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ABSTRACT

Across many domains of science, stochastic models are an essential tool to un-
derstand the mechanisms underlying empirically observed data. Models can be
of different levels of detail and accuracy, with models of high-fidelity (i.e., high
accuracy) to the phenomena under study being often preferable. However, inferring
parameters of high-fidelity models via simulation-based inference is challenging,
especially when the simulator is computationally expensive. We introduce MF-
(TS)NPE, a multifidelity approach to neural posterior estimation that uses transfer
learning to leverage inexpensive low-fidelity simulations to efficiently infer param-
eters of high-fidelity simulators. MF-(TS)NPE applies the multifidelity scheme to
both amortized and non-amortized neural posterior estimation. We further improve
simulation efficiency by introducing MF-TSNPE-AF, a sequential variant that
uses an acquisition function targeting the predictive uncertainty of the density
estimator to adaptively select high-fidelity parameters. On established benchmark
and neuroscience tasks, our approaches require up to two orders of magnitude
fewer high-fidelity simulations than current methods, while showing comparable
performance. Overall, our approaches open new opportunities to perform efficient
Bayesian inference on computationally expensive simulators.

1 INTRODUCTION

Stochastic models are used across science and engineering to capture complex properties of real
systems through simulations (Barbers et al., 2024; Nelson & Pei, 2021; Pillow & Scott, 2012). These
simulators encode domain-specific knowledge and provide a means to generate high-fidelity synthetic
data, enabling accurate forward modeling of experimental outcomes. However, inferring model
parameters from observed data can be challenging, especially when simulators are stochastic, the
likelihoods of the simulators are inaccessible, or when simulations are computationally expensive.

Simulation-based inference (SBI) addresses these challenges by leveraging forward simulations to
infer the posterior distribution, enabling quantification of uncertainty even when the likelihood is
intractable (Cranmer et al., 2020). The challenge of extending sampling-based SBI methods like
Approximate Bayesian Computation (ABC) (Tavaré et al., 1997; Pritchard et al., 1999) to problems
with large numbers of parameters has driven significant advancements in neural-based approaches
that estimate the likelihood (Papamakarios et al., 2019), the likelihood-to-evidence ratio (Hermans
et al., 2020), or directly the posterior (Greenberg et al., 2019; Lueckmann et al., 2017; Papamakarios
& Murray, 2016). In particular, amortized Neural Posterior Estimation (NPE) trains a neural density
estimator to directly approximate the posterior, bypassing the need to estimate the model evidence
(Papamakarios & Murray, 2016). To improve inference for a fixed observation and allow stable
training, truncated sequential variants have been introduced for neural posterior estimation (TSNPE)
(Deistler et al., 2022), and neural ratio estimation (Miller et al., 2021). These approaches have
leveraged recent progress in neural density estimation to improve the scalability and accuracy of
SBI, allowing parameter inference in problems with higher dimensionality than was previously
achievable (Ramesh et al., 2021; Gloeckler et al., 2024). Despite these advancements, SBI methods
face computational challenges for scenarios involving expensive simulations or high-dimensional
parameter spaces, as state-of-the-art methods often require extensive simulation budgets to achieve
reliable posterior estimates (Lueckmann et al., 2021).
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Multifidelity modeling offers a solution to this problem by balancing precision and efficiency. It
combines accurate but costly high-fidelity models (Hoppe et al., 2021; Behrens & Dias, 2015) with
faster, less accurate low-fidelity models. Here, low-fidelity models could be simplifications made
possible through domain knowledge about the high-fidelity models, low-dimensional projection of
the high-fidelity model, or surrogate modeling (Peherstorfer et al., 2018). For example, Reynolds-
averaged Navier-Stokes (RANS) models simplify turbulent flow simulations in aerodynamics (Han
et al., 2013), while climate models often reduce complexity by focusing on specific atmospheric
effects (Held, 2005; Majda & Gershgorin, 2010). Similarly, mean-field approximations are used to
capture certain features of spiking neural network dynamics (Vogels et al., 2011; Dayan & Abbott,
2001). Multifidelity methods have proven effective across domains—enhancing optimization through
multifidelity Bayesian optimization (Song et al., 2019; Kandasamy et al., 2017), and improving
the efficiency of inference through multifidelity Monte Carlo approaches (Peherstorfer et al., 2016;
Nobile & Tesei, 2015; Giles, 2008; Zeng et al., 2023). In the context of SBI, we hypothesized that by
leveraging the complementarity of high- and low-fidelity simulators, it would be possible to reduce
the computational cost of inference while retaining inference accuracy.

In this work, we present MF-(TS)NPE, a multifidelity approach that improves the efficiency of
amortized and non-amortized neural posterior estimation for expensive simulators. MF-(TS)NPE
reduces the computational burden of posterior estimation by pre-training a neural density estimator
on low-fidelity simulations and refining the inference with a smaller set of high-fidelity simulations.
Additionally, we present MF-TSNPE-AF, an extension of MF-TSNPE with active learning, facili-
tating targeted parameter space exploration to effectively enhance high-fidelity posterior estimates
given single observations. We focus on multifidelity cases where both models are simulators and
where the low-fidelity model is a simplified version of the high-fidelity model, designed based on
domain expertise. We demonstrate that for four benchmark tasks and two computationally expensive
neuroscience simulators, our multifidelity approach can identify the posterior distributions more
efficiently than NPE and TSNPE, often reducing the number of required high-fidelity simulations by
orders of magnitude.

2 BACKGROUND

Multifidelity methods for inference Multifidelity has been widely explored in the context of
likelihood-based inference (Peherstorfer et al., 2018), from maximum likelihood estimation ap-
proaches (Maurais et al., 2023) to Bayesian inference methods (Vo et al., 2019; Catanach et al.,
2020). For cases where the likelihood is not explicitly available, several sampling-based multifidelity
methods have been proposed within the framework of ABC (Prescott & Baker, 2020; Warne et al.,
2022; Prescott et al., 2024; Prescott & Baker, 2021). However, these methods inherit limitations of
ABC approaches, particularly in high-dimensional parameter spaces, where neural density estimators
offer more scalable alternatives to complex real-world problems (Lueckmann et al., 2021). Concur-
rently with our work, Thiele et al. (2025) developed a multifidelity SBI approach based on response
distillation, Hikida et al. (2025) adapted multilevel Monte Carlo techniques to SBI, and Saoulis et al.
(2025) applied transfer learning to accelerate inference on a cosmological task.

Beyond SBI, multifidelity has been explored in Bayesian optimization, where Gaussian process
models integrate data of different fidelities to infer expensive functions (e.g., Song et al., 2019;
Zanjani Foumani et al., 2023). These approaches focus on learning surrogate likelihood functions
rather than posteriors over simulator parameters, but they highlight the broad applicability of the
multifidelity concept.

Transfer learning and simulators To facilitate learning in a target domain, transfer learning
borrows knowledge from a source domain (Panigrahi et al., 2021). This is often done when the
target dataset is smaller than the source dataset (Larsen-Freeman, 2013). For numerical simulators,
transfer learning approaches have been used to lower the simulation budget, for instance, in CO2

forecasting (Falola et al., 2023), surrogate modeling (Wang et al., 2024) and model inversion with
physics-informed neural networks (Haghighat et al., 2021). To the best of our knowledge, the
potential of transfer learning for computationally efficient simulation-based inference has not been
fully realized yet.
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Simulation-efficient SBI Recent work reduces the cost of SBI for expensive simulators through
active learning or efficient representations. Active learning methods adaptively select simulation
parameters for neural likelihood or posterior estimation (Lueckmann et al., 2019; Griesemer et al.,
2024), paralleling Bayesian optimization for ABC (Gutmann & Corander, 2016). Efficiency also
improves through learned representations such as signature-based features (Dyer et al., 2022), com-
positional models (Gloeckler et al., 2025), or self-consistency objectives (Schmitt et al., 2024a;b).
Unlike these single-fidelity approaches, MF-(TS)NPE leverages an expert-designed low-fidelity
simulator and combines transfer learning with active learning to refine posterior estimates efficiently.

3 METHODS

MF-(TS)NPE is a multifidelity approach to Neural Posterior Estimation (NPE) for computationally
expensive simulators leveraging transfer learning and, in its sequential variant, active learning. We
present our approach in Sec. 3.1. In Sec. 3.1.4, we discuss the evaluation metrics used to compare our
method against NPE (Greenberg et al., 2019), TSNPE (Deistler et al., 2022), and MF-ABC (Prescott
& Baker, 2020). MF-(TS)NPE is summarized in Fig. 1, Algorithms 1 and 3.

3.1 MULTIFIDELITY NPE

Figure 1: Multifidelity Neural Posterior Estimation proceeds by dense sampling from the prior
distribution, running the low-fidelity simulator (e.g., a two-compartment neuron model (Hodgkin &
Huxley, 1952)), and training a neural density estimator with a negative log-likelihood loss. MF-NPE
then retrains the pre-trained network on sparse samples from the same prior distribution and respective
high-fidelity simulations (e.g., a multicompartmental neuron model (Rall, 1995)). Given empirical
observations xo, MF-NPE estimates the posterior distribution given the high-fidelity model. In the
sequential case, the parameters for high-fidelity simulations are drawn from iterative refinements of
the prior distribution within the support of the current posterior estimate, at some observation xo.

We aim to infer the posterior distribution over the parameters θ of a computationally expensive
high-fidelity simulator p(x|θ), with computational cost of a single simulation c. We designate the
simulator as high-fidelity if the model accurately captures the empirical phenomenon, but incurs high
computational cost when generating simulations. We assume that we have access to a low-fidelity
simulator pL(xL|θ), describing a simplification of the phenomenon of interest with cost cL ≪ c. We
assume that both simulators operate over the same domain of observations x, and the parameters of
the low-fidelity model form at least a subset (and at most the entirety) of the high-fidelity parameters.
Our goal is to develop an estimator that leverages low-fidelity simulations to infer the posterior
distribution over parameters of the high-fidelity model with limited high-fidelity simulations, without
access to a tractable likelihood for either simulator.

