set has_operation=false, visible_action=false, alignment_score=0.

- If operations present: set has_operation=true; set visible_action=true only if the action is likely
visible.

- For operations present: alignment_score in [1..5].

ASR caption: “{asr_caption}”
Qwen caption: “{qwen_caption}”
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F.1.7 OPERATION RECOGNITION (STAGE 2: MCQ GENERATION)

USER_PROMPT_TEMPLATE = “
You are generating a multiple-choice question (MCQ) for scientific experiment video under-
standing given the ASR caption.

### Task:

- Generate exactly ONE action-focused MCQ. The correct answer must describe a specific
experimental operation stated in the ASR caption.

- Create 3 distractors that are plausible but incorrect variations of the action in the same
tools/materials/setup context.

### Question design rules:

1. Minimal and direct: focus only on the observable action.

2. Visually grounded: the correct answer must be verifiable via video.

3. Do NOT use audio/textual clues (e.g., ASR narration). Assume only visual content is
available.

### Distractor guidelines:

- Options must be plausible actions in the same context.

- Keep distractors in the same action/tool category (e.g., if pipetting is correct, distractors can be
pouring, injecting, mixing).

- Avoid distractors that are too ambiguous or not visually distinguishable.

- Favor common mistakes or visually similar but incorrect operations (wrong hand, placing vs
removing).

### Output Format:

{

“question”: “<action-focused question strictly from ASR>",

“options™: {

“A”: “<correct action from ASR>",

“B”: “<plausible distractor>",

“C”: “<plausible distractor>",

“D”: “<plausible distractor>"

}

“answer”: “A”

}

ASR caption: “{asr_caption}”
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F.2 LEVEL-2

Prompts for Level-2 tasks are provided as follows.

F.2.1 CLIP SEGMENTATION

SYSTEM_PROMPT = *

You are a scientific video annotation assistant. Your task is to segment a scientific experiment
video transcript (ASR subtitles) into meaningful procedural clips for multi-step understanding
benchmark.

USER_PROMPT_TEMPLATE = “

The benchmark focuses on medium-length videos containing several consecutive experimental
steps. Each clip should:

- Include multiple related actions (usually 2+)

- Correspond to a coherent workflow unit (preparation, execution, wrap-up)

- Reflect logical/causal continuity

- Be suitable for designing multi-step reasoning questions

Please identify clip boundaries where:

- A major shift in experimental phase occurs

- The toolset, materials, or purpose changes significantly

- A natural grouping of steps can form a compact unit

### Output Format:

Return a JSON list where each segment has:

- “start_time”: exact timestamp where the segment begins

- “end_time”: exact timestamp where the segment ends

- “title”: short summary of the clip

- “description”: 1-2 sentences explaining the segment

### Rules:

1. Each segment must be 20-60 seconds long.

2. Start/end times must come directly from ASR (no invented timestamps).
3. Avoid over-segmentation of atomic actions; do not merge unrelated steps.

ASR transcript: “{asr_caption}”
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F.2.2 STEP EXTRACTION

SYSTEM_PROMPT = “
You are an expert in scientific experiment procedure analysis. Your task is to break down com-
plex experimental procedures into atomic steps.

USER_PROMPT_TEMPLATE = “

You are an assistant tasked with decomposing scientific experiment procedures into atomic steps.
### Task:

Break down the experimental procedure in the timestamped subtitles into a sequence of **atomic
steps**. Each step should represent a single action and include the corresponding time window.
### Guidelines:

- Only use the timestamped subtitles (ignore title/description).

- Each step must be: specific, self-contained, sequential, precise, and timed.

- Split compound actions into separate steps.

- Use technical language suitable for scientific protocols.

- If subtitles are ambiguous, make best effort with available info.

- If subtitles contain no experimental operation, return **null**.

### Output Format:

{

“atomic_steps”: [

“step_number”: 1,

99, <

“action”: “<concise action description>",

99, <

“start_time”: “<start_timestamp>",

99, <

“end_time”: “<end_timestamp>"
]9
“total_steps”: <integer>,

99, <

“confidence”: “<high — medium — low>"

}

If no operations: return { null }.

### Example:

Timestamped Subtitles:

00:15.540 —> 00:19.140: Take 200 microliters of
00:19.140 —> 00:20.640: your culture of interest
00:22.590 —> 00:23.940: And just make a spot.
00:45.390 —> 00:46.080: I can usually

Expected Output:

“atomic_steps”: [

{ “step-number”: 1, “action”: “Take 200 microliters of culture of interest”, “start_time”:
“00:15.540”, “end_time”: “00:20.640” },

{ “step_number”: 2, “action”: “Make sample spots on plate”, “start_time”: “00:22.5907,
“end_time”: “00:51.080” }

I,

“total_steps™: 3,

“confidence”: “high”

Now analyze the given timestamped subtitles and generate atomic steps:
- Title: {title}

- Description: {description}

- Timestamped Subtitles: {timestamped_subtitles}
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F.2.3 SEQUENCE ORDERING MCQ

SYSTEM_PROMPT = “

You are an expert in creating multiple-choice questions for scientific experiment step sequencing.
USER_PROMPT_TEMPLATE = “

You are creating a multiple-choice question about the correct sequence of experimental steps.
### Context:

- Title: {title}

- Description: {description}

### Task:

Given the following correct sequence of atomic steps, create an MCQ with 4 options (A, B, C,
D):

- Option A = correct sequence

- Options B, C, D = incorrect but plausible sequences

### Correct Sequence:

{steps_text}

### Requirements for incorrect options:

1. Maintain scientific plausibility.

2. Keep logical procedural flow (no impossible orders).

3. Introduce subtle ordering variations (swap/rearrange steps plausibly).
4. Use the same steps — only reorder.

### Output Format:

“question”: “What is the correct sequence of steps for this experimental procedure?”,
“options™: {

“A”: “1. <correct step 1>2. <correct step 2>3. <correct step 3>...”,

“B”: “l. <incorrect step 1>2. <...>”,

“C”: “1. <incorrect step 1>2. <...>”,

“D”: “l. <incorrect step 1>2. <...>”

},

“correct_answer’’: “A”

}

Generate the MCQ now.
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