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ABSTRACT

Neuroscience strives to overcome the lack of power due to the small sample size
of imaging-based studies. An important step forward has been the creation of
large-scale public image repositories, such as NeuroVault. Such repositories allow
images to be compared across studies and automatically associated with cognitive
terms. Yet, this type of meta-analysis faces a major roadblock: the scarcity and in-
consistency of image annotations and metadata. Another resource containing rich
annotations is the neuroscientific literature. However it only yields a handful of
brain-space coordinates per publication, those of the main activity peaks reported
in each study. This has led the community to mostly perform meta-analysis based
on these reported coordinates. In this work, we propose Peaks2Image, a neural-
network approach to reconstruct continuous spatial representations of brain ac-
tivity from peak activation tables. Peaks2Image thus associates rich annotations
from the neuroscientific literature with dense brain reconstructions. Using those
reconstructions, we train a decoder using tf-idf features as labels, leading to a
much broader set of decoded terms than current image-based studies. We validate
the decoder on 43,000 NeuroVault images, successfully decoding 65 out of 81
concepts in a zero-shot setting.

1 INTRODUCTION

Cognitive neuroscience aims to map cognitive processes onto brain regions. Functional Magnetic
Resonance Imaging (fMRI) is one of the most powerful techniques available to identify such asso-
ciations. This approach measures brain activity while subjects perform cognitive tasks in an MRI
scanner, and then contrasts brain signals associated with different mental conditions. Statistical test-
ing of these contrasts then identifies brain regions where the neural activity elicited by the conditions
probed is significantly different. Unfortunately, the high cost of data acquisition limits the number of
participants and tasks involved in each study (Poldrack et al., 2017). A small number of participants
causes low statistical power and a high proportion of false discoveries (Ioannidis, 2005; Button et al.,
2013). Analyzing a restricted set of cognitive tasks introduces the risk of over-interpreting statistical
effects that are not specific to the mental functions under study (Poldrack, 2011).

Meta-analysis consists in aggregating the results of several studies to find effects that are reported
consistently (Wager et al., 2007). It helps overcome the challenge of small sample sizes and uncovers
more reliable associations between brain activity and mental function. When feasible, meta-analysis
should use the full statistical brain maps produced by the original studies (Salimi-Khorshidi et al.,
2009). Unfortunately, the vast majority of studies does not share the actual brain images. Instead,
only the locations of the peaks of activation are reported. These are communicated in the form of
tables, in scientific publications, containing stereotactic coordinates – 3D coordinates in a standard
spatial referential for the brain. This results in a poor representation of brain activity – most of the
information contained in the original statistical maps is lost. Meta-analyses that rely on peak activa-
tion coordinates reported in publications are called Coordinate-Based Meta-Analyses (CBMA).

Recent efforts to openly share full brain images and statistical maps such as NeuroVault (Gor-
golewski et al., 2015) or OpenNeuro (Gorgolewski et al., 2017), could facilitate Image-Based Meta-
Analysis (IBMA) – relying on the brain images rather than coordinates. However, annotations avail-
able on those large databases are scarce and inconsistent, leading to difficulties to capture the seman-
tics of the cognitive processes associated with images (Menuet et al., 2022). There is no standard,
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agreed-upon ontology or vocabulary of mental functions. Moreover, all that is known is the task
that the participant is performing, and ascribing mental functions to tasks is difficult (Poldrack et al.,
2011). Therefore, formally describing the mental states that underlie a brain image remains an open
problem.

Scientific literature and image repositories are therefore complementary: the literature provides rich
descriptions of the studied cognitive tasks but poor spatial information, whereas image repositories
contain complete representations of brain activity but lack useful annotations. In the present study,
we introduce a meta-analysis method that combines the strengths of both.