As with NPE (Papamakarios & Murray, 2016; Greenberg et al., 2019), to estimate the posterior density
over model parameters θ for which the likelihood function is unavailable, we consider a sufficiently
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expressive neural density estimator qϕ(θ|x), and train it to minimize the negative log-likelihood loss:

L(ϕ) = Eθ∼p(θ)Ex∼p(x|θ) [− log qϕ(θ|x)] , (1)

where θ is sampled from the prior distribution, x denotes the respective simulations (i.e., samples
from p(x|θ)), and ϕ are the network parameters. By minimizing L(·), the neural density estimator
approximates the conditional distribution p(θ|x) directly (Papamakarios & Murray, 2016) (proof of
convergence in Appendix B). Given an empirical observation xo, we can then estimate the posterior
over parameters p(θ|xo). To ensure qϕ(θ|xo) closely approximates the true posterior p(θ|xo), the
density estimator must be sufficiently expressive. We use neural spline flows (NSFs) (Durkan et al.,
2019), expressive normalizing flows that have been shown empirically to be competitive for SBI
(Lueckmann et al., 2021). To avoid overfitting when training NSFs, we use the same validation-based
early stopping criterion S as in the SBI package (Boelts et al., 2024) (details in Appendix.C.1).

3.1.1 TRANSFER LEARNING

MF-NPE leverages representations learned from low-fidelity simulations to reduce the number of
high-fidelity simulations required to approximate a high-fidelity posterior. To that end, MF-NPE
adopts a fine-tuning strategy of transfer learning: Let ψ be the parameters of the low-fidelity neural
density estimator qψ(θ|xL) and let ϕ be the parameters of the high-fidelity density estimator qϕ(θ|x).
MF-NPE minimizes the loss L(ϕ) = Eθ∼p(θ)Ex∼p(x|θ) [− log qϕ(θ|x)] on the high-fidelity task,
where the parameters ϕ are initialized on the pretrained low-fidelity network parameters ψ. We
argue that by pre-training on low-fidelity simulations, the density estimator learns useful features
up front (i.e., the feature spaces of the low- and high-fidelity density estimators overlap), so fewer
high-fidelity simulations suffice to refine the posterior estimates. Indeed, Tahir et al. (2024) shows
that once networks learn suitable features for a given predictive task, they drastically reduce the
sample complexity for related tasks. Other strategies to pretraining are discussed in Appendix G.4.

MF-NPE can naturally accommodate more than two fidelity levels (Appendix L), does not require
more hyperparameter tuning than NPE (Appendix C.1), and is applicable in situations where the
low-fidelity model has fewer parameters than the high-fidelity model. In this setting, the parameters
that are exclusive to the high-fidelity model are treated as dummy variables in the pre-trained
density estimator. The pre-conditioning with these variables leads to the pre-trained neural density
estimator to effectively estimate the prior distribution over the respective parameters (OU3 and OU4
in Appendix I.1). As shown below, our method is compatible with both embedding networks and
hand-crafted summary statistics of the observations.

Algorithm 1 MF-NPE

1: Input: N pairs of (θ,xL); M pairs of (θ,x); conditional density estimators qψ(θ|xL) and
qϕ(θ|x) with respectively learnable parameters ψ and ϕ; early stopping criterion S.

2: L(ψ) = 1
N

∑N
i=1− log qψ

(
θi|xL

i

)
. /* Low-fidelity model */

3: for epoch in epochs do
4: train qψ to minimize L(ψ) until S is reached.
5: end for
6: Initialize qϕ with weights and biases of trained qψ . /* High-fidelity model */
7: L(ϕ) = 1

M

∑M
i=1− log qϕ (θi|xi).

8: for epoch in epochs do
9: train qϕ to minimize L(ϕ) until S is reached.

10: end for

3.1.2 SEQUENTIAL TRAINING

In addition to learning amortized posterior estimates with NPE, our approach naturally extends to
sequential training schemes when estimating the non-amortized posterior qϕ(θ|xo). Rather than
sampling model parameters from the prior, sequential methods introduce an active learning scheme
that iteratively refines the posterior estimate for a specific observation xo. These methods – known
as Sequential Neural Posterior Estimation (Papamakarios & Murray, 2016; Lueckmann et al., 2017)
– have shown increased simulation efficiency when compared to NPE (Lueckmann et al., 2021).
However, applying these methods with flexible neural density estimators requires a modified loss
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that suffers from instabilities in training and posterior leakage (Greenberg et al., 2019). Truncated
Sequential Neural Posterior Estimation (TSNPE) mitigates these issues by sampling from a truncated
prior distribution that covers the support of the posterior. This leads to a simplified loss function and
increased training stability, while retaining performance (Deistler et al., 2022).

We apply our multifidelity approach to TSNPE. First, the high-fidelity density estimator is initialized
from the learned network parameters of a low-fidelity density estimator. Then, high-fidelity simula-
tions are generated iteratively from a truncated prior, within the support of the current posterior. We
refer to this method as MF-TSNPE (complete description of the algorithm in Appendix M.1).

3.1.3 ACQUISITION FUNCTION

To further enhance the efficiency of our sequential algorithm, we explore the use of acquisition
functions to supplement our round-wise samples from the TSNPE proposal: we generate simulations
for round i with a set of parameters θ(i) = {θ(i)

prop ∪ θ
(i)
active} where θ

(i)
prop are samples from the

proposal distribution at round i, and θ
(i)
active are the top B values according to an acquisition function.

We refer to this algorithm as MF-TSNPE-AF (full description in Appendix M.2). Following Järvenpää
et al. (2019); Lueckmann et al. (2019), we select an acquisition function that targets the variance of
the posterior estimate with respect to the epistemic uncertainty in the learned parameters ϕ|D.

θ∗ = argmax
θ

Vϕ|D[qϕ(θ|xo)] (2)

We realize this as the sample variance across an ensemble of neural density estimators trained
independently on the same dataset D, as done in Lueckmann et al. (2019). Note that we use epistemic
uncertainty to guide high-fidelity simulation selection within the simulator’s domain rather than
out-of-distribution samples. For details on the proposal design of MF-TSNPE-AF, see Appendix
M.2.

3.1.4 EVALUATION METRICS

We evaluate the method on observations xo from the high-fidelity simulator, with parameter values
drawn from the prior distribution. This ensured a fair evaluation of how much the low-fidelity
simulator helps to infer the posterior distribution given the high-fidelity model. All methods were
evaluated for a range of high-fidelity simulation budgets (50, 102, 103, 104, 105), on posteriors given
the same data set of observations xo.

Known true posterior We evaluate the accuracy of posterior distributions in cases where the
ground-truth posterior is known with the Classifier-2-Sample Test (C2ST) and the Maximum Mean
Discrepancy (MMD)(Friedman, 2004; Lopez-Paz & Oquab, 2017; Gretton et al., 2012; Lueckmann
et al., 2021; Peyré & Cuturi, 2017). C2ST is commonly used in SBI, as it is easy to apply and interpret:
a value close to 0.5 means that a classifier cannot effectively distinguish the two distributions, implying
the posterior estimate is close to the ground-truth posterior. A value close to 1 means that the classifier
can distinguish the distributions very well, indicating a poor posterior estimation. C2ST is rarely
applicable in practical SBI settings, since it requires samples from the true posterior (e.g., Sec. 4.1).

Unknown true posterior The average Negative Log probability of the True Parameters (NLTP;
−E[log q(θo|xo)] ) has been extensively used in the SBI literature for problems where the true
posterior is unknown (Greenberg et al., 2019; Papamakarios & Murray, 2016; Durkan et al., 2020;
Hermans et al., 2020). In the limit of a large number of pairs (θo,xo), the average over the log
probability of each pair (θo,xo) approaches the expected KL divergence between the estimated
and the true posterior (up to a term that is independent of the estimated posterior), as shown in
(Lueckmann et al., 2021). In addition, we report the Normalized Root Mean Square Error (NRMSE),
which quantifies the deviation of posterior samples from the true parameters on a scale-invariant axis.
NRMSE values closer to 0 indicate better predictive performance.

4 RESULTS

We evaluate the performance of our multifidelity approach to NPE and TSNPE on six tasks involving
various types of observations (e.g., time series, images, neural spiking). We start with four bench-
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marking tasks, followed by two challenging neuroscience problems with computationally expensive
simulators and for which no likelihood is available: a multicompartmental neuron model and a neural
network model with synaptic plasticity. We also provide a comparison to MF-ABC (Sec. E.1.1, D.3).
In Sec. 4.4, we provide a discussion about the effectiveness of transfer learning in MF-NPE.

4.1 BENCHMARKING TASKS

We first evaluated MF-(TS)NPE on four benchmarking tasks: SIR, SLCP, OUprocess, and Gaussian
Blob. SIR and SLCP are established SBI benchmarks (Lueckmann et al., 2021), OUprocess is a
new multifidelity task with tractable likelihood (Kou et al., 2012), and Gaussian Blob is a high-
dimensional image task (Lueckmann et al., 2019) (details in Appendix D). These tasks were chosen
to systematically investigate various task properties that might impact the performance of transfer
learning in a multifidelity setting: differing parameter dimensionality between the low- and high-
fidelity models, partly observed dynamics, differing simulator types between the low- and high-fidelity
models, and high-dimensional observations. Furthermore, these multifidelity tasks are not trivial in
the sense that the low and high-fidelity simulators lead to different posteriors (Appendix I). Note that
we do not evaluate the total cost of low- and high-fidelity simulations in these tasks, but defer this
analysis to the two complex neuroscience tasks (Appendix J).

