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ABSTRACT

Deep Reinforcement Learning (DRL) has been widely attempted for solving lo-
comotion control problems recently. Under the circumstances, DRL agents ob-
serve environmental measurements via multi-sensor signals, which are usually
accompanied by unpredictable noise or errors. Therefore, well-trained policies
in simulation are prone to collapse in reality. Existing solutions typically model
environmental noise explicitly and perform optimal state estimation based on this.
However, there exists non-stationary noise which is intractable to be modeled in
real-world tasks. Moreover, these extra noise modeling procedures often induce
observable learning efficiency decreases. Since these multi-sensor observation
signals are universally correlated in nature, we may use this correlation to re-
cover optimal state estimation from environmental observation noise, and with-
out modeling them explicitly. Inspired by multi-sensory integration mechanism
in mammalian brain, a novel Self-supervised randomIzed Masked Augmentation
(SIMA) algorithm is proposed. SIMA adopts a self-supervised learning approach
to discover the correlation of multivariate time series and reconstruct optimal state
representation from disturbed observations latently with a theoretical guarantee.
Empirical study reveals that SIMA performs robust locomotion skills under envi-
ronmental observation noise, and outperforms state-of-the-art baselines by 15.7%
in learning performance.

1 INTRODUCTION

Owing to powerful function approximation capacity of deep neural networks, Deep Reinforcement
Learning (DRL) has been demonstrated to achieve great success on many complex tasks, includ-
ing board games Silver et al. (2016); Schrittwieser et al. (2020), electronic sports Vinyals et al.
(2019); Berner et al. (2019), autonomous vehicle Fuchs et al. (2021); Wurman et al. (2022); Lilli-
crap (2016), and even air combat Sun et al. (2021); Pope et al. (2022). However, these remarkable
achievements basically rely on a simulation environment that can provide correct state observations.
In real-world tasks (e.g., robot locomotion control Hwangbo et al. (2019); Song et al. (2021a)), DRL
agents observe environmental measurements via multi-sensor signals, which may contain uncertain
noise that naturally originates from unpredictable sensor errors or instrument inaccuracy Zhang
et al. (2020), e.g., considering a half-cheetah robot running in a field with multi-sensor signals as
observations (illustrated in Figure 1). Once the robot landed after jumping, observation noise (i.e.,
stationary noise) might be involved in accelerometers due to collision and friction between its legs
and ground. Besides, there also exists unpredictable disturbance (i.e., non-stationary noise) acciden-
tally. Consequently, directly deploying well-trained DRL policy from simulation to reality might
lead to catastrophic failures.

In view of this, a well-adopted approach is Domain Randomization (DR) Tobin et al. (2017);
Andrychowicz et al. (2020); Song et al. (2021b); Tremblay et al. (2018). DR randomizes key
parameters during simulation training that may change in the future, this randomization proce-
dure provides extra robustness for the upcoming sim-to-real transfer. Another line of research is
based on adversarial attack Kos & Song (2017); Huang et al. (2017); Mandlekar et al. (2017) to
directly improve the robustness of DRL agents, e.g., Kos & Song (2017) first presents results of
adversarial training on Atari environments using weak FGSM attacks on pixel space. These afore-

1



mentioned methods typically model environmental noise explicitly and perform optimal state esti-
mation based on this. However, there exists non-stationary noise which is intractable to be mod-
eled. Karra & Karim (2009). Therefore, prior works only work with stationary noise scenarios.

Figure 1: Due to environmental noise, a well-
trained DRL-based half-cheetah robot lost its bal-
ance and crashed after jumping.

Considering the correlation among multi-
sensor signal observations, one potential so-
lution is to optimally estimate the disturbed
signals from other clean signals by utilizing
this internal-correlation mechanism, e.g., hu-
mans watch television by experiencing videos,
sounds, and subtitles. Assuming that a literaly
error pops-up in current subtitle, human brain
will correct the wrong subtitle via videos or
sound playback latently, or even simply ignore
the errors in subtitles. Accordingly, these errors
from a single sensory channel merely affect the
overall synthetic cognition process. This mech-
anism in Superior Colliculus neurons of mam-
malian brains is called multi-sensory integra-
tion Meredith & Stein (1983). Multi-sensory
integration allows organisms to simultaneously
sense and understand external stimuli from dif-
ferent modalities, which helps to reduce noise
by combining information from different sen-
sory modalities Stein et al. (2004); Koelewijn et al. (2010).

Inspired by multi-sensory integration, we focus on learning the internal-correlation of multivariate
time series. This internal-correlation reconstructs the optimal state estimation representation latently
from environmental noise via self-supervised learning. Essentially, this paper provides a paradigm
shift that eliminates the requirement for explicit noise modeling and improves the robustness of DRL
policy. Specifically, our contributions are summarized as three-fold:

• We first formulate the Markov-Decision Process (MDP) with environmental de-noising process
as a De-noising constRained Policy Optimization Problem (DRPOP), thereby, DRPOP converts
this conventional state estimation into an optimal correlation representation learning form.
• Inspired by multi-sensory integration mechanism, a novel Self-supervised randomIzed Masked

Argumentation (SIMA) algorithm is proposed. SIMA learns internal-correlation of multivariate
time series and reconstructs latent state representation from noisy observations. We also provide
the reconstruction error is bounded by a variational evidence lower bound.
• Empirical study reveals that SIMA performs robust locomotion skills under environmental ob-

servation noise, and outperforms state-of-the-art baselines by 15.7% in learning performance.

2 RELATED WORKS

2.1 DRL IN REAL-WORLD TASKS

A variety of DRL-based locomotion control methods have demonstrated promising performance in
real-world applications, e.g., Lee et al. (2020); Hwangbo et al. (2019); Kumar et al. (2021); Miki
et al. (2022) develop an automatic terrain curriculum combined with DRL algorithms, which enables
quadruped robots to successfully traverse around complex natural terrains. There are also notable
breakthroughs that exclusively involve training on physical robots Van Hoof et al. (2015); Falco
et al. (2018); Jinxin Liu (2022). Nonetheless, due to the inherent slowness and costliness of physical
trials, the acquired behaviors tend to exhibit substantial limitations. Xie et al. (2020); Haarnoja et al.
(2018a) use DRL to simplify the design of locomotion controllers, automate parts of the design
process, and learn behaviors that could not be engineered with prior approaches. Loquercio et al.
(2019); Song et al. (2021a) demonstrate zero-shot sim-to-real transfer on the task of following a
track with possibly moving gates at high speed. The abundance of simulated data, generated via
DR, makes this system robust to changes of illumination and gate appearance. Akkaya et al. (2019);
Andrychowicz et al. (2020) utilize DR to increase environmental diversity, including randomizing
a series of environmental parameters. In conclusion, DRL policy can drive a shadow dexterous
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hand to manipulate a cube dexterously. While the aforementioned works represent notable DRL
adaptations for particular tasks, the present paper aims to provide a solution to improve system
robustness against environmental noise.