Beyond the challenge of sample size, effects uncovered by individual neuroimaging studies suffer
from a lack of specificity. When a cognitive task is studied in isolation, there is no way of knowing
if the observed brain activations are specific to the mental functions of interest, or associated with
a broader set of mental processes. Authors often over-interpret the observed associations, resulting
in the fallacy of unwarranted reverse inference (Poldrack, 2011). One way of identifying more
specific associations between brain activity and mental function is decoding: inferring the mental
processes at play, given a brain image of neural activity. Indeed, to discriminate between a wide
variety of cognitive states, a decoding model must identify brain regions that characterize each state,
rather than brain regions that are merely activated consistently. For the resulting associations to be
specific, it is crucial that many and diverse cognitive states are decoded jointly. Due to the difficulty
of formalizing the mental states associated with a brain image, high-quality labels are lacking for
this supervised task. Performing such large-scale (sometimes called “open-ended”) decoding is
therefore challenging, and in practice most studies that claim to perform “open-ended” decoding
only discriminate a restricted set of cognitive concepts.

In this work, Peaks2Image learns to discriminate dozens of cognitive terms on the largest available
image repository, NeuroVault. To do so, it leverages both the rich descriptions of mental processes
found in the literature and the high-quality neural activity data found in full-brain statistical maps.
Peaks2Image reduces the gap between IBMA and CBMA, by reconstructing brain maps from peaks
coordinates contained in neuroscientific publications. We leverage brain images from an unlabeled
dataset to extract peaks, and train Peaks2Image to reconstruct images from the extracted peaks. We
use Peaks2Image to obtain for the first time images associated with neuroscientific studies that only
provide stereotactic coordinates. We evaluate whether those reconstructions are relevant by using
them for brain image decoding. We associate labels with the studies using some criteria on the term-
frequency inverse-document-frequency of the text. We use the decoding architecture from Neural
Networks on Dictionaries (NNoD) (Menuet et al., 2022) trained on the neuroscientific corpus. We
evaluate the decoding performance against 81 terms from NeuroVault. Peaks2Image succesfully
decodes 65 of them on thousands of brain images from the NeuroVault database, without using any
supervision from NeuroVault samples during training. While the evaluation has been performed on
a limited set of terms, Peaks2Image can decode in a zero-shot setting any term from its vocabulary.

2 RELATED WORK

Automated meta-analysis (Laird et al., 2005; Yarkoni et al., 2011) has risen over the last few years to
handle the growth of published neuroscientific studies. Handling neuroscientific concepts properly
has emerged as a challenge for CBMA, leading to the use of more complex textual features and
models. Dockès et al. (2020) broadened the spectrum of terms analyzed by mapping rare concepts
to more common cognitive terms. Ngo et al. (2021) leveraged language models (Beltagy et al.,
2019) to capture term relationships semantically, leading to the encoding of any query. However,
CBMA suffers from the drastic information reduction inherent to peak reporting.

Using dense images yields more information for meta-analysis (Salimi-Khorshidi et al., 2009).
Thanks to the rise of large-scale databases of fMRI brain images such as NeuroVault (Gorgolewski
et al., 2015) or OpenNeuro (Gorgolewski et al., 2017), decoding can now be performed across mul-
tiple studies (Mensch et al., 2017; Walters et al., 2022). Nonetheless, annotations associated with
those images are often of low quality. Automatic strategies to improve this labeling are necessary
to benefit properly from the scale of the data (Poldrack and Yarkoni, 2016). Menuet et al. (2022)
leverages the Cognitive Atlas (Poldrack et al., 2011) to improve the label quality of NeuroVault im-
ages, enabling the decoding of a large set of concepts. Overall, neuroscience meta-analyses have
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increasingly relied on data-driven approaches, learning more efficiently across a large set of data
(Beam et al., 2021).

Although there has been interest in enriching brain images to increase the amount of data (Zhuang
et al., 2019), to generate or reconstruct fMRI images (Manning et al., 2018; Cai et al., 2016), there
has been limited interest in generating reconstructions of statistical brain maps from peaks (Gor-
golewski et al., 2019), probably due to the daunting data dimensionality. In particular, we found
no attempt at merging rich textual information from neuroscientific studies with the dense spatial
information of brain images.