To evaluate MF-NPE, we compared the estimated densities to the respective reference posterior,
estimated from the exact likelihood with Rejection Sampling (Martino et al., 2018) (OU process;
closed-form of the likelihood in Sec. D.1), and using Sampling and Importance Resampling (RUBIN,
1988) to obtain a set of 10k proposal samples (SLCP, SIR), similar to Lueckmann et al. (2021). We
quantified the performance with C2ST and MMD over 10 observations (30 observations for the OU
process) and 10 network initializations per observation. GaussianBlob uses a CNN embedding and
was evaluated with NRMSE and NLTP since no closed-form likelihood is available (Fig. 11).

Figure 2: C2ST and MMD averaged over 10 network initializations with means and 95% confidence
intervals. MF-NPE4 and MF-NPE5 are pretrained on 104 and 105 low-fidelity simulations, respec-
tively. Results for the GaussianBlob task in Fig. 11; variations on the OU task and comparisons to
MF-ABC in Fig. 8.

Across four benchmarking tasks, we observed a consistent performance increase with MF-NPE
compared to NPE, and MF-TSNPE(-AF) compared to TSNPE, especially in low simulation budgets
from the high-fidelity model (50-103 simulations) (Fig. 2; Gaussian Blob in Fig. 11). In addition,
we found that having a higher number of low-fidelity samples improved performance, reinforcing
that low-fidelity simulations were indeed advantageous for pre-training the neural density estimator
for the downstream task. Note that for the OU and SLCP tasks, we did not observe a substantial
increase in MF-NPE performance between the settings with 104 and 105 low-fidelity samples,
suggesting an upper bound regarding pre-training efficacy. We also compared MF-NPE with MF-
ABC, an ABC-based method for multifidelity SBI (Prescott & Baker, 2020), and observed that
MF-NPE has a substantially higher performance (Appendix E.1.1). This is consistent with previous
findings indicating the superior performance of NPE with respect to rejection ABC and SMC-
ABC, where it is not uncommon to require orders of magnitude more simulations to obtain reliable
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posterior approximations (Lueckmann et al., 2021; Frazier et al., 2024). However, a more extensive
hyperparameter search could potentially lead to substantial improvements in MF-ABC performance.

As described in Sec. 3, we enhanced the sequential algorithm TSNPE (Deistler et al., 2022) with a
first round of MF-NPE, and designated this approach as MF-TSNPE. We found that MF-TSNPE
(details in Appendix M.1) performs better than TSNPE, especially in regimes with a low budget of
high-fidelity simulations. Compared to MF-TSNPE, MF-TSNPE-AF improved inference in the OU
process, but did not show significant improvements in the SLCP and SIR tasks.

Finally, we assessed the contribution of transfer learning to the overall performance in a setting
where the low- and high-fidelity models have a different number of parameters, in the context of
the OUprocess task (Appendix D.3). We expected that adding parameters to the high-fidelity model
that are absent in the low-fidelity model would increase the inference complexity for MF-NPE, and
indeed observed a performance decrease in MF-NPE, although MF-NPE still performed better than
NPE and MF-ABC (see Appendix D.3). We note that MF-NPE also outperformed NPE when the
low-fidelity model had more parameters than the high-fidelity model (see Appendix D.4). Overall,
the results suggest that MF-NPE and MF-TSNPE can yield substantial performance gains compared
to NPE, TSNPE, and MF-ABC.

4.2 MULTICOMPARTMENTAL NEURON MODEL

The voltage response of a morphologically-detailed neuron to an input current is typically modeled
with a multicompartment model wherein the voltage dynamics of each compartment are based on the
Hodgkin-Huxley equations (Hodgkin & Huxley, 1952). The higher the number of compartments of
the model, the more accurate the model is, but the higher the simulation cost.

In this task, we aimed to infer the densities of ion channels ḡNa and ḡK on a morphologically-detailed
model of a thick-tufted layer 5 pyramidal cell (L5PC) containing 8 compartments per branch (Fig. 3A)
(Van Geit et al., 2016). We injected in the first neuron compartment a noisy 100 ms step current with
mean Im = 0.3 nA: Ie = Im + ϵ, ϵ ∼ N (0, 0.01). The voltage response of the neuron was recorded
over 120 ms, with a simulation step size of 0.025 ms and 10 ms margin before and after the current
injection. We defined the high-fidelity model to have 8 compartments per branch and the low-fidelity
model to have 1 compartment per branch, and both the high and low-fidelity models had the same
injected current and ion channel types.

To simulate the neuron models, we used Jaxley, a Python toolbox for efficiently simulating multicom-
partment single neurons with biophysical detail (Deistler et al., 2024). In this setting, the simulation
time for the high-fidelity model is approximately 4 times higher than that of the low-fidelity model.
We characterized the neural response with four summary statistics that have been commonly used
when fitting biophysical models of single neurons to empirical data: spike count, mean resting
potential, standard deviation of the resting potential, and voltage mean (Gonçalves et al., 2020; Gao
et al., 2023). Performances were evaluated with NLTP and NRMSE on 103 pairs of θo and respective
simulation outputs xo, averaged over 10 random network initializations (Sec. 3.1.4).

MF-(TS)NPE showed higher performance than NPE, in particular with larger low-fidelity simulation
budgets (Fig. 3B; Fig. F.1), despite the right-skewed posterior distribution of the low-fidelity model
(Fig. 21). Furthermore, MF-NPE posterior predictives closely matched the empirical data, in contrast
with NPE, even when NPE was trained on a higher number of high-fidelity simulations (Appendix
F). In addition, MF-(TS)NPE achieved comparable performance with a total computational cost
4.44 ± 0.06 times lower than standard NPE (Appendix J). Finally, TARP and simulation-based
calibration tests suggest that both MF-NPE and NPE estimates were relatively well calibrated
(Fig. 3C) (Talts et al., 2020; Lemos et al., 2023).

(A)-MF-TSNPE pre-trained on 104 low-fidelity samples outperforms MF-NPE trained on 105 samples.
However, MF-TSNPE-AF performance comes at the cost of training time due to the use of an
ensemble of density estimators (Appendix J). This additional training burden is only justified when
the simulation cost is substantially higher than the training cost.
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Figure 3: (A) Thick-tufted layer 5 pyramidal cell from the neocortex. (B) Performance evaluation
with NLTP (same naming convention as in Fig. 2). Amortized methods are averaged over 10 network
initializations; non-amortized trained once per 100 observations. Similar results were obtained with
NRMSE (Appendix F.1). MF-NPE, and especially its sequential variants, are orders of magnitude
more simulation-efficient than NPE. (C) TARP posterior calibration check shows that NPE and MF-
NPE trained on 103 high-fidelity samples are well-calibrated (Lemos et al., 2023). Simulation-based
calibration, posterior samples, and predictives are in Appendix F. (D) Schematic of the low and
high-fidelity models of a spiking network. (E) Performance of NPE and MF-NPE evaluated on 10000
true observations with NLTP: averages over 10 network initializations, and 95% confidence intervals.
(F) Proportion of posterior samples within the target firing rate bounds. MF-NPE produces a higher
fraction of parameter sets within the bounds than NPE.

4.3 RECURRENT SPIKING NETWORK

Finally, we applied MF-NPE to a challenging and timely problem in neuroscience: the inference
of synaptic plasticity rules that endow large spiking neural networks with dynamics reminiscent of
experimental data. This problem has been recently tackled with an SBI method (filter simulation-
based inference, fSBI) that progressively narrows down the search space of parameters given different
sets of summary statistics (Confavreux et al., 2023). fSBI was successful in obtaining manifolds of
plasticity rules that ensure plausible network activity, but the compute requirements were reported to
be very large. Here, we aim to test whether this problem can be efficiently tackled with MF-NPE.

The high-fidelity simulator consisted of a recurrent network of 4096 excitatory (E) and 1024 inhibitory
(I) leaky integrate-and-fire neurons connected with conductance-based synapses (Fig. 3D). Each
synapse type in this network (E-to-E, E-to-I , I-to-E, I-to-I) was plastic with an unsupervised local
learning rule. For each synapse type, 6 parameters governed how the recent pre- and post-synaptic
activity were used to update the synapse, for a total of 24 free parameters across all 4 synapse types
(Confavreux et al., 2023). The networks were simulated using Auryn, a C++ simulator (Zenke &
Gerstner, 2014) (details in Appendix G).

Mean-field theory can be applied to the dynamical system above to obtain the steady-state activities
of the excitatory and inhibitory populations as a function of the parameters of the plasticity rules
embedded in the network. Though such analysis is widely performed in the field (Vogels et al., 2011;
Confavreux et al., 2023; Gerstner et al., 2014), it has never been used as a low-fidelity model to help
with the inference of the high-fidelity model parameters. Since there are no dynamics to simulate
with the mean-field model, the simulation was almost instantaneous, while the high-fidelity model
took approximately 5 minutes to generate a single 2-minute long simulation on a single CPU.

Summary statistics of the low- and high-fidelity models were the average firing rates of the excitatory
and inhibitory neurons at steady state (after 2 minutes of simulation in the high-fidelity model).
Plastic networks were considered plausible if the firing rates were between 1 and 50Hz (Dayan &
Abbott, 2001; Confavreux et al., 2023).

In this task, the low-fidelity model focuses solely on the E-to-E and E-to-I rules from the high-
fidelity model, thereby having 12 out of the 24 parameters of the high-fidelity model. This setup
allows us to demonstrate the performance of MF-NPE on problems with different parameter spaces,
highlighting MF-NPE’s flexibility and advantages. We found that MF-NPE has better performance
than NPE in terms of NLTP (Fig. 3E), although we observed a diminishing performance gain with
increasing discrepancy between the number of parameters of the low- and high-fidelity models (see
Appendix G.3). Furthermore, MF-NPE leads to an increase of almost 30% in the proportion of
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posterior samples within the target firing rate bounds (Fig. 3F), reinforcing that MF-NPE is a practical
and effective method for SBI of costly real-world simulators.

