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Abstract
Graph Foundation Models hold significant poten-
tial for advancing multi-domain graph learning,
yet their full capabilities remain largely untapped.
Existing works show promising task performance
with the “pretrain-then-prompt” paradigm, which
lacks theoretical foundations to understand why
it works and how much knowledge can be trans-
ferred from source domains to the target. In this
paper, we introduce BRIDGE, a Bounded gRaph
foundatIon model pre-trained on multi-Domains
with Generalization guarantEes. To learn discrim-
inative source knowledge, we align multi-domain
graph features with domain-invariant aligners dur-
ing pre-training. Then, a lightweight Mixture of
Experts (MoE) network is proposed to facilitate
downstream prompting through self-supervised
selective knowledge assembly and transfer. Fur-
ther, to determine the maximum amount of trans-
ferable knowledge, we derive an optimizable gen-
eralization error upper bound from a graph spec-
tral perspective given the Lipschitz continuity. Ex-
tensive experiments demonstrate the superiority
of BRIDGE on both node and graph classification
compared with 15 state-of-the-art baselines.

1. Introduction
Graph-structured data is pervasive across a wide range of do-
mains, including social network analysis (Fan et al., 2019),
recommendation systems (Wu et al., 2019), drug discov-
ery (Lin et al., 2021), and bioinformatics (Gligorijević et al.,
2021), etc. Graphs are capable of representing complex rela-
tionships and attributed knowledge between entities, making
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them a powerful tool for solving real-world problems. As
large models like GPTs and DeepSeek have shown remark-
able success in handling multi-modal Euclidean data (Chang
et al., 2024; Guo et al., 2025a), they struggle with graphs.
The inherent non-Euclidean structures, combined with het-
erogeneity and task diversity, makes it hard for large models
to process effectively (Mao et al., 2024a; Jin et al., 2024).

Within this context, Graph Foundation Models (GFMs) have
garnered significant attention in very recent studies (Mao
et al., 2024b; Shi et al., 2024a; Zi et al., 2024). A GFM is
typically defined as a graph learning model pre-trained on
extensive multi-domain graph data and adapted for diverse
downstream graph tasks (Bommasani et al., 2021). Such a
“pretrain-then-finetune” paradigm has validated its feasibility
of constructing GFMs (Tang et al., 2024a; He & Hooi, 2024;
Lachi et al., 2024). Beyond that, graph prompt learning
is a promising technique to speed up test-time fine-tuning,
demonstrating the updated “pretrain-then-prompt” paradigm
enabling generalization capabilities to any target domains
and diverse tasks, showing a potential path to GFMs.

However, despite the initial success, “pretrain-then-prompt”
frameworks still face notable limitations: (1) Over-reliance
on text-attributed graphs. Several methods rely heavily on
aligning features with textual descriptions, leveraging lan-
guage models to interpret domain-specific semantics (Tang
et al., 2024a; Li et al., 2024a; Wang et al., 2024; Tan et al.,
2024). Yet, many open graph datasets lack explicit text at-
tributes, making such approaches impractical for extensive
real-world applications. Furthermore, obtaining textual an-
notations for non-text graphs can be costly, time-consuming,
and prone to domain biases induced by language model
hallucinations (Ribeiro et al., 2021), ultimately hindering
generalization. (2) Insufficient theoretical analysis. While
graph prompts have empirically demonstrated strong perfor-
mance in transferring knowledge across graph domains (Sun
et al., 2023; Yu et al., 2024b), theoretical insights remain
sparse. Beyond discussing learnable parameters and fine-
tuning methods, there is limited theoretical understanding of
the mechanisms behind effective prompt-based transfer, es-
pecially in few-shot scenarios. Consequently, foundational
theoretical bounds guiding graph prompt generalization re-
main unclear.

1



How Much Can Transfer? BRIDGE: Bounded Multi-Domain Graph Foundation Model with Generalization Guarantees

The limitations are non-trivial due to three key challenges,

(1) Pre-training: How to align multi-domain features?
Graph features across different domains show varying distri-
butions, often characterized by both distinct dimensions and
semantics. Traditional feature alignment techniques like
SVD (Stewart, 1993; Yu et al., 2024c) or non-linear map-
ping with MLPs (Yin et al., 2022; Hou et al., 2024), often
fail to capture domain-specific knowledge. The challenge
lies in how to simultaneously and effectively align the het-
erogeneous features at both dimension- and semantics-level
while preserving shared and domain-invariant knowledge.
(2) Down-prompting: How to initialize prompts for effi-
cient adaptation? Graph prompt learning aims for efficient
adaptation with limited target domain data, which implicitly
requires fast fine-tuning on restricted learnable parameters
within limited epochs instead of re-training. Existing meth-
ods suffer from inefficient random initialization of graph
prompts, which results in slow convergence in fine-tuning,
particularly in few-shot settings where the available labeled
data is scarce. The challenge lies in how to initialize graph
prompts in a self-supervised way enabling source knowl-
edge to actively and adaptively support target adaptation.
(3) Theoretical analysis: How much knowledge can be
transferred? The ultimate goal of the GFM is to serve as
graph intelligence, taking in massive graph knowledge and
enabling zero-shot transfer to any target domain. Despite
the success of the aforementioned “pretrain-then-prompt”
paradigm, the challenge lies in the lack of understanding
regarding the lower bound of transferable knowledge, i.e.,
a thorough theoretical analysis of the generalization error
upper bound is crucial to quantify the limits of knowledge
transfer, which can also play as regularizers constraining
both the pre-training and prompting optimization.

To address these challenges above, we introduce BRIDGE,
a novel Bounded gRaph foundatIon model pre-trained on
multi-Domains with Generalization guarantEes. To capture
discriminative source domain knowledge, we align multi-
domain graph features with a set of domain-invariant align-
ers. We then introduce a lightweight MoE network to en-
hance prompting by enabling self-supervised and selective
knowledge transfer. To quantify the maximum transferable
knowledge, we derive an optimizable upper bound on the
generalization error, grounded in graph spectral theories,
leveraging the Lipschitz continuity. Our contributions are,

• We propose a novel multi-domain graph foundation model
named BRIDGE with a set of domain-invariant feature
aligners and efficient graph prompts initializers.

• We analyze generalization error for prompt fine-tuning,
and derive an optimizable upper bound for the first time.

• Extensive experiments have demonstrated the superiority
of BRIDGE on downstream node and graph classification
compared with 15 state-of-the-art baselines.

2. Related Work
2.1. Multi-Domain Graph Pre-training (Appendix H.1)

Pre-training on graphs (Liu et al., 2022; Hu et al., 2020a;
Xie et al., 2022) leverages self-supervised learning to cap-
ture intrinsic semantics, but often assumes high similarity
between domains, limiting generalization. Cross-domain
learning (Zhao et al., 2024; Liu et al., 2024b) aims to transfer
knowledge between domains but is often domain-specific
and task-tailored. Multi-domain methods (Liu et al., 2024b;
Tang et al., 2024b) seek to align domain features, yet specific
graph types constrain many or fail to address conflicts.

2.2. Graph Fine-tuning and Prompting (Appendix H.2)

Fine-tuning pre-trained graph models for downstream tasks
is computationally expensive (Zhang et al., 2022; Sun et al.,
2024; Zhili et al., 2024). Parameter-efficient fine-tuning
(PEFT) (Zhu et al., 2024a; Tian et al., 2024) mitigates these
issues but struggles in complex multi-domain scenarios due
to the domain biases and task heterogeneity. Prompt learn-
ing (Liu et al., 2023a; Zhou et al., 2022b) offers a more
efficient way of guiding models with minimal updates but
is limited to single-domain tasks and lacks scalability.

2.3. Towards Graph Foundation Models (Appendix H.3)

Graph Foundation Models (GFMs) extend language and
vision foundation models to graphs, where pre-training on
multi-domain data and transfer to downstream by parameter-
efficient fine-tuning and prompt learning provides a promis-
ing way. A growing line of inquiry is into the existence of
scaling laws in GFMs (Ma et al., 2024; Tang et al., 2024c;
Chen et al., 2024a; Liu et al., 2024c), which hypothesize
increasing parameter scale may yield emergence, such as en-
hanced transferability and generalization across tasks. How-
ever, its theoretical foundations remain under-developed.

3. Preliminary
Notation. A graph is denoted as G = (V, E), where V is
the node set and E is the edge set. Let A ∈ {0, 1}N×N be
the adjacency matrix and X ∈ RN×d be the node features,
where N = |V| is node number and d for input dimension.

Pre-training and Few-shot Fine-tuning. Given n source
graphs {GS} ∈ GS from multi-domains {DS} ∈ DS with
their labels {Y S} ∈ YS , the pre-training goal is to train a
graph learner h = g(fΘ(·)) on multi-domain graph datasets,
after which the pre-training parameter Θ⋆ is frozen. During
down-prompting, given a set of target graphs {GT } ∈ GT
from target domain {DT }∈DT (seen or unseen) with m ac-
cessible labels {Y T }∈YT under m-shot setting (m≪ n),
the goal is to fine-tune the pre-trained Θ⋆ to adapt to predict
the labels of the remaining unlabeled samples correctly.
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Figure 1. Framework of the proposed “pretrain-then-prompt”-based BRIDGE. ❶ Multi-Domain Pre-training: unifies multi-domain
graph features with domain-invariant dimension- and semantic-wise aligners. ❷ Cross-Domain Down-prompting: facilitates feature
adaptation with a lightweight MoE network. ❸ Spectral Regularizer: determines the maximum amount of transferable knowledge.

4. Proposed Method: BRIDGE
In this section, we elaborate on the proposed “pretrain-then-
prompt”-based BRIDGE with its framework shown in Fig-
ure 1. During pre-training, we align multi-domain graph
features with domain-invariant aligners. Then, a lightweight
Mixture of Experts (MoE) network is proposed to facilitate
downstream prompting. We derive an upper bound for the
generalization error from the graph spectral perspective to
determine the maximum amount of transferable knowledge.

4.1. Pre-training with Domain-Invariant Aligner

The primary goal of multi-domain graph pre-training is to
learn domain-specific knowledge and transfer it to the target
domain via parameters. However, the multi-domain graph
features are often associated with inconsistent dimensions
and intrinsic noise, which may hinder knowledge extraction.
This motivates us to propose the domain-invariant aligner,
which aligns features both dimensionally and semantically.

Domain-Invariant Aligner. We denote Ad as the aligner
functioned for dimension-wise feature alignment, and As
designed for semantic-wise alignment. Specifically, given a
graph Gi = (Vi, Ei) (i ⩽ n) with its feature matrix XS

i ∈
RNi×di from the source domain, Ad first acts dimension-
wise alignment for every graph from each source domain,

X̂S
i ∈ RNi×dS

= Ad(X
S
i ), for all Gi ∈ {GS}, (1)

where dS denotes the unified dimension for source graphs.
There exist multiple implementations for the Ad, where we
combine SVD and an MLP, consequently. To further align
semantic-wise features, encouraging pre-training model re-
lying on domain-specific knowledge that better generalizes
to unseen domains, we make following assumption w.r.t. In-
dependent Causal Mechanism (ICM) (Pearl & Judea, 2009).

Assumption 4.1 (Domain Invariance). For each source
domain Di ∈ {DS}, there exist a domain-specific invariant
aligner AI

s and variant aligner AV
s that lead to generalized

graph representation under any target domains. Domain-
invariant features X̂I

i = AI
s ⊙ X̂S

i should satisfy,

• Invariance Property: for any target domain Dj ∈{DS}∪
{DT }, the equality P(Yi | X̂I

i , Dj)=P(Yi | X̂I
i ) holds.

• Sufficient Condition: given any independent and random
noise ϵ, Yi = g(fΘ(X̂I

i ,Ai)) + ϵ, i.e., Yi ⊥ AV
s | AI

s ,
where fΘ(·) is the pre-trained graph encoder, g(·) is a
discriminator. The logic structure syntaxes ⊥ and | repre-
sents label Yi is independent of AV

s but rely on AI
s .

Assumption 4.1 suggests the aligned invariant features X̂I
i

governed by AI
s contain domain-specific causal correlations

to their ground truth label Yi, which is instrumental in fa-
cilitating the generalizability of the trained encoder fΘ(·)
when adapting to unseen target domains. The Invariance
Property ensures the aligner AI

s can always filter out dis-
criminative features for each domain by eliminating intrinsic
noise dimensions and spurious correlations. The Sufficient
Condition guarantees the aligned X̂I

i is sufficiently robust
for forecasting outcomes under the error budget ϵ. We ini-
tialize AI

s as random dimension-wise 0-1 mask (AV
s is the

complementary of AI
s ) projected by some learnable matrix.

Generalizable Pre-training Objective. Inspired by prior
studies (Liu et al., 2023b), we adopt link prediction as the
pre-training task, as there exist a vast number of links on
the massive multi-domain graphs without requiring annota-
tions, enabling the pre-training phase conducted in a self-
supervised manner. We leverage a universal task template
based on the node similarity, which solves task heterogene-
ity by incorporating classification and link prediction tasks.
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A series of quadruples (u, v+, v−, Yu) are consistently and
non-redundantly sampled from the source domain graphs
{GS}, where v+ is the direct neighbor of u, v− is the nega-
tive neighbor does not link to u, and Yu is the binary label
indicates the link existence, given by the pair-wise node sim-
ilarity discriminator g = MLP(sim(·, ·)). The pre-training
goal is to increase the semantic similarity between the node
embedding hS

u and hS
v+ while decreasing that between hS

u

and hS
v−. We formalize the task objective as,

Lpre(Θ;HS)= −
∑

(u,v+,v−)

ln
exp(g(hS

u ,h
S
v+)/τ)∑

v∈{v+,v−}
exp(g(hS

u ,h
S
v )/τ)

, (2)

where τ is the temperature, HS = stack[fΘ(X̂I
i ,Ai)]

n
i=1

is the invariant embedding obtained by the graph encoder.

Alignment Risk Regularization. It could be expected that
pre-training fΘ via Eq. (2) has limited generalization capa-
bilities to target domains as the joint distribution of graphs
and their labels being conditioned on domain intrinsic dis-
tributions, i.e., P(G,Y | D) = P(G | D)P(Y | G,D). To
improve knowledge transferability of the pre-trained model,
Eq. (2) is enhanced into a min-max dual optimization strat-
egy on the multi-domain semantic alignment risk, i.e.,

min
Θ

max
D∈{DS}∪{DT }

E(G,Y )∼P(G,Y|D)

[
Lpre(Θ;HS)|D

]
. (3)

As P(D) is unknown, directly optimize Eq. (3) is infeasible.
Leveraged by the aligner As, we transform Eq. (3) into,

min
Θ

ELpre(Θ;HS) + αV([ELpre(Θ; H̃S
k )]

K
k=1), (4)

where, H̃S
k = fΘ(AI

s ⊙ X̂S + (AV
s ⊙ X̂S)Wk,A). (5)

Note that, α and K are hyperparameters, V denotes variance.
Parameter of GNN Θ⋆ is fixed once pre-training converges.

Proposition 4.2 (Achievable Assumption). Minimizing
Eq. (4) encourages pre-trained f⋆

Θ to satisfy Assumption 4.1.

Proposition 4.3 (Equivalent Optimization). Optimizing
Eq. (4) is equivalent to minimizing the upper bound of multi-
domain semantic alignment risk in Eq. (3).

Proposition 4.2 avoids overly strong assumption, and Propo-
sition 4.3 guarantees the transformation from Eq. (3) to
Eq. (2) is equivalent. This highlights the role of aligners,
which not only align dimension- and semantic-wise multi-
domain graph features, but also enhance the generalization
potential and model robustness during the in-context pre-
training. We provide detailed proof in Appendix C.

4.2. Down-prompting via Self-Supervised MoE

To bridge the gap between pre-training and downstream
tasks (Liu et al., 2023b), our focus shifts towards transfer-
ring multi-domain knowledge acquired during pre-training
to downstream domains to overcome domain misalignment.

Dimension-wise Adaptation. Similarly, given any sample
(node or graph) Gi = (Vi, Ei) (i ⩽ m) with feature XT

i ∈
RNi×di from target domain Dj ∈ {DT }, we then utilize the
same dimension-wise aligner Ad to unify dimensionality,

X̂T
i ∈ RNi×dT

= Ad(X
T
i ), for all Gi ∈ {GT }, (6)

where dimension dT = dS = d unless otherwise specified.

Selective Knowledge Assembly. However, performing fur-
ther semantic-level feature alignment in the target domain
proves challenging, primarily as no target domain knowl-
edge is available during the pre-training. Building on the
assumption that domain experts share common knowledge,
we introduce a lightweight MoE network that selectively
assembles source domain aligners (experts) to facilitate fea-
ture adaptation in the target domain,

X̂T ′
i = (S⊤AI

s )⊙ X̂T
i ,S∈Rn= Softmax(ϕ(XT )), (7)

where S is the assignment weight vector, ϕ(·) is a learnable
routing network initialized by XT . Intrinsic source-domain
knowledge carried in As are assembled and transferred to
target domains aiding feature adaptation. Assembly MoE is
constructed in a lightweight scheme as it requires no extra
training for source-domain experts, and is optimized in a
self-supervised way by minimizing its assembly uncertainty,

LMoE(As;S) = H(S) = −
n∑

i=1

Si log(Si). (8)

Fine-tuning with Prompt Learning. The unification of pre-
training and downstream tasks enhances knowledge transfer
by the universal task template based on subgraph similarity.
However, it remains crucial to differentiate domain-specific
characteristics. Inspired by prompts in natural language
processing (Brown et al., 2020), where they are traditionally
handcrafted instructions that steer downstream learning with
task-specific cues, we propose to recall potential knowledge
with learnable prompts as few-shot graph learners, i.e.,

HT
i = f⋆

Θ(PΩ ⊙ X̂T ′
i ,Ai), (9)

where P is the graph prompt with initialized tunable vec-
tor Ω, which is expected to be updated within constrained
gradient descent epochs on m-shot supporting samples.

Overall Down-prompting Objective. As we aim at both
the node and graph classification tasks, we formulate the
down-prompting objective with the same universal task tem-
plate as pre-training. Given m (m≪ n) supporting (train-
ing) samples {(GT

i , Y
T
i )}mi=1, where HT denotes the node

(for node classification) or ego-graph embeddings (for graph
classification), the downstream classification objective is
transformed into determining the highest similarity between
the query sample and class prototype embedding, i.e.,

Lcls(Ω;HT )=−
∑

(GT
i ,Y

T
i )

ln
exp(g(HT

i ,H
T
Yi
)/τ)∑

Yj∈{YT}
exp(g(HT

i ,H
T
Yj
)/τ)

, (10)
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where HT
Yi

is the mean embedding (prototype) for samples
in class Yi. Then, the overall down-prompting objective is,

Ldown = Lcls(Ω;HT ) + βLMoE(As;S), (11)

where β is the trade-off hyperparameter.

4.3. Optimizing by Minimizing Generalization Error
Upper Bound During Knowledge Transfer

To address how much knowledge can be transferred from
the source to target domains, we reformulate this problem
by minimizing the generalization error, which allows us to
maximize transferable knowledge during down-prompting.