2.2 STATE OBSERVATION DE-NOISING

Every stage of DRL may introduce uncertainty posing significant challenges to system robustness.
This paper focuses on solving issues induced by environmental observation noise. To our best
knowledge, three primary methods have been proposed for addressing this problem. Firstly, con-
ventional methods employ filters tailored to the noise pattern in sensor measurements to eliminate
observation noise Kalman (1960); Selesnick & Burrus (1998), or design disturbance observers Chen
et al. (2015) to compensate for the input of locomotion controllers. These approaches rely on human
expert’s experience and accurate system dynamics model, which are usually difficult to obtain. Sec-
ondly, DR Tremblay et al. (2018); Tobin et al. (2017); Andrychowicz et al. (2020) randomizes the
parameters in source environments to approximate the potential noise in task environments. Thirdly,
adversarial attack approaches Huang et al. (2017); Mandlekar et al. (2017) utilize attacks with policy
gradient to adversarially enhance system robustness. However, both DR and adversarial attack ex-
plicitly involve or model the observation noise during the training process. In real-world tasks, there
exists non-stationary noise which is hard to model precisely, or even intractable to model Karra &
Karim (2009). Therefore, prior works only work with stationary noise scenarios. Moreover, these
extra noise modeling procedures often induce observable learning efficiency decrease.

2.3 MASKED MULTIVARIATE TIME SERIES MODELING

Masked Language Modeling (MLM) has achieved significant success in NLP domain Radford et al.
(2018; 2019). MLM masks a portion of word tokens from the input sentence and trains the model
to predict the masked tokens, which has been demonstrated to be generally effective in learning
language representations for various downstream tasks. For Computer Vision (CV) tasks, Masked
Image Modeling (MIM) learns representations for images by pre-training neural networks to re-
construct masked pixels from visible ones Vincent et al. (2008); He et al. (2022). In model-based
reinforcement learning domain, Yu et al. (2022); Seo et al. (2023b;a) introduce masked-based la-
tent reconstruction methods to enhance the learning efficiency of DRL algorithms that use images
as input. This paper explores masked multivariate time series modeling for DRL to improve the
robustness against observation noise.

3 DE-NOISING CONSTRAINED POLICY OPTIMIZATION PROBLEM (DRPOP)

Locomotion control problems can be generally formulated as a MDP defined by the tuple
⟨S,A,P , ρ0, r, γ, T ⟩. Where S is ground truth state. A is set of agent actions, which is taken by
policy π(a | s). P : S×A×S 7→ [0, 1] is system transition probability distribution. ρ0 : S 7→ [0, 1]
is initial state distribution. r : S ×A × S 7→ R is reward function. γ is the discount factor where
γ ∈ [0, 1], and T is episode horizon.

Due to the objective presence of stationary and non-stationary observation noise in environment,
we formalize the process of noise affecting environment observations as ζ(s) : S → S/n. Under
this particular disturbed condition, the agent takes an action from policy π(a | ζ(s)). Because
observation procedure does not affect with objective world, the environment still transits from the
ground truth state s rather than ζ(s) to the next state. Since there exist remarkable gaps between ζ(s)
and s, the actions be taken under π(a | ζ(s)) will gradually deviate from the optimal trajectory over
time. Therefore, it’s critical to optimally estimate the true state from noisy observations η(s/n) :

S/n → Ŝ. This paper proposes a de-noising process for this state estimation task, which aims to
minimize the difference between state estimations under noise and ground truth. We expand the
overall de-noising MDP process trajectory as below:

πθ(τ̂) = πθ (η(ζ(s1)), a1, . . . ,η(ζ(sT )), aT )

= p (s1)

T∏
t=1

πθ (at | η(ζ(st))) p (st+1 | st, at) .
(1)
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Subsequently, to convert the above de-noising procedure into an optimal representation learning
form, we present this state estimation deviation minimization process as De-noising constRained
Policy Optimization Problem (DRPOP). Concretely, the de-noising process has to ensure the devi-
ation between their probability distributions bounded by an acceptable small ϵ, and we can achieve
this by regularizing:

DKL [p (η(ζ(s))) ∥p(s)] < ϵ. (2)
Thereby, this particular auxiliary regularizer can be modeled as a self-supervised learning style as:

J (η) = minE(ŝ)∼η(ζ(s))∥ŝ− s∥p. (3)

Overall, the objective of DRPOP is to maximize the expected cumulative discounted reward of the
original MDP based on this self-supervised learning style optimal state representation η(ζ(s)):

J (πθ) = maxE(s,a)∼ρπθ(η(ζ(s),a)

[
T∑
k=0

γkr (st+k, at+k)

]
. (4)

According to the policy gradient theorem proposed by Sutton et al. (1999), the gradient of J (πθ)
w.r.t θ can be derived as below (See Appendix A for more details):

∇θJ (πθ) ≈
1

N

N∑
n=1

Tn∑
t=1

R (sn,an)∇ log πθ (a
n
t | η(ζ(snt )) . (5)

Figure 2: Architecture of SIMA.

4 METHODOLOGY

4.1 OVERVIEW

Specifically, Self-supervised randomIzed Masked Augmentation (SIMA) can be categorized as a
three-stage pipeline, including (S1) teacher policy training, (S2) variational multi-sensor correlated
observations reconstruction, and (S3) student policy distillation, (as shown in Figure 2). Firstly,
SIMA constructs a teacher policy to generate training samples and labels for the upcoming self-
supervised learning procedure. Subsequently, SIMA utilizes the multi-sensor signals’ internal-
correlation to reconstruct the optimal state estimation representation latently. Accordingly, a self-
supervised learning process is adopted to recover the randomly masked states. Consequently, a
student policy, which observes the decoded latent state representation, learns a robust policy that
can apply to both stationary and non-stationary environmental noise under the guidance of teacher
policy via policy distillation.
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4.2 TEACHER POLICY TRAINING

In the first stage, teacher policy observes the ground truth state from the environment directly. It
is treated as an ordinary MDP, and can be solved by adopting off-the-shelf RL methods (e.g.,
Schulman et al. (2017); Haarnoja et al. (2018b); Fujimoto et al. (2018)). An agent selects an ac-
tion a from teacher policy πϑ(s) and receives a reward r from the environment. The objective of
teacher policy training is to find an optimal policy π∗

ϑ that maximizes the discounted sum of re-

wards over an infinite time horizon, which is J (πϑ) = maxE(s,a)∼ρπϑ

[∑T
k=0 γ

kr (st+k, at+k)
]
.