Figure 4: (A) Schematic figure representing lower bound on transfer error (1/MF-NPE performance)
as a function of mutual information between the low- and high-fidelity models, given a fixed
simulation budget. (B) Uncertainty coefficient monotonically decreases with noise parameter δ and is
invariant to data inversion. (C) Empirical results with MF-NPE support the hypothesis that transfer
performance is dependent on both mutual information and representational coherence. Note that NPE
(with the same high-fidelity simulation budget of 102) has similar performance as MF-NPE in the
case where the low- and high-fidelity models have low mutual information.

4.4 WHEN DOES PRE-TRAINING HELP?

In previous sections, we demonstrated that MF-NPE can significantly reduce the number of high-
fidelity simulations required to accurately approximate the high-fidelity posterior by leveraging
pre-training on low-fidelity simulations. This naturally leads to several key questions: Which
characteristics of low-fidelity simulators enable effective transfer learning? Under what conditions
can pre-training reliably enhance simulation efficiency?

Providing theoretical guarantees for these questions necessitates a formal characterization of con-
vergence rates in NPE with transfer learning. Although recent works have begun addressing these
challenges in NPE (Frazier et al., 2024), current theoretical frameworks of transfer learning (Tahir
et al., 2024; Yun et al., 2020; Tripuraneni et al., 2020; Lampinen & Ganguli, 2018), rely on simplify-
ing assumptions (e.g., linear networks) that do not fully capture the complexities of MF-NPE. Given
this limitation, we instead empirically explored the conditions in which low-fidelity pre-training facil-
itates effective transfer learning. To do this, we evaluate MF-NPE where the low- and high-fidelity
simulators are related by systematic perturbations (Fig. 4).

We hypothesize that the effectiveness of pre-training is associated with two primary factors:

1. Mutual information between the low- and high-fidelity simulators.
2. Representational coherence, i.e., similarity in how task-relevant information is encoded.

To isolate the effects of these factors, we construct controlled variants of the OU2 process in which
the low-fidelity simulator differs from the high-fidelity one through two distinct transformations. In
the baseline setup, the simulators generate observations according to

x ∼ p(x | µ, σ), xL ∼ p(x | µ, σ + δ),

where the perturbation δ increases the noise of the low-fidelity simulator and therefore reduces
I[x;xL] monotonically as δ grows.

Second, to independently manipulate representational coherence, we apply an invertible coordinate-
reversal transformation xinvL = T (xL), implemented via an anti-diagonal permutation matrix that
reverses the ordering of the output dimensions. Because T is invertible, the mutual information
between the two simulators is unchanged:

I[x; xinv
L ] = I[x; xL] = H[x] +H[xL]−H[x,xL].

Thus, while I[x;xL] decreases monotonically with the noise scale δ, the inversion leaves the
information content unchanged while disrupting representational coherence. Figure 4 illustrates how

9
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each manipulation affects the uncertainty coefficient (Figure 4B), which we estimate empirically
using MINE (Belghazi et al., 2018), and MF-NPE performance under a fixed simulation budget of
104 low-fidelity and 102 high-fidelity simulations (Figure 4C).

In agreement with our hypothesis, our results suggest that the effectiveness of MF-NPE depends
on both the mutual information and the representational coherence between low- and high-fidelity
simulators (Fig. 4C). Specifically, mutual information is necessary for effective transfer learning
but not sufficient: perturbations that preserve information (e.g., invertible transformations) can still
substantially impair transfer performance. Effective pre-training strategies should therefore prioritize
low-fidelity simulators that are both highly informative and representationally aligned with the
high-fidelity model.

5 DISCUSSION

We proposed a new method for simulation-based inference that leverages low-fidelity models to
efficiently infer the parameters of costly high-fidelity models. By incorporating transfer learning
and multifidelity approaches, MF-NPE substantially reduces the simulation budget required for
accurate posterior inference. This addresses a pervasive challenge across scientific domains: the
high computational cost of simulating complex high-fidelity models and linking them to empirical
data. Our empirical results demonstrate MF-NPE’s competitive performance in SBI across statistical
benchmarks and real-world applications, as compared to a standard method such as NPE.

Limitations Despite MF-NPE’s advantages, the method comes with some challenges. First, the
effectiveness of MF-NPE relies on the similarity between the low-fidelity and high-fidelity models.
Fortunately, in many situations, domain experts will know beforehand whether low-fidelity models are
poor approximations of high-fidelity models. Second, MF-NPE and MF-TSNPE inherit the limitations
of NPE and TSNPE, respectively, in particular regarding the scalability of simulation-based inference
to high-dimensional parameter spaces. How to balance exploration of high-dimensional parameter
spaces and computational cost in a simulation-based inference setting remains a topic of active
research. Third, MF-TSNPE-AF requires the training of an ensemble of density estimators, which
leads to substantial computational costs in training and hyperparameter tuning. This method should
therefore only be preferred in cases where the cost incurred in simulations outweighs the training cost.
We estimate this to be the case for the tasks with the multicompartment neuron model and the spiking
network model, for which the cost of one simulation and the training of one density estimator are
comparable in certain settings (e.g., on the order of minutes, for a network trained on 103 samples).

Future work We identify three promising research directions for multifidelity simulation-based
inference. First, we expect the scalability and expressivity of MF-NPE could be improved by
utilizing the same approaches of multifidelity and transfer learning presented here with neural density
estimators other than normalizing flows, such as diffusion models (Gloeckler et al., 2024). Second,
we assumed a negligible cost for low-fidelity simulations, and future work should address how to
optimally allocate low- and high-fidelity simulations under a fixed computational budget. Third,
similar to past efforts in developing a benchmark for simulation-based inference, it will be beneficial
for the SBI community to develop a benchmark for multifidelity problems, with new tasks, algorithms
and evaluation metrics. This will promote rigorous and reproducible research and catalyze new
developments in multifidelity SBI, and in SBI more generally. Our work and codebase are a step in
this direction.

Conclusion Overall, MF-(TS)NPE is a method for simulation-based inference that leverages low-
fidelity models and transfer learning to infer the parameters of costly high-fidelity models, thus
providing an effective balance between computational cost and inference accuracy.

6 REPRODUCIBILITY STATEMENT

The training and simulation costs for all tasks and SBI methods, as well as a detailed description of
the experimental setup, are described in Appendices C.1 and J. The corresponding code and data are
available in an anonymous GitHub repository (link) and will be publicly released upon publication.
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Macke. Differentiable simulation enables large-scale training of detailed biophysical models of
neural dynamics, August 2024.

Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural Spline
Flows. In Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
7ac71d433f282034e088473244df8c02-Abstract.html.

11

https://www.sciencedirect.com/science/article/pii/S2352152X24004353
https://www.sciencedirect.com/science/article/pii/S2352152X24004353
https://royalsocietypublishing.org/doi/full/10.1098/rsta.2014.0382
https://royalsocietypublishing.org/doi/full/10.1098/rsta.2014.0382
http://arxiv.org/abs/2411.17337
http://arxiv.org/abs/2305.13498
https://proceedings.neurips.cc/paper_files/paper/2023/hash/2bdc2267c3d7d01523e2e17ac0a754f3-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/2bdc2267c3d7d01523e2e17ac0a754f3-Abstract-Conference.html
https://www.pnas.org/doi/10.1073/pnas.1912789117
https://www.pnas.org/doi/10.1073/pnas.1912789117
https://proceedings.neurips.cc/paper_files/paper/2022/hash/9278abf072b58caf21d48dd670b4c721-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/9278abf072b58caf21d48dd670b4c721-Abstract-Conference.html
https://proceedings.neurips.cc/paper/2019/hash/7ac71d433f282034e088473244df8c02-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/7ac71d433f282034e088473244df8c02-Abstract.html


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Conor Durkan, Iain Murray, and George Papamakarios. On Contrastive Learning for Likelihood-
free Inference. In Proceedings of the 37th International Conference on Machine Learning, pp.
2771–2781. PMLR, November 2020. URL https://proceedings.mlr.press/v119/
durkan20a.html.

Joel Dyer, Patrick W Cannon, and Sebastian M Schmon. Amortised likelihood-free inference for
expensive time-series simulators with signatured ratio estimation. In International Conference on
Artificial Intelligence and Statistics, pp. 11131–11144. PMLR, 2022.

Lasse Elsemüller, Valentin Pratz, Mischa von Krause, Andreas Voss, Paul-Christian Bürkner, and
Stefan T. Radev. Does Unsupervised Domain Adaptation Improve the Robustness of Amortized
Bayesian Inference? A Systematic Evaluation, May 2025. arXiv:2502.04949 [stat].

Yusuf Falola, Siddharth Misra, and Andres Calvo Nunez. Rapid High-Fidelity Forecasting for
Geological Carbon Storage Using Neural Operator and Transfer Learning. In ADIPEC, Abu Dhabi,
UAE, October 2023. OnePetro. doi: 10.2118/216135-MS.

David T. Frazier, Ryan Kelly, Christopher Drovandi, and David J. Warne. The Statistical Accuracy
of Neural Posterior and Likelihood Estimation, November 2024. URL http://arxiv.org/
abs/2411.12068. arXiv:2411.12068 [stat].

J Friedman. On Multivariate Goodness-of-Fit and Two-Sample Testing. Technical Report SLAC-
PUB-10325, 826696, Stanford, January 2004. URL http://www.osti.gov/servlets/
purl/826696/.

Richard Gao, Michael Deistler, and Jakob H. Macke. Generalized Bayesian Inference for Scientific
Simulators via Amortized Cost Estimation, November 2023. URL http://arxiv.org/abs/
2305.15208.