Generalization Error Upper Bound. Theoretically, the
amount of transferable knowledge depends on the empirical
adaptation errors. To this end, we leverage graph spectral
theory and Lipschitz continuity to derive an upper bound
that explicitly incorporates these factors.
Assumption 4.4 (Lipschitz Continuity). Suppose f and g
are Lipschitz continuous with constants Lf and Lg , satisfies,

Lf ≜ ∥f∥Lip = sup
Gi,Gj

∥f(Xi,Ai)−f(Xj ,Aj)∥2

dW(Gi, Gj)
, (12)

Lg ≜ ∥g∥Lip = sup
Hi,Hj

∥g(Hi, ·)− g(Hj , ·)∥2

dE(Hi,Hj)
, (13)

where dW denotes the first Wasserstein distance (Villani
et al., 2009), and dE denotes the Euclidean distance.

The Lipschitz Continuity guarantees the smoothness of f
and g, laying the groundwork for constraining h = g ◦ f
with a Lipschitz constant Lh, which cooperates with the
Wasserstein distance to establish a connection between
cross-domain distribution shifts and the generalization error.
Proposition 4.5 (Generalization Error Upper Bound
(Redko et al., 2017; Li et al., 2021; You et al., 2023)). Let
H = {h : G 7→ Y|h = g◦f} represent the hypothesis space
of bounded real-valued functions, where VCdim(H) = d.
Suppose hS ̸= hT with the Lipschitz constant Lh satisfies,

Lh ≜ ∥h∥Lip= sup
Gi,Gj

∥hD(Gi)− hD(Gj)∥2

dW(Gi, Gj)
⩽ LfLg, (14)

where D ∈ {S, T }. With probability no less than 1− δ, the
following inequality holds for target domain error ϵT (hT ),

ϵT (hT ) ⩽
[a] m

n+m
ϵ̂ T (hT ) +

[b] n

n+m
ϵ̂ S(hS)

+
[c]
2LfLgdW

(
P(GS),P(GT )

)
+

[d]
∆h

+O
[(

1

m
+

1

n

)
log

1

δ
+
d

n
log

n

d
+

d

m
log

m

d

] 1
2

,(15)

where ϵ̂ indicates empirical error, and ∆h satisfies,

∆h = min
(∣∣ϵS(hS)− ϵS(hT )

∣∣ , ∣∣ϵT(hS)− ϵT(hT )
∣∣). (16)

Bound Implementations. To instantiate Eq. (15), we de-
compose the generalization bound into four key components
from [a] to [d]. Terms [a] and [b] represent the empirical er-
ror on target and source domains, which can be equivalently
optimized by Eq. (10) and Eq. (2), respectively.

In such ways, the lower bound of the amount of transferable
knowledge (the upper bound of generalization error) is con-
strained by both the domain-divergence (term [c]) and the
discriminative capability of the graph encoder fΘ (term [d]),
both of which are restricted by the Lipschitz constant Lf .
Proposition 4.6 (The Lower Bound of Lf (Gama et al.,
2020; You et al., 2023)). Rewrite the first Wasserstein dis-
tance (optimal transport distance) between Gi and Gj ,

dW(Gi, Gj)= inf
P∈Π

(
∥Xi−PXj∥F +∥Ai−PAjP

⊤∥F
)
,(17)

where P is the optimized permutation matrix by minimizing
dW(Gi, Gj), Π is matrix set. Such that, the lower bound of
the Lipschitz constant of the encoder f is,

Lf ⩾ Lλ

(
1 + Γij

√
N∆

)
+O(Γ2), (18)

Γ=∥Ai−P⋆AjP
⋆⊤∥F,Γij=(∥Ui−Uj∥F +1)2−1, (19)

where P⋆ is the optimal permutation, Ai = UiΛiU
⊤
i is the

eigenvalue decomposition for both the adjacency matrices.
Lλ is the spectral Lipschitz constant, defined such that for
any eigenvalues λ1, λ2, the inequality |r(λ1)− r(λ2)| ⩽
Lλ |λ1 − λ2|, where r(·) is the frequency response. N∆ is
graph size after padding isolated nodes (Zhu et al., 2021).

Eq. (18) bounds Lf in a graph spectral perspective by char-
acterizing its smoothness. This suggests that changes in the
Lipschitz constant Lf inherently affect the balance between
domain divergence (term [c]) and discriminability (term [d]).

Bound as Spectral Regularizer. We transform Lf bound to
regularization on both spectral and feature signals by evalu-
ating its smoothness over consecutive spectral domains (You
et al., 2023). Considering our “pretrain-then-prompt” set-
tings, the constraints should be restricted to target domains
aiming at fine-tuning graph prompt PΩ. Given transformed
signals H̃T

i = U⊤
i H

T
i , X̃T

i = U⊤
i X̂

T
i , the regularizer is,

Rspec(Ω; X̂T ;HT )

=
1

m

m∑
i=1

sum
[
σ
(∣∣∣∆r

(
H̃T

i

)∣∣∣− ν
∣∣∣∆r

(
ΛiX̃

T
i

)∣∣∣)] , (20)

where ∆r(M)←M[2:N∆, :]−M[1:N∆−1, :] is row-wise
differencing, reflecting signal deviations, ν is the threshold,
and σ is the non-linear activator implemented by ReLU(·).
Bounded Down-prompt Fine-tuning. In summary, we
update the overall down-prompting objective in Eq. (11) to,

⌈Ldown⌉ = Ldown + γ Rspec(Ω; X̂T ;HT ). (21)

Training pipeline in Appendix B, proofs in Appendix C.
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5. Experiments
In this section, we conduct extensive experiments to evaluate
BRIDGE1. We focus on the following research questions,

• RQ1: How effective for few-shot classification?
• RQ2: Which section contributes most to the performance?
• RQ3: How time-efficient during down-prompting phase?
• RQ4: How sensitive to hyperparameters fluctuation?
• RQ5: Can LLMs enhance knowledge transferrability?

Detailed experimental setups, additional results, and analy-
sis are provided in Appendix D and Appendix E.

5.1. Experimental Settings

Datasets. To highlight multi-domain pre-training, we select
six benchmark graph datasets from three different domains,
which differs from conventional settings that consider any
single dataset as one independent domain. Specifically,

• Academic Domain: three citation networks Cora (Mc-
Callum et al., 2000), CiteSeer (Giles et al., 1998), and
PubMed (Sen et al., 2008), where nodes represent publi-
cations, and edges denote citations.

• E-Commerce Domain: two Amazon product networks
Photo (Shchur et al., 2018) and Computers (Shchur
et al., 2018), where nodes correspond to products, and
edges indicate frequent and related co-purchases.

• Social Network Domain: including Reddit (Hamilton
et al., 2017), which is a social network constructed from
its platform, where nodes represent posts, and edges mean
interactions, like comments and replies between posts.

Baselines. We compare BRIDGE with four primary cate-
gories, 15 state-of-the-art baselines. Specifically,

• Vanilla Graph Neural Networks: including GCN (Kipf &
Welling, 2022) and GAT (Velickovic et al., 2017), which
are trained in an end-to-end manner without pre-training.

• Graph Self-Supervised Pre-training: GCC (Qiu et al.,
2020), DGI (Veličković et al., 2019), InfoGraph (Sun
et al., 2020), GraphCL (You et al., 2020), DSSL (Xiao
et al., 2022), and GraphACL (Xiao et al., 2024), which
utilize self-supervised objectives to pre-train and finetune.

• Graph Prompt Fine-tuning: we select pioneering works
including GPPT (Sun et al., 2022), GraphPrompt (Liu
et al., 2023b), GraphPrompt+ (Yu et al., 2024b), GPF
(Fang et al., 2024), and ProNoG (Yu et al., 2025).

• Multi-Domain Graph Pre-training: we select the most
closely related baselines, including GCOPE (Zhao et al.,
2024) and MDGPT (Yu et al., 2024c).

1https://github.com/RingBDStack/BRIDGE.

Multi-Domain Pre-training Settings. We mainly focus
on the challenging task of generalizing to unseen datasets
and domains in downstream applications, incorporating the
distinctions between cross-dataset and cross-domain setups,

• Cross-Dataset: the goal is to evaluate cross-dataset per-
formance when pre-training and down-prompting shares
the same multiple domains but different datasets. Specif-
ically, we take Academic (Cora, CiteSeer, PubMed)
and E-Commerce (Photo, Computers) as the shared
domains. When each individual dataset is used as the tar-
get alternately, the remaining four datasets are collectively
used as the pre-training source datasets.

• Cross-Domain: extends to a more challenging scenario,
where the target dataset belongs to an unseen domain than
the source domain. Specifically, we take all datasets in
Academic and E-Commerce domains as the source during
pre-training, while Social Network (Reddit) as target.

Few-shot Down-prompting Settings. We evaluate node
and graph classifications as the down-prompting task under
the m-shot setting, where the m samples (nodes or graphs)
from each class are randomly selected as supervision. As
each dataset consists of a single graph that is not directly
feasible for graph classification, we construct ego-graphs
centered on the target nodes within each dataset (Lu et al.,
2021; Yu et al., 2024a;c), which are then applied for graph
classification, with each ego-graph labeled aligned with its
central node. We assess the model performance by accuracy
(Acc.) as few-shot is intrinsically a balanced classification.

5.2. RQ1: Few-Shot Node and Graph Classification

One-Shot Classification. We evaluate our BRIDGE against
15 state-of-the-art baselines under the challenging one-shot
settings for node and graph classification of its effectiveness
by transferring source knowledge in cross-dataset and cross-
domain scenarios. Results reported in Table 1 and Table 2
illustrate foundational findings. ❶ Overall, BRIDGE outper-
forms all 15 baselines in both node and graph classification
with an average improvement of 3.41% and 3.25%, respec-
tively, which is a relatively promising advancement with the
extreme one-shot supervision. ❷ The most closely related
GCOPE and MDGPT fail in both tasks. GCOPE shows subop-
timal performance due to its implicit and inadequate domain
feature alignment. MDGPT collapses mainly because its shal-
low SVD dimension-wise feature alignment with the lack of
knowledge transferring risk regularization. ❸ Cross-domain
adaptation poses a more difficult source knowledge trans-
fer condition compared with the cross-dataset settings, and
BRIDGE shows satisfying results when not only the source
dataset is unseen, but the domains are also not accessible.
❹ Additional results for five-shot setting in Appendix E.1
demonstrate the same trend compared with the above.
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Table 1. Accuracy (% ± standard deviation for five runs) of one-shot node classification. CR =Cora, CS =CiteSeer, PM =PubMed,
Ph =Photo, Com =Computers, Rdt =Reddit. The best results are shown in bold and the runner-ups are underlined.

Source
(Cross-Dataset | Cross-Domain)

CS PM

Ph Com

CR PM

Ph Com

CR CS

Ph Com

CR CS

PM Com

CR CS

PM Ph

CR CS PM

Ph Com

Model / Target CR CS PM Ph Com Rdt

GCN (bb.) (Kipf & Welling, 2022) 29.36 ± 4.20 30.99 ± 4.85 40.94 ± 7.05 40.05 ± 7.25 34.62 ± 8.95 52.33 ± 7.26
GAT (Velickovic et al., 2017) 29.00 ± 5.33 29.46 ± 3.32 40.09 ± 5.21 35.60 ± 6.52 33.15 ± 6.59 50.70 ± 7.06

GCC (Qiu et al., 2020) 31.67 ± 5.23 32.55 ± 2.69 41.66 ± 4.58 42.10 ± 5.99 35.91 ± 5.68 55.67 ± 6.01
DGI (Veličković et al., 2019) 30.82 ± 4.41 31.85 ± 4.36 40.08 ± 6.22 47.23 ± 6.03 37.05 ± 6.40 61.95 ± 6.22
GraphCL (You et al., 2020) 33.28 ± 6.03 29.12 ± 4.26 39.31 ± 7.05 42.98 ± 6.54 42.87 ± 5.32 60.06 ± 5.29
DSSL (Xiao et al., 2022) 30.65 ± 5.24 31.20 ± 6.33 40.89 ± 6.94 45.32 ± 7.28 38.41 ± 6.54 57.23 ± 6.61
GraphACL (Xiao et al., 2024) 35.26 ± 4.65 34.09 ± 6.40 43.54 ± 5.58 49.20 ± 7.00 41.86 ± 6.20 60.97 ± 3.39

GPPT (Sun et al., 2022) 32.18 ± 5.02 31.33 ± 4.20 41.27 ± 5.60 46.98 ± 4.04 35.18 ± 8.09 55.24 ± 6.87
GraphPrompt (Liu et al., 2023b) 37.95 ± 6.31 34.92 ± 6.75 45.85 ± 8.58 50.42 ± 8.05 42.58 ± 7.21 64.71 ± 5.21
GraphPrompt+ (Yu et al., 2024b) 36.06 ± 6.93 33.85 ± 7.62 45.08 ± 7.99 52.28 ± 7.51 43.39 ± 6.90 64.12 ± 6.25
GPF (Fang et al., 2024) 40.26 ± 8.33 40.20 ± 7.10 47.33 ± 6.63 51.48 ± 5.34 40.09 ± 6.19 63.52 ± 6.37
ProNoG (Yu et al., 2025) 44.57 ± 6.57 39.96 ± 7.99 50.48 ± 7.06 63.30 ± 4.92 50.29 ± 6.32 64.87 ± 5.18

GCOPE (Zhao et al., 2024) 35.29 ± 4.29 40.75 ± 4.28 44.55 ± 6.07 51.55 ± 5.36 43.74 ± 7.05 64.21 ± 4.22
MDGPT (Yu et al., 2024c) 42.29 ± 7.75 37.32 ± 7.01 50.89 ± 7.74 63.63 ± 7.23 49.78 ± 8.77 63.11 ± 3.01

BRIDGE (ours) 46.44 ± 8.01 42.18 ± 8.89 56.35 ± 7.22 67.87 ± 7.45 54.04 ± 8.52 68.55 ± 3.49

Table 2. Accuracy (% ± standard deviation for five runs) of one-shot graph classification. CR =Cora, CS =CiteSeer, PM =PubMed,
Ph =Photo, Com =Computers, Rdt =Reddit. The best results are shown in bold and the runner-ups are underlined.

Source
(Cross-Dataset | Cross-Domain)

CS PM

Ph Com

CR PM

Ph Com

CR CS

Ph Com

CR CS

PM Com

CR CS

PM Ph

CR CS PM

Ph Com

Model / Target CR CS PM Ph Com Rdt

GCN (bb.) (Kipf & Welling, 2022) 38.59 ± 6.33 29.90 ± 7.20 47.26 ± 7.12 56.02 ± 5.28 39.29 ± 6.25 62.77 ± 4.22
GAT (Velickovic et al., 2017) 35.64 ± 5.09 26.78 ± 6.91 41.72 ± 6.99 50.23 ± 4.98 37.25 ± 6.73 60.13 ± 4.95

InfoGraph (Sun et al., 2020) 41.76 ± 4.89 31.03 ± 5.07 47.92 ± 6.76 59.88 ± 5.09 41.33 ± 6.67 63.28 ± 5.06
GraphCL (You et al., 2020) 40.23 ± 5.28 32.99 ± 5.29 49.21 ± 8.16 58.02 ± 5.11 42.09 ± 5.38 64.01 ± 5.17
DSSL (Xiao et al., 2022) 40.95 ± 6.29 32.03 ± 6.80 49.32 ± 7.13 58.19 ± 6.10 41.94 ± 6.23 63.90 ± 6.19
GraphACL (Xiao et al., 2024) 41.08 ± 5.77 32.38 ± 5.91 49.25 ± 6.22 59.66 ± 5.27 43.18 ± 5.99 64.82 ± 6.22

GraphPrompt (Liu et al., 2023b) 42.18 ± 4.31 38.66 ± 6.12 51.28 ± 5.29 60.07 ± 5.70 47.31 ± 5.11 65.56 ± 5.18
GraphPrompt+ (Yu et al., 2024b) 43.87 ± 5.18 40.07 ± 6.21 51.83 ± 5.69 61.30 ± 5.91 47.08 ± 6.32 66.19 ± 5.97
GPF (Fang et al., 2024) 41.82 ± 8.01 39.00 ± 7.45 47.23 ± 8.90 59.21 ± 5.57 46.03 ± 9.01 66.92 ± 5.23
ProNoG (Yu et al., 2025) 50.98 ± 7.33 47.37 ± 7.08 55.35 ± 7.90 63.29 ± 6.33 50.21 ± 7.29 73.09 ± 4.03

GCOPE (Zhao et al., 2024) 44.29 ± 7.23 39.10 ± 8.39 50.82 ± 8.10 61.83 ± 6.48 51.12 ± 7.13 70.19 ± 5.12
MDGPT (Yu et al., 2024c) 49.11 ± 7.63 43.56 ± 8.25 53.90 ± 9.83 63.41 ± 6.70 49.56 ± 7.63 73.14 ± 6.39

BRIDGE (ours) 53.84 ± 7.52 50.49 ± 9.09 58.41 ± 8.52 68.33 ± 5.65 54.06 ± 7.55 75.76 ± 4.04

m-Shot Classification. To additionally evaluate BRIDGE’s
performance under different few-shot settings varied in m,
we selected three competitive baselines in RQ1, including
ProNoG, GCOPE and MDGPT for comparison. Results on
both the cross-dataset (Cora) and cross-domain (Reddit)
tasks are shown in Figure 2 and Figure 3. (Additional re-
sults are included in Appendix E.2) Results indicate that,
❶ BRIDGE outperforms the other three baselines in nearly
all m-shot settings. However, in very low-shot scenarios,
BRIDGE’s performance slightly lags behind the baselines.
This is due to the initial stabilization of its graph prompt
learning, which depends on the generalization error bound
and requires a few iterations to adapt with limited supervi-
sion. In contrast, baselines like ProNoG have optimized

parameters for low-shot settings, allowing them to outper-
form BRIDGE initially before its regularization takes effect.
❷ BRIDGE shows a slight advantage when m is small, with
its advantage gradually expanding as m grows larger, which
we consider as benefiting from the spectral regularizerRspec
that enables more effective fine-tuning on more sufficient
supervision through down prompts with a generalization
error upper bound guarantee. ❸ Results in both scenarios
show similar trends, highlighting BRIDGE’s advantages in
knowledge transfer. It demonstrates superior robustness in
cross-domain adaptation, particularly when the source and
target domains differ, effectively transferring knowledge
even without domain-specific data in the target domain,
which is crucial for real-world applications.
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Figure 2. m-shot evaluation on Cora (cross-dataset).
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Figure 3. m-shot evaluation on Reddit (cross-domain).

one-shot five-shot

40

50

60

A
cc

ur
ac

y 
(%

)

42.2

60.2

40.2

57.3

39.9

58.3

41.3

54.5

Node Classification

one-shot five-shot

40

50

60

A
cc

ur
ac

y 
(%

)

50.5

59.8

49.2

58.8

46.9

57.0

47.2

55.2

Graph Classification

BRIDGE BRIDGE (w/o      ) BRIDGE (w/o MoE) BRIDGE (w/o         )As Rspec

Figure 4. Ablation studies on CiteSeer.
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Figure 5. Down-prompt Fine-tuning on Photo (m = 5).

5.3. RQ2: Ablation Study

We conduct ablation studies concerning three key sections,

• BRIDGE (w/o As): remove the semantic-wise aligner
As, and only align multi-domain features with Ad.

• BRIDGE (w/o MoE): remove the lightweight MoE, and
replace the routing network by a simple average routing.

• BRIDGE (w/o Rspec): remove the spectral regularizer
Rspec in the bounded down-prompt fine-tuning objective.