The gradient of J (πϑ) w.r.t ϑ is ∇ϑJ (πϑ) = E(s,a)∼ρπϑ [∇ϑ log πϑ(s, a)Qπϑ(s, a)], where

Qπϑ(s, a) = Eπϑ
[∑T

k=0 γ
kr (st, at) | s0 = s, a0 = a

]
is the state-action value function. The train-

ing samples x are stored and reused by the upcoming self-supervised learning process.

4.3 VARIATIONAL MULTI-SENSOR CORRELATED OBSERVATION RECONSTRUCTION

In the second stage, we focus on learning the internal-correlation of multivariate time series via a
self-supervised learning process, i.e., variational multi-sensor correlated observation reconstruc-
tion. The training sample x is generated by the teacher policy training process. Variational multi-
sensor correlated observation reconstruction consists of randomized masked augmentation and
masked state observation reconstruction. Concretely, randomized masked augmentation continu-
ously generates augmented state observations using masks, thereby promoting the training process
of masked state observation reconstruction.

Randomized Masked Augmentation. Vincent et al. (2008) reveals that adding masks to the ar-
gument makes the generative model have good fill-in-the-blanks performance, which is benefi-
cial to better capture the distribution of the argument. Given a state trajectory of K timesteps
τK = {xt,xt+1, · · · ,xt+K−1}, which starts at time t and ends at time t + K − 1. Each state
x represents a N -dimensional variable. All the states in the trajectory are stacked to be a se-
quence with the shape of K × N . To enhance the learning of masked state observation re-
construction, we introduce a novel mask mechanism named randomized masked augmentation

Figure 3: Illustration of randomized masked aug-
mentation.

, which is empirically designed as a type
of temporal sequence mask strategy. To be-
gin with, a mask token with the width of
k timesteps is constructed which is denoted
by Mtok. Then, we create a vector MBer

with the shape of 1 × N . Each element
B of MBer follows a Bernoulli distribution
Bernoulli(1, p). We define an indicator func-
tion I1(Bn) to represent whether there is a
mask in the nth dimension. If I1(Bn) = 1,
we randomly select a moment l on the nth-
dimensional state trajectory as the origin of
the mask token and l follows the uniform dis-
tribution Uniform(t, t + K − 1). There-
fore, a state observation trajectory τ̃K =
{xt, · · · , x̃t+l, x̃t+l+1, · · · , x̃t+l+k−1, · · · ,xt+K−1} has been generated, which contains tempo-
ral sequence masks with the length of k. The nth dimension of x̃t+l to x̃t+l+k−1 is replaced by
mask token as illustrated in Figure 3. Finally, we also added some small amplitude high-frequency
noise to further enhance the de-noising ability of the DRL agent. Essentially, due to the invariance of
feature parameters, randomized masked augmentation (denoted as rψ(x̃ | x)) obeys a deterministic
probability distribution with a theoretical bound (see Lemma 1 for proof details).

Lemma 1 Randomized masked augmentation subjects to a deterministic probability distribution
rψ(x̃ | x), denoted as x̃i ∼ rψ(x̃ | x). Then an evidence lower bound of marginal likelihood for
the argument x exists:

logPθ(x) = log

∫
x̃

Pθ(x̃,x)dx̃ (6)
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inf
x̃i∼rψ(x̃|x)

log

∫
x̃

Pθ(x̃,x)dx̃ :=
1

N

N∑
i=1

[logPθ (x̃i,x)− log rψ (x̃i | x)︸ ︷︷ ︸
Ci

] (7)

Proof. See Appendix B for proof details.

Masked State Observation Reconstruction. Masked state observation reconstruction aims to
reconstruct the optimal state representation from the masked state time series. The objective
function is the maximum likelihood estimation of state argument x, in the form of J (θ) =
maxEx∼D [log pθ(x)], where data set D is generated by the teacher policy. The generative model
adopted in this work is Variational Auto-Encoder (VAE) Kingma & Welling (2013). The prior dis-
tribution of VAE’s latent variables is set as multivariate normal distribution p (z) := N

(
µ,σ2

)
,

where µ is the mean value and σ is the standard deviation. A lstm-based encoder qϕ(z | x̃) is
adopted to encode masked state observation into the latent state representation. We treat this en-
coder as a de-noising module. Afterward, we build the decoder pθ(x | z) to learn to reconstruct
state observation from latent state representation. The training process is self-supervised, and the
state truth trajectory τK itself serves as the training label. According to Theorem 1, a variational
evidence lower bound of the state reconstruction x exists. By continuously optimizing and elevating
variational evidence lower bound, masked state observation reconstruction achieves the objective of
learning latent state representations from masked observations seamlessly.

Theorem 1 Based on Lemma 1, we define the encoder and decoder of VAE as qϕ(z | x̃) and
pθ(x | z), respectively. Assuming that the prior distribution of latent variables obeys multivariate
normal p (z) := N

(
µ,σ2

)
, where µ is the mean value and σ is the standard deviation. Then a

variational evidence lower bound of marginal likelihood for the argument x exists:

inf
x∼Pθ(x)

inf
x̃i∼rψ(x̃|x)

log

∫
x̃

Pθ(x̃,x)dx̃ :=

Ex̃i∼rψ(x̃|x)
[
Eqϕ(z|x̃i) [logPθ (x̃i,x | z)]−DKL [qϕ (z | x̃i) ∥Pθ(z)]

]
− 1

N

N∑
i=1

Ci,

(8)

where ψ is constant, ψ ⊥⊥ θ, ψ ⊥⊥ ϕ. When sample quantity N → +∞, 1
N

∑N
i=1 Ci is constant.

Proof. See Appendix C for all proof details.