We focus on this particular aspect, proving that obtaining image representations for neuroscientific
studies helps overcome the limitations of CBMA by generating a corpus with both rich textual
annotations and dense spatial representations.

3 METHOD

Neuroscientists most frequently extract peaks (local maxima) above a statistical threshold from brain
images. An image containing hundreds of thousands voxels is thus reduced to a few datapoints –
less than 100 for most studies. We aim to reconstruct brain images from those few datapoints. This
reconstruction problem is an inverse problem between the set of peaks and the image from which
they were extracted. From a given set of l peaks Py ∈ R3×l extracted from an image y ∈ Rm with
m voxels, we learn the transformation f : R3×l 7→ Rm by minimization of the L2 error over the
original image:

f∗ = argmin
f

Ey∥f(Py)− y∥22 (1)

To solve the minimization problem in eq 1, we leverage a set of statistical maps taken from Neu-
roVault, an online repository of fMRI maps, from which we extract peak coordinates. This leads
to a training set of peaks and the corresponding brain images to be reconstructed. Once trained,
Peaks2Image can be applied to any set of peak coordinates from neuroscientific publications. This
leads to a combination of both continuous brain images and extensively annotated studies, which
opens the possibility to decode a larger set of cognitive concepts.

We show in Figure 1 a summary of Peaks2Image. The figure is divided between the learning of
the reconstruction process from peaks (A), the application of the reconstruction to neuroscientific
studies (B), and the decoding of brain images with a model trained from those reconstructions in a
zero-shot setting.

3.1 RECONSTRUCTION

Peaks2Image consists of a neural network that reconstructs brain images from activity peaks. We
tame the effect of outliers by rescaling image values to a standard range, thus losing the statistical
scale of the effect but keeping the overall statistical distribution. Images are also resampled at a
fixed resolution and masked to keep the brain volume only.

Instead of leveraging the peak coordinates directly as a sets problem (Zaheer et al., 2017),
Peaks2Image builds an internal sparse Gaussian representation similar to the literature as by Laird
et al. (2005); Dockès et al. (2020); Ngo et al. (2021). It performs a transformation between the
Gaussian representation space and the image space. Formally, we consider P = (p1, ..,pl) peaks
extracted from image y where ∀i ∈ [1..l],pi ∈ R3. Given a fixed sampling grid G = (g1, ..,gm)
representing the voxels, where ∀j ∈ [1..m],gj ∈ R3, and a Gaussian kernel κ we define the vector
xy that samples P on the grid G: xy = (x1, .., xm) with ∀j ∈ [1..m] : xj =

∑l
i=1 κ(pi, gj).

High-resolution is not needed here, as population-level images, that represent the average of indi-
vidual data with variable shapes, are intrinsically smooth. We can thus perform a drastic dimension
reduction of the data, which is welcome given that the sample size is inherently limited. We use
the Dictionary of Functional Modes (DiFuMo) probabilistic atlas (Dadi et al., 2020), that efficiently
reduces the m = 50, 000 voxel values to k = 1024 components. DiFuMo has been trained on thou-
sands of resting-state and task fMRI with non-negativity and sparsity constraints, making this atlas
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Figure 1: Reconstructing Brain Activation Maps from Activation Peaks (A) We learn the re-
construction process from NeuroVault collection #4438. After selection and preprocessing of the
images, we extract the peaks that are above a statistical threshold. From those peaks, we build an
intermediate representation by placing a Gaussian kernel at each peak as in Dockès et al. (2020);
Ngo et al. (2021). We compress the representation using the DiFuMo atlas. We regress the original
DiFuMo components of each image by leveraging a 3-layer multi-layer perceptron (MLP). (B) Once
the reconstruction model is trained, we build intermediate Gaussian-kernel representations for the
scraped studies, and reconstruct a brain map for each study using the above model, supporting fur-
ther image-level computations such as decoding. From the text, we extract the tf-idf values for each
word, and infer labels on a percentile-based threshold. (C) We perform decoding of NeuroVault
images by training on the newly acquired representations of neuroscientific studies. We decode a
broad set of cognitive processes benefiting from the large vocabulary.

relevant to represent population-level information. In the rest of the paper, the term brain image
refers to its 1024-dimensional DiFuMo representation.

