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ABSTRACT

Large Language models are used in various downstream tasks with great success.
However, changing specific knowledge or beliefs of a model (a.k.a. model editing)
efficiently to revise inaccurate predictions while not affecting all other cases is
still challenging. Most previous methods compute gradients to change the model.
These strategies generally work, paying the cost of high computing and memory
complexity. The semi-parametric strategy has recently shown its effectiveness in
alleviating the complexity via introducing memory to store the edits of knowledge.
However, the memory does not have a proper mechanism to be utilized by a large
pre-trained language model, limiting its generalizability to more complicated model
editing scenarios. This work proposes a prompt generation mechanism to bridge
the gap. Our method encodes the edits as prefix prompts for language models, then
has the large pre-trained language model perform inference with the prompts. In
other words, the model is edited by prompts without changing model parameters.
Our method, SEPROG, significantly outperforms state-of-art methods by up to
20% on entailed edit benchmarks and provides up to 30% better performance
over gradient-based methods on non-entailed benchmarks. These advantages are
achieved with much less computation and memory consumption, proving prompt
generation’s great potential in model editing problems.

1 INTRODUCTION

Large pre-trained language models (Devlin et al., 2018; Lewis et al., 2019; Radford et al., 2019; Liu
et al., 2019) have shown tremendous success on a wide variety of downstream tasks (Brown et al.,
2020) such as language generation, fact-checking, summarization, etc. These successes are due to
their ability to capture world-scaled knowledge by pre-training on massive corpora (Petroni et al.,
2019), as well as their effectiveness in fine-tuning to adapt to arbitrary downstream tasks.

However, modifying the underlying beliefs of large language models with a desired degree of control
is still an open problem (Hase et al., 2021). The need to evolve the model’s beliefs may range from
reflecting simple factual changes about the world (such as changing the capital of a country) to
updating entailed relationships between knowledge entities (such as deducing properties of a new
species based on its biological taxonomy). The problem setting of Model Editing (Mitchell et al.,
2021; Sinitsin et al., 2020) formulates the challenge well. Specifically, given a small sample of edit
data (e.g., description of factual changes), the goal is to make the model provide updated predictions
for inputs that are semantically related to the edit data (i.e., in-scope data), while retaining the same
beliefs for inputs outside the scope of edit data (i.e., out-scope data).

Previous model editing strategies learn a gradient-based optimizer (Mitchell et al., 2021) or a model
that can quickly adopt the edits via gradient descents (Sinitsin et al., 2020; Hase et al., 2021). These
methods achieve significant success with few edits, but their accuracy falls quickly with a larger
amount of edits. The interference between edits may be a cause, but controlling the beliefs through
the space of model parameters introduces unmanageable complexity. One obvious side-effect is
scalability. Mitchell et al. (2021) has shown it is non-trivial to generate the gradients by neural
networks or impractical to compute the gradient of gradients (i.e., hypergradients) for learning the
fast adapting models beyond billions of parameters.

A recent work, SERAC (Mitchell et al., 2022), tackles model editing using a semi-parametric approach
with an explicit memory to store the edit data. SERAC first classifies whether an input is in-scope or
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out-scope. If a case is out-scope (i.e., unrelated to the edit data), SERAC uses the base model for
predictions. In the in-scope case, SERAC uses an additional model (named counterfactual model
in the original paper) for predictions. The counterfactual model extracts the most similar edit in the
memory, then uses the edit together with the input for generating predictions. SERAC updates only its
memory when there are new edits; therefore, it avoids maneuvering the model parameter space. This
strategy is, therefore, scalable and agnostic to the base model. However, the two branches in SERAC
make predictions independently, isolating the counterfactual model from leveraging the knowledge of
the base model, which was trained with massive corpora. In other words, the design has no knowledge
sharing between the branches, making an entailed prediction less likely for the edit-related (in-scope)
inputs. This limitation is convoluted with the challenge of training a generalizable classifier to
distinguish in-/out-scope, causing the strategy to stumble on harder cases (examined in later sections).