4.4 STUDENT POLICY DISTILLATION.

The aforementioned teacher policy πϑ is adopted to guide the learning process of student policy
πs, which is constructed based on the de-noising module eϕ and MLP πω . Notably, the parameters
of both teacher policy and de-noising module are inherited from the preceding stages and remain
unchanged. We employ dataset aggregation strategy Ross et al. (2011) to distill the student policy.
The teacher policy πϑ is employed to collect a dataset D1 of trajectories at the first iteration, which
serves as the training data for the student policy. Each visited state s will be randomized masked
according to randomized masked augmentation and transmitted to the student policy as observation
s/m, i.e., χ(s) : S → S/m. The latent state representation is encoded by the de-noising module
z = eϕ(s/m) and the MLP outputs action a = πω(z). The action vectors â = πϑ(s) from the
teacher policy are used as supervisory signals associated with the corresponding state. The objective
function of the student policy is defined byJ (ω) = min

ω
E(s,a)∼ρ(πϑ,πs)

(πω(eϕ(χ(s)))− πϑ(s))2 =

min
ω

E(s,a)∼ρπi

(
πs(s/m)− πϑ(s)

)2
. Afterward, we use πi = βiπϑ + (1− βi)πs to collect more

trajectories at iteration i, and add them to the datasetD ← D∪Di, where βi is the weight coefficient
of sampling policy and βi ∈ [0, 1]. The above process is repeatedly executed until the student policy
is trained to convergence.

5 EXPERIMENTS

In this section, we first describe the experimental settings, then provide comprehensive experimental
results to answer the following research questions:
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RQ1: How does the proposed SIMA algorithm perform by comparing with state-of-the-art methods
under environmental observation noise?

RQ2: Can SIMA maintain outstanding state truth distribution reconstruction performance under
disturbance?

RQ3: Can SIMA still work when encountering both stationary and non-stationary environmental
observation noise with unseen distributions?

RQ4: Does the performance of SIMA suffer from a notable drop when removing or changing any
crucial component from the approach?

RQ5: Does SIMA have the potential to enhance robustness of different DRL baselines?

RQ6: Does SIMA outperform state-of-the-art masked model-based RL method, e.g., Mask World
Models (MWM)?

RQ7: Does SIMA outperform robotics locomotion state representation learning methods?

Six locomotion control tasks from Pybullet Coumans & Bai (2016) are adopted. The experimental
results and in-depth analysis of RQ1, RQ2, and RQ3 are shown subsequently. Beyond this, to
fully demonstrate the effectiveness of SIMA from multiple perspectives, we further provide four
additional experiments in appendixes. Specifically, Appendix G is for RQ4; Appendix H is for
RQ5; Appendix I is for RQ6; Appendix J is for RQ7.

5.1 LEARNING PERFORMANCE UNDER ENVIRONMENTAL OBSERVATION NOISE (RQ1)

In this section, we compare SIMA with several SOTA methods including RL-vanilla, RL-lstm, RL-
filter, and RL-Domain Randomization (RL-DR) to answer RQ1. Six typical locomotion control
environments from Pybullet are adopted. Additionally, we add both stationary and non-stationary
observation noise in evaluation environments (see more details in section 5.3). PPO Schulman et al.
(2017) is selected as implementation backbone for all methods.

Figure 4: Learning curves.

Figure 4 shows their learning curves in terms of average return. SIMA converges in the leading
edge, and shows outstanding performance in learning ability. It’s worth noting that SIMA consists
of three training stages. In the first two stages, SIMA utilizes clean observations to train a teacher
policy and a de-noising module. Due to the fact that the teacher policy of SIMA agent in the first
two stages was trained without environmental observation noise, it performs similar to other algo-
rithms in the first half of the training curves as illustrated in Figure 4. In the last stage, we initialize
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a student policy network to complete robust locomotion control tasks in noisy environments, which
utilizes optimal state representations learned in the first two stages. Since the student policy lacks
of guidance from the teacher policy in the first two stages, a notable performance drop pops-up in
the middle section of the learning curves as shown in Figure 4. Consequently, after a short warm-up
period intervened by the teacher policy, the performance of SIMA outperforms other algorithms. To
give a clearer description of the three stages of SIMA, we provide a schematic diagram in Figure 8
in Appendix E. On the other hand, it is observed that SIMA performs well whether in terms of low
or high observation dimensions, while other baselines perform relatively weak dueing to uncertainty
induced by noise increasing in high-dimensional environments. In contrast, SIMA learns the corre-
lation of multivariate time series via self-supervised learning without modeling environmental noise.
Therefore, negative impact of learning efficiency with high-dimensional observations is reduced to
a certain extent. In summary, SIMA outperforms SOTA methods by 15.7% increase in learning
performance. Besides the learning curves, we also evaluate these agents with four types of noisy
scenes by 30 trials (As shown in Appendix F), and SIMA is still proven to have notable advantages.

5.2 MAINTAINING OUTSTANDING STATE TRUTH DISTRIBUTION
RECONSTRUCTION PERFORMANCE UNDER DISTURBANCE (RQ2)

Figure 5: Analysis of (a), (b) state observation reconstruction, and (c), (d) policy distribution.

This section analyzes state truth distribution reconstruction performance under disturbance to an-
swer RQ2. We design two experiments under stationary and non-stationary environmental noise as
below: Firstly, we conduct an experiment to test de-noising performance of SIMA. This particular
experiment adopts one-dimensional state observation (i.e., leg joint angular velocity of HalfChee-
tah) as system input. The results are shown in Figure 5, in which Figure 5 (a) shows state recovery
result with stationary noise, and Figure 5 (b) shows the one with non-stationary noise. It is worth
noting that there exists a clear-cut non-stationary noise phase in Figure 5 (b). In such case, it can
be seen that SIMA properly reconstructs the correct signal from this unexpectable disturbance. In
view of this, we demonstrate that SIMA significantly enhances the overall system robustness against
environmental noise. Secondly, to further demonstrate that SIMA can also accurately reconstruct
the correct state observations from noises. We trained a teacher policy with state truth as a refer-
ence (illustrated as red dots scattered in Figure 5), a student policy to reconstruct the optimal policy
embeddings under these unexpectable disturbance, and a vanilla DRL policy to serve as the control
group. All these parts are trained with 2×106 samples. We utilize t-SNE to visualize the correspond-
ing distributions of the three policies in Figure 5, where 5 (c) represents experiment with stationary
noise, and Figure 5 (d) represents the one with non-stationary noise. It can be clearly seen that the
distribution of the student policy almost completely reconstructed the policy space of the teacher
policy in both disturbance conditions. Besides, the distribution of the vanilla DRL policy shows a
significant deviation from the teacher policy. These experimental results further support that SIMA
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can accurately estimate and reconstruct state representation from disturbance, and enhance system
robustness significantly.