Mapping voxels x ∈ Rm to coefficients α ∈ Rk along DiFuMo dictionary D ∈ Rm×k of dimension
k is a mere linear regression problem following equation 2. All the following steps are performed in
the k-dimensional DiFuMo space.

α(x) = argmin
α∈Rk

∥x−Dα∥22 (2)

The DiFuMo-encoded sparse Gaussian representation is turned into a dense representation with a
3-layer neural network where the input and output are DiFuMo coefficients. Using the DiFuMo atlas
instead of the raw voxels helps us keep a relatively low number of parameters for this model. This
transforms Eq 1 into:

f∗ = argmin
f

Ey∥f(α(xy))− α(y)∥22 where x =
∑
i

κ(Pyi
,G) (3)

To train this reconstruction process, we use around 6k images from the #4438 NeuroVault collection
(https://neurovault.org/collections/4438).

The reconstructed images are obtained from the predicted DiFuMo components by linear combina-
tions of the dictionary components: ŷ = Df∗(α(xy)).
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3.2 DECODING FROM PEAKS

Peaks2Image outputs images from any set of positions. We apply it to neuroscientific publications
to yield a set of dense brain maps accompanied by rich textual annotations, reducing the technical
gap between CBMA and IBMA. By doing this on the most comprehensive public literature corpus,
we reconstruct 13,000 brain images from the peak activation tables.

We use these representations to decode cognitive processes in a zero-shot multi-label setting. In-
deed, the ability to decode cognitive concepts from the produced database ensures its validity and
circumvents the biases inherent to image reconstruction quality metrics, such as the confounding
effect of smoothness. We evaluate the decoding performance on the NeuroVault database (#4438
excluded).

We extract the term frequency-inverse document frequency (tf-idf) (Salton and Buckley, 1988) from
the studies’ text. The tf-idf reflects the relevance of a specific term to a study by giving higher power
to terms that occurs repetitively in few studies. Based on it, we assign labels to studies, by setting a
threshold at the 95th percentile of the tf-idf. This ensures that the few studies that are most relevant
to each term get positive labels. The computed percentile can be null for some extremely rare terms.
When the percentile corresponds to a null tf-idf value, we only consider strictly positive tf-idf values.

We leverage a 3-layer dense neural network to predict the set of binary labels L = {0, 1}1 ×
· · · × {0, 1}l, l denoting the total number of classes, from the input image X ∈ Rd compressed in
DiFuMo space. The model is trained from the sole neuroscientific studies, without supervision from
any NeuroVault sample or its labels. We were limited for the evaluation by the annotations available
in NeuroVault. In the following experiments, we predict only l=81 terms from the 6308 in the tf-idf
vocabulary. Peaks2Image could extend to a set of cognitive terms as large as the vocabulary size
without any additional cost.

4 EXPERIMENTS

4.1 DATASET DESCRIPTION

We leverage the NeuroVault database. We exclude a subset of images according to a set of rules such
as having incoherent range of values (indicating that an image does not contain Z or T statistics),
duplicated images or images with missing metadata to keep around 50k brain maps for our task.
We split those maps into two different sets in a collection-wise manner. We take collection #4438,
without labels (6k maps), to train the reconstruction task. We consider the remaining 43k brain maps
from 2376 different collections to evaluate the decoding performances.

We use NeuroQuery Data Collection (Dockès et al., 2020) to fetch around 13k neuroscientific studies
from PubMed Central. The tool helps us parse the activation tables of those studies, totalling 400k
peaks. It also transforms each study text into tf-idf features across a vocabulary of 6308 terms.

For validation, we restrict the analysis to shared terms between the tags of NeuroVault images and
the vocabulary from the tf-idf. Among the 240 tags from the NeuroVault test collections, 189 are
present in the vocabulary. We focus on those 189 tags without adding any additional mappings
between the left-out tags and words from the vocabulary. Additionally, we filter out terms that
contain less than 50 positive examples in the test set to prevent any non-significant effects, keeping
81 terms to decode.