Wulfram Gerstner and Werner M. Kistler. Mathematical formulations of Hebbian learning. Biological
Cybernetics, 87(5):404–415, December 2002. ISSN 1432-0770. doi: 10.1007/s00422-002-0353-y.
URL https://doi.org/10.1007/s00422-002-0353-y.

Wulfram Gerstner, Werner M. Kistler, Richard Naud, and Liam Paninski. Neuronal Dynam-
ics: From Single Neurons to Networks and Models of Cognition. Cambridge University
Press, Cambridge, 2014. ISBN 978-1-107-06083-8. doi: 10.1017/CBO9781107447615.
URL https://www.cambridge.org/core/books/neuronal-dynamics/
75375090046733765596191E23B2959D.

Michael B. Giles. Multilevel Monte Carlo Path Simulation. Operations Research, 56(3):607–617,
June 2008. ISSN 0030-364X. doi: 10.1287/opre.1070.0496. URL https://pubsonline.
informs.org/doi/abs/10.1287/opre.1070.0496.

Manuel Gloeckler, Michael Deistler, Christian Weilbach, Frank Wood, and Jakob H. Macke. All-in-
one simulation-based inference, May 2024. URL http://arxiv.org/abs/2404.09636.

Manuel Gloeckler, Shoji Toyota, Kenji Fukumizu, and Jakob H. Macke. Compositional simulation-
based inference for time series, March 2025. arXiv:2411.02728 [cs].
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A USAGE OF LLMS

LLM usage was minimal, limited to grammar refinement, sentence shortening, code cleanup and
discovering papers outside our main domain.

B PROOF OF CONVERGENCE OF THE NPE LOG-LIKELIHOOD LOSS

Let θi ∼ p(θi) be samples from the prior of a high-fidelity model, and xi ∼ p(x|θi) be the respective
high-fidelity simulations. In NPE, we define the loss function as the negative log likelihood:

L(ϕ) = − 1

N

N∑
i

log qϕ(θi|xi), (3)

where θi are samples from the prior distribution, xi are the respective simulations (i.e., samples from
p(x|θi)), and ϕ are the parameters of the neural density estimator to be optimized. If we let the
number of samples θi (and respective simulations) N →∞:

L(ϕ) = Ep(θ)p(x|θ) [− log qϕ(θ|x)]
= Ep(x)p(θ|x) [− log qϕ(θ|x)]

= Ep(x)
[
Ep(θ|x)

[
log

p(θ|x)
qϕ(θ|x)

]]
+ C

= Ep(x)[DKL (p(θ|x), qϕ(θ|x))] + C

(4)

where C is a constant with respect to ϕ. Minimizing L(ϕ) with respect to ϕ is thus equivalent to
minimizing the KL divergence between the true posterior distribution and the estimated posterior in
the limit of an infinite number of high-fidelity samples.
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C FURTHER EXPERIMENTAL DETAILS

C.1 TRAINING PROCEDURE

All methods and evaluations were implemented in PyTorch (Paszke et al., 2019). We used the Zuko
package (version 1.4.0, MIT License)1(Roset, 2024) to implement the normalizing flow, based on the
Neural Spline Flows (NSF) architecture (Durkan et al., 2019), and the SBI package (version 0.24.0,
Apache 2.0 license)2 (Boelts et al., 2024) for additional functions. The parameters used to generate
simulations were logit-transformed for numerical stability, and the summary statistics were z-scored
to improve the performance of the normalizing flows. The loss function is the negative-log likelihood,
and the optimization function is the Adam optimizer (Kingma & Ba, 2017).

The Neural Spline Flow (NSF) architecture consists of 5 transformations, each parametrized with
50 hidden units and 8 bins. The batch size was set to 200, and the learning rate to 5 × 10−4. The
train-validation fraction is 0.1, and training of the NSF utilized an early stopping criterion with a
patience of 20 epochs for the early stopping criterion. The settings described above are all default
settings of the SBI package at the time of the method’s development (Boelts et al., 2024).

Note, the stopping criterion follows the default configuration of the SBI package, which is defined as
follows: Let E be the error function of the training algorithm (negative log likelihood), Eval(t) the
validation error at epoch t, which is used by the stopping criterion. The value Eopt(t) is the lowest
validation set error obtained in epochs up to t:

Eopt(t) := min
t′≤t

Eval(t
′) (5)

The early stopping criterion S terminates training once the validation error Eval(t) has increased for
p consecutive epochs (the patience parameter). At this point, the model corresponding to the lowest
validation error observed that far, Eopt(t), is selected and returned.

Rather than fixing the number of training epochs, the idea behind early stopping is that when the
validation error has increased not only once, but over p consecutive steps, such an increase indicates
a stage of overfitting (Prechelt, 2002). Note that if the patience is too small, underfitting might occur,
and training may terminate too early due to stochastic fluctuations in the loss. Similarly, overfitting
might likely occur when the patience is set to excessively high numbers (especially with a low number
of simulations, since the loss function is typically more variable in this setting).

For the fine-tuning step of MF-NPE, no network weights were frozen. This choice has been purposely
made to maintain full flexibility of the network to adapt to the high-fidelity model.

For the evaluation of MF-TSNPE-AF, we used 5 rounds of active sampling, where 80% of the
high-fidelity dataset was used for standard MF-NPE training, and 20% was split across the rounds of
active sampling. The active samples were selected using the acquisition function over an ensemble of
5 networks.

For a fair performance comparison, all methods were trained on the same datasets and evaluated on
the same observations xo. All amortized results were obtained over 10 network initializations, and
all non-amortized results over 1 or 10 network initializations (depending on the computational cost
of the task). We evaluated the methods over 30 observations for the C2ST metric, more than the 10
observations chosen previously for benchmarking (Lueckmann et al., 2021). This choice is motivated
by our focus on evaluating the methods in low-data regimes, where greater certainty is required. The
performance on the L5PC neuron task was evaluated with the metric NLTP and over 100 xo’s. Here,
the performance of the amortized methods was averaged over 10 network initializations, and in the
non-amortized methods over 1 network initialization, since training had to be performed for each
individual xo. The performance of the methods on the recurrent spiking network task was averaged
over 10 network initializations and evaluated over 262,008 observations, which was the maximum
number of available samples for this high-dimensional problem.

1https://github.com/probabilists/zuko
2https://github.com/sbi-dev/sbi
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D TASKS

D.1 OU PROCESS

The Ornstein-Uhlenbeck (OU) process is a high-fidelity model with 2 to 4 free parameters that
contains a temporal structure in the observations. As a low-fidelity model, we chose i.i.d. samples
from a Gaussian distribution (unstructured vector), parametrized by the mean and standard deviation.
This setting makes it well-suited to examine the impact of parameter space overlap between the low-
and high-fidelity models, as well as the impact of a systematic bias in the posterior of the low-fidelity
model on transfer learning.

Figure 5: The four parame-
ters of the Ornstein-Uhlenbeck
process: the mean µ, standard
deviation σ, convergence rate
γ, and µoffset, which is the
difference between the initial
condition X(0) and mean µ.

High-fidelity model The Ornstein-Uhlenbeck process models a
drift-diffusion process of a particle starting at position X(0) and
drifting towards an equilibrium state. The model has two main
components: a drift term and a diffusion term:

dXt = γ(µ−Xt)dt︸ ︷︷ ︸
drift

+ σdWt︸ ︷︷ ︸
diffusion

,

where µ is the mean of the asymptotic distribution over positions
X, σ is the magnitude of the stochasticity of the process and γ is
the convergence speed. X(0) is the initial position of the process,
which we assume to be stochastic: X(0) ∼ N (µ+ µoffset, 1). The
parameters of interest that we aim to estimate are µ, σ, γ, µoffset.

The Ornstein-Uhlenbeck process was approximated with the Euler-
Maruyama method:

X(t+ δt) = X(t) + fdrift(t,X) δt+ fdiffusion(t,X)
√
δtN (0, 1).

Starting from the exact likelihood for the Ornstein-Uhlenbeck pro-
cess given by Kou et al. (2012):

fexact hi(X | µ, γ, σ) =
n∏
t=1

1
√
πgσ

exp

{
− 1

gσ2

(
(µ−Xt)−

√
1− γg (µ−Xt−1)

)2
}
,

where g = (1− exp(−2γ∆t))/γ, we modify it by incorporating an additional parameter µoffset to
account for a stochastic X(0).

The full likelihood fexact hi(X | µ, σ, γ, µoffset) is given by

fexact hi(X | µ, σ, γ, µoffset) =
1√
2π

exp

{
− (x− (µ+ µoffset))

2

2

}
fexact hi(X | µ, γ, σ)

Figure 6: i.i.d. Gaussian sam-
ples with mean µL and stan-
dard deviation σL.

Low-fidelity model As a low-fidelity model, we use i.i.d. Gaus-
sian Samples. At convergence, the distribution over Xt approaches
a Gaussian distribution with mean µ and standard deviation σ√

2γ
. In

our setup, we chose a low-fidelity model that corresponds to time-
independent random draws from a Gaussian distribution with mean
µlo and standard deviation σlo:

Xt ∼ N (µlo, σ
2
lo) (6)

The posterior distribution over the parameters of the low-fidelity
model has a biased mean influenced by the initial position µoffset

and convergence speed γ.
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Prior µ ∼ U(0.1, 3), σ ∼ U(0.1, 0.6), γ ∼ U(0.1, 1), µoffset ∼ U(0, 4)
HF Simulator x|θ = (x1, . . . , x101), x0 ∼ N (µ+ µoffset, 1), where

dxt = γ(µ− xt)dt+ σdWt

LF Simulator x|θ = (x1, . . . , x10), xi ∼ N (µlo, σ
2
lo),

HF Dimensionality θ ∈ R2−4, x ∈ R101, U(x) ∈ R10

LF Dimensionality θ ∈ R2, x ∈ R10, U(x) ∈ R10

References (Holý & Tomanová, 2022; Carter & Strey, 2023; Kou et al., 2012)

For the two-dimensional experiment, the free parameters γ, µoffset have been fixed to γ = 0.5 and
µoffset = 3.0. For the three-dimensional-experiment, only µoffset = 3.0. The summary statistics
U(x) from the high-fidelity model consists of 10 uniformly distributed subsamples drawn from a
trace of 101 timesteps. Parameters and summary statistics are illustrated in Figures 5 and 6.