Results (Figure 4) show that, ❶ All three sections demon-
strate effectiveness in boosting BRIDGE’s knowledge trans-
ferability in classification performance. ❷ The lightweight
MoE has a particularly pronounced impact on the one-shot
learning. It selectively assembles expert knowledge from
pre-training, which helps compensate for the limited super-
vision and makes it an essential component for effective
adaptation in low-shot scenarios. ❸ The spectral regular-
izerRspec becomes increasingly beneficial in the five-shot
learning. It helps constrain the generalization error during
cross-dataset and cross-domain tasks by leveraging more
target supervision. ❹ Removing the semantic-wise aligner
As results in a noticeable drop in performance, highlighting
the importance of semantic alignment in ensuring effective
knowledge transfer across domains, especially when feature
semantics vary. ❺ The performance improvement observed
when including all components suggests that each plays a
complementary role in enhancing BRIDGE’s robustness.
The MoE and spectral regularizer are especially valuable in
scenarios requiring efficient adaptation to unseen data.

5.4. RQ3: Efficiency Evaluation for Down-prompting

Graph prompt learning necessitates efficient training with a
limited number of tunable parameters and epochs. To assess
the down-prompting efficiency of BRIDGE, we analyze the
loss and accuracy training curves for node classification
task on the Photo dataset with m = 5 shots. Results (Fig-
ure 5) reveal that, ❶ BRIDGE outperforms the competitive
baselines in both loss reduction and accuracy improvement
within fewer epochs. Specifically, BRIDGE converges to a
lower loss (0.996) and achieves a higher accuracy (81.95%)
much faster compared to other methods. This demonstrates
that BRIDGE’s training process is more efficient, reach-
ing optimal performance without requiring as many itera-
tions, which is crucial when computational resources and
time are limited. ❷ In contrast, other baselines show rel-
atively higher loss values, ranging from 1.0 to 1.1, and
achieve weaker performance (accuracies between 68% and
75%). These methods take longer to converge, which in-
creases the overall training time and computational cost.
This inefficiency could be problematic in real-world settings
where resources are constrained. ❸ These results highlight
BRIDGE’s efficiency as a graph adapter. The model lever-
ages fewer training iterations to reach higher accuracy and
lower loss, which is a significant advantage when perform-
ing fine-tuning with limited labeled data or computational
power. ❹ The efficiency validation demonstrated here rein-
forces that BRIDGE is well-suited for real-world applica-
tions, especially in scenarios where training time and com-
putational cost are critical factors. This makes BRIDGE a
viable option for environments where rapid deployment and
scalability are essential.
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Figure 6. Hyperparameter studies on Computers (m = 5).

Table 3. Accuracy (%) of LLM-enhanced few-shot performance
targeted on Reddit under the cross-domain setting.

Source | Target CR CS PM Ph Com | Rdt

Task Node Classification Graph Classification

Model / m 0 1 5 0 1 5

MDGPT 49.69 63.11 75.29 64.80 73.14 80.29
MDGPT + LLM 51.08 65.56 76.34 66.07 75.35 82.02

BRIDGE 55.72 68.55 80.12 67.18 75.76 84.42
BRIDGE + LLM 57.16 70.70 82.31 69.14 77.31 86.87

5.5. RQ4: Hyperparamter Sensitivity Investigation

We evaluate the sensitvity of important hyperparameters in
graph classification on Computers in Figure 6, where,

• K: controls variant embedding augment times in Eq. (4).
• α: trades off between expectation and variation in Eq. (4).
• β: balances between Lcls and LMoE in Eq. (11).
• γ: acts between Ldown andRspec in Eq. (21).

Results (Figure 6) show that, ❶ BRIDGE is sensitive to K,
with performance peaking at K = 3 (65.0%). A moderate
number of embedding augmentations improves robustness,
while excessive augmentation slightly degrades. ❷ Increas-
ing α leads to steady performance gains, reaching 64.9% at
α = 0.5. This suggests that emphasizing the variation term
in alignment risk enhances generalization. ❸ BRIDGE per-
forms best when β = 0.1 (64.9%), indicating that moderate
MoE regularization benefits expert selection. Higher values
may over-constrain the adaptation process. ❹ γ shows a
clear effect on performance, with the best result (65.6%)
at γ = 0.1. The spectral regularizer helps reduce general-
ization error, though overly strong constraints may hinder
flexibility. ❺ All hyperparameters exhibit stable behavior
within reasonable ranges, with identifiable optimal points,
demonstrating the robustness and tunability of BRIDGE.

5.6. RQ5: LLM-Enhanced Multi-Domain Alignment

To explore the potential of language models in bridging
cross-domain gaps, we leverage pre-trained large language
models (LLMs) to generate textual descriptions for nodes
based on raw graph data (Liu et al., 2024b; Li et al., 2024b).
These generated descriptions serve as auxiliary node fea-
tures and provide an implicit form of cross-domain align-
ment, especially for graphs without inherent textual at-
tributes. Results (Table 3) demonstrate that, ❶ Both MDGPT
and our BRIDGE perform relatively poorly in the zero-shot
setting, which reflects the inherent difficulty of transferring
knowledge across domains in the absence of any supervi-
sion. This finding is consistent with prior research, where
the availability of semantic-rich text information signifi-
cantly enhances model generalization. ❷ After incorpo-
rating LLM-generated descriptions, both models exhibit

noticeable improvements across all few-shot settings. For
example, BRIDGE improves from 55.72% to 57.16% in
zero-shot node classification, and from 84.42% to 86.87% in
five-shot graph classification. This demonstrates that LLM-
generated text effectively enhances representation quality
even in graphs originally lacking textual attributes. ❷ Com-
pared with MDGPT, BRIDGE benefits more consistently
from LLM enhancement. This observation suggests that the
architectural components of BRIDGE, such as its semantic
aligner and mixture-of-experts routing, are more capable
of leveraging the additional semantic cues introduced by
LLMs. ❸ The results support the view that integrating LLM-
generated features can significantly reduce domain shifts
in cross-domain scenarios. Even when textual data is not
available natively, generating pseudo-descriptions through
language models provides a scalable and generalizable solu-
tion to improve knowledge transfer.

We can conclude that, enhancing graph models with LLM-
generated features proves to be a promising strategy for
improving few-shot performance, particularly under chal-
lenging settings where the target domain lacks labeled data.

6. Conclusion
We introduce a novel multi-domain graph pre-training and
prompting framework BRIDGE with domain-invariant fea-
ture aligners and efficient prompt initializers. We analyze
knowledge transfer generalization error and derive an op-
timizable bound as a spectral regularizer. Extensive exper-
iments demonstrate its superiority in classifications com-
pared with 15 state-of-the-art baselines. We also demon-
strate compatibility by integrating with LLMs to enhance
domain understanding and knowledge transferability.
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A. Notations

Notations Descriptions

G = (V, E) Graph G with node set V and edge set E .
A ∈ {0, 1}N×N Adjacency matrix A, where N is the number of nodes.
X ∈ RN×d Node feature matrix X, with N nodes and d feature dimensions.
{GS} ∈ GS , {GT } ∈ GT Graphs sampled from source domain (S) and target domains (T ).
{Y S} ∈ YS , {Y T } ∈ YT Corresponding graph labels in source domain (S) and target domains (T ).
{DS} ∈ DS , {DT } ∈ DT Source domains and targeted domains.
P(GS), P(GT ) Probability distributions of the source graph and target graph.
fΘ(·) : Rd 7→ Rh Graph encoder with learnable parameter Θ.
g(·) : Rh × Rh 7→ R2 Graph discriminator composed of sim(·, ·) and a binary MLP.
h = g ◦ f The graph learner compound of the encoder f(·) and the binary discriminator g(·)
r(·) Graph signal frequency response function.
ϕ(·) Learnable routing network in the MoE.
σ(·) Non-linear activation function (ReLU).
n The number of training samples in the source domain.
m The number of supporting samples (m-shot setting) in the target domain.
d The aligned feature dimensions.
Ad : Rdi 7→ Rd Dimension-wise feature aligner (implemented by composing SVD and MLP).
AI

s , AV
s ∈ {0, 1}n×d Semantic-wise invariant and variant feature aligner (implemented by a pair of masks).

XS , X̂S , X̂I Source domain graph features, dimension-aligned features, and semantic-
aligned domain-invariant features.

HS , hS Encoded source domain graph features and node features.
XT , X̂T , X̂T ′ Target domain graph features, dimension-aligned features, and adapted

target domain features assembled with the lightweight MoE.
HT , hT Encoded target domain graph features and node features.
S Assignment weight vector for the MoE network.
W Learnable weight matrix for projection.
PΩ Graph prompt with learnable vector Ω.
H Hypothesis space, defined as a mapping from graphs to labels.
VCdim(·) The VC (Vapnik-Chervonenkis) dimension of the hypothesis space.
Lf Lipschitz constant for the graph encoder f .
Lg Lipschitz constant for graph discriminator g.
Lλ Lipschitz constant for graph spectral.
λi Eigenvalues of the graph spectral signal.
dW Wasserstein distances.
dE Euclidean distances.
ϵS , ϵ̂ S error and empirical error for generalization in the source domains.
ϵT , ϵ̂ T error and empirical error for generalization in the target domains.
∆h Discrepancy between source and target domain errors.
Γ, Γij Terms related to the smoothness of graph features in Eq. (19).
P, P⋆ Permutation matrix and the optimized permutation matrix.
Lpre Pre-training loss function.
LMoE Loss function for the MoE network.
Lcls Loss function for the down-prompting classification.
Ldown Overall Loss function for the down-prompting phase few-shot training.
⌈Ldown⌉ Bounded overall Loss function for the down-prompting phase few-shot training.
Rspec Graph spectral regularizer for multi-domain generalization.
K Hyperparameter that controls variant embedding augmenting times in Eq. (4).
α Hyperparameter trades-off between expectation and variation term in Eq. (4).
β Hyperparameter that balances between Lcls and LMoE in Eq. (11).
γ Hyperparameter that acts between Ldown andRspec in Eq. (21).
τ Temperature parameter.
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B. Algorithm and Complexity Analysis
The pre-training pipeline of BRIDGE is illustrated in Algorithm 1, and the down-prompting (fine-tuning) pipeline is shown
in Algorithm 2. Next, we theoretically analyze their computational complexity, respectively.

Algorithm 1 Pre-training pipeline of BRIDGE.
Input: A set of n source graphs {GS} ∈ GS from multi-domains {DS} ∈ DS , where each of
Input: the graph Gi is associate with its feature matrix Xi ∈ RNi×di and adjacency matrix A
Input: ∈ RNi×Ni ; Domain-invariant aligners Ad and As; Learnable weight matrix for projection
Input: W; Number of pre-training epochs E1; Temperature parameter τ ; Number of variation
Input: times K; Hyperparameter α for trading-off expectation and variation terms.
Output: Pre-trained graph encoder and discriminator g(f⋆

Θ(·)).
Initialize all parameters randomly;
for e = 1, 2, · · · , E1 do
# Dimension-wise feature alignment
Aligned graph feature: X̂S

i ← Eq. (1) for each Gi ∈ {GS};
# Semantic-wise feature alignment
Aligned domain-invariant feature: X̂I

i = AI
s ⊙ X̂S

i with domain-invariant aligner AI
s ;

# Generalizable pre-training objective
Encode and stack source domain graph embeddings: HS = stack[fΘ(X̂I

i ,Ai)]
n
i=1;

Calculate pre-training loss: Lpre(Θ;HS)← Eq. (2);
# Alignment Risk Regularization
for k = 1, 2, · · · , K do

Calculate intervened embedding: H̃S
k ← Eq. (5);

end for
Calculate alignment risk regularization by variations: Lpre risk ← V([ELpre(Θ; H̃S

k )]
K
k=1);

# Optimization
Calculate the overall pre-training loss: Lpre overall ← ELpre + αLpre risk;
Update Θ by minimizing Lpre overall and back-propagation.

end for

Complexity Analysis of Algorithm 1. We analyze the computational complexity of each part in Algorithm 1 as follows.

• Dimension-wise feature alignment: We implement Ad by a two-layer MLP (Rdi 7→ RdS
). Its computational complexity

takes O(∑n
i=1 Nidid

S), where Ni represents node numbers in source graph Gi, and di is its initial feature dimension.
We omit the computational complexity of the preceding SVD computation here.

• Semantic-wise feature alignment: We implement AI
s , AV

s ∈ {0, 1}n×dS
by a pair of 0-1 mask. The mask operations on

X̂S
i takes the computational complexity of O(∑n

i=1)Nid
S .

• Feature encoding: We encode n source graphs by a two-layer GNN, which takes the complexity of O(∑n
i=1(|Ei|(dS +

dh) +Nid
2
h)), where |Ei| is the number of edges, dS is the aligned feature dimension, and dh is the hidden dimension.

• Pre-training loss calculation: Suppose there are n1 direct neighbors, n2 indirect neighbors (nodes that are connected)
averaged for each node in the source domain graphs, we could sample n × n1 × n2 quadruples, which is utilized to
formalize the self-supervised pre-training contrastive loss. Its computational complexity takesO(∑n

i=1(Ni(n1+n2)d
S)).

• Causal intervention on variant dimensions: We perform K times weighted projection as means of causal intervention,
which takes the computational complexity of O(K(

∑n
i=1 Ni(d

S)2)).
• Alignment risk regularization: K times variant feature encoding by the same two-layer GNN takes this computational

complexity of O(K∑n
i=1(|Ei|(dS + dh) +Nid

2
h)).

The overall computational complexity for the pre-training phase takes,

O
( n∑

i=1

Nidid
S
)
+O

( n∑
i=1

Nid
S
)
+O

( n∑
i=1

(|Ei|(dS + dh) +Nid
2
h)
)
+O

( n∑
i=1

(Ni(n1 + n2)d
S)
)
+

O
(
K
( n∑

i=1

Ni(d
S)2

))
+O

(
K

n∑
i=1

(
|Ei|(dS + dh) +Nid

2
h

))
. (B.1)
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Suppose every source graph has an average of N nodes, E edges, with d0 initial feature dimension, the overall computational
complexity is simplified to (dS = dT = d),

O(n(E(d+ dh) +Nd2h)) +O(nNd(d0 + d+ n1 + n2), (B.2)

where the additional complexity beyond that of a regular two-layer GCN does not lead to a perceptible increase in pre-training
time, as n, n1, n2 ≪ N in most cases. Such that, the pre-training computational complexity of BRIDGE is on par with
other state-of-the-art graph multi-domain pre-training models.

Algorithm 2 Down-prompting (fine-tuning) pipeline of BRIDGE.
Input: m nodes class-balanced sampled from a target graphs {GT } ∈ GT (node classification)
Input: or m target graphs {GT } ∈ GT from target domain {DT } ∈ DT (graph classification),
Input: where each of the graph Gi is associate with feature matrix Xi ∈ RNi×di and adjacency
Input: matrix A ∈ RNi×Ni ; The pre-trained graph encoder and discriminator g(f⋆

Θ(·)); Domain-
Input: invariant aligners Ad and As; Routing network ϕ(·); Assignment weight vector S; Tuna-
Input: ble graph prompts PΩ; Number of pre-training epochs E2; Temperature parameter τ ;
Input: Hyperparameter β and γ .
Output: Fine-tuned graph encoder and discriminator g(f⋆

Θ(·)).
Initialize all parameters randomly;
for e = 1, 2, · · · , E2 do
# Dimension-wise feature alignment
Aligned graph feature: X̂T

i ← Eq. (6) for each Gi ∈ {GT };
# Semantic-wise feature alignment
Initialize the assignment weight vector: S = Softmax(ϕ(XT ));
Assemble source domain aligners (experts) to facilitate semantic alignment: X̂T ′

i ← Eq. (7);
Optimize the MoE network: LMoE(As;S)← Eq. (8);
# Down-prompting classification objective
Encode target domain node or graph embeddings with graph prompts: HT

i ← Eq. (9);
Calculate down-prompting classification loss: Lcls(Ω;HT )← Eq. (10);
# Generalization bound as spectral regularizer
Calculate the spectral regularize: Rspec(Ω; X̂T ;HT )← Eq. (20);
# Optimization
Calculate overall loss: ⌈Ldown⌉ ← Lcls(Ω;HT ) + βLMoE(As;S) + γRspec(Ω; X̂T ;HT );
Update Ω by minimizing ⌈Ldown⌉ and back-propagation.

end for

Complexity Analysis of Algorithm 2. We analyze the computational complexity of each part in Algorithm 2 as follows.

• Dimension-wise feature alignment: We apply the same Ad in pre-training, which is implemented by a two-layer MLP
(Rdi 7→ RdT

). Its computational complexity takes O(Nidid
T ) for node classification and O(∑m

i=1 Nidid
T ) for graph

classification, where Ni represents node numbers in target graph Gi, and di is its initial feature dimension.

• Routing network initialization: The learnable routing network ϕ(·) is implemented by a single-layer MLP, which
is initialized by XT . The initialization takes the computation complexity of O(Nid

T n) for node classification and
O(∑m

i=1 Nid
T n) for graph classification.

• Selective knowledge assembly: The assignment weight vector takes the Softmax operation on output of ϕ(·), and then
assemble AI

s from source domains to guide dimension selection on X̂T , which takes the computational complexity of
O(nmdSdT ) for node classification and O(ndSdT ∑m

i=1 Ni) for graph classification.

• MoE optimization by uncertainty: We applied the self-supervised optimization by minimizing the uncertainty of the
assignment weight vector, where the uncertainty calculation takes the computational complexity of O(n) for both node
and graph classification.

• Graph prompt insertion: We initialize graph prompt with learnable vector Ω over the aligned features X̂T ′
i , which takes

the computational complexity of O(Nid
T ) for node classification and O(∑m

i=1 Nid
T ) for graph classification.

17



How Much Can Transfer? BRIDGE: Bounded Multi-Domain Graph Foundation Model with Generalization Guarantees

• Feature encoding: We encode target graph(s) by the pre-trained two-layer GNN, which takes the complexity of
O(|Ei|(dT + dh) +Nid

2
h) for node classification and O(∑m

i=1(|Ei|(dT + dh) +Nid
2
h)) for graph classification, where

|Ei| is the number of edges, dT is the aligned feature dimension, and h is the hidden dimension.

• Down-prompting classification loss: Suppose there are nc classes, the contrastive loss takes the computational complexity
of O(mncd

T ) for both node and graph classification.

• Spectral regularizer: Extracting spectral signals with eigenvalue decomposition (EVD) requires O(N3) for both node
and graph classification.

The overall computational complexity for the down-prompting (fine-tuning) phase of node classification takes,

O(Nidid
T)+O(Nid

T n)+O(nmdSdT )+O(n)+O(Nid
T )+O(|Ei|(dT + dh) +Nid

2
h)+O(mncd

T )+O(mN3
i ). (B.3)

Suppose every target graph has an average of N nodes, E edges, with d0 initial feature dimension, the overall computational
complexity of node classification is simplified to (dS = dT = d),

O(E(d+ dh) +Nd2h) +O(Nd(d0 + n)) +O(m(nd3 + ncd+N3)) +O(n). (B.4)

As m, n, nc, d, d0 are all small constants compared with N , beyond that of a regular two-layer GCN, the complexity
primarily increases due to the O(N3) complexity required for eigenvalue decomposition.