This work proposes SEPROG (Semi-parametric Prompt-Generation) to retain the good parts of the
above strategies while minimizing the limitations: (1) scalable base model size; (2) scalable edit
dataset size; (3) good generalizability to hard edits (4) low cost to train and inference. Inspired by the
non-parametric neural models (Graves et al., 2014; Garnelo et al., 2018a), which stores training data
(or edits) rather than model parameters, our semi-parametric approach stores latent representations
of the edit data as well as leverages the information from pre-trained base model. Our approach
also builds on recent advances in prompt-tuning methods (Li & Liang, 2021; Lester et al., 2021),
which convert task descriptions (or the edits) to real-valued prefix for language inputs. These two
ideas lead to an end-to-end solution to change the belief of a model with encoder-decoder structures
(Lewis et al., 2019; Raffel et al., 2020). Our method generates edit dataset-specific embeddings by
leveraging the encoder, then injects the embeddings as the prefix of inputs to the decoder (Figure 1).
As a result, SEPROG does not change the base model after deployment (the advantage of SERAC)
while still using the base model to generate predictions on both in-scope and out-scope inputs. The
inference of in-scope inputs therefore can leverage the world knowledge of the base model to achieve
better generalization on hard edits (the advantage of gradient-based methods). Our contributions are
summarized as follows:

• We propose a novel model editing method that leverages both prompting and semi-parametric
strategies.

• We examined 6 model editing strategies on 3 evaluation aspects: (1) small/large amount of
edit data; (2) easy/hard edits; (3) cost of training/inference. This comprehensive comparison
shows that the dominant strategy is yet to come, but SEPROG’s well-balanced advantages in
all 3 aspects make it the best frontier in the current solution space.

2 MODEL EDITING PROBLEM

Let Mbase be a large pre-trained language model trained on a task T with dataset DT = {[xi, yi]}|DT |
i=1 .

The goal of model editing is to update the beliefs of Mbase with a set of K edit descriptors Ze =
{zei }Ki=1. In the case of question-answering, the edit descriptor could be a question-answer pair
zei = [xe

i , y
e
i ]. The edited model will need to provide updated answers for questions that are

semantically related to data in Ze while not changing its predictions for inputs unrelated to Ze.

Formally, we are given a model Mbase : Rn → Rm trained on dataset DT . Let I(ze) = {[x, y]}
be the set of inputs whose predictions are affected by information in edit descriptor ze, i.e., labels
y is different for datapoints in I(ze) due to updated information from ze. (Note that ze ∈ I(ze)).
Let O(ze) ⊂ DT be set of inputs whose predictions are not affected by ze. Then we define
I(Ze) =

⋃
ze I(ze) as the in-scope data and O(Ze) =

⋃
ze O(ze) as out-scope data.

The goal of model-editing is to derive an edited model Medit from Mbase such that:

1. Medit outputs the revised predictions for in-scope data ([x′, y′] ∼ I(Ze)):
argmaxy p(y|x′;Medit) = y′

2. The changes in the output probability distribution should be small for out-scope inputs.
In other words, the KL-Divergence between Mbase and Medit’s predictions is small:
minMedit

KL(p(·|x,Mbase)||p(·|x,Medit)).
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Figure 1: Overview of a version of SEPROG pipeline. The weights of pre-trained base encoder Ebase

and decoder Dbase are fixed (denoted by Green). SEPROG (denoted by Orange) consists of Edit
encoder Eedit that encodes edit descriptors, Edit selection module that extracts relevant information
related to input x from edit descriptors and classifies x as in-scope or out-scope with probability e(x).
If in-scope, SEPROG generates prefix prompts pr(x, Ze) to concatenate with input to base decoder.

3 SEPROG: MODEL EDITING VIA PREFIX PROMPT GENERATION

3.1 OVERVIEW

Our approach assumes that the base model Mbase is an encoder-decoder architecture with encoder
Ebase and decoder Dbase. Many widely used language models fall in this category (Raffel et al., 2020;
Lewis et al., 2019; Brown et al., 2020). Unlike most previous works on model-editing that altered
the weights of the base model (Mitchell et al., 2021; 2022; Sinitsin et al., 2020), SEPROG trains a
neural model to learn to generate prompt embeddings pr(Ze, x) based on the edit descriptors Ze and
input x. The generated prompt pr(Ze, x) provides information on the parts of the edit descriptors
relevant to input so that the model can use the edit information to provide updated beliefs. This
prompt is prepended to the token embeddings as input for decoder Dbase to inform the model to
provide updated predictions.