4.2 DATA PREPROCESSING

Image preprocessing Images were fetched from NeuroVault using the Nilearn library (Abraham
et al., 2014). We resample all images to the standard MNI152 template and apply the MNI152 brain
mask. We use the DiFuMo atlas in dimension 1024 available in Nilearn. As the coefficients of
the DiFuMo representation can range to large values, we scale them by a constant to facilitate the
convergence of the neural network.

Peak extraction We generate pairs of matching (peaks, image) pairs from the collection (#4438)
from NeuroVault images only. Similarly, we apply masking, resampling and DiFuMo compression
without the normalization step. We use Nilearn’s method for peak extraction, which first separates
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the images into statistically active clusters and retrieves peak coordinates from each cluster. As these
images represent statistical maps, equivalent to p-values of voxel-level tests, we keep peaks with a
p-value lower than 10−3, and with a minimal distance between peaks within the same cluster of
8mm. These are standard parameters from peak extraction in brain imaging contexts.

Sparse Gaussian Representations From a given set of peaks, we build a sparse Gaussian repre-
sentation by placing Gaussian kernels at each peak position with a 9mm full-width at half-maximum,
following what is done in Dockès et al. (2020). Similarly to the NeuroVault images, we extract the
DiFuMo representations of the sparse Gaussian maps using Nilearn.

4.3 TRAINING DETAILS

Reconstruction The image reconstruction model is an MLP built from 3 dense layers with 1024
units and sigmoid activation implemented using PyTorch (Paszke et al., 2019). It is trained for 50
epochs using Adam optimizer and a learning rate of 1e-3. The loss is the mean-squared error (MSE)
over the DiFuMo components. We select the best set of weights over the validation set, which is
composed of 20% of collection #4438.

We compare Peaks2Image to linear models (linear regression, kernel Ridge). We use implementa-
tions from scikit-learn (Pedregosa et al., 2011) with default parameters.

Decoding The decoder model is an MLP composed of one hidden layer of 300 units and ReLU
activation. It is trained for 200 epochs on the reconstructed neuroscientific studies using the Adam
optimizer with a learning rate of 3e-3 on the binary cross-entropy loss. During evaluation, we apply
an additional sigmoid operation to the model outputs. We use the Area Under the Receiver Oper-
ating Characteristic Curve (ROC AUC) over each label of the testing set to evaluate the decoding
performance. Chance level is 0.5.

We performed 20 different runs of the experiments with different splits to obtain confidence inter-
vals.

5 RESULTS

5.1 RECONSTRUCTION

We evaluate the reconstruction produced by Peaks2Image on all NeuroVault except collection #4438
which represents a testing set of around 43k images. As Peaks2Image reconstructs a normalized
image, we use as metrics both the mean-squared error that has been used at training time, and the
correlation between the original and its reconstruction in the voxel space. Even though the model
has been trained with respect to mean-squared error in DiFuMo space, we find correlation more
appropriate to measure the effects in those maps.

0.2 0.0 0.2 0.4 0.6 0.8
peaks2image

sparse gaussians
kernel ridge

linear regression
Correlation in voxel space

Figure 2: Correlation between original images and reconstructions: We evaluate the reconstruc-
tion for different models (Linear regression, kernel Ridge regression, sparse Gaussian representation
and Peaks2Image) using correlation in voxel space. Evaluation is performed on collection 4337 from
NeuroVault (18k images).

We show the reconstruction performance of each model in Fig. 2. Peaks2Image significantly out-
performs linear models. As shown in the next section, although the correlations obtained with the
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different methods are comparable, the Peaks2Image reconstruction yields a much better performance
on the downstream decoding task. This suggests that some aspects of the image reconstruction are
not captured by simple metrics such as the MSE or correlation. We plot examples of reconstructions
for different labels in Fig. 7.