The overall computational complexity for the down-prompting (fine-tuning) phase of graph classification takes,

O
( m∑

i=1

Nidid
T
)
+O

( m∑
i=1

Nid
T n

)
+O

(
ndSdT

m∑
i=1

Ni

)
+O(n) +O

( m∑
i=1

Nid
T
)

+O
( m∑

i=1

(|Ei|(dT + dh) +Nid
2
h)
)
+O(mncd

T ) +O(N3). (B.5)

Similarly, the overall computational complexity of graph classification can also be simplified to (dS = dT = d),

O(m(E(d+ dh) +Nd2h)) +O(mNd(d0 + n+ nd)) +O(mdnc) +O(n) +O(N3). (B.6)

In the same way, since m, n, nc, d, and d0 are all small constants relative to N , the additional complexity compared to a
standard two-layer GCN is mainly attributed to the O(N3) complexity introduced by the eigenvalue decomposition.

To mitigate the O(N3) complexity of eigenvalue decomposition, several effective strategies are implemented (You et al.,
2023). Mini-batch training is utilized to reduce computational overhead by processing only a small subset of nodes in each
batch rather than the entire graph, ensuring that each batch is completed in tolerable time (Hamilton et al., 2017; Zeng
et al., 2020). Additionally, when EVD is indispensable, it is performed only once for the entire graph, and the results are
reused across subsequent training steps to avoid unnecessary computations. These optimizations keep the computational
burden manageable, as efficiency experiments demonstrate that the total down-prompting time remains in line with other
competitive baselines, striking a balance between computational efficiency and scalability for large-scale graphs.

It is worth noting that we temporarily set aside the theoretical analysis of space complexity and instead focus on evaluating
the actual computational time and space requirements through efficiency analysis experiments. Experimental results indicate
that, under the hardware and software configurations detailed in Appendix F.3, the pre-training time and space complexity of
our proposed BRIDGE are comparable to those of other competitive baselines. While the fine-tuning phase incurs slightly
higher time and space complexity than other baselines, this can be effectively mitigated by adopting optimized training
strategies to achieve a balance between performance and efficiency.

In summary, the computational complexity of the BRIDGE framework consists of two phases: pre-training and fine-tuning.
During the pre-training phase, the overall complexity is on par with other state-of-the-art pre-training frameworks, as
the additional computations for feature alignment and risk regularization remain manageable. In the fine-tuning phase,
although both node classification and graph classification are influenced by the O(N3) complexity introduced by eigenvalue
decomposition (EVD), the total down-prompting time remains in line with other competitive baselines, striking a balance
between computational efficiency and scalability for large-scale graphs.
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C. Proofs
C.1. Proof of Proposition 4.2: Achievable Assumption

We first restate Assumption 4.1 and Proposition 4.2 for reference.

Assumption 4.1 (Domain Invariance). For each source domain Di ∈ {DS}, there exist a domain-specific invariant
aligner AI

s and variant aligner AV
s that lead to generalized graph representation under any target domains. Domain-

invariant features X̂I
i = AI

s ⊙ X̂S
i should satisfy,

• Invariance Property: for any target domain Dj ∈ {DS} ∪ {DT }, the equality P(Yi | X̂I
i , Dj) = P(Yi | X̂I

i ) holds.

• Sufficient Condition: given any independent and random noise ϵ, Yi = g(fΘ(X̂I
i ,Ai)) + ϵ, i.e., Yi ⊥ AV

s | AI
s , where

fΘ(·) is the pre-trained graph encoder, g(·) is a discriminator. The logic structure syntaxes ⊥ and | represents label Yi

is independent of AV
s but rely on AI

s .

Proposition 4.2 (Achievable Assumption). Minimizing Eq. (4) encourages pre-trained f⋆
Θ to satisfy Assumption 4.1.

Proof. We begin by introducing the following lemma to reformulate the Invariance Property and the Sufficient Condition in
Assumption 4.1 via the mutual information theory (Kraskov et al., 2004).

Lemma C.1 (Mutual Information Equivalence). The Mutual Information I(·; ·) provides an equivalent representation
of the Invariance Property and the Sufficient Condition in Assumption 4.1, which takes the following form,

• Invariance Property: P(Yi | X̂I
i , Dj) = P(Yi | X̂I

i )⇔ I(Yi;Dj | X̂I
i ) = 0;

• Sufficient Condition: Yi = g(fΘ(X̂I
i ,Ai)) + ϵ⇔ I(Yi; X̂

I
i ) is maximized.

Proof. We establish Lemma C.1 by independently proving the validity of both the Invariance Property and the Sufficient
Condition (Yuan et al., 2023).

(1) Proofs of Invariance Property. Given three random variables x, y and z, the mutual information between x and y,
conditioned on z, is defined by,

I(x;y|z) = EP(z) [DKL(P(x,y|z) ∥ P(x|z)P(y|z))] . (C.1)

The joint conditional distribution P(x,y|z) can be written as,

P(x,y|z) = P(x|z,y)P(y|z). (C.2)

Substituting Eq. (C.2) into Eq. (C.1),

I(x;y|z) = EP(z)

[
log

P(x|z,y)
P(x|z)

]
. (C.3)

Eq. (C.3) is exactly the Kullback-Leibler divergence (Joyce, 2011) between the distributions P(x|z,y) and P(x|z), weighted
by P(z,y). Hence, we can conclude,

I(x;y|z) = DKL(P(x|z,y) ∥ P(x|z)). (C.4)

Then, substitute Yi into x, Dj into y, and X̂I
i into z in Eq (C.4), we can readily obtain the following equation,

I(Yi;Dj | X̂I
i ) = DKL(P(Yi | X̂I

i , Dj) ∥ P(Yi | X̂I
i )). (C.5)

When P(Yi | X̂I
i , Dj) = P(Yi | X̂I

i ), the Kullback-Leibler divergence between the distributions P(Yi | X̂I
i , Dj) and

P(Yi | X̂I
i ) equals 0, such that I(Yi;Dj | X̂I

i ) = 0. Similarly, it is also straightforward to derive the left-hand side from the
right-hand side of the equivalent condition of the Invariance Property. This will not be elaborated further here.

(2) Proofs of Sufficient Condition. We establish the sufficiency and necessity through the following two steps.

Step 1: We first prove for Yi, X̂I
i , and ϵ satisfying Yi=g(fΘ(X̂I

i ,Ai)) + ϵ, condition X̂I
i = argmaxX̂I

i
I(Yi; X̂

I
i ) holds.

We proceed by contradiction. Assume that X̂I
i ̸= argmaxX̂I

i
I(Yi; X̂

I
i ), and suppose that there exists another X̂I′

i satisfies
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X̂I′
i = argmaxX̂I

i
I(Yi; X̂

I
i ), such that X̂I′

i ̸= X̂I
i . We can always construct a permutation-invariant mapping function Π

such that X̂I′
i = Π(X̂I

i ,π), where π is a random variable. This leads to the following sequence of equalities,

I(Yi; X̂
I′
i ) = I(Yi; X̂

I
i ,π) = I(g(fΘ(X̂I

i ,Ai)); X̂
I
i ,π) = I(g(fΘ(X̂I

i ,Ai)); X̂
I
i ) = I(Yi; X̂

I
i ). (C.6)

Since X̂I′
i and X̂I

i yield the same mutual information with Yi, this contradicts the assumption that X̂I′
i ̸= X̂I

i . Therefore,
the condition X̂I

i = argmaxX̂I
i
I(Yi; X̂

I
i ) must hold.

Step 2: Next, we prove that for Yi, X̂I
i , and ϵ satisfying X̂I

i = argmaxX̂I
i
I(Yi; X̂

I
i ), the condition Yi = g(fΘ(X̂I

i ,Ai))+ϵ

must also hold. Again, we use proof by contradiction. Assume Yi ̸= g(fΘ(X̂I
i ,Ai)) + ϵ, and instead suppose Yi =

g(fΘ(X̂I′
i ,Ai)) + ϵ, where X̂I′

i ̸= X̂I
i . Under this assumption, we have the following inequality,

I(g(fΘ(X̂I′
i ,Ai)); X̂

I
i ) ⩽ I(g(fΘ(X̂I′

i ,Ai)); X̂
I′
i ), (C.7)

which implies that X̂I′
i = argmaxX̂I

i
I(Yi; X̂

I
i ). This contradicts the original assumption X̂I

i = argmaxX̂I
i
I(Yi; X̂

I
i ).

Hence, we conclude that Yi = g(fΘ(X̂I
i ,Ai)) + ϵ must hold.

Next, we establish Proposition 4.2 from two perspectives. Step 1 proves minimizing the expectation term in Eq. (4)
corresponds to maximizing the lower bound of I(Yi; X̂

I
i )), thereby encouraging the pre-trained model to satisfy the

Sufficient Condition. Step 2 proves minimizing the variance term in Eq. (4) minimizes the upper bound of I(Yi;Dj | X̂I
i ),

which ultimately leads the model satisfies the Invariance Property. The respective proofs are as follows.

Step 1: To begin, we show that minimizing the expectation term in Eq. (4) (ELpre(Θ;HS)) ensures that the pre-trained
model satisfies the Sufficient Condition stated in Assumption 4.1.

Referring to the Structural Causal Model (SCM) (Pearl & Judea, 2009; Pearl, 2010; Peters et al., 2017), given the dependency
relationship X̂I

i ← Gi → Yi, we can analyze that maxQ(X̂I
i |Gi)

I(Yi; X̂
I
i ) is equivalent to minQ(X̂I

i |Gi)
I(Yi;Gi | X̂I

i ),
as we remove the spurious correlations embedded in the dependencies between Yi and Gi by the set of domain-invariant
aligners. By considering Q(X̂I

i | Gi) as the variational distribution, the following upper bound can be derived, i.e.,

I(Yi;Gi | X̂I
i ) = DKL(P(Yi | Gi, Dj) ∥ P(Yi | X̂I

i , Dj)) (C.8)

= DKL(P(Yi | Gi, Dj) ∥ P(Yi | X̂I
i ))−DKL(P(Yi | X̂I

i , Dj) ∥ Q(Yi | X̂I
i )) (C.9)

⩽ DKL(P(Yi | Gi, Dj) ∥ Q(Yi | X̂I
i )) (C.10)

⩽ min
Q(Yi|X̂I

i)
DKL(P(Yi | Gi, Dj) ∥ Q(Yi | X̂I

i )). (C.11)

Additionally, the following expression holds,

DKL(P(Yi | Gi, Dj) ∥ Q(Yi | X̂I
i )) = EDjE(Gi,Yi)∼P(G,Y|Dj)EX̂I

i∼Q(X̂I
i |Gi)

[
log

P(Yi | Gi, Dj)

Q(Yi | X̂I
i )

]
(C.12)

⩽ EDjE(Gi,Yi)∼P(G,Y|Dj)

log P(Yi | Gi, Dj)

EX̂I
i∼Q(X̂I

i |Gi)
Q(Yi | X̂I

i )

 . (C.13)

Here, Eq. (C.13) relies on Jensen’s Inequality (Jensen, 1906; Wu et al., 2022), and requires the GNN encoder fΘ(·) is a
Dirac delta distribution (δ-distribution). Therefore, we reach,

min
Q(Yi|X̂I

i)
DKL(P(Yi | Gi, Dj) ∥ Q(Yi | X̂I

i ))⇔ min
Θ

EDj∼Q({DS}),(Gi,Yi)∼P(G,Y|Dj)Lpre(Θ;HS). (C.14)

Thus, we have demonstrated that minimizing the expectation term in Eq. (4) corresponds to minimizing the upper bound of
I(Yi;Gi | X̂I

i ) (or equivalently maximizing the lower bound of I(Yi; X̂
I
i )), thereby encouraging the pre-trained model to

satisfy the Sufficient Condition.

20



How Much Can Transfer? BRIDGE: Bounded Multi-Domain Graph Foundation Model with Generalization Guarantees

Step 2: We now demonstrate that minimizing the variance term in Eq. (4) (V([ELpre(Θ; H̃S
i )]

K
i=1)) guides the model to

satisfy the Invariance Property in Assumption 4.1.

By considering Q(X̂I
i | Gi) as the variational distribution, the following upper bound can be derived, i.e.,

I(Yi;Dj | X̂I
i ) = DKL(P(Yi | X̂I

i , Dj) ∥ P(Yi | X̂I
i )) (C.15)

= DKL(P(Yi | X̂I
i , Dj) ∥ EDj

P(Yi | X̂I
i , Dj)) (C.16)

= DKL(Q(Yi | X̂I
i ) ∥ EDj

Q(Yi | X̂I
i ))−DKL(Q(Yi | X̂I

i ) ∥ P(Yi | X̂I
i , Dj)) (C.17)

−DKL(EDj
P(Yi | X̂I

i , Dj) ∥ EDj
Q(Yi | X̂I

i )) (C.18)

⩽ DKL(Q(Yi | X̂I
i ) ∥ EDj

Q(Yi | X̂I
i )) (C.19)

⩽ min
Q(Yi|X̂I

i)
DKL(Q(Yi | X̂I

i ) ∥ EDj
Q(Yi | X̂I

i )). (C.20)

Additionally, we have,

DKL(Q(Yi | X̂I
i ) ∥ EDj

Q(Yi | X̂I
i )) = EDj

E(Gi,Yi)∼P(G,Y|Dj)EX̂I
i∼Q(X̂I

i |Gi)

[
log

Q(Yi | X̂I
i )

EDj
Q(Yi | Dj)

]
. (C.21)

Derived from Jensen’s Inequality (Jensen, 1906; Wu et al., 2022), we have,

DKL(Q(Yi | X̂I
i ) ∥ EDjQ(Yi | X̂I

i )) ⩽ EDj

[∣∣∣Lpre(Θ;HS)− EDjLpre(Θ; H̃S)
∣∣∣] , (C.22)

where H̃ denotes embeddings bound with misaligned features under any domain Dj ∈ {DS}. Finally, minimizing,

min
Q(Yi|X̂I

i)
DKL(Q(Yi | X̂I

i ) ∥ EDj
Q(Yi | X̂I

i ))⇔ V
[
EDj∼Q({DS}),(Gi,Yi)∼P(G,Y|Dj)ELpre(Θ; H̃S

i )
]K
i=1

. (C.23)

Thus, we have proven that minimizing the variance term in Eq. (4) minimizes the upper bound of I(Yi;Dj | X̂I
i ), which

ultimately leads the model satisfies the Invariance Property.

We conclude the proof for Proposition 4.2.

Proposition 4.2 avoids making overly stringent assumptions regarding the Sufficient Condition and Invariance Property.

C.2. Proof of Proposition 4.3: Equivalent Optimization

We first restate Eq. (3), Eq. (4), and Proposition 4.3 for reference.

Eq. (3):
min
Θ

max
D∈{DS}∪{DT }

E(G,Y )∼P(G,Y|D)

[
Lpre(Θ;HS)|D

]
.

Eq. (4):

min
Θ

ELpre(Θ;HS) + αV([ELpre(Θ; H̃S
k )]

K
k=1), where H̃S

k = fΘ(AI
s ⊙ X̂S + (AV

s ⊙ X̂S)Wk,A).

Proposition 4.3 (Equivalent Optimization). Optimizing Eq. (4) is equivalent to minimizing the upper bound of
multi-domain semantic alignment risk in Eq. (3).

Proof. As stated in Eq. (3), the intrinsic generation process of graph (Gi, Yi) from any domain Dj ∈ {DS} is determined
by the distribution P(G,Y | Dj), where the semantic misalignment difference in Dj ∼ P(D) between domains introduces
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graph pre-training variations. Let Q(Yi | Gi) denote the inferred variational distribution of the true posterior Q(Yi | Gi, Dj),
then the multi-domain semantic alignment risk can be expressed as the KL divergence between these two distributions, i.e.,

DKL(P(Yi | Gi, Dj) ∥ Q(Yi | Gi)) = EDj
E(Gi,Yi)∼P(G,Y|Dj)

[
log

P(Yi | Gi, Dj)

Q(Yi | Gi)

]
(C.24)

Following Federici et al. (2021); Wu et al. (2022), we adopt an information-theoretic perspective to analyze this problem. To
simplify the multi-domain semantic alignment risk in Eq. (C.24), we propose the following lemma.

Lemma C.2 (Multi-Domain Semantic Alignment Risk). The multi-domain semantic alignment risk satisfies the
following upper bound,

DKL(P(Yi | Gi, Dj) ∥ Q(Yi | Gi)) ⩽ DKL(P(Yi | Gi, Dj) ∥ Q(Yi | X̂I
i )), (C.25)

where can be interpreted as the variational distribution for the label predictor (if two nodes are connected in Eq. (2)).

Proof. We start from Eq. (C.24).

DKL(P(Yi | Gi, Dj) ∥ Q(Yi | Gi)) = EDj
E(Gi,Yi)∼P(G,Y|Dj)

[
log

P(Yi | Gi, Dj)

Q(Yi | Gi)

]
(Eq. (C.24)) (C.26)

= EDj
E(Gi,Yi)∼P(G,Y|Dj)

log P(Yi | Gi, Dj)

EX̂I
i∼Q(X̂I

i |Gi)
Q(Yi | X̂I

i )

 (C.27)

⩽ EDj
E(Gi,Yi)∼P(G,Y|Dj)EX̂I

i∼Q(X̂I
i |Gi)

[
log

P(Yi | Gi, Dj)

Q(Yi | X̂I
i )

]
(C.28)

= DKL(P(Yi | Gi, Dj) ∥ Q(Yi | X̂I
i )) (Jensen’s Inequality), (C.29)

where the upper bound (Eq. (C.29)) emerges from the assumption that Q(X̂I
i | Gi) represents a deterministic distribution

(i.e., a Dirac delta function), as the GNN encoder fΘ(·) holds the assumption. This completes the proof for Lemma C.2.

From Lemma C.1, we can reframe Eq. (4) as,

min
Q(X̂I

i |Gi),Q(Yi,X̂I
i)
DKL(P(Yi | Gi, Dj) ∥ Q(Yi | X̂I

i )) + I(Yi;Dj | X̂I
i ). (C.30)

Consequently, using Lemma C.2, minimizing Eq. (4) reduces to minimizing the upper bound of multi-domain semantic
alignment risk in Eq. (3), i.e.,

min
Θ

ELpre(Θ;HS)+αV([ELpre(Θ; H̃S
k )]

K
k=1)⇔ min

Q(X̂I
i |Gi),Q(Yi,X̂I

i)
DKL(P(Yi | Gi, Dj)∥Q(Yi | X̂I

i )) + I(Yi;Dj | X̂I
i )︸ ︷︷ ︸

non-negative

(C.31)

⩾ min
Q(X̂I

i |Gi),Q(Yi,X̂I
i)
DKL(P(Yi | Gi, Dj)∥Q(Yi | X̂I

i )) (C.32)

⩾ min
Q(X̂I

i |Gi),Q(Yi,X̂I
i)
DKL(P(Yi | Gi, Dj)∥Q(Yi | Gi). (C.33)

It is evident that as K increases (to positive infinity), it approaches the theoretical upper bound more closely. A formal proof
is omitted for brevity. This concludes the proof for Proposition 4.3.

Proposition 4.3 declares optimizing the pre-training optimization goal is equivalent to minimizing the upper bound of
multi-domain semantic alignment risk in Eq. (3), which is intractable. It also highlights the role that the set of feature
aligners play during pre-training, which not only aligns multi-domain graph features dimension-wise and semantic-wise, but
also guarantees the learned knowledge is domain-specific and invariant, which enhances the generalization potential and
model robustness during the in-context pre-training phase, laying a better and solid foundation for multi-domain knowledge
transfer by down-prompting.
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C.3. Proof of Eq. (8): Why Decrease Uncertainty Lead to Optimization?