5.3 GENERALIZATION ANALYSIS UNDER VARIOUS STATIONARY AND NON-STATIONARY
OBSERVATION NOISE CONDITIONS(RQ3)

Generalization is an important metric for deep learning algorithms. In this experiment, we evaluate
if SIMA can be generalized to the environments with various unseen environmental noise. Specif-
ically, we adopt both stationary noise (high-frequency noise) and non-stationary noise (intermittent
disturbance), each with 9 groups of different noise characteristics. The stationary noise groups fol-
low gaussian process with frequency mean as f = [16, 32, 64] (khz), and amplitude variance as
A = [0.4, 0.7, 1.0]. The corresponding results are illustrated in Figure 6 (a). Alternatively, the
non-stationary noise groups are set to be unpredictable in occurance and duration periods. In such
case, we name it as intermittent disturbance which follows uniform distribution with duration period
characteristics as T = [10, 15, 20] (steps), and amplitude characteristics as A = [5, 10, 15]. All
these noise durations occur in range of 0 to T randomly as illustrated in Figure 6 (b). All experi-
mental results are collected from HalfCheetah environment. It can be seen that SIMA outperforms
RL-vanilla by 95% in task success rate (we define task success once an agent never falls down dur-
ing running). Furthermore, SIMA also performs significantly smaller variance in average return than
RL-vanilla, which indicates SIMA maintains more stable under different disturbance characteristics.
Consequently, all these results prove that SIMA can be generalized to the environments with various
unseen environmental noise.

Figure 6: Analysis of generalization with (a) stationary noise and (b) non-stationary noise.

6 CONCLUSION AND FUTURE WORK

Learning to adapt to environmental observation noise is critical to DRL-based locomotion control
tasks. Since there exists non-stationary noise hardly to model precisely, or even intractable to model
Karra & Karim (2009). Prior works often fail to effectively cope with the above situations. In this
paper, we describe an approach for learning robust locomotion skills without modeling environmen-
tal observation noise explicitly. Inspired by multi-sensory integration mechanism, we first formulate
the MDP with an environmental de-noising process as a DRPOP problem. On this basis, we propose
a novel SIMA algorithm to accurately construct the latent state representation of ground truth from
noisy observations. In essence, SIMA is a paradigm shift that significantly improves robustness of
DRL agents against observation noise without explicitly modeling procedure. Experiments reveal
that SIMA learns the correlation of multivariate time series, and provides a feasible path to solve the
problem of DRL-based locomotion control with environmental observation noise. In future investi-
gations, SIMA can be deployed in real-world robot applications, e.g., autonomous self-driving cars,
unmanned aircraft vehicles, and any other real-world tasks.
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Appendix

A DERIVATION OF DRPOP’S OBJECTIVE FUCTION’S GRADIENT

The goal of DRPOP is to maximize the expected cumulative discounted reward of the locomotion
control process based on η(ζ(s)):

J (πθ) = maxE(s,a)∼ρπθ(η(ζ(s),a)

[
T∑
k=0

γkr (st+k, at+k)

]
. (9)

We define ŝ := η(ζ(s)). We denote sampling trajectory as τ := (s,a) and τ̂ := (ŝ,a). According
to the policy gradient theorem Sutton et al. (1999), the gradient of J (πθ) w.r.t θ can be derived as
below:

∇θJ (πθ) =
∫
∇θπθ(ŝ|a)R(s,a)d(s,a)

=
∑
(s,a)

R(s,a)∇πθ(ŝ|a)

=
∑
(s,a)

R(s,a)πθ(ŝ|a)
∇πθ(ŝ|a)
πθ(ŝ|a)

=
∑
(s,a)

R(s,a)πθ(ŝ|a)∇ log πθ(ŝ|a)

= E(s,a)∼πθ(ŝ|a)) [R(s,a)∇ log πθ(ŝ|a)]

≈ 1

N

N∑
n=1

R (sn,an)∇ log πθ (a
n | η(ζ(sn))

=
1

N

N∑
n=1

Tn∑
t=1

R (sn,an)∇ log πθ (a
n
t | η(ζ(snt ))

(10)

B PROOF OF LEMMA 1

Randomized masked augmentation subjects to a deterministic probability distribution rψ(x̃ | x),
denoted as x̃i ∼ rψ(x̃ | x). Then an evidence lower bound of marginal likelihood is proven as
listed below:

logPθ(x) = log

∫
x̃

Pθ(x̃,x)dx̃

= log

∫
x̃

Pθ(x̃,x)

rψ(x̃ | x)
rψ(x̃ | x)dx̃

= logErψ(x̃|x)

[
Pθ(x̃,x)

rψ(x̃ | x)

] (11)

According to Jensen’s inequality,
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logPθ(x) ≥ Erψ(x̃|x) log
[
Pθ(x̃,x)

rψ(x̃ | x)

]
= Erψ(x̃|x) [logPθ(x̃,x)− log rψ(x̃ | x)]

=
1

N

N∑
i=1

[logPθ (x̃i,x)− log rψ (x̃i | x)︸ ︷︷ ︸
Ci

]

=
1

N

N∑
i=1

[logPθ (x̃i,x)− Ci]

= ELBO1st

(12)

Because of ψ is constant and ψ ⊥⊥ θ, 1
N

∑N
i=1 Ci is constant, when the sample quantity N → +∞.

ELBO1st =
1

N

N∑
i=1

[logPθ (x̃i,x)]︸ ︷︷ ︸
Oi

− 1

N

N∑
i=1

Ci (13)

C PROOF OF THEOREM 1

Based on Lemma 1, we involve the latent variable z.