5.2 DECODING PERFORMANCE

We validate the relevance of the reconstructions by decoding NeuroVault images using reconstructed
neuroscientific studies as training set. The problem is a multi-label classification, which we evaluate
by computing the ROC AUC over each label. We exclude collection #4438 that has been used as
training set in the reconstruction task, and evaluate the decoding of all remaining images from Neu-
roVault. We apply label enrichment to the original image labels. This includes regular expressions
to map different terminologies for a same concept, and a hierarchy-based inference of labels based
on the Cognitive Atlas ontology. For a given term, we assign parent terms from the ontology used
in (Menuet et al., 2022).

This results in 43k images, totalling around 200 different cognitive processes. We evaluate only
cognitive processes with at least 50 positive examples to avoid results with a too small sample. This
reduces the evaluation to 81 terms. The limitation of terms is induced by the evaluation against Neu-
roVault, but Peaks2Image could extend the prediction to any word included in the tf-idf vocabulary.

In Fig. 3, we summarize the decoding performance by aggregating over Cognitive Atlas categories.
Peaks2Image performs well over all the main concept families of Cognitive Atlas.

0.0 0.2 0.4 0.6 0.8 1.0
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Figure 3: Zero-shot decoding performance on NeuroVault: evaluation is performed on all Neu-
roVault except collection #4438. We exclude categories with less than 50 positive examples for
stability. Peaks2Image decodes better than chance 65 out of 81 cognitive processes over 43k images
(AUC > 0.55).

We show the importance of the reconstruction process in the decoding performance by running
the same decoding task over different representations of the input. In particular, we compare
Peaks2Image reconstructions to the sparse Gaussian representations used in the literature. We show
that, even though the correlation of sparse Gaussian representations remains close to Peaks2Image
reconstruction, Peaks2Image largely outperforms the sparse Gaussian model on the decoding
task. We observe a statistically significant gain of 0.1 on the mean AUC across labels between
Peaks2Image and sparse Gaussian representations. We report the performance of each method in
table 1.

We also compare Peaks2Image to approaches from the literature. On terms that are shared with
NeuroSynth (Yarkoni et al., 2011), we show that Peaks2Image outperforms the former, while largely
expanding the number of cognitive processes decoded.
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Reconstruction Architecture Decoding Model Mean AUC across tasks
Peaks2Image Logistic Regression 0.503 (± 0.001)

Sparse Gaussian NNoD 0.613 (± 0.004)
Kernel Ridge NNoD 0.638 (± 0.004)
Peaks2Image NNoD 0.698 (± 0.002)

Table 1: AUC performance of Peaks2Image and baselines: decoding from Peaks2Image recon-
structions outperforms the simple sparse Gaussian representation, as well as a kernel Ridge learner.
Using the NNoD model with a hidden layer brings strong power over mere Logistic Regression.

0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0

vs NeuroSynth

vs sparse Gaussians

vs Kernel Ridge

vs Logistic Regression

=0.06 p=0.02

=0.08 p=3e-124

=0.06 p=3e-131

Peaks2Image AUC Performance Relative Gain

no relative gain

Figure 4: Distribution of relative AUC performance across tasks of Peaks2Image compared to
other representations: We show the relative AUC gain of Peaks2Image for each task, along with
the difference of mean AUC across labels vs different methods. We perform a t-test to probe the
statistical significance of the difference between Peaks2Image and other methods. We also display
the average AUC difference (∆). For NeuroSynth, we compute the difference on a subset of shared
terms.

We plot in figure 5 the difference between NNoD performance and Peaks2Image performance. Par-
ticularly, we add to this graph the performance of Peaks2Image on unseen terms, showing that
Peaks2Image enables the successful decoding of a broader set of terms. Peaks2Image cannot com-
pete with NNoD on terms that are in the training set. NNoD has been trained specifically on Neu-
roVault images, leading logically to better decoding performances. However, Peaks2Image’s value
is that it makes it possible to decode unseen terms, leading to a larger set of decoded terms while
keeping relatively good performances where NNoD outperforms it.