3.2 MODEL ARCHITECTURE

SEPROG contains 3 modules to generate the prompt: 1) Edit encoder 2) Edit selection module and 3)
Prompt output decoder.

Edit Encoder Edit encoder Eedit converts each of the edit descriptors zei to a fixed-sized embed-
dings he

i :
he
i = Eedit(z

e
i ) (1)

Any encoder style architecture like BERT (Devlin et al., 2018) or encoders of a seq2seq architecture
can be used based on the task and the base model.

Edit selection module Given the set of embeddings of edit descriptors He = {he
i}Ni=1 and

encoding of input x as b(x) = Ebase(x), edit module first selects the most relevant edit descriptor
via cross-attention:

h(x) = CrossAttention(Wattb(x), H
e) (2)

where Watt a learnable weight matrix that performs a linear transform on b(x).

Since the input x maybe either in-scope or out-scope, we also introduce an edit classifier module that
predicts if x is in-scope using information from cross-attention layer:

e(x) = σ (NNe(h(x)⊕ b(x))) (3)
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where NNe is a simple feed-forward neural network with last layer returning a scalar, ⊕ is concatena-
tion operator and σ is the sigmoid function. Therefore, e(x) ∈ [0, 1] is the probability of x belonging
to in-scope set I(Ze).

Prompt Output Decoder Given the relevancy information h(x) of edit descriptors Ze to input x
as well as likelihood e(x) that x is in-scope, we now leverage this information to generate prompts
pr(x, Ze) ∈ Rp×d where p is the number of prompt embeddings and d is the input token embedding
dimension of base decoder Dbase.

First note that we only produce the prompts if e(x) > 0.5, i.e., the model classifies x as in-scope. We
use a feed-forward neural network NNprompt that produces a p× d dimensional embedding:

pr(x, Ze) = NNprompt(h(x)). (4)

Since the prompt is fed into the unchanged base decoder Dbase, the decoder leverages information
from the prompt as well as its prior knowledge from pre-training to effectively provide updated output
predictions.

3.3 TRAINING THE MODEL

The training of SEPROG learns only the 3 modules that output h(x), e(x), and pr(x, Ze) with frozen
base model (Ebase and Dbase). The 3 modules are optimized with two losses: scope classification
loss and prompt guidance loss.

Scope classification loss The weights of edit encoder Eedit and the components of edit selection
module ( Watt, CrossAttention and NNe) are optimized with this loss to predict the in-scope
likelihood e(x):

Lsc = −EZe

[
E[x,·]∈I(Ze) log e(x) + E[x,·]∈O(Ze)(1− log e(x))

]
. (5)

Prompt Guidance Loss All the components of SEPROG used to generate in-scope prompts will be
jointly optimized with Lpg to change the output from Dbase:

Lpg = −EZe

[
E[x,y]∈I(Ze) log pDbase

(y|pr(x, Ze), Ebase(x))
]
. (6)

For each in-scope input x, we obtain base encoder output Ebase(x) and generate prompt pr(x, Ze)
from SEPROG which is fed as prefix to Dbase. The output predictions of Dbase are optimized
towards updated ground-truth y by tuning the parameters of SEPROG. The total training loss is a
linear combination of both losses with hyperparameter λ:

L = λLsc + (1− λ)Lpg (7)