Oi = logPθ (x̃i,x)

= log

∫
z

Pθ (x̃i,x, z) dz

= log

∫
z

Pθ (x̃i,x, z)

qϕ (z | x̃i)
qϕ (z | x̃i) dz

= logEqϕ(z|x̃i)

[
Pθ (x̃i,x, z)

qϕ (z | x̃i)

]
(14)

According to Jensen’s inequality,

Oi ≥ Eqϕ(z|x̃i) log
[
Pθ (x̃i,x, z)

qϕ (z | x̃i)

]
= Eqϕ(z|x̃i)

[
logPθ (x̃i,x | z) + log

Pθ(z)

qϕ (z | x̃i)

]
= Eqϕ(z|x̃i) [logPθ (x̃i,x | z)] +

∫
z

qϕ (z | x̃i) log
Pθ(z)

qϕ (z, x̃i)
dz

= Eqϕ(z|x̃i) [logPθ (x̃i,x | z)]−DkL [qϕ (z | x̃i) ∥Pθ(z)]

(15)

So we can get a variational evidence lower bound of marginal likelihood ELBO2nd as below:

ELBO2nd =Ex̃i∼rψ(x̃|x)
[
Eqϕ(z|x̃i) [logPθ (x̃i,x | z)]−DKL [qϕ (z | x̃i) ∥Pθ(z)]

]
− 1

N

N∑
i=1

Ci

(16)
where ψ is constant, ψ ⊥⊥ θ, ψ ⊥⊥ ϕ and only θ and ϕ are parameters that need to be optimized.
Overall, we obtain a variational evidence lower bound ELBO2nd.

logPθ(x) ≥ ELBO1st ≥ ELBO2nd (17)
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D EXPERIMENTAL SETTINGS

To evaluate the performance of SIMA, six locomotion control tasks (e.g., CartPoleContinuous-v0,
InvertedDoublePendulum-v0, Hopper-v0, Ant-v0, Walker2D-v0, and HalfCheetah-v0) from Pybul-
let Coumans & Bai (2016) are adopted. The observation dimensions of the six environments grad-
ually increase from left to right. Particularly, the observations from the evaluation environments
contain stationary noise (e.g., high-frequency noise), and also non-stationary noise (e.g., intermit-
tent disturbance), of which the distributions are unknown during training process. The training
procedure of all methods is conducted on a PC with i7-11700KF CPU with Geforce RTX 3080Ti
GPU.

Figure 7: Pybullet experimental environments.

E VISUALIZATION OF THREE SPLIT TRAINING STAGES IN LEARNING CURVES

A typical learning curve of SIMA with three split training stages is shown in Figure 8. We can
observe that teacher policy training (stage 1), and variational multisensor correlated observation
reconstruction (stage 2) are trained subsequently in the first half of the curve. Right after these
two stages finished, student policy distillation (stage 3) begins. In the last stage, we initialize a
student policy network to complete robust locomotion control tasks in noisy environments, which
utilizes optimal state representations learned in the first two stages. Since the student policy lacks of
guidance from the teacher policy in the first two stages, a notable performance drop pops-up in the
middle section of the learning curves as shown in Figure 8. After this short warm-up period, SIMA
rapidly achieves the best performance.

Figure 8: The schematic diagram of three stages learning performance.

F EVALUATION OF SIMA AND OTHER BASELINES

To evaluate the performance of post-trained SIMA agents more sufficiently, we conduct an additional
assessment with five algorithms (including SIMA) in six locomotion control tasks with four different
types of noise.

Firstly, we extensively train individual locomotion control policies in six clean environments (no en-
vironmental noise), and record the average returns (e.g., CartPole-200, Halfcheetah-2500). We then
adopt these results as benchmarks. To map the experimental results from these different algorithms
into a unified comparison range, we collect returns from 30 trials that are all normalized into values
between 0.0 and 100.0 as shown in Table 1, in which clean, hf-noise, disturbance, and anomaly
indicate no observation noise, high-frequency noise, intermittent disturbance, and high-frequency
noise, intermittent disturbance, and outlier points all combined together, respectively. All these al-
gorithms achieve more than 99 scores in all six clean environments. It can be revealed that all these

16



algorithms performs normally without environment noise. Results better than 90 scores are marked
as bold in the table. It can also be observed that RL-filter and SIMA perform better in hf-noise
ones. RL-DR and SIMA work well in scenarios with low-dimensional observations. Nevertheless,
only SIMA maintains good performance in high-dimensional observation tasks with all disturbance
settings.

Table 1: Additional performance test for SIMA and other baselines in 30 trials.

Algos
Envs CartPoleContinuous-v0 InvertedDoublePendulum-v0

clean hf-noise disturbance anomaly clean hf-noise disturbance anomaly
RL-vanilla 100.0± 0.0100.0± 0.0100.0± 0.0 69.6± 17.3 63.5± 23.7 62.3± 20.4 99.6± 0.899.6± 0.899.6± 0.8 88.3± 5.3 80.3± 4.7 85.9± 4.9
RL-filter 100.0± 0.0100.0± 0.0100.0± 0.0 98.9± 3.598.9± 3.598.9± 3.5 72.9± 7.2 76.4± 6.2 99.5± 1.199.5± 1.199.5± 1.1 98.8± 0.798.8± 0.798.8± 0.7 49.9± 7.7 52.8± 6.1
RL-DR 100.0± 0.0100.0± 0.0100.0± 0.0 99.3± 2.799.3± 2.799.3± 2.7 93.7± 7.393.7± 7.393.7± 7.3 97.4± 5.397.4± 5.397.4± 5.3 99.2± 1.299.2± 1.299.2± 1.2 94.6± 6.894.6± 6.894.6± 6.8 86.5± 14.8 87.6± 11.4
RL-lstm 100.0± 0.0100.0± 0.0100.0± 0.0 76.4± 11.7 67.1± 13.2 75.6± 12.4 99.6± 1.199.6± 1.199.6± 1.1 86.3± 4.3 82.7± 3.9 86.3± 5.6
SMARL 100.0± 0.0100.0± 0.0100.0± 0.0 100.0± 0.0100.0± 0.0100.0± 0.0 99.9± 0.199.9± 0.199.9± 0.1 99.9± 0.199.9± 0.199.9± 0.1 99.4± 1.099.4± 1.099.4± 1.0 99.5± 0.799.5± 0.799.5± 0.7 99.1± 1.399.1± 1.399.1± 1.3 99.2± 1.199.2± 1.199.2± 1.1