D.2 POSTERIOR DISTRIBUTIONS OVER OU PROCESS

Figure 7: Posterior density estimates for a single observation from the OU process with two free
parameters (OU2). The orange contour lines contain 68% of the probability mass of the true posterior
distribution.

D.3 OU PROCESS WITH VARYING PARAMETER SPACE

We present a comparison of our multifidelity approaches to NPE and MF-ABC, with different
numbers of pre-trained low-fidelity simulations. MF-NPE3 is pre-trained on a low-fidelity dataset
of size 103, while MF-NPE4 and MF-NPE5 use datasets of 104 and 105 low-fidelity simulations,
respectively. The MF-ABC results suggest that neural density approaches scale better to complex
problems (Frazier et al., 2024).

Figure 8: MF-NPE benefits from larger low-fidelity datasets. We ran MF-ABC with hyperparameters
ϵ = (1, 1) and η = (0.9, 0.3) (more details in Appendix E.1.1). All variants of our method perform
better than MF-ABC and NPE.
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D.4 INFERRING THE PARAMETERS OF A GAUSSIAN MODEL PRETRAINED ON THE OU3 MODEL

In this example, we examine how the performance changes when the low-fidelity model has a larger
number of parameters than the high-fidelity model: the low-fidelity model is the Ornstein-Uhlenbeck
process with three parameters, and the high-fidelity model corresponds to i.i.d. Gaussian samples
parameterised by a mean and variance (so, only two parameters). To accomplish that, the density
estimator pre-trained on the low-fidelity model was fine-tuned only on the dimensions of the high-
fidelity and the extra dimension was kept as a dummy dimension. NPE was directly trained on the
2-dimensional parameter space of the high-fidelity model. At inference time, the posterior evaluation
was performed only on the high-fidelity parameter dimensions. We observe that when the dimension
of θ is smaller than the dimension of θL, transfer learning provides a significant improvement in
performance.

Figure 9: Evaluation with C2ST and MMD over a two-dimensional Gaussian Samples model,
pretrained on the three-dimensional OU process model.
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D.5 SLCP

Simple Likelihood Complex Posterior (SLCP) is a benchmark inference task that has been artificially
designed to have a simple likelihood, but a very non-trivial 5-dimensional posterior to infer. In this
example, we study the impact of multifidelity in cases where the dimensionality of the parameter
space differs between the low-fidelity and high-fidelity models.

High-fidelity model The SLCP problem involves five parameters. The prior distribution is uniform
across a five-dimensional parameter space, and the observations consist of four two-dimensional
samples drawn from a Gaussian distribution. Both the mean and the variance of this Gaussian depend
on the parameters through nonlinear mappings. The high-fidelity model follows the code in the SBI
benchmarking paper (Lueckmann et al., 2021).

Low-fidelity model In the low-fidelity model, we experimented with the effect of different numbers
of parameters on the inference quality. We fixed mθ = 0, and kept the parameters of Sθ free.

Prior U(−3, 3)

HF Simulator x|θ = (x1, . . . , x4), xi ∼ N (mθ,Sθ),

where mθ =

[
θ1
θ2

]
, Sθ =

[
s21 ρs1s2

ρs1s2 s22

]
,

with s1 = θ23, s2 = θ24, ρ = tanh(θ5).

LF Simulator x|θ = (x1, . . . , x4), xi ∼ N (0,Sθ),

where Sθ =

[
s21 ρs1s2

ρs1s2 s22

]
,

with s1 = θ23, s2 = θ24, ρ = tanh(θ5).

HF Dimensionality θ ∈ R5, x ∈ R8

LF Dimensionality θ ∈ R3, x ∈ R8

References (Papamakarios et al., 2019; Hermans et al., 2020)
(Durkan et al., 2020; Greenberg et al., 2019; Lueckmann et al., 2021)
(Thiele et al., 2025)
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D.6 SIR

The Susceptible, Infected, and Recovered (SIR) model is a classical epidemiological benchmark
example that captures the spread of infectious diseases through three interacting compartments:
Susceptible (S), Infectious (I), and Recovered (R). Its dynamics are governed by the system of
ordinary differential equations. The model is parameterized by two rates: the infection rate β and
the recovery rate γ. We investigate how multifidelity addresses the partly observed dynamics of
the model. Rather than observing the three dynamics of the SIR model (following the setup of the
SBI benchmarking (Lueckmann et al., 2021), we assume that no dynamics regarding the recovered
subjects are known (SI model).

Low-fidelity model In the low-fidelity model, we assume no information is available about the
dynamics of recovered individuals. The total population size and the initial conditions are kept
consistent with the high-fidelity model.

Bounded domain [0.001, 3]2

Prior β ∼ LogNormal(log(0.4), 0.5), γ ∼ LogNormal(log(0.125), 0.2)

HF Simulator x|θ = (x1, . . . , x50), xi = Ii/N equally spaced,

I is simulated from
dS

dt
= −βSI

N
,

dI

dt
= β

SI

N
− γI, dR

dt
= γI

LF Simulator x|θ = (x1, . . . , x50), xi = Ii/N equally spaced,

I is simulated from
dS

dt
= −βSI

N
,

dI

dt
= β

SI

N
− γI,

Dimensionality θ ∈ R2, x ∈ R3×161, U(x) ∈ R10

Fixed parameters Population size N = 106, duration of task T = 160 days.
Initial conditions: (S(0), I(0), R(0)) = (N − 1, 1, 0)

References (Lueckmann et al., 2021; Greenberg et al., 2019)
(Hermans et al., 2020; Durkan et al., 2020)

Summary statistics U(x) are 10 subsamples from the I trace.
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D.7 IMAGE EXAMPLE

We apply our method to a problem with high-dimensional observations, and explore the benefits of
transfer learning in combination with embedding networks. The high-fidelity model is a 256x256
image, while the low-fidelity model has a resolution of 32x32. An example of both simulator outputs
is shown in Fig. 10.

High-fidelity model The Gaussian Blob image example contains high-dimensional observations
that have been embedded with a CNN embedding from the SBI package (Boelts et al., 2024). The
model renders a 2D image, which we modeled as a 256 x 256 pixel image of a Gaussian blob, and
aiming to infer three parameters (µoff, σoff, γ): the horizontal and vertical displacements of the blob,
and its contrast (Lueckmann et al., 2019). The image is a grey-scale and is generated through a
binomial distribution with a total count of 255 and probability pij , as described in Lueckmann et al.
(2019).

Low-fidelity model In our setup, the low-fidelity model generates a spatially low-resolution dataset
(32x32 image). We upscale these images using interpolation techniques and provide the resulting
low-resolution inputs to the embedding network U(x).

Prior HF xoff, yoff ∼ U(0, 256), γ ∼ U(0.2, 2)
Prior LF xoff, yoff ∼ U(0, 32), γ ∼ U(0.2, 2)

Simulator x|θ = (x1, . . . , x1024), where,
Ixy ∼ Bin(·|255, pxy)

pxy = 0.9− 0.8 exp−0.5(rxy/σ
2)γ

rxy = (x− xoff)
2 + (y − yoff)

2

Dimensionality HF θ ∈ R3, x ∈ R256×256, U(x) ∈ R32

Dimensionality LF θ ∈ R3, x ∈ R32×32, U(x) ∈ R32

Fixed parameters Standard deviation σlf = 2, σhf = 12

References (Lueckmann et al., 2019)
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E GAUSSIAN BLOB EVALUATION

(a) Original image

(b) low-fidelity simulations

Figure 10: Five examples of generated images with the Gaussian Blob across the two fidelities, with
(a) the original 256x256 high-fidelity simulations, (b) the upsampled 32x32 low-fidelity simulations.

Figure 11: Method comparison with NLTP and NRMSE for the Gaussian Blob task. Evaluated over
10000 observations.
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E.1 DATA GENERATION AND TRANSFORMATIONS FOR INCREASED NETWORK PERFORMANCE

During the performance evaluation, we encountered numerical instabilities, particularly with NPE
in low-simulation budgets: a substantial proportion of the estimated probability density was placed
outside of the uniform prior bounds, a phenomenon dubbed ‘leakage’ that has been previously
documented (Greenberg et al., 2019; Deistler et al., 2022). Logit-transforming the model parameters
before training the density estimator resolved the issue.

This transformation creates a mapping from a bounded to an unbounded space, resulting in a density
estimation within the prior bounds after the inverse transformation. In addition, the summary statistics
of the simulations were z-scored for improved performance of the density estimator, the default
setting in the SBI package (Boelts et al., 2024).
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E.1.1 MULTIFIDELITY APPROXIMATE BAYESIAN COMPUTATION (MF-ABC)

We translated into Python a publicly available Julia implementation of the multifidelity ABC algo-
rithm (Prescott & Baker, 2020). In our setup, the adaptive sampling scheme of MF-ABC selected
approximately 30% of the batch size as high-fidelity samples in the OU2 and OU3 tasks, and 50%
in the OU4 task. To ensure consistency with our neural network experiments, we z-scored the
simulator output before inference. We also explored the effect of varying the acceptance threshold ϵ.
We found that the hyperparameters slightly affect the performance of MF-ABC, but that MF-NPE
always shows superior performance than MF-ABC (Figure 12). However, MF-ABC has several other
hyperparameters to tune. We cannot exclude the hypothesis that larger performance gains could be
obtained from such an approach by a more extensive hyperparameter search.