Let the routing vector be S = Softmax(ϕ(XT )), where ϕ(·) is a learnable routing network initialized by the target feature
XT , and S ∈ Rn represents the assignment weight distribution over n source domain experts (aligners). The uncertainty of
S is quantified by its entropy,

H(S) = −
n∑

i=1

Si log(Si), (C.34)

where Si is the i-th component of S, representing the weight of the i-th expert. The goal is to minimize the entropy H(S) to
reduce the uncertainty of the routing vector.

We answer why decreasing uncertainty leads to optimization from four perspectives.

(1) The relationship between uncertainty and optimization. The entropy H(S) measures the uncertainty of the distribution
S. High entropy indicates that the distribution is more uniform, implying that the model does not prioritize any specific
expert. This leads to an averaging effect across experts, which dilutes the influence of the most relevant ones. Conversely, low
entropy corresponds to a sharper distribution, where the model assigns higher weights to a few critical experts, improving
its ability to adapt to target domain features. Thus, minimizing H(S) aligns with the goal of encouraging the model to focus
on selecting high-quality experts while ignoring irrelevant ones, thereby improving feature adaptation.

(2) Lower entropy implies a sharper distribution. We give the following lemma without proof.

Lemma C.3 (Relation between Distribution and Entropy).
If S is a uniform distribution (i.e., Si =

1
n for all i), the entropy reaches its maximum,

H(S) = −
n∑

i=1

1

n
log

1

n
= log(n). (C.35)

In this case, all components are equally weighted, indicating no preference for any expert. If S is concentrated on a single
component (i.e., Sj → 1 for some j, and Si → 0 for i ̸= j), the entropy reaches its minimum value of 0,

H(S) = −(1 · log 1 +
∑
i ̸=j

0 · log 0) = 0. (C.36)

This indicates a fully deterministic selection, where only one expert is prioritized.

By analyzing the behavior of the entropy function, we can quantitatively demonstrate that, by minimizing entropy, the
routing vector S transitions from a uniform distribution to a sharper one, emphasizing a few key experts while suppressing
others. This sharpness ensures the model focuses on relevant experts, improving feature adaptation efficiency.

(3) Entropy minimization as implicit regularization. Minimizing H(S) introduces an implicit regularization that
encourages S to focus on the most relevant experts. The mathematical intuition behind this process is as follows.

• Entropy gradient: The gradient of H(S) encourages larger Si, thereby concentrating the routing distribution: ∂H(S)
∂Si

=
−(1 + logSi).

• Routing distribution convergence: Minimizing H(S) ensures that Si → 1 for a few relevant experts, while Si → 0 for
irrelevant ones. This leads to effective feature selection, where the model emphasizes only the most critical experts.

• Explicit objective: By reducing LMoE, the model suppresses noise from irrelevant experts, improving feature adaptation
to the target domain.

(4) Self-supervised mechanism. Minimizing H(S) operates as a self-supervised mechanism. As the routing vector S is
derived entirely from the target feature XT , implicitly encoding the relationship between the target domain and source
domain experts. This process does not require additional labeled data, relying instead on the internal structure of S to guide
optimization. As a result, the model automatically learns to select the most relevant experts, achieving effective domain
adaptation without external supervision.

In summary, minimizing the uncertainty of the routing vector S by reducing its entropy H(S) leads to optimization because
it concentrates the distribution on a few key experts, reducing noise and improving feature adaptation. Lower entropy implies
a sharper distribution, which aligns the model’s focus on the most relevant source domain experts. This self-supervised
mechanism ensures efficient domain adaptation and enhanced performance in downstream tasks.
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C.4. Proof of Proposition 4.5: Generalization Error Upper Bound

We first restate Proposition 4.5 for reference.

Proposition 4.5 (Generalization Error Upper Bound (Redko et al., 2017; Li et al., 2021; You et al., 2023)) Let H
= {h : G 7→ Y|h = g ◦ f} represent the hypothesis space of bounded real-valued functions, where VCdim(H) = d.
Suppose hS ̸= hT with the Lipschitz constant Lh satisfies,

Lh ≜ ∥h∥Lip = sup
Gi,Gj

∥hD(Gi)− hD(Gj)∥2

dW(Gi, Gj)
⩽ LfLg,

where D ∈ {S, T }. With probability no less than 1− δ, the following inequality holds for target domain error ϵT (hT ),

ϵT (hT ) ⩽
[a] m

n+m
ϵ̂ T (hT ) +

[b] n

n+m
ϵ̂ S(hS) +

[c]
2LfLgdW

(
P(GS),P(GT )

)
+

[d]
∆h

+ O
[(

1

m
+

1

n

)
log

1

δ
+

d

n
log

n

d
+

d

m
log

m

d

] 1
2

,

where ϵ̂ indicates empirical error, and ∆h satisfies,

∆h = min
(∣∣ϵS(hS)− ϵS(hT )

∣∣ , ∣∣ϵT (hS)− ϵT (hT )
∣∣) .

Proof. We first introduce the following lemma that introduces Wasserstein distance to relate the source and target domain
generalization errors.

Lemma C.4 (Wasserstein Distance to Relate Errors (Shen et al., 2018)). Let µS , µT ∈ P(X ) be two probability
measures. Assume the hypotheses h ∈ H are all LK-Lipschitz continuous for some K. Then the following holds,

ϵT (h, h′) ⩽ ϵS(h, h′) + 2LKdW(µ
S , µT ), (C.37)

for every hypothesis h, h′ ∈ H.

Proof. We first prove that for every LK -Lipschitz continuous hypotheses, h, h′ ∈ H, |h− h′| is 2LK -Lipschitz continuous.
Using the triangle inequality, we have,

|h(x)− h′(x)| ⩽ |h(x)− h(y)|+ |h(y)− h′(x)| (C.38)
⩽ |h(x)− h(y)|+ |h(y)− h′(y)|+ |h′(x)− h′(y)| , (C.39)

and thus for every x, y ∈ X ,

|h(x)− h′(x)| − |h(y)− h′(y)|
ρ(x, y)

⩽
|h(x)− h(y)|+ |h′(x)− h′(y)|

ρ(x, y)
(C.40)

⩽ 2LK , (C.41)

where ρ(·, ·) is some distance measurement. Then, for every hypothesis h, h′, we have,

ϵT (h, h′)− ϵS(h, h′) = EµT [|h(x)− h′(x)|]− EµS [|h(x)− h′(x)|] (C.42)
⩽ sup

∥f∥Lip⩽2LK

EµT [f(x)]− EµS [f(x)] (C.43)

= 2LKdW(µS , µT ). (C.44)

Derived by Lemma C.4 and You et al. (2023) with the Lf -Lipschitz continuous assumption,

Lh ≜ ∥h∥Lip = sup
Gi,Gj

∥hD(Gi)− hD(Gj)∥2

dW(Gi, Gj)
⩽ LfLg, (C.45)
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we reach the following inequality,

|ϵS(hS)− ϵT (hT )| = |ϵS(hS)− ϵS(hT ) + ϵS(hT )− ϵT (hT )| (C.46)

⩽ |ϵS(hS)− ϵS(hT )|+ |ϵS(hT )− ϵT (hT )| (C.47)

⩽ |ϵS(hS)− ϵS(hT )|+ 2LfLgdW(P(GS),P(GT )). (C.48)

Similarly,
|ϵS(hS)− ϵT (hT )| ⩽ |ϵT (hS)− ϵT (hT )|+ 2LfLgdW(P(GS),P(GT )). (C.49)

We then combine Eq. (C.48) and Eq. (C.49) into,

|ϵS(hS)− ϵT (hT )| ⩽ 2LfLgdW(P(GS),P(GT )) + ∆h, (C.50)

where,
∆h = min

(∣∣ϵS(hS)− ϵS(hT )
∣∣ , ∣∣ϵT (hS)− ϵT (hT )

∣∣) . (C.51)

Such that, the following upper bound of target domain generalization error holds,

ϵT (hT ) ⩽ ϵS(hS) + 2LfLgdW(P(GS),P(GT )) + ∆h. (C.52)

We next present the following corollary with proof given in Mohri (2018) Theorem 11.8.

Corollary C.5 (VC-Dimension Generalization Bounds (Mohri, 2018) Corollary 3.19). LetH be a family of functions
with VCdim(H) = d. Then, for any δ > 0, with probability at least 1− δ, the following holds for all h ∈ H,

ϵ(h) ⩽ ϵ̂ (h) +

(
2d

m
log

em

d

) 1
2

+

(
1

2m
log

1

δ

) 1
2

. (C.53)

Thus, the form of this generalization bound is,

ϵ(h) ⩽ ϵ̂ (h) +O
(

d

m
log

m

d

) 1
2

, (C.54)

which emphasizes the importance of the ratio m/d for generalization. The theorem provides another instance of Occam’s
razor principle where simplicity is measured in terms of a smaller VC-dimension.

By replacing ϵ(h) with ϵT (hT ), ϵ̂ (h) with ϵ̂ T (hT ) in Corollary C.5, with probability at least 1− δ, the following holds,

ϵT (hT ) ⩽ ϵ̂ T (hT ) +

(
2d

m
log

em

d

) 1
2

+

(
1

2m
log

1

δ

) 1
2

. (C.55)

Upon the reference of Corollary C.5, we transform Eq. (C.52) into, with probability at least 1− δ, the following holds,

ϵT (hT ) ⩽ ϵ̂ S(hS) + 2LfLgdW(P(GS),P(GT )) + ∆h +

(
2d

n
log

en

d

) 1
2

+

(
1

2n
log

1

δ

) 1
2

, (C.56)

Inspired by Li et al. (2021); You et al. (2023), we apply a union bound to combine Eq. (C.55) and Eq. (C.56) with coefficients
m/(n+m) and n/(n+m), respectively, we reach,

ϵT (hT ) ⩽
m

n+m

(
ϵ̂ T (hT ) +

(
2d

m
log

em

d

) 1
2

+

(
1

2m
log

1

δ

) 1
2
)

+
n

n+m

(
ϵ̂ S(hS) + 2LfLgdW(P(GS),P(GT )) + ∆h +

(
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n
log
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d

) 1
2

+

(
1
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log
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δ

) 1
2
)

(C.57)

⩽
m

n+m

(
ϵ̂ T (hT )+

(
2d

m
log

em

d

) 1
2

+

(
1

2m
log

1

δ

) 1
2
)
+
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n+m

(
ϵ̂ S(hS)+

(
2d

n
log

en

d

) 1
2

+

(
1
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log

1

δ

) 1
2
)

+
n

n+m
(2LfLgdW(P(GS),P(GT )) + ∆h). (C.58)
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Definition C.6 (Simplfied Cauchy-Schwarz Inequality). For any real numbers x and y, the Cauchy-Schwarz inequality
in its alternative additive form states that,

x+ y ⩽ [2(x2 + y2)]
1
2 . (C.59)

This inequality is derived directly from the standard form of the Cauchy-Schwarz inequality and can be used to simplify
expressions involving sums or to bound the magnitude of quadratic terms.

We applied the simplified Cauchy-Schwarz Inequality to the two square root terms in Eq. (C.58), then we reach,

ϵT (hT ) ⩽
m

n+m

(
ϵ̂ T (hT ) +

(
4d

m
log

em

d
+

1

m
log

1

δ

) 1
2
)
+
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n+m

(
ϵ̂ S(hS) +

(
4d

n
log
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d
+
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n
log
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) 1
2
)

+
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(2LfLgdW(P(GS),P(GT )) + ∆h) (C.60)

⩽
m

n+m
ϵ̂ T (hT ) +

n

n+m
ϵ̂ S(hS) +

n

n+m
(2LfLgdW(P(GS),P(GT )) + ∆h)
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. (C.61)

As m≪ n, we have,

ϵT (hT ) ⩽
m

n+m
ϵ̂ T (hT ) +

n

n+m
ϵ̂ S(hS) + 2LfLgdW(P(GS),P(GT )) + ∆h
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log
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d

] 1
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. (C.62)

We conclude the proof of Proposition 4.5.

C.5. Proof of Proposition 4.6: The Lower Bound of Lf

We first restate Proposition 4.6 here.

Proposition 4.6 (The Lower Bound of Lf (Gama et al., 2020; You et al., 2023)) Rewrite the first Wasserstein distance
(optimal transport distance) between Gi and Gj ,

dW(Gi, Gj) = inf
P∈Π

(
∥Xi −PXj∥F + ∥Ai −PAjP

⊤∥F
)
,

where P is the optimized permutation matrix by minimizing dW(Gi, Gj), Π is matrix set. Such that, the lower bound of
the Lipschitz constant of the encoder f is,

Lf ⩾ Lλ

(
1 + Γij

√
N∆

)
+O(Γ2),

Γ = ∥Ai −P⋆AjP
⋆⊤∥F,Γij = (∥Ui −Uj∥F + 1)2 − 1,

where P⋆ is the optimal permutation, Ai = UiΛiU
⊤
i is the eigenvalue decomposition for both the adjacency matrices.

Lλ is the spectral Lipschitz constant, defined such that for any eigenvalues λ1, λ2, the inequality |r(λ1)− r(λ2)| ⩽
Lλ |λ1 − λ2|, where r(·) is the frequency response. N∆ is graph size after padding isolated nodes (Zhu et al., 2021).

Proof. Derived by Theorem 1 in Gama et al. (2020), Lemma 1 and Lemma 2 in You et al. (2023), we have the inequality,

∥f(Xi,Ai)−f(Xj ,Aj)∥2 ⩽ LλΓ
(
1 + Γij

√
N∆

)
+O(Γ2) + λΓ, (C.63)

where Γ = ∥Ai −P⋆AjP
⋆⊤∥F is the structure perturbations, and Γij is the eigenvector misalignment. Since,

Lf ≜ ∥f∥Lip = sup
Gi,Gj

∥f(Xi,Ai)−f(Xj ,Aj)∥2

dW(Gi, Gj)
, (C.64)

26



How Much Can Transfer? BRIDGE: Bounded Multi-Domain Graph Foundation Model with Generalization Guarantees

for any Gi and Gj ∈ {GS ∪GT }, ∥f(Xi,Ai)−f(Xj ,Aj)∥2 ⩽ LfdW(Gi, Gj). Then, Eq. (C.63) is transformed to,

LλΓ
(
1 + Γij

√
N∆

)
+O(Γ2) + λΓ ⩽ LfdW(Gi, Gj) (Lf is the tight supremum) (C.65)

⩽ LfΓ. (C.66)

As λ and Γ are both non-negative, then we reach,

LfΓ ⩾ LλΓ
(
1 + Γij

√
N∆

)
+O(Γ2). (C.67)

Dividing both sides of the inequality by Γ, we obtain,

Lf ⩾ Lλ

(
1 + Γij

√
N∆

)
+O(Γ). (C.68)

Since elements in adjacency matrics Ai and Aj belongs to [0, 1], such that Γ = ∥Ai−P⋆AjP
⋆⊤∥F ∈ [0, 1]. Consequently,

O(Γ2) ⩽ O(Γ). Then, we reach,
Lf ⩾ Lλ

(
1 + Γij

√
N∆

)
+O(Γ2). (C.69)

We conclude the proof of Proposition 4.6.

D. Experiment Details
In this section, we provide additional experiment details. Statistic of datasets is illustrated in Table D.1.

Table D.1. Statistic of the multi-domain graph dataset.

Dataset Domain # Nodes # Edges # Feature
Dimensions # Classes Avg. # Deg.

Cora Academic 2,708 10,556 1,433 7 3.90
CiteSeer Academic 3,327 9,104 3,703 6 2.77
PubMed Academic 19,717 88,648 500 3 4.50

Photo E-Commerce 7,650 238,162 745 8 31.13
Computers E-Commerce 13,752 491,722 767 10 35.76

Reddit Social Network 232,965 114,615,892 602 41 492.00

D.1. Datasets Details

To highlight multi-domain pre-training, we select six benchmark graph datasets from three different domains, which
differs from conventional settings that consider any single dataset as one independent domain. These datasets span varying
structures, scales, and feature distributions, offering a diverse set of challenges for pre-trained graph models. Specifically,

(1) Academic Domain. This domain includes three prominent citation networks, which are widely used as benchmarks
in graph representation learning. Each dataset represents a single graph where nodes correspond to documents, edges
correspond to citation links, and node labels indicate the category or topic of the corresponding paper.

• Cora (McCallum et al., 2000): consists of 2,708 machine learning-related papers organized into 7 research categories,
including “Neural Networks” and “Probabilistic Methods”. Each paper is represented by a 1,433-dimensional sparse
bag-of-words feature vector, where each dimension corresponds to the presence of a specific word in the document. The
graph contains 10,556 citation links, making it moderately sparse. The dataset is frequently used for semi-supervised node
classification tasks due to its small size and well-defined class boundaries.

• CiteSeer (Giles et al., 1998): comprising 3,327 scientific publications grouped into 6 predefined categories, including
“Artificial Intelligence” and “Robotics”. Nodes are represented by 3,703-dimensional sparse feature vectors, capturing word
occurrences in the documents. The graph has 9,104 citation edges, forming a sparse structure with fewer connections per
node compared to Cora. CiteSeer is challenging for its noisy class labels and relatively low connectivity, presenting
obstacles in capturing structural information.
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• PubMed (Sen et al., 2008): a biomedical citation network includes 19,717 research articles on diabetes, categorized into
3 classes. Each node is represented by a dense 500-dimensional feature vector derived from Term Frequency-Inverse
Document Frequency (TF-IDF) statistics of medical terms. The graph contains 88,648 citation edges, resulting in a denser
structure compared to the other two citation datasets. Due to its size and real-world biomedical context, PubMed is often
considered a benchmark for scalable graph learning algorithms.

(2) E-Commerce Domain. This domain includes two product networks derived from Amazon, capturing relationships
between items frequently bought together. The two datasets are widely used for evaluating recommendation and product-
related tasks. Nodes denote products, edges for co-purchase relationships, and node labels correspond to product categories.

• Photo (Shchur et al., 2018): is constructed from the “Electronics” category on Amazon, focusing specifically on camera
and photo products. It consists of 7,650 products (nodes) and 238,162 co-purchase relationships (edges). Each node is
represented by a 745-dimensional feature vector capturing product reviews and descriptions as word embeddings. Nodes
are categorized into 8 classes based on product types. The graph exhibits a moderately sparse structure and serves as a
benchmark for semi-supervised node classification.

• Computers (Shchur et al., 2018): is also derived from the Amazon “Electronics” category but focuses on computer-
related products. It comprises 13,752 products (nodes) and 491,722 co-purchase relationships (edges), forming a denser
graph compared to Photo. Each node is characterized by the same 767-dimensional feature vector format, based on
product reviews and descriptions. The products are categorized into 10 classes. Computers is often used to test the
scalability and robustness of graph learning models on larger and denser graphs.

(3) Social Network Domain. This domain includes Reddit (Hamilton et al., 2017), a large-scale social network constructed
from the Reddit platform. In this dataset, nodes represent individual posts, and edges signify interactions between posts,
such as comments, replies, or votes. The graph comprises 232,965 nodes and 114,15,892 edges, making it one of the
largest datasets commonly used in graph representation learning. Each node is associated with a 602-dimensional feature
vector generated from the textual content of the posts using pre-trained text embeddings. Posts are grouped into 41 distinct
categories, corresponding to specific subreddits or discussion communities. Due to its size and dynamic nature, Reddit is
frequently used as a benchmark for evaluating models on inductive learning tasks, particularly to test their scalability and
generalization ability on unseen nodes and large-scale graphs.