4 RELATED WORK

Model Editing Editing model beliefs based on a small set of out-of-distribution samples has been an
active area of research with recent advances in the effectiveness of using large pre-trained models on a
wide range of NLG and NLU tasks. Most straightforward approaches involve fine-tuning a full set or
partial subset of model weights (Zhu et al., 2020). However, these approaches overfit to edit datasets
while degrading performance on out-scope data. Sinitsin et al. (2020) propose a gradient-based
meta-learning approach based on MAML (Finn et al., 2017) of learning to learn to update model
weights for new edit dataset during test-time while retaining performance on out-scope datasets.
This method, however, is prohibitively expensive for large models with ≥ 107 parameters. Another
alternative line of work (Mitchell et al., 2021; De Cao et al., 2021; Hase et al., 2021) for learning to
update model weights instead learn independent smaller neural networks that input gradients of model
weights on edit task and provide refined gradients. Since these methods do not retrain model weights,
they are relatively scalable but still computationally expensive to train. Moreover, they do not adapt
to edit datasets for large sizes. SERAC (Mitchell et al., 2022) propose an alternative gradient-free,
model-agnostic approach for editing where they classify each input as related to the edit dataset and
allocate out-scope inputs to underlying base models while using a separate counterfactual model for
dealing with in-scope inputs. While this method effectively deals with benchmarks that have simple
factual edits in edit datasets and similarity between edit dataset and input is easy to detect they fail on
more complex scenarios involving complex relations between input and edit such as entailment or
leveraging nuanced world knowledge from the base model.
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Neural non-parametric Models In the general machine learning setup, most models are parametric,
i.e., we learn the optimal set of parameters θ for function fθ that learns a mapping X → Y that fits
the data D = {xi,yi}i. Non-parametric models, in contrast, use the training data to directly derive a
functional: y = fθ(xi;D). Memory or retrieval based models (Graves et al., 2014; Rastogi et al.,
2022; Yogatama et al., 2021) fall into this category.

Neural Process based models (Garnelo et al., 2018a;b) leverage this explicit dependency of the
model’s functional with the dataset towards multi-task learning and zero-shot meta-learning problems.
At a high level, neural process models learn a latent embedding for each task based on the training
dataset of the task. This task embedding is in turn used by decoder to provide predictions for test
inputs related to the given task. Since these methods explicitly model dependency of training data
in the predictive process they are used in various applications where modeling these dependencies
improves inductive bias of such models (Rastogi et al., 2022) or provide robust and interpretable
predictions (Kamarthi et al., 2021).

Prompt based fine-tuning Using human-generated prompts as prefixes to inputs has shown to be
an effective method of zero-shot tuning of large-scale models to specific downstream tasks (Brown
et al., 2020) without requiring any update to model parameters. However, these approaches are
limited by the length of input prompts and the requirement of expert human prompting, which may
be sub-optimal for some tasks.

Li & Liang (2021) propose to learn optimal hidden activation prefixes for transformer layers of
language models that are fine-tuned for the given downstream task (without changing model weights).
They show surprisingly similar performance to explicit fine-tuning while optimizing a very small
number of parameters of prefix activations. Lester et al. (2021) instead proposed to optimize only
prefix word embeddings for each task showing similar downstream performance with an even lesser
number of parameters to optimize. Liu et al. (2021) further generalizes this approach beyond prefixes
to have prompts between inputs and output. While prompt tuning methods mostly focus on training
prompt embeddings for specific tasks, we study prompt generation to produce prompts specific to
the input given the edit descriptors to inform the base model of updated belief from the batch of edit
descriptors that are relevant to input.

5 EXPERIMENT SETUP

5.1 DATASETS

Table 1: Examples from Copy datasets (zsRE, FEVER, Wikipedia) and Entailed Datasets
(LeapOfThough, Wikidata5m).

Dataset Data Type Input Label
zsRE Edit Descriptor Who is the Sun Public License named after? Sun Micro Devices

In-Scope The Sun Public License has been named for whom? Sun Micro Devices
Out-Scope What continent is Mount Whillans found on? Antartica

FEVER Edit Descriptor In 1985, Cyndi Lauper won the best New Artist
Award at the 27th Grammy Awards. False

In-Scope At the 27th Grammy Awards in 1985 Cyndi
Lauper won the Best New Artist Award. False

Out-Scope Tetris has sold millions of copies. False
Wikipedia

Text Generation
Edit Descriptor

(Same as in-scope)
Du Fu’s mother died shortly after he was born,

and he was partially raised by his aunt.... -

Out-Scope While scientific experiments performed by Clementine
and Lunar Prospector could indicate the presence of water... -

LeapOfThought Edit Descriptor A viper is a vertebrate. True
Simple In-Scope Viper is an example of a vertebrate. True
Entailed In-Scope A viper has a brain. True