Figure 12: C2ST results for MF-ABC with varying hyperparameters ϵ. Mean and 95% confidence
interval.

MF-ABC posteriors ABC-based methods typically require a significantly larger number of samples
for convergence (Lueckmann et al., 2021; Frazier et al., 2024). In line with previous studies, we find
that 104 samples are not yet enough for MF-ABC to converge to a good estimate of the posterior in
the OU2 task.

Figure 13: Comparison between MF-ABC posterior estimates and the true posterior. Results for
the Ornstein-Uhlenbeck process with two free parameters. Posterior estimates are shown for varying
numbers of high-fidelity simulations (50, 100, 103, and 104).
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F TASK 2: MULTICOMPARTMENTAL SINGLE NEURON MODEL

The response of a morphologically detailed neuron to an input current is typically modeled with a
multicompartmental neuron model wherein the voltage dynamics of each compartment µ are based
on Hodgkin-Huxley equations (Hodgkin & Huxley, 1952):

cm
dVµ
dt

=− iµm +
Iµe
Aµ

+ gµ,µ+1 (Vµ+1 − Vµ)

+ gµ,µ−1 (Vµ−1 − Vµ) .
(7)

The total membrane current im for a specific compartment is the sum over different types of ion
channels i, such as sodium, potassium and leakage channels:

im = ḡNam
3h(V − ENa) + ḡKn

4(V − EK) + ḡL(V − EL) + ḡMp(V − EM) (8)

We are interested in inferring the densities of two prominent ion channels ḡNa and ḡK.

The low- and high-fidelity models differ in the number of compartments per branch: the low-
fidelity model has a single compartment per branch, while the high-fidelity model consists of eight
compartments per branch.

All simulations were performed using Jaxley (V 0.8.2) (Deistler et al., 2024) over 120 ms. The
injection current is a step current of 0.55mV over 100 ms, with a delay of 10ms. The step size of the
simulator is 0.025.

When sampling from the prior distribution over parameters, approximately 0.05 − 0.1% of the
respective simulations had clearly unrealistic summary statistics: these simulations were iteratively
replaced by random draws from the prior distribution/proposal or active learning list (depending on
the algorithm) until we collected a desired number of valid simulations.
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F.1 NRMSE EVALUATION

In addition to the NLTP metric, we demonstrate that the NRMSE metric yields results that support
our conclusions.

Figure 14: NRMSE evaluation for the multicompartmental neuron model.

F.2 SIMULATION-BASED CALIBRATION AND POSTERIOR DISTRIBUTIONS

Figure 15: Simulation-based calibration (left) and respective posterior distributions for NPE and
MF-NPE (right) for the multicompartmental neuron model task. MF-NPE is respectively, pretrained
on 103, 104, 105 low-fidelity simulations (dubbed as MF-NPE3, MF-NPE4, and MF-NPE5). All
models were trained on 103 high-fidelity simulations.
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F.3 POSTERIOR PREDICTIVE CHECKS

With only 50 high-fidelity simulations, MF-NPE gives similar accuracy to NPE trained on 1000
simulations (Fig. 16), and for a fixed number of 1000 high-fidelity simulations, MF-NPE5 outperforms
NPE (Fig. 17).

Figure 16: Posterior predictives for the multicompartmental neuron model with varying number of
high-fidelity simulations.

Figure 17: Posterior predictives for the multicompartmental neuron model for a fixed number of
high-fidelity simulations.

F.4 LOW AND HIGH-FIDELITY TRACES

We present simulations with the models with 1- and 8-compartments per dendritic branch (low- and
high-fidelity models, respectively) to illustrate that the model outputs are different, given the same
parameters.

Figure 18: Simulated membrane potential traces of an L5 pyramidal cell (L5PC) model with Jaxley
(Deistler et al., 2024). The low- and high-fidelity models are, respectively, a single-compartment
model per dendritic branch versus an eight-compartment model per branch.
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G TASK 3: SPIKING NETWORK MODEL

G.1 HIGH-FIDELITY MODEL

We considered a recurrent spiking network of 5120 neurons (4096 excitatory, 1024 inhibitory), with
parameters taken from Confavreux et al. (2023). The membrane potential dynamics of neuron j,
excitatory (E) or inhibitory (I), followed

τm
dVj
dt

= − (Vj − Vrest)− gE
j (t) (Vj − EE)− gI

j(t) (Vj − EI) , (9)

A postsynaptic spike was generated whenever the membrane potential Vj(t) crossed a threshold
V th
j (t), with an instantaneous reset to Vreset. This threshold V th

j (t) was incremented by V th
spike every

time neuron j spiked and otherwise decayed following

τth
dV th

j

dt
= V th

base − V th
j . (10)

The excitatory and inhibitory conductances, gE and gI evolved such that

gE
j (t) = agAMPA

j (t) + (1− a)gNMDA
j (t) and

dgI
j

dt
= −

gI
j

τGABA
+

∑
i∈Inh

wij(t)δi(t)

with
dgAMPA
j

dt
= −

gAMPA
j

τAMPA
+

∑
i∈Exc

wij(t)δi(t) and
dgNMDA
j

dt
=
gAMPA
j (t)− gNMDA

j

τNMDA
,

(11)

with wij(t) the connection strength between neurons i and j (unitless), δk(t) =
∑
δ(t− t∗k) the spike

train of pre-synaptic neuron k, where t∗k denotes the spike times of neuron k, and δ the Dirac delta.
All neurons received input from 5k Poisson neurons, with 5% random connectivity and constant
rate rext = 10Hz in each simulation. The recurrent connectivity was instantiated with random
sparse connectivity (10%). All recurrent synapses in the network (E-to-E and E-to-I , I-to-E,
I-to-I) underwent variations of spike-timing dependent plasticity (STDP) (Gerstner & Kistler, 2002;
Confavreux et al., 2023). Given the learning rate η, the weights between the neurons i and j of
connection type X-to-Y evolved over time as:

dwij
dt

=η [δpre(t) (α+ κxpost(t))

+δpost(t) (β + γxpre(t))] .
(12)

with variables xi(t) and xj(t) describing the pre- and postsynaptic spikes over time:
dxi
dt

= − xi
τpreXY

+ δi(t) and
dxj
dt

= − xj

τ post
XY

+ δj(t) (13)

with τ pre
XY and τ post

XY the time constants of the traces associated with the pre- and postsynaptic neurons,
respectively.

The 24 free parameters of interest were τpre, τpost, α, β, κ, γ multiplied by the number of synapse
types (e.g., αEE , αII , αEI , αIE), following previous work (Confavreux et al., 2023).

G.2 LOW-FIDELITY MODEL

Following previous work (Confavreux et al., 2023; Vogels et al., 2011; Dayan & Abbott, 2001), a
(partial) mean-field theory applied to the E-to-E and E-to-I connections in the model described
above gave:

r∗E =
−αEE − βEE

λEE
and r∗I =

−αEIr
∗
E

βEI + λEIr∗E
(14)

with r∗E and r∗I the firing rates of the excitatory (resp. inhibitory) population at steady state, and

λXY = κXYτ
post
XY + γpre

XY (15)

With type (X,Y ) ∈ {E, I}. For all synapse types, we assume (−αXY − βXY) > 0 and λXY > 0, as
a second-order stability condition (Confavreux et al., 2023). Note that in this low-fidelity model, we
only considered 2 of the 4 plastic conditions, and thus 12 of the 24 free parameters of the high-fidelity
model.
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G.3 SYNAPTIC PLASTICITY WITH VARYING PARAMETER SPACE

We investigated how inference performance changes as the discrepancy between the low- and high-
fidelity models increases. To this end, we varied the dimensionality of the low-fidelity model between
3, 6, and 12 parameters, while keeping the high-fidelity model fixed at 24 parameters. Parameters that
were excluded from inference in the low-fidelity settings were fixed to the following values for each
connection type: τpre = τpost = 0.05, γ = −1.9, α = β = κ = 0.5. The value of γ should be smaller
than other parameters to fulfill the second-order stability condition (Confavreux et al., 2023).

Figure 19: Negative-log-likelihood over true parameters, with different numbers of free parameters
in the low-fidelity model.

We observe that the performance of MF-NPE degrades as the number of parameters in the low-
fidelity model decreases as compared to the high-fidelity model. In particular, unlike in all our other
experiments, when the low-fidelity model had only 3 parameters, pretraining on 105 low-fidelity
samples led to worse MF-NPE performance: in this regime, using 105 samples (MF-NPE5) resulted
in negative transfer, whereas pretraining on 104 samples (MF-NPE4) resulted in a performance close
to standard NPE.
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G.4 DISCUSSION ON ALTERNATIVE SOLUTIONS

We consider the following strategies:

• pretraining on solely low-fidelity simulations,
• pretraining on the joint of low- and high-fidelity simulations.

G.4.1 PRETRAINING ON LOW FIDELITY SAMPLES

This approach follows the main discussion in Sec. 3.1.1, and has also been the main method employed
in the paper. We purposefully do not freeze the weights after transfer, allowing the network to retain
the flexibility to adapt to high-fidelity simulations.

G.4.2 PRETRAINING ON THE JOINT OF LF AND HF SAMPLES

We examined whether pretraining on the joint distribution of low- and high-fidelity simulations could
provide a better initialization for subsequent fine tuning. As shown in Fig. 20, this strategy yields
no significant improvement on the first two benchmarking tasks compared to standard MF-NPE.
However, we encourage further work to investigate additional variations on this approach to improve
the domain adaptation (e.g., domain adaptation through MMD Elsemüller et al. (2025), importance
weighting for extremely unbalanced datasets, adversarial discriminative domain adaptation, training a
single multifidelity inference network).