D.2. Baseline Details

We compare the proposed BRIDGE with four primary categories, 15 state-of-the-art baselines, including traditional graph
neural networks, self-supervised pre-training methods, prompt-based fine-tuning approaches, and multi-domain pre-training
frameworks. These baselines provide a comprehensive benchmark to assess the effectiveness and versatility of our approach.

(1) Vanilla Graph Neural Networks. This group includes traditional graph neural networks trained directly on downstream
tasks without any pre-training. These models serve as foundational baselines for graph representation learning.

• GCN (Kipf & Welling, 2022) (backbone): The Graph Convolutional Network (GCN) is a spectral-based approach that
aggregates neighborhood information using a layer-wise propagation rule, effectively capturing local graph structure. It is
applied to both node and graph classifications.

• GAT (Velickovic et al., 2017): The Graph Attention Network (GAT) incorporates attention mechanisms to assign learnable
weights to neighbors, allowing the model to focus on the most relevant nodes in a graph during the aggregation process. It
is applied in both node and graph classifications.

(2) Graph Self-Supervised Pre-training. These methods leverage self-supervised learning objectives to pre-train graph
representations, aiming at enhancing performance across various downstream tasks.

• GCC (Qiu et al., 2020): This framework focuses on learning transferable structural representations by using subgraph
instance discrimination across multiple networks. It employs contrastive learning to capture universal topological
properties, enabling better performance on diverse downstream tasks and out-of-domain generalization. It is applied to
node classifications.

• DGI (Veličković et al., 2019): DGI maximizes mutual information between local patch representations and global graph
summaries, capturing meaningful node-level representations. Unlike prior approaches, it does not rely on random walks
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and works well in both transductive and inductive settings, showing strong performance on node classification tasks. It is
applied to node classifications.

• InfoGraph (Sun et al., 2020): InfoGraph learns graph-level representations by maximizing mutual information
between graph-level and multi-scale substructure representations (e.g., nodes, edges, triangles). This approach encodes
shared structural and semantic information, achieving superior performance on graph classification and molecular property
prediction tasks. It is applied to graph classifications.

• GraphCL (You et al., 2020): This method introduces graph contrastive learning with various graph augmentations,
enabling the generation of robust and generalizable graph representations. By systematically exploring augmentation
strategies, GraphCL achieves strong results in semi-supervised, unsupervised, and transfer learning scenarios. It is
applied to both node and graph classifications.

• DSSL (Xiao et al., 2022): DSSL addresses the limitations of homophily assumptions in existing methods by decoupling
semantic information in self-supervised learning. Through a latent variable modeling framework, it captures diverse
neighborhood semantics and achieves improved performance across homophilic and heterophilic graph benchmarks. It is
applied to both node and graph classifications.

• GraphACL (Xiao et al., 2024): GraphACL introduces asymmetric contrastive learning to better handle heterophilic
graphs. It eliminates the need for prefabricated augmentations and homophily assumptions, effectively capturing local and
monophily similarities. This simple yet powerful approach outperforms existing contrastive and self-supervised methods
in both homophilic and heterophilic graph scenarios. It is applied to both node and graph classifications.

(3) Graph Prompt Fine-tuning. Prompt-based methods introduce learnable task-specific prompts to guide the fine-tuning
of pre-trained models. These approaches are designed to improve transferability and adaptability to downstream tasks.

• GPPT (Sun et al., 2022): GPPT introduces a novel paradigm combining pre-training and prompt tuning. It uses masked
edge prediction as the pre-training task and reformulates downstream tasks (e.g., node classification) into edge prediction
tasks via token-pair prompts. This approach minimizes the objective gap between pre-training and downstream tasks,
enabling efficient knowledge elicitation from pre-trained models without extensive fine-tuning. It is applied to node
classifications.

• GraphPrompt (Liu et al., 2023b): GraphPrompt unifies pre-training and downstream tasks into a shared template
using a learnable prompt. By narrowing the gap between pre-training and downstream objectives, it improves task-specific
knowledge extraction and reduces labeling requirements. It provides a generalizable framework suitable for diverse
downstream tasks. It is applied to both node and graph classifications.

• GraphPrompt+ (Yu et al., 2024b): An enhanced version of GraphPrompt, this method expands compatibility with
pre-training tasks and introduces hierarchical prompt vectors across graph encoder layers. These advancements improve
representation learning, enabling better utilization of multi-scale structural information and enhancing performance across
tasks. It is applied to both node and graph classifications.

• GPF (Fang et al., 2024): GPF proposes a universal prompt-based tuning method applicable to pre-trained GNNs under
any pre-training strategy. Operating in the input feature space, it adapts pre-trained models to downstream tasks flexibly
and effectively, outperforming traditional fine-tuning and specialized prompt-tuning methods across diverse scenarios. It
is applied to both node and graph classifications.

• ProNoG (Yu et al., 2025): ProNoG focuses on non-homophilic graphs, recognizing their mixed structural patterns. It
incorporates a conditional network to adaptively model node-specific characteristics during downstream tasks. This
approach generalizes well to both homophilic and heterophilic settings, providing robust performance on real-world
non-homophilic graphs. It is applied to both node and graph classifications.

(4) Multi-Domain Graph Pre-training. This category focuses on learning graph representations that generalize across
different domains, which are the most relative baselines with ours. By leveraging shared structural or semantic patterns,
these methods aim to improve performance in multi-domain scenarios.

• GCOPE (Zhao et al., 2024): GCOPE introduces a unification framework to aggregate diverse graph datasets during
pre-training, effectively distilling shared structural knowledge. By addressing the negative transfer issue often encountered
in cross-domain learning, GCOPE enhances few-shot learning performance on target tasks. It leverages the synergistic
potential of multiple graph datasets, pioneering the development of graph foundational models for multi-domain pre-
training. It is applied to both node and graph classifications.

29



How Much Can Transfer? BRIDGE: Bounded Multi-Domain Graph Foundation Model with Generalization Guarantees

• MDGPT (Yu et al., 2024c): MDGPT proposes a text-free multi-domain graph pre-training framework designed to align
and integrate knowledge from diverse graph domains without relying on textual attributes. It introduces domain tokens
to unify features across source domains and employs dual prompts (unifying and mixing prompts) to adapt the model
to target domains. This approach effectively mitigates domain conflicts and enhances the relevance of source domain
knowledge, achieving significant performance improvements across various datasets. It is applied to both node and graph
classifications.

D.3. Experimental Setting Details

In this section, we introduce detailed experimental settings.

Detailed Settings for Section 5.2 (RQ1). This section evaluates BRIDGE’s ability to transfer knowledge from source
domains to unseen target datasets or domains under few-shot learning settings, specifically (C-way-)one-shot, five-shot,
and m-shot (1 ⩽ m ⩽ 10), which goal is to evaluate the model’s generalization ability by pre-training BRIDGE on source
domain graphs and then fine-tuning it with only a few labeled target samples. ❶ m-shot settings. In all cases, only the
m randomly selected labeled samples per class are used for training (supporting set), and the remaining samples in the
dataset are used for testing (query set). ❷ Generalization settings. Two types of generalization settings are considered, i.e.,
cross-dataset setting (the target dataset belongs to the same domain as the source datasets but was unseen during pre-training)
and cross-domain setting (the target dataset belongs to a different domain from the source datasets). It is noteworthy that,
some prior cross-domain graph pre-training and fine-tuning works (Zhao et al., 2024; Yu et al., 2024c) consider different
datasets as different domains. However, in this paper, we argue that treating datasets as domains is too coarse-grained, and
instead, the distinction between domains should be based on the broader fields to which the datasets belong. Therefore, the
“cross-dataset” setting in this section aligns with what other works refer to as “cross-domain”, while the “cross-domain”
setting in this paper refers to a higher-level distinction between broader domains. ❸ Downstream Task settings. We
evaluate both the node classification and graph classification. For graph classification, we sample 2-hop ego-graphs for each
node to synthesize the corresponding datasets for graph-level tasks. Note that, GCC, DGI, and GPPT are only for node-level
tasks comparison, while InfoGraph is only for graph-level tasks comparison (as an extension of DGI).

Detailed Settings for Section 5.3 (RQ2). To analyze the effectiveness of BRIDGE’s key components, we further elaborate
on the following three variants, each with a specific module removed. The full BRIDGE is also included as a baseline
to compare against the variants. ❶ BRIDGE (w/o As). Removes the semantic-wise aligner As responsible for feature
alignment across domains. This variant only applies dimension-wise alignment (As) but does not ensure feature consistency
across domains at the semantic level. Specifically, directly apply X̂S in Eq. (1) with adjacencies A to encode and stack
HS , which is then be integrated in Lpre(Θ;HS) in Eq. (2) as the ultimate goal of pre-training phase. Consequently, the
alignment risk regularization objectives in Eq. (3), Eq. (4), and Eq. (5) are abandoned. This variant tests the necessity of
ensuring semantic consistency between different graph domains. ❷ BRIDGE (w/o MoE). Removes the lightweight Mixture
of Experts (MoE) network, which is responsible for selectively assembling source domain knowledge during prompting.
Instead of selectively assembling knowledge from different source domains, this variant uses a fixed, non-adaptive knowledge
transfer mechanism (treats all pre-trained features as equally relevant for the target task with averaged routing). Specifically,
the constant routing weight vector S = [1/n]n is applied on AI

s ) to obtain X̂T ′ in Eq. (7). This variant tests whether a static
prompt learning strategy can be as effective as an adaptive expert routing mechanism. ❸ BRIDGE (w/oRspec): Removes
the spectral regularizerRspec, which constrains the upper bound of generalization error. Without the spectral regularizer, the
model still follows the “pretrain-then-prompt” paradigm but lacks an explicit regularization mechanism to guarantee the
transferability of knowledge. Specifically, we directly omitRspec term in Eq. (21), which only leaves Ldown in Eq. (11) as the
prompt objectives. This variant tests the role of theoretical constraints on knowledge transfer and whether they significantly
impact downstream performance.

Detailed Settings for Section 5.4 (RQ3). This section aims to analyze how efficiently BRIDGE performs downstream
adaptation (prompt-based fine-tuning) compared to other baselines, which represents a challenging real-world scenario
where labeled samples are limited, making efficient adaptation crucial. ❶ Datasets and Baselines. The evaluation is
conducted on the Photo dataset under a five-shot node classification setting (cross-dataset). Results are compared to
ProNoG, GCOPE, and MDGPT, which represent state-of-the-art graph pre-training and adaptation approaches. ❷ Efficiency
Metrics. We report results with the loss curvature, and accuracy curvature, where the reduction in training loss over epochs
is tracked to measure how quickly each model stabilizes, the accuracy is recorded at different epochs to show how rapidly
the model reaches its peak performance, and the total number of fine-tuning epochs needed for convergence is measured and
compared.

30



How Much Can Transfer? BRIDGE: Bounded Multi-Domain Graph Foundation Model with Generalization Guarantees

Detailed Settings for Section 5.5 (RQ4). Hyperparameter sensitivity analysis aims to analyze how different key hyperparam-
eters in BRIDGE affect its performance. We track the fluctuation led by four hyperparameters. ❶ K. Controls the number of
domain-specific variations (times of causal interventions) generated during the multi-domain semantic alignment process in
Eq. (4). It determines how diverse the source domain embeddings become before knowledge transfer. Higher K simulates
more varied domain diversity, which potentially brings better generalization performance, but heavier computational burdens.
❷ α. Balances the expectation term and variation term in the multi-domain semantic alignment objective in Eq. (4). It
influences how strictly domain-specific features are aligned across different datasets. ❸ β. Controls the weight between the
classification loss and the self-supervised MoE loss in Eq. (11). Higher values give more importance to expert routing in
knowledge selection. ❹ γ. Regulates the effect of spectral regularization on controlling generalization error in Eq. (21). It
determines the extent to which the model constrains feature transferability.

Detailed Settings for Section 5.6 (RQ5). This section investigates whether Large Language Models (LLMs) can improve
the alignment of graph features across different domains. Specifically, this experiment evaluates whether leveraging
LLM-generated textual descriptions enhances the cross-domain generalization of BRIDGE. Since node features in the
benchmark dataset are considered as“secondary data” derived from raw text through feature engineering, we follow Liu et al.
(2024a); Li et al. (2024b); Liu et al. (2024b); Chen et al. (2024b) and establish a correspondence between the raw text and
the processed features. Specifically, for a given raw sentence text s, we encode it using SentenceBERT (Reimers, 2019) to
obtain a textual feature representation Xs with the same dimension as the original node feature X. The two types of features
are then concatenated as [X∥Xs] to form the new initial node feature, enabling the enhancement of node representations by
leveraging the semantic understanding capabilities of LLMs.

E. Additional Results
In this section, we provide additional experiment results.

E.1. Additional Results: Five-Shot Node and Graph Classification

We evaluate our BRIDGE against 15 state-of-the-art baselines under the challenging one-shot setting for both node and graph
classification, assessing its effectiveness in transferring source knowledge across cross-dataset and cross-domain scenarios.
The results, presented in Table E.1 and Table E.2, highlight the following key insights. ❶ Results of the five-shot node
classification graph classification demonstrate significant performance improvements for all models, including BRIDGE and
baselines, compared to the one-shot results in Table 1 and Table 2. For example, BRIDGE achieves notable results such
as 63.85% on Cora and 71.14% on Computers in node classification, significantly higher than the runner-up methods.
In graph classification, BRIDGE attains accuracies such as 70.53% on PubMed and 84.42% on Reddit, showcasing its
robustness. ❷ Compared to the one-shot setting, BRIDGE’s performance improvement in one-shot tasks is more substantial,
highlighting its capability to effectively leverage additional labeled samples for fine-tuning. For example, BRIDGE achieves
an accuracy gain of nearly 4% on Reddit compared to the best baseline in the five-shot setting, whereas the gain was
less pronounced in the one-shot setting. ❸ We also witnessed the improved generalization in cross-domain scenarios, i.e.,
BRIDGE’s superior performance is particularly evident in cross-domain tasks, where domain shifts are more significant. For
instance, BRIDGE achieves 80.12% (node classification) and 84.42% (graph classification) on Reddit, far exceeding the
performance of baselines such as MDGPT and ProNoG.

E.2. Additional Results: m-Shot Classification on Diverse Datasets

To further evaluate BRIDGE’s performance under different few-shot settings varied in m, we selected three competitive
baselines in RQ1, including ProNoG, GCOPE and MDGPT for comparison. Results on more diverse dataset are shown
in Figure E.1, Figure E.2, Figure E.3, and Figure E.4. The results demonstrate how accuracy evolves as the number of
labeled samples per class increases, key observations include, ❶ BRIDGE consistently outperforms the other three baselines
across nearly all m-shot settings. Its superiority is particularly evident in both node and graph classification tasks, where
it achieves state-of-the-art performance at higher shot levels. ❷ While BRIDGE shows only a slight advantage over the
baselines when m is small, this advantage grows significantly as m increases. This trend can be attributed to the spectral
regularizer, which enables more effective fine-tuning under increased supervision by leveraging down prompts with a
theoretical generalization error upper bound guarantee. For example, in the graph classification task on PubMed dataset,
BRIDGE steadily outperforms baselines such as MDGPT and GCOPE as m increases, showcasing its ability to scale with
additional labeled data. ❸ Similar trends are observed across both cross-dataset and cross-domain scenarios, suggesting that
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Table E.1. Accuracy (% ± standard deviation for five runs) of five-shot node classification. CR =Cora, CS =CiteSeer, PM =PubMed,
Ph =Photo, Com =Computers, Rdt =Reddit. The best results are shown in bold and the runner-ups are underlined.

Source
(Cross-Dataset | Cross-Domain)

CS PM

Ph Com

CR PM

Ph Com

CR CS

Ph Com

CR CS

PM Com

CR CS

PM Ph

CR CS PM

Ph Com

Model / Target CR CS PM Ph Com Rdt

GCN (bb.) (Kipf & Welling, 2022) 46.53 ± 5.36 46.59 ± 6.31 51.07 ± 5.89 56.17 ± 5.75 51.82 ± 6.93 66.65 ± 6.89
GAT (Velickovic et al., 2017) 46.47 ± 7.10 46.09 ± 5.91 50.47 ± 7.26 53.11 ± 7.80 49.78 ± 5.68 66.59 ± 5.07

GCC (Qiu et al., 2020) 47.05 ± 7.88 45.12 ± 6.78 52.45 ± 7.67 59.76 ± 7.15 51.96 ± 5.31 68.10 ± 5.12
DGI (Veličković et al., 2019) 47.77 ± 6.85 47.22 ± 5.66 52.43 ± 5.67 62.60 ± 6.41 54.66 ± 7.03 67.64 ± 5.52
GraphCL (You et al., 2020) 49.61 ± 6.67 48.76 ± 6.72 52.81 ± 5.27 59.55 ± 7.50 57.88 ± 7.36 69.94 ± 5.43
DSSL (Xiao et al., 2022) 46.28 ± 7.61 48.44 ± 7.26 52.42 ± 7.57 62.35 ± 6.94 54.15 ± 7.58 68.22 ± 5.40
GraphACL (Xiao et al., 2024) 51.38 ± 7.06 49.71 ± 7.12 54.48 ± 6.01 65.87 ± 6.54 59.72 ± 5.36 70.93 ± 7.41

GPPT (Sun et al., 2022) 48.24 ± 5.27 47.51 ± 7.54 52.86 ± 6.98 63.13 ± 6.78 52.11 ± 5.16 71.05 ± 5.59
GraphPrompt (Liu et al., 2023b) 52.48 ± 7.67 52.01 ± 5.54 56.85 ± 5.65 68.19 ± 7.09 60.05 ± 7.30 72.79 ± 6.23
GraphPrompt+ (Yu et al., 2024b) 52.16 ± 7.84 52.76 ± 7.09 55.82 ± 6.16 66.31 ± 5.90 61.07 ± 5.37 72.63 ± 5.77
GPF (Fang et al., 2024) 56.16 ± 5.27 53.97 ± 7.45 55.88 ± 5.77 67.65 ± 6.58 55.69 ± 6.05 74.00 ± 5.46
ProNoG (Yu et al., 2025) 58.06 ± 5.00 55.53 ± 7.58 56.53 ± 7.29 74.23 ± 5.90 63.54 ± 6.12 76.48 ± 6.82

GCOPE (Zhao et al., 2024) 52.87 ± 7.15 55.93 ± 6.32 53.05 ± 7.86 68.80 ± 6.63 60.46 ± 5.56 73.61 ± 5.27
MDGPT (Yu et al., 2024c) 59.51 ± 4.54 55.28 ± 4.47 56.25 ± 6.76 75.73 ± 4.54 64.38 ± 4.13 75.29 ± 4.25

BRIDGE (ours) 63.85 ± 5.87 60.20 ± 7.72 62.35 ± 5.92 81.95 ± 5.38 71.14 ± 4.86 80.12 ± 2.66

Table E.2. Accuracy (% ± standard deviation for five runs) of five-shot graph classification. CR =Cora, CS =CiteSeer, PM =PubMed,
Ph =Photo, Com =Computers, Rdt =Reddit. The best results are shown in bold and the runner-ups are underlined.