Algos
Envs Hopper-v0 Ant-v0

clean hf-noise disturbance anomaly clean hf-noise disturbance anomaly
RL-vanilla 99.8± 0.299.8± 0.299.8± 0.2 66.6± 3.2 51.7± 4.7 52.1± 3.1 99.8± 0.199.8± 0.199.8± 0.1 85.5± 7.5 88.9± 5.9 87.7± 6.6
RL-filter 99.5± 0.199.5± 0.199.5± 0.1 98.9± 0.398.9± 0.398.9± 0.3 47.9± 3.1 48.3± 2.4 99.8± 0.299.8± 0.299.8± 0.2 98.8± 0.698.8± 0.698.8± 0.6 61.7± 7.3 62.8± 7.7
RL-DR 99.0± 0.299.0± 0.299.0± 0.2 83.7± 4.6 70.2± 3.9 69.8± 5.7 99.1± 0.799.1± 0.799.1± 0.7 90.8± 9.090.8± 9.090.8± 9.0 77.1± 12.3 76.6± 10.0
RL-lstm 99.7± 0.199.7± 0.199.7± 0.1 57.3± 2.8 62.1± 4.0 62.8± 3.3 99.6± 0.199.6± 0.199.6± 0.1 86.9± 6.0 84.1± 7.1 85.6± 6.8
SMARL 99.7± 0.199.7± 0.199.7± 0.1 99.2± 0.599.2± 0.599.2± 0.5 99.3± 0.499.3± 0.499.3± 0.4 99.2± 0.699.2± 0.699.2± 0.6 99.6± 0.299.6± 0.299.6± 0.2 99.0± 1.299.0± 1.299.0± 1.2 99.6± 0.799.6± 0.799.6± 0.7 99.2± 1.799.2± 1.799.2± 1.7

Algos
Envs Walker2Dv0 HalfCheetah-v0

clean hf-noise disturbance anomaly clean hf-noise disturbance anomaly
RL-vanilla 99.8± 0.699.8± 0.699.8± 0.6 83.2± 5.4 86.1± 5.5 85.9± 5.3 99.5± 0.699.5± 0.699.5± 0.6 84.5± 5.0 85.7± 4.6 85.6± 5.2
RL-filter 99.5± 1.399.5± 1.399.5± 1.3 99.0± 5.699.0± 5.699.0± 5.6 84.8± 3.7 86.3± 4.1 99.5± 1.099.5± 1.099.5± 1.0 99.1± 2.199.1± 2.199.1± 2.1 52.3± 3.7 53.2± 3.9
RL-DR 99.2± 1.599.2± 1.599.2± 1.5 87.1± 9.3 87.0± 7.8 86.9± 7.1 98.9± 2.698.9± 2.698.9± 2.6 89.6± 5.5 82.8± 7.5 88.2± 8.3
RL-lstm 99.6± 1.199.6± 1.199.6± 1.1 86.4± 4.1 87.1± 3.3 87.1± 3.2 99.6± 0.799.6± 0.799.6± 0.7 66.3± 10.4 48.9± 17.2 49.3± 16.3
SMARL 99.6± 0.999.6± 0.999.6± 0.9 99.4± 0.899.4± 0.899.4± 0.8 99.4± 1.099.4± 1.099.4± 1.0 99.2± 1.499.2± 1.499.2± 1.4 99.4± 0.999.4± 0.999.4± 0.9 99.4± 0.999.4± 0.999.4± 0.9 99.1± 0.799.1± 0.799.1± 0.7 99.2± 0.699.2± 0.699.2± 0.6

G ABLATION STUDY (RQ4)

Component of SIMA. We assess the role of different parts of SIMA in this experiment. SIMA
with both randomized masked augmentation and masked state observation reconstruction is trained
directly as a baseline, which is compared to SIMA without randomized masked augmentation (de-
noted by SIMA-wo-mask) and SIMA without masked state observation reconstruction (denoted by
SIMA-wo-reconstruction). Figure 9 shows that the performance of SIMA outperforms the other
two variants. Since masked state observation reconstruction is designed to learn internal correlation
between multivariate time series via self-supervised learning, randomized masked augmentation is
designed to enrich the distribution of training data samples. It can be observed that the absence of
either randomized masked augmentation or masked state observation reconstruction significantly
reduce robustness of SIMA.

Figure 9: Ablation of SIMA components. Figure 10: Ablation of masked strategy.

Masked Augmentation Strategy. We discuss the role of masked augmentation strategy in this part.
Three types of randomized masked augmentation strategies are compared: (1) Random masking
(denoted as SIMA-R), (2) Uniform masking (denoted as SIMA-U), and (3) Temporal sequence
masking (denoted as SIMA-T). SIMA-T denotes that the state observation is masked with a fixed
length sequence window, as illustrated in Figure 3. Figure 10 shows that SIMA-T has significant
higher episodic return than the other two strategies, with smaller variance and more concentrated
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Table 2: Hyperparameters of SIMA.

Buffer size Latent dimension Train loss Validation loss
0.1M 8 134.759 1068.834
0.1M 16 8.156 1114.599
0.1M 24 3.955 709.471
0.1M 48 3.823 706.53
0.3M 8 137.329 138.516
0.3M 16 9.259 9.776
0.3M 24 5.037 5.726
0.3M 48 5.355 6.074
0.6M 8 137.657 142.386
0.6M 16 9.223 9.715
0.6M 24 5.182 5.589
0.6M 48 4.979 6.334

distribution. Accordingly, it can be revealed that temporary sequence masking can help masked state
observation reconstruction to capture the distribution of multivariate time series more precisely.

Figure 11: Different generative models.

Generative Models. We attempt BetaVAE Higgins et al. (2016) and Beta-TC-VAE Chen et al.
(2018) as benchmark generative models to encode masked state observation into the the latent state
representation. Experimental environment is Halfcheetah-v0 with observation noise. For BetaVAE
model, we set three sets of parameters β = 1 (i.e., vanilla VAE), β = 4, and β = 50. For Beta-TC-
VAE model, we set the parameters as α = 1, β = 1, and γ = 6. The results can be seen in Figure
11. The four generative models have almost the same impact on SIMA performance, with both
mean and variance being close. BetaVAE and Beta-TC-VAE aim to balance latent channel capacity
and independence constraints with reconstruction accuracy. The locomotion control experimental
scenarios in this paper belong to continuous dynamic system. Good disengagement could not result
in a significant improvement in downstream continuous control tasks. Experimental results indicate
that vanilla VAE can satisfy the requirements of SIMA.