Out-Scope A Goldfish has a fin. True
Wikidata5m Edit Descriptor Mary Good has relation ‘award received’ to Garvan-Olin Medal

Simple In-Scope Mary Good has relation ‘winner of’ to Garvan-Olin Medal
Hard Out-Scope Mary Good has relation ‘educated at’ to U Arkansas

We experiment with two types of datasets: Copy-edit datasets (easy edits) and Entail-edit datasets
(hard edits), each of which are shown to be effective with memory-based (Mitchell et al., 2022) and
gradient-based methods (Mitchell et al., 2021; Sinitsin et al., 2020), respectively.
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Copy-edit datasets These datasets are designed such that the inputs of in-scope datapoint [x′, y′]
have very similar input x′ (rephrases) to the input xe of edit descriptors [xe, ze] and the output
ground truth of these in-scope examples are identical to the output of edit descriptor (y′ = ye). In
other words, Copy-edit datasets require Medit to simply map the in-scope input to the relevant edit
descriptor and copy the label from the edit-descriptor. We include the following 3 copy-edit datasets:

1. zsRE Question Answering: It contains 151631 questions based on factual knowledge from
Wikipedia (Levy et al., 2017). We use the train/validation/test split similar to De Cao et al.
(2021). The in-scope inputs are rephrased questions with the same answer.

2. FEVER Fact-checking (Thorne et al., 2018): It contains 115409 factual claims with
True/False labels. In-scope data include rephrases of updated fact xe in the edit-descriptor.

3. Wikipedia Text Generation: For each edit descriptor input xe taken from WikiText-103, an
alternate 10-token completion generated from a pre-trained distilGPT-2 model is chosen as
output. There are no alternate in-scope inputs; therefore, this tests whether the model can
replicate ye.

Entail-edit datasets These datasets were chosen such that in-scope examples have complex entail-
ment relationships with edit descriptors and require retaining and leveraging additional knowledge
from beliefs of the base model. These benchmarks may include hard out-scope data related to edit
descriptors but with a different label. We evaluate on following 2 datasets used in Hase et al. (2021):

1. LeapOfThought (LoT): This dataset introduced by Talmor et al. (2020) consists of claims
labeled as true or false based on supporting facts.

2. Wikidata5m: This benchmark uses a relational database (Wang et al., 2021) similar to
Hase et al. (2021) to build this dataset. The database contains triplets (o1, r, o2) where o1
and o2 are objects with relation r. In general cases, a triplet (o1, r, o2) is not related to
triplet (o1, r′, o3); therefore, having (o1, r, o2) as an edit should not affect the prediction
of (o1, r′, o3), unless r′ is a paraphrase of r. This property allows the benchmark to test
Medit’s ability in discriminating the hard out-scope inputs (with unrelated r′) from in-scope
inputs (with paraphrased r).

We provide examples from each dataset in Table 1.

5.2 BASELINE METHODS

We includes four gradient-based (1 to 4) and one memory-based methods. Each of them may target
different aspects of model editing problem and have specific strength. We compare all of them under
a coherent experimental setting. These methods are:

1. FT: It directly fine-tunes the model with edit descriptor using the total loss L (Equation 7).

2. ENN (Sinitsin et al., 2020): Editable Neural Networks (ENN) uses a bi-level optimization
meta-learning similar to MAML (Finn et al., 2017) to make the base model adaptable to
simple fine-tuning with edit descriptors.

3. SLAG (Hase et al., 2021): It extends the learned optimizer method from De Cao et al.
(2021) for a larger amount of edits and entailed edits.

4. MEND (Mitchell et al., 2021): It is a state-of-art method that learns a special neural networks
to generate the gradient update for specific layers of the base model during fine-tuning.

5. SERAC (Mitchell et al., 2022): The state-of-art memory-based method performs particularly
effectively on copy-edit datasets.