Source
(Cross-Dataset | Cross-Domain)

CS PM

Ph Com

CR PM

Ph Com

CR CS

Ph Com

CR CS

PM Com

CR CS

PM Ph

CR CS PM

Ph Com

Model / Target CR CS PM Ph Com Rdt

GCN (bb.) (Kipf & Welling, 2022) 51.93±4.55 44.15±5.81 56.88±5.54 59.29±4.78 51.67±5.38 75.70±5.88
GAT (Velickovic et al., 2017) 48.95±6.08 43.65±5.66 55.89±5.86 57.18±4.92 50.91±6.22 74.82±6.16

InfoGraph (Sun et al., 2020) 52.81±4.84 45.51±5.44 60.47±6.25 62.18±5.24 53.40±5.49 76.34±4.97
GraphCL (You et al., 2020) 53.92±4.65 48.47±4.91 61.84±6.48 62.74±5.19 57.73±6.27 78.59±5.40
DSSL (Xiao et al., 2022) 55.03±5.57 45.58±6.20 62.45±4.95 63.04±6.13 57.26±6.33 78.82±4.91
GraphACL (Xiao et al., 2024) 55.52±5.83 47.26±5.24 61.44±5.90 63.69±6.33 56.54±6.46 79.75±6.20

GraphPrompt (Liu et al., 2023b) 55.24±6.39 52.31±5.04 63.09±6.22 64.27±5.86 58.12±5.19 79.48±4.56
GraphPrompt+ (Yu et al., 2024b) 59.53±5.07 51.22±5.88 62.81±5.83 65.73±4.60 58.61±6.24 78.77±6.15
GPF (Fang et al., 2024) 56.19±5.28 53.47±5.33 61.39±5.93 64.08±5.24 57.47±5.96 79.66±5.26
ProNoG (Yu et al., 2025) 61.07±5.31 51.25±5.98 64.73±6.12 66.10±5.14 60.55±5.17 80.26±5.05

GCOPE (Zhao et al., 2024) 57.29±4.77 53.97±6.13 62.61±4.94 65.77±5.35 58.20±4.65 79.87±6.22
MDGPT (Yu et al., 2024c) 61.77±4.10 55.37±6.33 62.70±6.20 67.06±3.72 59.76±8.56 80.29±5.46

BRIDGE (ours) 67.21±3.78 59.80±5.04 67.17±3.77 70.53±6.53 64.91±6.24 84.42±1.43

BRIDGE not only excels in domain-specific tasks but also demonstrates strong generalization in transferring knowledge
across diverse domains. This robustness is further validated in challenging scenarios such as the Reddit dataset, where
BRIDGE achieves significant accuracy gains compared to its competitors.

E.3. Additional Results: Ablation Studies

The additional ablation results in Table E.3 and Table E.4 provide a detailed analysis of the impact of three key components
in BRIDGE on node classification and graph classification across various datasets and shot settings (m = 1 and m =
5). We find that, ❶ Removing the semantic-wise aligner (As) results in consistent accuracy drops across all datasets and
tasks, particularly in node classification. For example, in Cora (m = 5), the accuracy decreases by 4.9%, demonstrating
the importance of semantic alignment for effective knowledge transfer. ❷ The removal of the Mixture of Experts (MoE)
module has a significant impact, especially in more challenging cross-domain datasets like Reddit. For instance, in node
classification on Reddit (m = 5), accuracy drops by 10.1%, underscoring the role of selective knowledge assembly in
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Figure E.1. m-shot evaluation on CiteSeer.
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Figure E.2. m-shot evaluation on PubMed.

1 2 3 4 5 6 7 8 9 10
Number of shots

50

60

70

80

A
cc

ur
ac

y 
(%

)

Node Classification

1 2 3 4 5 6 7 8 9 10
Number of shots

65

70

75

80

A
cc

ur
ac

y 
(%

)

Graph Classification

ProNoG GCOPE MDGPT BRIDGE (ours)

Figure E.3. m-shot evaluation on Photo.
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Figure E.4. m-shot evaluation on Computers.

Table E.3. Accuracy (%) with relative decrease (∆%) of ablation on node classification. CR =Cora, CS =CiteSeer, PM =PubMed,
Ph =Photo, Com =Computers, Rdt =Reddit. The biggest decrease is shown in bold and the runner-ups are underlined.

Source
CS PM

Ph Com

CR PM

Ph Com

CR CS

Ph Com

CR CS

PM Com

CR CS

PM Ph

CR CS PM

Ph Com

Target CR CS PM Ph Com Rdt

Variants m = 1 m = 5 m = 1 m = 5 m = 1 m = 5 m = 1 m = 5 m = 1 m = 5 m = 1 m = 5

BRIDGE 46.4 ∆ 63.9 ∆ 42.2 ∆ 60.2 ∆ 56.4 ∆ 62.4 ∆ 67.9 ∆ 62.4 ∆ 54.0 ∆ 71.1 ∆ 68.5 ∆ 80.1 ∆
- (w/o As) 44.2 4.9 61.2 4.2 40.2 4.8 57.3 4.8 55.0 2.5 60.1 3.7 65.7 3.3 61.9 0.8 53.4 1.2 70.7 0.6 68.3 0.4 78.9 1.6
- (w/o MoE) 44.3 4.6 61.0 4.5 39.9 5.3 58.3 3.2 52.2 7.4 57.6 7.6 65.7 3.2 58.3 6.6 53.1 1.8 68.4 3.9 64.3 6.2 72.1 10.1
- (w/oRspec) 45.6 1.8 59.9 6.2 41.3 2.0 54.6 9.4 55.3 1.8 55.9 10.3 66.5 2.0 56.0 10.2 53.6 0.9 66.7 6.2 67.7 1.2 72.4 9.7

addressing complex cross-domain tasks. ❸ The spectral regularizer (Rspec) has the most critical impact on performance. Its
removal causes the largest accuracy drops, particularly in tasks with higher supervision (m = 5). For example, in PubMed
for node classification, accuracy decreases by 10.3%, highlightingRspec’s effectiveness in enhancing fine-tuning with robust
generalization guarantees. ❹ Overall, the effects of ablation are more pronounced in the five-shot setting, as the increased
supervision enables the full BRIDGE to leverage its components more effectively. This highlights the importance of these
modules in scenarios with more labeled data. Among the three key components, the spectral regularizer (Rspec) consistently
demonstrates the most critical role in both node and graph classification tasks. Its ability to constrain generalization error
provides substantial benefits for cross-dataset and cross-domain learning. The Mixture of Experts (MoE) is essential for
selectively transferring domain-specific knowledge, particularly in challenging cross-domain scenarios. The semantic-wise
aligner (As), while less impactful thanRspec and MoE, still contributes to stable improvements across tasks.

E.4. Additional Results: Embedding Visualizations

We visualize node embeddings after pre-training and down-prompting (fine-tuning) in Figure E.5 and Figure E.6, respectively.
During pre-training, we simultaneously take six datasets (belonging to three different domains) as the source knowledge.
Note that, “BRIDGE Ablated” of the left subfigure in Figure E.6 refers to the removal of both the lightweight MoE network
and the spectral regularize, as the comparison with the right subfigure. We find that, ❶ The pre-trained embeddings for
nodes from six datasets, spanning three distinct domains (academic, e-commerce, and social networks), exhibit well-
clustered structures. Nodes belonging to the same dataset are grouped tightly, demonstrating the ability of BRIDGE’s
pre-training phase to align domain-specific features effectively. Different domains remain distinguishable (forming into three
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Table E.4. Accuracy (%) with relative decrease (∆%) of ablation on graph classification. CR =Cora, CS =CiteSeer, PM =PubMed,
Ph =Photo, Com =Computers, Rdt =Reddit. The biggest decrease is shown in bold and the runner-ups are underlined.

Source
CS PM

Ph Com

CR PM

Ph Com

CR CS

Ph Com

CR CS

PM Com

CR CS

PM Ph

CR CS PM

Ph Com

Target CR CS PM Ph Com Rdt

Variants m = 1 m = 5 m = 1 m = 5 m = 1 m = 5 m = 1 m = 5 m = 1 m = 5 m = 1 m = 5

BRIDGE 53.8 ∆ 67.2 ∆ 50.5 ∆ 59.8 ∆ 58.4 ∆ 67.2 ∆ 68.3 ∆ 70.5 ∆ 54.1 ∆ 64.9 ∆ 75.8 ∆ 84.4 ∆
- (w/o As) 51.3 4.7 64.9 3.5 49.2 2.6 58.8 1.6 57.3 1.9 66.6 0.8 68.0 0.5 68.8 2.4 53.9 0.4 63.8 1.7 75.0 1.0 83.0 1.7
- (w/o MoE) 51.3 4.8 63.8 5.1 46.9 7.1 57.0 4.6 55.3 5.3 64.3 4.3 66.4 2.8 65.2 7.5 52.1 3.6 61.7 4.9 72.7 4.1 80.6 4.5
- (w/oRspec) 53.0 1.6 61.2 8.9 47.3 6.4 55.2 7.7 57.1 2.2 62.2 7.4 67.5 1.2 66.3 6.0 53.9 0.3 60.1 7.4 74.9 1.1 78.6 7.0

Figure E.5. Pre-trained Embeddings.

Silhouette Score: 0.3029 Silhouette Score: 0.7488

Figure E.6. Fine-tuned Embeddings on Cora (m = 5). Colors denote class labels.

obvious domain clusters), reflecting the preservation of inter-domain characteristics while ensuring intra-domain consistency.
This well-separated clustering highlights the success of BRIDGE’s domain-invariant feature alignment mechanism in the
pre-training stage, which is critical for effective transfer learning. ❷ With ablation (left), the silhouette score of 0.3029
indicates relatively poor class separability, reflecting the challenges posed by the absence of MoE and Rspec. For full
BRIDGE (right), the embeddings show significantly improved clustering, with clear boundaries between nodes of different
classes. The silhouette score increases to 0.7488, demonstrating enhanced class separability. ❸ Overall, the additional
visualization results provide strong evidence of the synergy between BRIDGE’s pre-training and fine-tuning mechanisms,
further validating the effectiveness of its key components.

F. Implementation Details
In this section, we provide implementation details.

F.1. Implementation Details of BRIDGE

Pre-training. The number of pre-training epochs for optimizing our proposed BRIDGE and all baselines is set to 10,000. An
early stopping strategy is employed, where training is terminated if the pre-training loss does not decrease for 50 consecutive
epochs. This ensures computational efficiency without sacrificing performance. The aligned feature dimension is set to 50,
and the encoded hidden dimension is set to 256. For BRIDGE, the hyperparameters α, β, and γ are chosen from the range
of 1e-3 to 5e-1. The optimal values are determined using Weights & Biases (wandb)2, a framework for hyperparameter
optimization and experiment tracking. For the optimization process, we utilize the Adam optimizer (Kingma & Ba, 2015),
carefully tuning the learning rate and weight decay. The learning rate is chosen from the range of 1e-4 to 1e-2, and weight
decay is selected from 1e-5 to 1e-2 through grid search on the validation set. All parameters are initialized randomly to
avoid any bias from pre-trained weights.

F.2. Implementation Details of Baselines

We provide the baseline methods implementations with their respective licenses as follows.
2https://wandb.ai
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• GCN (Kipf & Welling, 2022): [MIT License] https://github.com/pyg-team/pytorch_geometric.

• GAT (Velickovic et al., 2017): [MIT License] https://github.com/pyg-team/pytorch_geometric.

• GCC (Qiu et al., 2020): [MIT License] https://github.com/THUDM/GCC.

• DGI (Veličković et al., 2019): [MIT License] https://github.com/PetarV-/DGI.

• InfoGraph (Sun et al., 2020): [Unspecified] https://github.com/sunfanyunn/InfoGraph.

• GraphCL (You et al., 2020): [MIT License] https://github.com/Shen-Lab/GraphCL.

• DSSL (Xiao et al., 2022): [Apache-2.0 License]
https://github.com/BUPT-GAMMA/OpenHGNN/blob/main/openhgnn/models/DSSL.py.

• GraphACL (Xiao et al., 2024): [Unspecified] https://github.com/tengxiao1/GraphACL.

• GPPT (Sun et al., 2022): [Unspecified] https://github.com/MingChen-Sun/GPPT.

• GraphPrompt (Liu et al., 2023b): [Unspecified] https://github.com/Starlien95/GraphPrompt.

• GraphPrompt+ (Yu et al., 2024b): [Unspecified]
https://github.com/gmcmt/graph_prompt_extension.

• GPF (Fang et al., 2024): [MIT License] https://github.com/zjunet/GPF.

• ProNoG (Yu et al., 2025): [Unspecified] https://github.com/Jaygagaga/ProNoG.

• GCOPE (Zhao et al., 2024): [Unspecified] https://github.com/cshhzhao/GCOPE.

• MDGPT (Yu et al., 2024c): [Unspecified] https://anonymous.4open.science/r/MDGPT.

For all baselines, we follow the recommended hyperparameter settings from the original papers or official implementations
to ensure their optimal performance. In cases where recommended configurations are unavailable or suboptimal, we carefully
fine-tune the hyperparameters to achieve the best possible performances. To ensure a fair comparison, we align other
experimental settings such as hidden dimensions, number of model layers, etc., with those of our proposed method. This
consistent setup guarantees that performance differences arise solely from the model designs and not from external factors.

F.3. Hardware and Software Configurations

We conduct the experiments with the following hardware and software configurations.

• Operating System: Ubuntu 20.04 LTS.

• CPU: Intel(R) Xeon(R) Platinum 8358 CPU@2.60GHz with 1TB DDR4 of Memory.

• GPU: NVIDIA Tesla A100 SMX4 with 80GB of Memory.

• Software: CUDA 10.1, Python 3.8.12, PyTorch3 1.9.1, PyTorch Geometric4 2.0.1.

G. Discussions
To make BRIDGE easy-to-follow to readers, we discuss through the following “How to Understand?” questions.

G.1. How to Understand Domain-Invariant Aligner?

The domain-invariant aligner in BRIDGE facilitates robust cross-domain knowledge transfer by combining dimension-wise
and semantic-wise alignment. Dimension-wise alignment ensures basic dimensionality-level consistency by aligning
the statistical distributions of features across domains, addressing simple discrepancies such as scale and distribution
differences. However, this alone is insufficient for handling deeper semantic mismatches that arise in complex domain
shifts. Semantic-wise alignment complements this by focusing on aligning features with similar semantic meanings across
domains, even when their original representations differ significantly.

Semantic-wise alignment disentangles domain-invariant semantics from domain-specific noise by isolating shared factors
that are consistent across domains. This process helps BRIDGE avoid relying on spurious correlations or domain-specific

3https://github.com/pytorch/pytorch
4https://github.com/pyg-team/pytorch_geometric
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confounders, but causal relations. Additionally, it enforces consistency through principles of invariant learning, ensuring
that the predictive relationships between features and labels remain stable regardless of the domain. By integrating these two
alignment strategies, BRIDGE creates representations that are not only robust to domain shifts but also capable of preserving
meaningful semantic relationships, enabling effective knowledge transfer and strong generalization across diverse domains.

G.2. How to Understand the Objective of Pre-training?

The objective of pre-training in BRIDGE is to create a robust and transferable representation that bridges the gap between
heterogeneous tasks encountered during pre-training and fine-tuning. To achieve this, a self-supervised loss is employed,
which serves as a unifying mechanism for multi-task learning on graphs.

The self-supervised loss focuses on aligning tasks by framing them as similarity computations (Liu et al., 2023b).
Regardless of the specific downstream task, whether it maybe node classification, link prediction, or graph classification,
these tasks can be reformulated into the shared objective of learning embeddings through similarity maximization. By
doing so, the pre-training process effectively reduces the task gap between pre-training and fine-tuning, ensuring that the
representations learned during pre-training are directly applicable to a wide variety of graph tasks. This unified approach not
only enhances knowledge transfer across domains and tasks but also provides a flexible framework for handling the diverse
objectives inherent in graph-based learning.

G.3. How to Understand the Alignment Risk Regularization?

The alignment risk regularization in BRIDGE is designed to mitigate spurious correlations and enhance the learning
of invariant dimensions across domains. This is achieved by leveraging a causal intervention-inspired mechanism that
systematically targets and reduces the influence of domain-specific variations in the embeddings.

Specifically, the regularization introduces stochasticity into the embeddings by randomly replacing the variant dimensions
K times, achieved by applying different projection weight matrices. For each replacement, the embeddings are perturbed
to simulate domain-specific variations, and the model computes the downstream loss for each perturbed version. The
regularization objective minimizes the variance of these K times loss values. By forcing the model to remain robust under
these perturbations, it effectively learns to focus on the invariant dimensions that are consistent across domains, while
reducing reliance on domain-specific, spurious correlations. This approach ensures that the learned representations capture
the essential causal factors shared across domains, improving generalization and transferability.

G.4. How to Understand Proposition 4.2 and Proposition 4.3?

Proposition 4.2 establishes that minimizing Eq. (4) encourages the pre-trained model f⋆
Θ to satisfy Assumption 4.1, which

defines the conditions for effective multi-domain alignment. Essentially, it avoids relying on overly strong assumptions by
explicitly integrating domain alignment into the optimization process. This ensures that the model is capable of capturing
domain-invariant features without requiring unrealistic assumptions about perfect alignment between source and target.

Proposition 4.3 formalizes that optimizing Eq. (4) is equivalent to minimizing the upper bound of the multi-domain semantic
alignment risk defined in Eq. (2). This guarantees that the optimization process is not only aligning features dimension- and
semantic-wise but also systematically reducing alignment risks. By transforming the problem into an equivalent optimization
of alignment risk, it provides a more direct way to enhance generalization and robustness.

Proposition 4.2 highlights the practicality of the alignment process by avoiding overly strong assumptions, while Propo-
sition 4.3 bridges the gap between theoretical alignment risk and its empirical optimization. Together, they demonstrate
how the aligner in BRIDGE contributes to both feature alignment across domains and robustness during pre-training. The
propositions solidify the theoretical foundation for BRIDGE’s ability to generalize effectively in multi-domain scenarios.

G.5. How to Understand the Selective Knowledge Assembly?

Selective knowledge assembly is a mechanism designed to bridge the gap between pre-training and downstream tasks by
dynamically integrating domain-specific knowledge. During pre-training, BRIDGE aligns graph features across domains to
extract invariant representations, ensuring these representations retain core knowledge while filtering out domain-specific
noise. This alignment lays the foundation for selective transfer.

In downstream tasks, the lightweight Mixture of Experts (MoE) network facilitates this assembly process by assigning
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weights to the pre-trained aligners based on the input graph’s characteristics. Instead of uniformly applying all pre-trained
knowledge, the MoE selectively activates the most relevant components, tailoring the knowledge transfer to the target domain.
This targeted assembly improves generalization to unseen tasks while maintaining computational efficiency, especially in
few-shot settings. By focusing only on what is essential, BRIDGE ensures the effective adaptation of multi-domain graph
knowledge to diverse tasks.

G.6. How to Understand the Downstream Classification Objective?

The downstream classification objective unifies the pre-training and down-prompting stages by adopting a universal
task template based on subgraph similarity. This objective ensures consistency across tasks such as node and graph
classification, enabling efficient knowledge transfer from pre-trained embeddings to downstream tasks.

Formally, the classification loss aims to maximize the similarity between embeddings of correctly matched subgraphs
while minimizing the similarity with mismatched ones. Specifically, the model utilizes the pre-trained graph encoder
and a learnable prompt to adapt the embeddings of target graphs. The classification loss is formulated as a cross-entropy
over pairwise embedding similarities, where few-shot labeled samples serve as the supervision to guide the model in
distinguishing classes. This design not only aligns with the self-supervised pre-training task but also enables effective
fine-tuning under limited labeled data, ensuring robust performance even in few-shot settings.

G.7. How to Understand the Derivation Process of Generalization Error Upper Bound?