Hyperparameters of masked state observation reconstruction. This experiment is a comparison of
hyperparameters perturbation, i.e., buffer size, and latent representation dimension. To ensure that
masked state observation reconstruction accurately captures the distribution of multivariate time se-
ries state observations, we empirically designed a training dataset and a validation dataset. This part
is a detailed comparison of perturbation on hyperparameters, i.e., buffer size and latent dimension.
In terms of buffer size, it can be seen from Table 2 that when buffer size is 3 × 105 and latent di-
mension is 24, training loss and validation loss reach the minimum values simultaneously. When
buffer size < 3 × 105, the validation loss becomes larger, indicating that masked state observation
reconstruction is overfitting, and when buffer size > 3 × 105, the training loss no longer decreases,
indicating that training process involves a large number of redundant calculations. In terms of la-
tent dimension, it can be seen that if latent dimension < 24, the model is underfitting. Once latent
dimension > 24, training time will be significantly extended. Consequently, we choose buffer size
= 3 × 105 and latent dimension = 24 as the optimal hyperparameters of masked state observation
reconstruction.
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H ENHANCE ROBUSTNESS OF DIFFERENT DRL BASELINES (RQ5)

In this section, SIMA is proven to enhance robustness for a wide range of RL algorithms, including
on-policy DRL method (PPO Schulman et al. (2017)), and off-policy methods (SAC Haarnoja et al.
(2018b), TD3 Fujimoto et al. (2018)). We adopt a Halfcheetah-v0 environment with observation
noise. As illustrated in Figure 12, SIMA improves robustness of all these baselines, which indicates
that SIMA is capable of enhancing DRL algorithms’ robustness against environmental noise.

Figure 12: Robustness enhanced by SIMA for different DRL baselines.

I COMPARATIONS WITH STATE-OF-THE-ART MASKED MODEL-BASED RL
METHOD (RQ6)

In this experiment, we mainly focus on learning performance comparations between SIMA and
Masked World Models (MWM) Seo et al. (2023a). The testing environment is Pybullet HalfCheetah-
v0 with stationary and non-stationary observation noise. Accordingly, we change MWM’s visual-
input based autoencoder from convolutional layers and vision transformers (ViT) to signal-input
fully connected layers and a variational autoencoder (VAE), respectively.

Figure 13: Evaluation of the fully trained agents.

Here, we find an interesting phenomenon in Figure 13 (a). From this figure, it can be clearly seen
that SIMA shows significant improvements in learning efficiency compared to MWM in the first two
training stages. We speculate the proper reason is the teacher policy training (stage 1) can directly
observe the system state truth, thereby makes SIMA a quicker learner in locomotion skills. The
corresponding locomotion skills bring correct state and action distributions that are critical to de-
noising module learning performance in stage 2 subsequently. In contrast, MWM cannot directly
observe system state truth in all training stages. In Figure 13(a), at 100 × 104 time steps (point A),
it can be clearly seen that SIMA has higher learning efficiency than MWM. Afterward, we found
that the SIMA algorithm shows a significant performance improvement on average returns after
being connected to student policy distillation (stage 3). In Figure 13(a), at 160 × 104 time steps
(point B), due to the intervention of student policy distillation (in stage3), SIMA quickly converges
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Figure 14: Changes of the sate-action pairs’ distributions as the training process.

with almost no variances (2492.63±31.48). In contrast, MWM still shows significant fluctuations in
scores (1387.55±227.84). SIMA outperforms MWM by 44% in training scores. MWM reaches its
highest training score at 220× 104 time steps (point C), which requires 60× 104 samples more than
SIMA. It indicates SIMA has faster convergency. We evaluated the learning performance of SIMA
(trained for 160 × 104 time steps) and MWM (trained for 220 × 104 time steps). As depicted in
Figure 13(b), our approach SIMA (2486.77±67.42) exhibits better learning performance than MWM
(2289.43±276.33). The essential reason is that SIMA fully learned the optimal state representations
under environmental noise conditions by robot running procedures during the first two stages, thus
effectively suppress the environmental noise encountered.

To further demonstrate this conclusion, we conduct an additional experiment on the core differences
between MWM and SIMA. In case of MWM, the sampling-training cycles of MWM last for many
rounds, and in each new round, due to the drastic change of robot running policy distribution. MWM
needs to re-adapt to brand new world models and de-noising modules in all training rounds. In view
of this, we list the probability distributions of states and actions for multiple MWM training rounds
in Figure 14. It can be clearly seen that there have been significant changes in the probability
distributions of states and actions corresponding to the new trained robot’s running skills in each
round, resulting in unstable updates to the MWM policy. In contrast, SIMA employs a "never turn
back" training mode throughout the entire training process. Once the first two stages have properly
learned de-noising skills, stage 3 only needs to complete single round of student policy distillation
based on this. This ensures that SIMA only needs to adapt to new de-noising probability distribution
of states and actions once, and thus achieves a better learning performance. This novel learning
pipeline of SIMA brings significant improvement in learning curves observed in Figure 13.

J COMPARATIONS WITH ROBOTICS LOCOMOTION STATE REPRESENTATION
LEARNING METHODS (RQ7)

In this section, we mainly focus on comparing the performance of SIMA with other well-adopted
robotics locomotion state representation learning baselines, i.e., Belief_AE Miki et al. (2022), and
RMA Kumar et al. (2021). HalfCheetah-v0 environments with two types of noise are adopted.

Figure 15 and Figure 16 show experimental results under single-sensor noise conditions by assessing
robot locomotion dynamics, i.e., during entire locomotion task episodes, observation noise only
appears in one signal-input channel of the sensors. Figure 16 shows the average return performance
among SIMA, Belief_AE, and RMA by 50 episodic trials. It can be clearly seen in Figure 16, SIMA
and Belief_AE perform better than RMA. It is notable that Belief_AE performs poor in multi-sensor
noise conditions, we will talk about this subsequently.

Figure 17 and Figure 18 show experimental results under multi-sensor noise conditions. Figure
18 shows that SIMA also outperforms Belief_AE by 25% in average return. More specifically,
the "Belief state encoder" in Belief_AE leverages an attentional gate explicitly controls which as-
pects of exteroceptive data to pass through. However, the Belief_AE could handle noises only in
one-demensional observation (e.g., the elevation map in Miki et al. (2022)), and thus lacks of an
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important mechanism to assess the noise scale for all sensors input. Accordingly, when several
different sensors suffer from noises or disturbances, Belief_AE cannot reconstruct optimal state
representations correctly.

Figure 15: Diagram of single-sensor noise.
Figure 16: Reward statistics under single-sensor
noise.

Figure 17: Diagram of multiple-sensor noise.
Figure 18: Reward statistics under multiple-
sensor noise.
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