5.3 BACKBONE MODEL AND TASK-SPECIFIC ARCHITECTURE

For base models, similar to Mitchell et al. (2022; 2021), we use pre-trained T5 model (Raf-
fel et al., 2020) (google/t5-large-ssm-nq) for ZSRE, BERT (Devlin et al., 2018)
(bert-base-uncased) for FEVER and DistilGPT2 (Sanh et al., 2019) for Wikipedia gener-
ation. Similar to Hase et al. (2021) we use BART (Lewis et al., 2019) (facebook/bart-base)
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Table 2: Average Edit Success (ES↑) and Drawdown (DD↓) of SEPROG and baselines. Each value
is the averaged results from edit batch size {1, 4, 10, 20, 64, 128}. The Avg. column, which is the
average of all 5 datasets.

Copy-edit dataset Entail-edit dataset
Avg. ZSRE FEVER Wikipedia LoT Wikidata5m

Method ES DD ES DD ES DD ES DD ES DD ES DD
FT 0.58 0.38 0.65 0.47 0.82 0.15 0.46 0.36 0.49 0.45 0.50 0.47

ENN 0.67 0.27 0.72 0.31 0.86 0.13 0.56 0.25 0.63 0.37 0.59 0.27
SLAG 0.69 0.33 0.77 0.30 0.87 0.17 0.72 0.27 0.49 0.43 0.61 0.46
MEND 0.73 0.24 0.68 0.18 0.89 0.07 0.71 0.26 0.67 0.33 0.68 0.34
SERAC 0.76 0.15 0.95 0.07 0.96 0.05 0.97 0.18 0.43 0.22 0.47 0.24
SEPROG 0.78 0.18 0.78 0.18 0.91 0.06 0.83 0.23 0.72 0.26 0.67 0.18

for LeapOfThought and Wikidata5m. We edit only the last two layers of the backbone models’
encoders and decoders for all gradient-based methods. For both ZSRE and Wikipedia generation,
we use t5-small for the edit encoder due to its small computational complexity and memory
consumption. We use bert-base-uncased for FEVER and facebook/bart-base encoder
for LeapOfThought and Wikidata5m.

5.4 EVALUATION METRICS

Following prior works (Sinitsin et al., 2020; De Cao et al., 2021; Hase et al., 2021; Mitchell et al.,
2021; 2022), we use Edit Success (ES) and Drawdown (DD) as evaluation metrics.

Edit Success (ES) measures the ability of the model to change its predictions on in-scope inputs
based on edit descriptors. For a model Medit with edit descriptors Ze, the edit success is defined as
the average times the prediction of the model is an exact match to the ground truth of in-scope input:

ESMedit
(Ze) = E[x,y]∈I(Ze)1{Medit(x) = y} (8)

Drawdown(DD) measures model’s ability to retain similar predictions for out-scope inputs. DD is
defined as:

DDMedit
(Ze) = E[x,y]∈O(Ze)1{Medit(x) ̸= y} (9)

6 RESULTS

6.1 MODEL EDITING PERFORMANCE

To analyze the performance of SEPROG and baselines on edit batches of varying sizes, we evaluate
for batch sizes in {1, 4, 10, 20, 64, 128}. The average Edit Success (ES) and Drawdown (DD) are
reported in Table 2. On copy-edit datasets, SERAC significantly outperforms other models in both
ES and DD due to the easier task of classifying in-scope and out-scope data and copying labels of
relevant edit descriptors for in-scope inputs. In the case of entail-edit datasets, on average (over all
batch sizes) SEPROG outperforms baselines by 1-7% in ES and has comparable drawdown to best
performing models. We will now look at the performance of models across varying edit batch sizes
as shown in Figure 2.

Performance on copy-edit datasets across batch size SERAC consistently outperforms all other
models across varying batch sizes due reasons discussed above. However, we observe that SEPROG
consistently outperforms all other gradient-based baselines in both ES and DD for larger edit batch
sizes (64 and 128) with 7-30% better ES and 14-20% DD. This is due to our approach of generating
prompts based on the automatic selection of relevant edit descriptors and providing these prompts as
prefixes to the decoder without changing the weights of the base model.