The derivation of the generalization error upper bound quantifies the extent to which knowledge can be transferred between
domains. It decomposes the target domain error into four components: ❶ (term [a] and term [b]) empirical errors on source
and target domains, which can be optimized through classification objectives. ❷ (term [c]) domain divergence, measured
using the Wasserstein distance between source and target distributions. ❸ (term [d]) hypothesis mismatch, capturing the
gap between source and target models’ predictions. ❹ (Term O(·)) residual terms related to sample complexity and model
capacity. To ensure smooth generalization, Lipschitz continuity is introduced for the graph encoder and classifier, bounding
how much the output can change with respect to input variations.

To further constrain domain divergence, the bound is refined using graph spectral theory. The Wasserstein distance is
related to spectral differences in adjacency matrices, leading to a spectral regularization term that stabilizes knowledge
transfer. This regularizer ensures that down-prompting effectively preserves task-relevant features while mitigating overfitting
to domain-specific noise. By incorporating this bound into the optimization process, BRIDGE explicitly balances knowledge
transfer and generalization, making it theoretically sound and practically efficient for adapting to new domains.

G.8. How to Understand Proposition 4.6?

Proposition 4.6 provides a lower bound for the Lipschitz constant Lf , which measures how much the graph encoder’s output
changes in response to variations in input graphs. A smaller Lf suggests a smoother model that generalizes better across
domains, while a larger Lf implies that small input differences can lead to large output variations, potentially reducing
transferability. The bound is derived by linking Lf to the spectral properties of graphs, specifically the eigenvalues of
their adjacency matrices. Since graphs from different domains have different structures, their adjacency matrices vary, and
the optimal transport (Wasserstein) distance between them helps quantify these differences.

Mathematically, the bound shows that Lf depends on both the spectral gap (differences in eigenvalues) and the structural
distance between source and target graphs. If two graphs have highly similar adjacency matrices (i.e., small spectral
differences), the bound indicates that the knowledge transferability is high, leading to better generalization. Conversely,
if the graphs are structurally different, the transferability is limited, and adaptation becomes harder. This result is crucial
for BRIDGE because it provides a theoretical guarantee that minimizing spectral differences during training enhances the
model’s ability to generalize across domains.

G.9. How to Understand How the Spectral Regularizer Takes Effect?

The spectral regularizer in BRIDGE ensures that knowledge transfer remains stable by controlling how much the graph
representations change when adapting from source to target domains. It works by enforcing smoothness in the spectral
space, meaning that graph embeddings should not fluctuate too much between adjacent frequencies. This is done by
minimizing deviations in spectral components of node features and their transformed embeddings, reducing the risk of
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overfitting to domain-specific noise. The regularizer acts as a constraint during fine-tuning, preventing drastic shifts in
feature distributions while ensuring the model retains transferable knowledge.

Mathematically, the regularizer is formulated based on spectral differences in graph signals, ensuring that variations in
embeddings align with the inherent structure of the target domain. By penalizing excessive spectral changes, it helps
maintain consistency in feature representations, leading to better generalization. In practice, this means that BRIDGE can
adapt to new domains while preserving key structural properties, ensuring efficient and stable knowledge transfer even with
limited labeled data.

Notably, if pre-training and fine-tuning are jointly optimized rather than conducted separately, the spectral regularizer
is expected to have an even greater impact. In this setting, the model can dynamically adjust feature alignment while
simultaneously learning a more generalizable representation space. This synergy allows the regularizer to directly influence
both phases, reinforcing domain-invariant structures early in training and further stabilizing adaptation.

G.10. How to Understand Why LLM Can Enhance Knowledge Transfer?

LLMs enhance knowledge transfer by improving feature alignment across different domains through semantic enrichment.
In BRIDGE, node features are often derived from raw text via feature engineering, which may lead to information loss.
By leveraging LLMs to generate textual descriptions and encode them into numerical representations, BRIDGE integrates
richer semantic information into its graph embeddings. This augmented representation bridges the gap between structurally
different graphs by introducing a shared semantic space, making it easier for the model to generalize across domains.

Specifically, the experiment constructs node representations by concatenating original graph features with LLM-generated
textual embeddings. This hybrid approach allows the model to retain domain-specific graph structures while benefiting
from the broader contextual understanding provided by LLMs. As a result, the cross-domain adaptation process becomes
more effective, as semantically similar nodes from different domains are better aligned. This method is particularly
useful in scenarios where domain shifts are significant, enabling BRIDGE to achieve stronger generalization with minimal
supervision.

H. Additional Related Work
H.1. Multi-Domain Graph Pre-training

Pre-training methods on graphs (Liu et al., 2022; Hu et al., 2020a; Xie et al., 2022) capitalize on the intrinsic properties of
graph structures and feature semantics via self-supervised learning. These approaches leverage optimization objectives such
as node masking, edge prediction, and contrastive learning to learn transferable representations from massive graph data,
such as GCC (Qiu et al., 2020), GPT-GNN (Hu et al., 2020b), GPPT (Sun et al., 2022), L2P-GNN (Lu et al., 2021), APT (Xu
et al., 2023), CPT-HG (Jiang et al., 2021), Att-HGNN (Yang et al., 2022), PT-DGNN (Chen et al., 2022), W2PGNN (Cao
et al., 2023), π-GNN3 (Yin et al., 2023), etc. Pre-trained knowledge can be transferred to downstream domains and tasks
through parameter fine-tuning or prompting. However, these methods typically assume that the pre-training and downstream
graphs originate from the same or very similar domains. For instance, they may involve different subgraphs of a large
graph (Huang et al., 2022) or a collection of similar graphs within the same field (Zhang et al., 2021). Consequently, these
methods struggle to generalize across multi-domain graphs due to domain-specific biases inherent in the pre-training process.

Another line of research in cross-domain learning addresses the challenge of transferring knowledge from a single source
domain to a different target domain, such as GCOPE (Zhao et al., 2024), OMOG (Liu et al., 2024b), PGPRec (Yi et al.,
2023), UniAug (Tang et al., 2024c), UniGraph (He & Hooi, 2024), etc. These studies focus on exploiting domain-invariant
representations to bridge the gap between disparate domains. While effective for single-source to single-target scenarios,
they fall short in utilizing comprehensive multi-domain knowledge. Additionally, many of these methods are tailored to
specific tasks or domains and often require domain expertise, which limits their applicability to diverse domains and tasks.
Towards addressing multi-domain graph pre-training, methods such as OFA (Liu et al., 2024b) and HiGPT (Tang et al.,
2024b) employ large language models to derive and align node features from different domains through the medium of
natural language. While innovative, these methods are constrained to text-attributed graphs (Wang et al., 2024; Tan et al.,
2024), thereby limiting their applicability to a broader range of more general graph types. For non-text-attributed graphs,
GCOPE (Zhao et al., 2024) introduces domain-specific, interconnecting virtual nodes to link across domains. Though
it facilitates some level of connection, they do not explicitly align node features, thereby failing to overcome domain
conflicts effectively. MDGPT (Yu et al., 2024c) proposes a set of domain tokens to explicitly align multi-domain features for
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synergistic pre-training. However, it simply utilizes SVD to align features dimension-wise without considering semantics.

Unlike existing multi-domain graph pre-training methods that often struggle with domain-specific biases or lack explicit
feature alignment, BRIDGE introduces a principled approach by aligning multi-domain features with a set of domain-
invariant aligners. Additionally, BRIDGE offers a theoretical framework that quantifies transferable knowledge through
an optimizable upper bound on the generalization error. This combination of alignment, selective transfer, and theoretical
grounding leads to improved performance across various tasks, setting it apart from prior work in the domain.

H.2. Graph Fine-tuning and Prompt Learning

Fine-tuning pre-trained graph models for specific downstream tasks has become a widely adopted approach to adapting
general representations to particular applications. Traditional fine-tuning techniques involve modifying the entire graph
model or a subset of its parameters to optimize performance on the target task, such as GTOT (Zhang et al., 2022), G-
Tuning (Sun et al., 2024), S2PGNN (Zhili et al., 2024), IGAP (Yan et al., 2024), WalkLM (Tan et al., 2024), NEAT (Ying
et al., 2024), Bridge-Tune (Huang et al., 2024b), GSP (Jiang et al., 2024), GRAPH-BERT (Zhang et al., 2020), etc. While
effective, these methods can be computationally expensive and prone to overfitting, especially when labeled data is limited.
To mitigate these issues, parameter-efficient fine-tuning (PEFT) methods have emerged, adjusting only a small portion of
the model’s parameters (Zhu et al., 2024a; Tian et al., 2024; Gui et al., 2024; Xue et al., 2023) or introducing lightweight
modules (Lin et al., 2024; Zhu et al., 2024b; Yang et al., 2023; 2024) to adapt the model to new tasks without extensive
retraining. PEFT-based methods significantly reduce computational cost and the risk of overfitting while maintaining strong
performance on downstream tasks. This allows for more efficient adaptation to new domains, especially in scenarios with
limited labeled data. However, these methods still face challenges in handling complex multi-domain scenarios, where
domain-specific biases and task heterogeneity can affect their effectiveness.

Prompt learning has emerged as an alternative approach, initially popularized in natural language processing (Liu et al.,
2023a; Zhou et al., 2022b;a; Du et al., 2022). For graph learning, prompt-based methods aim to guide the behavior of
pre-trained models with minimal parameter updates. Techniques such as graph prompt tuning (Sun et al., 2022; Zhu
et al., 2023; Shirkavand & Huang, 2023; Zhang et al., 2024) involve designing task-specific prompts that interact with
pre-trained embeddings to achieve the desired outcomes. These methods provide a more parameter-efficient adaptation
strategy, reducing the risk of overfitting and improving generalization across diverse tasks. Recent advancements in graph
prompt learning have introduced various strategies to improve adaptability and performance, such as GPPT (Sun et al.,
2022), All in One (Sun et al., 2023), GraphPrompt (Liu et al., 2023b), Self-Pro (Gong et al., 2023), SGL-PT (Zhu et al.,
2023), GPF-Plus (Fang et al., 2024), PRODIGY (Huang et al., 2024a), MDGPT (Yu et al., 2024c), HGPROMPT (Yu et al.,
2024a), ProG (Zi et al., 2024), etc. These methods integrate learnable prompts into the graph neural networks, enabling the
model to focus on task-relevant features or structural semantics, which captures key patterns in the downstream graph data,
facilitating transfer learning across different graph tasks, enhancing the model’s ability to handle complex graph structures.

Despite these advancements, existing prompt learning methods for graphs are often limited in their ability to handle multi-
domain scenarios effectively. Many approaches are designed with a focus on single-domain tasks, requiring domain-specific
prompt engineering that restricts their scalability and generalization. Furthermore, there is a lack of theoretical insights into
how and why prompt learning works in the graph domain, which constrains the development of more robust and principled
methods. BRIDGE, however, not only integrates multi-domain graph feature alignment but provides a theoretical foundation
for knowledge transfer, addressing these challenges and offering a more scalable solution for multi-domain graph learning.

H.3. Towards Graph Foundation Models

Graph Foundation Models (GFMs) extend the idea of foundation models, which have shown remarkable success in fields,
like natural language processing (Myers et al., 2024; Bai et al., 2024) and computer vision (Singh et al., 2022; Wang et al.,
2023), to graphs (Mao et al., 2024b; Shi et al., 2024a; Zi et al., 2024; Guo et al., 2025b). The concept of GFMs revolves
around pre-training models on large-scale, diverse graphs to learn generalizable representations that can then be fine-tuned
for a wide variety of downstream tasks (Shi et al., 2024b; Bommasani et al., 2021). These models aim to combine the
flexibility and generalization ability seen in large language models with structural precision required for graph-based tasks.

While traditional graph deep models have made significant progress in tasks like node classification, link prediction, and
graph classification, their generalization across different domains remains limited. Pre-training GNNs on domain-specific
graphs has been a common approach, but such methods often face challenges in transferring learned representations across
diverse domains due to domain-specific biases and the heterogeneous nature of graph data. This limitation motivates the
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exploration of GFMs, which aim to learn domain-invariant representations through multi-domain pre-training. Existing
multi-domain graph pre-training methods, such as GCOPE (Zhao et al., 2024) and MDGPT (Liu et al., 2024b), have
attempted to bridge the gap by aligning features from different domains. These approaches focus on aligning node and
edge features across domains, but they are typically restricted to text-attributed graphs or rely on shallow domain alignment
techniques. Methods like OFA (Liu et al., 2024b) and TSGFM (Chen et al., 2024b) leverage language models to align features
via language descriptions, yet they still struggle with non-textual graphs and fail to fully capture semantic similarities.

GFMs, however, aim to provide a more unified approach by leveraging large-scale pre-training on graph data, followed
by task-specific adaptation. These models are expected to exhibit both emergence and homogenization (Shi et al., 2024a),
similar to LLMs, enabling them to generalize across tasks and domains while maintaining their ability to perform graph-
specific reasoning. By aligning features across domains in a principled way and using techniques like contrastive pre-training
or prompt learning, GFMs have the potential to handle diverse graph data types and tasks more effectively. A growing
line of inquiry is into the theoretical underpinnings of GFMs. Some works have begun to explore the potential existence
of scaling laws in graph models (Ma et al., 2024; Tang et al., 2024c; Chen et al., 2024a; Liu et al., 2024c), analogous to
those found in large language models (Kaplan et al., 2020). These studies hypothesize that increasing the scale of graph
models may yield emergent properties, such as enhanced transferability and generalization across tasks. However, empirical
validation is still limited, and the theoretical foundation for scaling GFMs remains underdeveloped.

Several key challenges remain for GFMs. First, the heterogeneous nature of graph data ranging from node features to edge
types poses significant difficulties for creating unified representations. Second, the scalability of GFMs remains a concern, as
large-scale graph data requires substantial computational resources for pre-training. Third, while prompt learning techniques
show promise for fine-tuning pre-trained graph models, their application across multiple domains and tasks is still an open
challenge. Overall, GFMs present an exciting opportunity to revolutionize graph learning by combining the strengths of
pre-trained models with the precision of graph-based reasoning.

Our work, BRIDGE, addresses these gaps by aligning multi-domain graph features during pre-training and using a Mixture
of Experts (MoE) network for efficient prompting. Moreover, we provide a theoretical upper bound on the generalization
error, offering new insights into the amount of knowledge that can be transferred across domains. This foundational work
paves the way for more robust and scalable GFMs.

I. Limitations
While BRIDGE demonstrates notable advancements in multi-domain graph pre-training and prompt learning, certain areas
remain open for further exploration to maximize its utility and versatility towards Graph Foundation Models (GFMs).

Evaluation on Wider Domains. The current evaluation focuses on well-known benchmark datasets across three domains
(academic, e-commerce, and social networks). However, niche domains, such as chemical reaction networks (where nodes
represent molecules and edges denote reactions) or financial fraud detection graphs (with complex temporal and hierarchical
patterns), may pose unique challenges due to their specialized data distributions. For example, highly sparse or asymmetric
adjacency matrices prevalent in these graphs may affect feature alignment or generalization capabilities. Additionally,
multimodal graphs, such as those combining image features with graph structure (e.g., protein folding graphs with 3D spatial
data), remain unexplored.

Assumptions on Feature Alignment. BRIDGE relies on domain-invariant aligners to unify graph features across domains.
However, this assumes that such alignments can adequately capture shared characteristics across all graphs. In graphs with
extreme heterogeneity, such as heterogeneous information networks (HINs) where nodes and edges have diverse types (e.g.,
author-paper-venue graphs), this assumption may not always hold. Similarly, in hypergraphs, where edges connect multiple
nodes, or dynamic graphs with time-evolving structures, fixed aligners may struggle to generalize effectively. Developing
adaptive or context-aware aligners could mitigate these issues by dynamically reconfiguring based on the data.

Hyperparameter Exploration. The sensitivity analysis indicates that BRIDGE’s performance depends on hyperparameters
to some extent, such as trade-off weights for the spectral regularizer and MoE components. Extending this exploration to
cover interactions between hyperparameters and task-specific factors (e.g., dataset size, graph sparsity) could yield practical
guidelines. Automated hyperparameter optimization techniques, such as Bayesian optimization or reinforcement learning,
might also reduce manual tuning efforts.

Impact of Fine-tuning Epochs. BRIDGE’s few-shot fine-tuning demonstrates strong results with limited labeled data
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and epochs. However, its performance under prolonged fine-tuning remains unexplored. For example, understanding
the trade-offs between overfitting and incremental gains with additional epochs on larger labeled datasets would provide
practical guidance for deploying BRIDGE in scenarios with varied data availability.

J. Future Directions
Building on the advancements presented in this work, several promising directions can further enhance and expand the
impact of BRIDGE.

Enhancing Generalization for Extreme Few-Shot Scenarios. Although BRIDGE demonstrates strong performance in
one-shot and five-shot tasks, real-world scenarios often involve domains where labeled data is either completely unavailable
(zero-shot) or extremely sparse (e.g., fewer than 5 samples per class). Future research could explore unsupervised prompt
initialization techniques that leverage unlabelled target domain data. Additionally, meta-learning approaches could be
integrated to pre-train models with better generalization capabilities across unseen domains, enabling more effective transfer
with minimal supervision.

Integration with Graph Agents. Future research could explore integrating BRIDGE with graph-based agents that leverage
graph-structured data for decision-making in interactive environments. For example, combining BRIDGE with reinforcement
learning or multi-agent systems could enable applications such as autonomous traffic management, supply chain optimization,
or real-time network monitoring. This would involve adapting BRIDGE’s pre-training and prompt learning mechanisms
to dynamically update graph representations based on agent interactions and feedback. Additionally, policy-guided graph
prompting could be introduced to optimize agents’ actions by focusing on domain-relevant graph substructures, enhancing
both efficiency and effectiveness in graph-driven environments.

Extending to Dynamic and Temporal Graphs. Real-world graphs, such as social networks, traffic systems, and financial
transactions, often evolve over time. Future extensions of BRIDGE could incorporate temporal graph neural networks (e.g.,
temporal attention mechanisms) to capture dynamic relationships. Designing time-sensitive feature aligners that adapt to
evolving graph structures and align temporal features across domains would further enhance the framework’s utility for
applications like anomaly detection or forecasting.

Incorporating Multi-Modal Graph Data. Many practical applications involve graphs enriched with multi-modal data,
such as images, textual descriptions, or sensor readings. Future research could focus on joint feature extraction mechanisms
that integrate these modalities into the BRIDGE framework. For example, leveraging pre-trained language or vision models
to embed auxiliary information and align it with graph features could improve performance on tasks requiring a holistic
understanding of entities and their relationships, such as biomedical knowledge graphs or e-commerce recommendation
systems.

Exploration of Domain-Specific Variations. Although BRIDGE aligns features across domains, certain specialized graphs,
such as biological pathways, chemical reaction networks, or transportation systems, have unique properties that may benefit
from tailored techniques. Future research could investigate domain-specific pre-training objectives, such as link prediction
for protein-protein interaction graphs or path optimization for logistics networks. Additionally, customizable aligners that
leverage domain knowledge, such as hierarchical clustering or molecular graph fingerprints, could improve transferability in
these specialized contexts.

Expanding the Range of Downstream Tasks. While this study focuses on node and graph classification tasks, BRIDGE has
the potential to address a broader range of graph-related problems. Future work could adapt the framework for link prediction
(e.g., for knowledge graph completion or social network analysis), graph generation (e.g., molecule generation in drug
discovery), or graph clustering (e.g., community detection in social graphs). This expansion would require task-specific
prompts and evaluation protocols to demonstrate adaptability across diverse use cases.
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