Figure 20: MF-(TS)NPE (joint) has been pretrained on both low- and high-fidelity samples.
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H PRIOR BOUNDS ACROSS NEUROSCIENCE TASKS

For the OU process task, we chose a uniform prior with bounds that would lead to a range of different
outputs. For the multicompartment neuron model task, we chose a uniform prior with bounds based
on the work of Deistler et al. (2022). For the spiking network model task, we chose a uniform prior
with bounds based on the work of Confavreux et al. (2023).

Table 1: Prior bounds for the single- and multicompartmental neuron model.

PARAMETER NAME LOWER BOUND UPPER BOUND

ḡNA 0.005 0.8
ḡK 10−6 0.15

Table 2: Prior bounds for each synapse type (E-to-E, E-to-I , I-to-E and I-to-I) for the spiking
neural network and mean-field model.

PARAMETER NAME LOWER BOUND UPPER BOUND

τpre 0.01 0.1
τpost 0.01 0.1
α −2 2
β −2 2
γ −2 2
κ −2 2
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I DISTANCE BETWEEN THE LF AND HF POSTERIOR

Both the low and high-fidelity posterior distributions have been trained on 105 simulations and
evaluated over 10 true observations. In the table below, we focus on cases with two fidelities and
measure the distance between the low and high-fidelity models with the MMD and C2ST metrics.
We observe that the distance between the posterior distributions is not a direct measure of success in
transfer learning. For instance, the posterior distributions of the low-and high-fidelity models of the
L5PC neuron are significantly different. However, the network still manages to leverage information
between the two simulators (Figure 3), supporting the theoretical results of Tahir et al. (2024).

Transfer learning seems to work less well on the OU process task when the dimensionality of the
parameters differs between the low- and high-fidelity models (see Sec. 8). This is observed despite
the fact that the distance between the low and high-fidelity posteriors is lower for the OU4 case than
for the OU2 case, as the low-fidelity OU2 posterior is highly biased (Fig. 21).

Table 3: Distance between low- and high-fidelity posterior (mean ± std) for different tasks.

Task MMD C2ST
SLCP 0.13± 0.05 0.91± 0.03
SIR 0.04± 0.03 0.57± 0.03
OU2 1.00± 0.11 0.98± 0.02
OU3 0.69± 0.087 0.98± 0.01
OU4 0.24± 0.05 0.90± 0.04
L5PC 0.76± 0.23 0.99± 0.00
SynapticPlasticity 0.01± 0.00 0.70± 0.02

I.1 PAIRPLOTS

3 42

Figure 21: Posterior distributions of the low-fidelity posterior (blue) and high-fidelity posterior
(green). Contours contain 68% of the true posterior mass for the low-fidelity model. Vertical bars and
dots correspond to the value of the true parameters.
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J SIMULATION VERSUS TRAINING COST

We tracked the wall-clock run-time for training and simulation stages of the neural density estimator.
Computations were performed on nodes each equipped with 4× Intel Xeon Gold 6448H CPUs (32
cores per socket, 128 physical cores, 256 logical CPUs) and approximately 2TB RAM, running Linux
5.14.0. We compare the costs in regimes where the performance of NPE is similar to MF-NPE and
MF-TSNPE-AF (Fig. 3). Details about the network architecture and hyperparameters are described
in Appendix C.1. In cases where many samples had to be generated for active non-amortized schemes
(e.g., 105 HF samples for the L5PC task; Figure 3), we used multiprocessing over CPUs. The
simulations for the third task were parallelized over 913 CPUs.

Table 4: Comparison of methods for the real-world tasks in terms of the number of simulations and
computational cost. Total training cost is reported as mean ± standard deviation over 5 network runs.

method # simulations CPU (seconds)

LF HF tot. cost (sim.) tot. cost (train) total cost

L5PC NPE NA 104 4940 70.39 ± 18.32 5010.39 ± 18.32
MF-NPE 104 103 1032 96.94 ± 15.19 1128.94 ± 15.19
MF-TSNPE-AF 104 50 607 557.44 ± 52.5 1164.44 ± 52.5

Network NPE NA 104 3× 106 120.43 3,000,120
MF-NPE 105 103 3× 105 94.54 300,094

Table 5: Comparison of methods across models in terms of the number of simulations and accuracy.
Evaluated using the NLTP metric.

Method # Simulations Accuracy
(C2ST/NLTP)

LF HF

L5PC

NPE NA 104 -5.87 ± 0.04
MF-NPE 104 103 -5.73 ± 0.05
MF-TSNPE-AF 104 50 -5.08 ± 0.27

Network NPE NA 104 -4.72 ± 0.01
MF-NPE 105 103 -4.08 ± 0.01

Table 4 shows that the multifidelity approaches make sense when the training cost is significantly
lower than the simulation cost, such as in the L5PC and the spiking network model. For instance, in
the spiking network task, a single high-fidelity simulation requires approximately 5 CPU minutes,
whereas a low-fidelity simulation takes only 0.0008 seconds.
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K TARP EVALUATION FOR ALL TASKS

We performed additional evaluations on the calibration of all experiments with TARP (Lemos et al.,
2023).

Figure 22: TARP calibration test across 105 LF simulations (104 for the Gaussian blob example).
The calibration test was performed over 200 runs.
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L MF-NPE FOR MULTIPLE LOWER-FIDELITY SIMULATORS

Algorithm 2 MF-NPE with multiple fidelities

1: Input: Simulations {(θ,x(f))}Ff=1 over F fidelities; Early stopping criterion S; conditional

density estimators {q(f)ψ (θ|x(f))}Ff=1 with features ψ.
2: for f = 1 to F do
3: L(ψ(f)) = 1

N(f)

∑N(f)

i=1 − log q
(f)
ψ

(
θi|x(f)

i

)
.

4: opt(f) ← Adam(·)
5: if f > 1 then
6: Initialize q(f)ψ with features of trained q(f−1)

ψ .
7: end if
8: for epoch in epochs do
9: train q(f)ψ to minimize L(ψ(f)) until S is reached.

10: end for
11: end for
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M SEQUENTIAL ALGORITHMS

M.1 MF-TSNPE

Algorithm 3 MF-TSNPE

1: Input: N pairs of (θ,xL); conditional density estimators qψ(θ|xL) and qϕ(θ|x) with learnable
parameters ψ and ϕ; early stopping criterion S; simulator p(x|θ); prior p(θ); number of rounds
R; ϵ that defines the highest-probability region (HPRϵ); number of high-fidelity simulations per
round M .

2: Output: posterior estimate qϕ(θ|x)
3: L(ψ) = 1

N

∑N
i=1− log qψ

(
θi|xL

i

)
.

4: for epoch in epochs do
5: train qψ to minimize L(ψ) until S is reached.
6: end for
7: Initialize p̃(θ) as p(θ)
8: Initialize qϕ with weights and biases of trained qψ .
9: for r in R do

10: θ(r) ∼ p̃(θ), sample parameters from proposal
11: x(r) ∼ p(x|θ(r)), generate high-fidelity simulations
12: for epoch in epochs do
13: L(ϕ) = 1

M

∑M
i=1− log qϕ

(
θ
(r)
i |x

(r)
i

)
.

14: train qϕ to minimize L(ϕ) until S is reached.
15: end for
16: Compute expected coverage (p̃(θ), qϕ)
17: p̃(θ) ∝ p(θ) · 1θ∈HPRϵ

18: end for

All experiments were run with R = 5 rounds and ϵ = 1e−6. More details about TSNPE at Deistler
et al. (2022).
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M.2 MF-TSNPE-AF

Algorithm 4 MF-TSNPE-AF

1: Input: N pairs of (θ,xL); conditional density estimator qψ(θ|xL) with learnable parameters
ψ and ensemble of conditional density estimators {qeϕ(θ|x)}eE , each with independent ϕ; early
stopping criterion S; simulator p(x|θ); prior p(θ); number of rounds R; ϵ that defines the
highest-probability region (HPRϵ); number of high-fidelity simulations per round M .

2: Output: Ensemble posterior estimate qϕ(θ|x) = 1
E

∑E
e=1 q

e
ϕ(θ|x)

3: L(ψ) = 1
N

∑N
i=1− log qψ

(
θi|xL

i

)
.

4: for epoch in epochs do
5: train qψ to minimize L(ψ) until S is reached.
6: end for
7: for e ∈ Ensemble do
8: Initialize qeϕ with weights and biases of trained qψ .
9: end for

10: θpool ∼ p(θ)
11: Initialize p̃(θ) as p(θ)
12: for r in R do
13: θ

(r)
prop ∼ p̃(θ), generate M −B samples from proposal

14: θ
(r)
active = top B values from θpool using the acquisition function eq. equation 2

15: θ(r) = {θ(r)
prop ∪ θ

(r)
active}

16: x(r) ∼ p(x|θ(r)), generate high-fidelity simulations
17: for e ∈ Ensemble do
18: for epoch in epochs do
19: L(ϕ) = 1

M

∑M
i=1− log qeϕ

(
θ
(r)
i |x

(r)
i

)
.

20: train qϕ to minimize L(ϕ) until S is reached.
21: end for
22: end for
23: Compute expected coverage (p̃(θ), 1

E

∑
qeϕ(θ|x))

24: p̃(θ) ∝ p(θ) · 1θ∈HPRϵ

25: end for

All experiments were run withR = 5 rounds, ϵ = 1e−6, and an ensemble of 5 networks. The addition
of an acquisition function biases the proposal distribution, causing the density estimate to diverge
from the true posterior. In principle, this could be addressed by using atomic proposals (Greenberg
et al., 2019), but given that such an approach suffers from posterior leakage, we do not introduce
a proposal correction in order to retain the well-behaved loss function in TSNPE. We argue that
the benefit of informative samples would outweigh the potential bias, as long as the percentage of
samples selected from the acquisition function would be small compared to the proposal samples.
Therefore, we set B = .2M to mitigate the concern of biasing the posterior with parameters selected
with the acquisition function.
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