Performance on entail-edit dataset across batch sizes Unlike the previous case, SERAC’s
performance is poor in entail-edit datasets that require knowledge from the base model to deal with
entailed predictions for in-scope inputs. For larger batches (64 and 128), SEPROG outperforms all
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Figure 2: ES and DD of SEPROG and baselines across varying edit batch sizes.

baselines in ES with 13-20% better scores. Meanwhile, SEPROG’s DD performance is comparable
to SERAC, both of which outperform gradient-based baselines. Therefore, due to the combination
of separate edit descriptor retrieval mechanism as well as leveraging information from base model,
SEPROG overcomes shortcomings of both memory-based and gradient-based baselines to provide
state-of-art performance on entail-edit datasets for large edit batches.

6.2 EFFICIENCY OF SEPROG

A major issue with the deployment of gradient-based methods is their large compute and memory
requirements, making it prohibitively expensive for editing large language models. For example,
ENN needs to compute hypergradients on model weights during the training of the base model. While
methods like MEND and SLAG use a separate set of neural networks to modify gradient updates of
the base model, computing the hypergradients to train these neural networks is still expensive and
consumes much memory.

Memory-based methods, like SERAC and our SEPROG, act as wrappers around the base model
without updating the base model’s weights. Moreover, while SERAC trains a separate counterfactual
model to deal with in-scope inputs, SEPROG only learns to generate prefix prompts and does not
need to train another language model. However, SEPROG needs to calculate gradients of the decoder
model to derive the intermediate gradients ∇pr(x,Ze)L w.r.t the input prompt.

Table 3: Average Wall time and peak GPU memory use during training and inference loop for a
single batch of size 64.

Training Inference
Models Time (ms.) Memory (GB) Time (ms.) Memory

FT NA NA 1262 8.9
ENN 8948 22 653 4.8

SLAG 2157 9.2 629 5.2
MEND 1755 9.4 517 5.5
SERAC 235 3.6 57 3.4
SEPROG 127 4.6 84 2.9

To measure the compute and memory requirement during editing of a large language model, we
measure the time it takes and the peak GPU memory usage during training and inference for a single
batch of size 64 of ZSRE dataset (with T5 base model) on an NVIDIA Tesla V100 GPU with 32 GB
VRAM in Table 3 (Results for additional batch sizes are in Appendix Section C). During training, we
observe that the time and memory requirements of SEPROG are around 3 times and 2 times lesser
than the most efficient gradient-based baselines, respectively. SERAC is observed to be 1.8 and
1.2 times more efficient than SEPROG for compute time and memory usage respectively. However,
during inference, SEPROG uses the least memory since it does not need to calculate gradients like
gradient-based methods or use two separate language models for in-scope and out-scope inputs like
SERAC.
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6.3 ABLATION STUDIES

Ablation variants of SEPROG We study the effectiveness of prompt-generating without fine-
tuning model weights as well as the efficacy of edit classifier modules using the following variants of
SEPROG:

• SP-FINETUNE: We use generated prefixes from SEPROG and fine-tune the base model.

• SP-NOCLASSIFIER: We remove the edit classifier (Equation 3) and do not use Scope
Classification Loss.

• SP-NOSELECT: We have scope classification during training but remove it in inference. In
other words, the generated prefix will always inject into the decoder, no matter whether the
input is in-scope or out-scope.

Prefix-tuning has shown to be an efficient method of tuning a large language model Li & Liang
(2021). Moreover, Li & Liang (2021) and Lester et al. (2021) showed that they are more generalizable
to domain transfers and don’t overfit to training data. Therefore, SP-FINETUNE is designed to test
the hypothesis that using prompt generation alone is a more effective method of preventing overfitting
and handling large edit batches than updating model weights on new datasets. We also test the efficacy
of having a separate classifier module to avoid interference between in-scope and out-scope inputs
during training and inference through SP-NOCLASSIFIER and SP-NOSELECT, respectively.
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Figure 3: ES and DD of SEPROG and ablation variants across varying edit batch sizes.

Edit performance of the ablation variants We compare ES and DD for all edit batch sizes in
Figure 3. On average, we observe that SEPROG outperforms the best performing variant in both ES
and DD by 5% and 31%, respectively. For larger batch sizes of 64 and 128, we observe 8% better ES
and 24% better DD on average. SP-NOCLASSIFIER is the worst performing model in terms of DD,
followed by SP-NOSELECT, showing the efficacy of the edit classifier module both for tuning the
modules of SEPROG via additional signal for learning supervision as well as for selecting when to
append prefix prompts.

7 CONCLUSION

We proposed SEPROG, a prefix generation model for effective model editing over large edit batch
sizes. SEPROG overcomes the scalability issues of gradient-based methods and inflexibility of
memory-based approaches by directly leveraging the base model for adapting to edit dataset by
providing appropriate prefix prompts based on the relevance of input to edit dataset. We observed up
to 30% improvement in edit performance over gradient-based models on copy-edit datasets and up to
20% better scores than all state-of-art models for harder entail-edit datasets with large edit batches.
Due to our prefix generation model, learning over a much smaller number of parameters SEPROG is
also 2-3 times more efficient than gradient-based approaches.
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Appendix for Semi-parametric Prompt-Generation for Model Edit-
ing

A DATASET AND BASELINE CODE

The copy-edit datasets were sourced from Mitchell et al. (2021) 1. LeapOfThought dataset was
constructed based on code from Hase et al. (2021)2. We also use the same train/validation/test splits
as in the official data sources.

We use the code for all gradient-based methods except SLAG from the official code of Mitchell et al.
(2021)1. We used official implementation of SLAG from the authors Hase et al. (2021)2. Since the
official implementation for SERAC is not publicly available at the time of writing, we implemented
it based on details from Mitchell et al. (2022) and observed the results to be similar to that reported in
the paper.

B HYPERPARAMETERS

Architecture Details We appended a single feed-forward layer of 768 units to all edit encoders
such that he

i ∈ R768. The learnable weight Watt of CrossAttention has dimensions 768×d where
d is the output dimensions of b(x) from base encoder Ebase. NNe is a two-layer feed-forward with
all hidden and output layers having 768 units. While larger prefix-length p generally provides better
performance (Li & Liang, 2021), we found the marginal performance gains to be minimal for p
greater than 32 in all benchmarks.

Training specifics In all benchmarks, we used an Adam optimizer (Kingma & Ba, 2014) with
a linear warm-up in learning rate over the first 200 epochs and gradient clipping threshold set at
5.0. We use early stopping with the patience of 200 epochs over total loss on the validation data for
copy-edit datasets and 1000 epochs for entail-edit datasets. For each benchmark, we mostly tuned
over learning rate and λ and found that the learning rate between 1e-5 and 1e-4 and λ ∈ [0.1, 0.5]
provided good performance. During training, we sample the same number of in-scope and out-scope
samples per batch and we use only in-scope examples to derive prompt guidance loss whereas we use
both for scope classification loss.

C TRAINING AND INFERENCE TIMES FOR VARYING BATCH SIZES

Table 4: Average Wall time and peak GPU memory use during training and inference loop for a
single batch of size 32.

Training Inference
Models Time (ms.) Memory (GB) Time (ms.) Memory

FT NA NA 922 6.8
ENN 7229.5 18.3 419 4.1

SLAG 5883 6.95 495 4.2
MEND 3108 7.65 351 5.1
SERAC 194 3.3 48 3.3

SePropTe 109 3.8 69 2.8

1https://github.com/eric-mitchell/mend
2https://github.com/peterbhase/SLAG-Belief-Updating
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Table 5: Average Wall time and peak GPU memory use during training and inference loop for a
single batch of size 64.

Training Inference
Models Time (ms.) Memory (GB) Time (ms.) Memory

FT NA NA 1262 8.9
ENN 8948 22 653 4.8

SLAG 2157 9.2 629 5.2
MEND 1755 9.4 517 5.5
SERAC 235 3.6 57 3.4
SEPROG 127 4.6 84 2.9

Table 6: Average Wall time and peak GPU memory use during training and inference loop for a
single batch of size 128.

Training Inference
Models Time (ms.) Memory (GB) Time (ms.) Memory

FT NA NA 1955 14.6
ENN 12385 29.4 1056 6.9

SLAG 7391 13.7 897 7.2
MEND 5482 12.9 840 6.4
SERAC 317 4.2 69 3.7

SePropTe 169 6.5 103 3.1
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