We noted an effect of NNoD being able to decode some terms unseen during training. We made
sure that no data leakage occurred and compared results with other linear models which reached an
expected 0.5 AUC. Our intuition is that the multi-label setting during training and the multi-layer
structure lead to a compression effect akin to PCA, leading to above chance decoding levels for
certain tasks. This effect is negatively correlated with the number of positive samples in the testing
set.

6 DISCUSSION

We introduced Peaks2Image, a model for reconstructing brain images from peak activity coordi-
nates. By reconstructing dense spatial representations, Peaks2Image bridges the gap between neu-
roscientific literature and brain image databases. Compared to images-based models, it allows to
decode a much broader set of cognitive processes by leveraging the rich textual information of neu-
roscientific studies, along with the reconstructions. Most importantly, the decoding performance
is reached without any labeling requirements on the images side, avoiding a time-consuming and
error-prone task.

A limitation of Peaks2Image is our strategy regarding the studies text. It hinders comparisons by
limiting to exact matches between vocabulary and tags from NeuroVault. While Peaks2Image could
extend to any word contained in the neuroscientific literature, evaluation was reduced to a limited
number of concepts due to the lack of extensively annotated brain images. Exploration of more
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Figure 5: AUC performance of our reconstructions vs NeuroVault samples: we compare the
performance of the NNoD architecture on NeuroVault (except collection #4438 used for the re-
construction training) in two settings: training on NeuroVault data (collection 4438) or training on
reconstructions with percentile-inferred labels. NeuroVault training outperforms when it contains
the term considered, but Peaks2Image provides a better guess when no such training data are avail-
able.

powerful language models as in Ngo et al. (2021) is a future direction to better benefit from the
continuous brain images generated for the neuroscientific studies. Though, the poor quality of Neu-
roVault annotations would still limit our ability to evaluate those models.

Further investigations are still necessary to study the impact of the dataset used for training. A
promising avenue consists in relying on abundant resting-state data, that do not carry cognitive la-
bels, yet display a rich repertoire of topographical maps, that can be extracted e.g. with Independent
components analysis Smith et al. (2013).

Peaks2Image paves the way towards better generation of large sets of images for neuroscientific
studies. It shows that one can outrun the limitations of large-scale poor labeling quality by perform-
ing zero-shot decoding. In particular, neuroscientific studies could become a challenging application
for recent methods in text-to-image representation learning such as Radford et al. (2021).

7 REPRODUCIBILITY STATEMENT

Data was collected from public sources using either the NQDC module from NeuroQuery or the
Nilearn library. All scripts to reproduce the experiments and figures will be released publicly after
review, along with the downloading scripts and preprocessed data. In particular, we will share the
DiFuMo components of all images from our current version of the NeuroVault dataset. For neu-
roscientific studies, we leveraged the data available at https://github.com/neuroquery/
neuroquery_data/tree/main/data.
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A APPENDIX

A.1 RECONSTRUCTION OF NEUROVAULT IMAGES

We show an example of the representation at different steps of the Peaks2Image model in figure 6.

L R L R L R L R

NeuroVault image Extracted peaks Sparse Gaussian
Representation

Peaks2Image
Reconstruction

Figure 6: Successive steps of Peaks2Image: we show the successive steps of Peaks2Image rep-
resentations. From left to right, we collect brain images from NeuroVault from which we extract
peaks above a statistical threshold, we transform the peaks into a sparse Gaussian representation
from which we predict the Peaks2Image reconstruction.

We also apply Peaks2Image to NeuroVault images that are associated to a set of cognitive terms.
We compute the average of those reconstructions to show that Peaks2Image generates brain images
that are consistent with expected patterns from the literature (fig 7).

A.2 PER-LABEL DECODING PERFORMANCE

We ran 20 runs of the experiment. In figure 8, we report the per-label decoding performance along
with the variance of the results. Most terms are decoded above chance.
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L R L R L R

L R L R L R

L R L R L R

L R L R L R
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Average of Gaussians
sparse representations Average of Reconstructions

L R
audition

L R
face

L R
language production

L R
pain

L R
sadness

L R
visual

Figure 7: Reconstructions of NeuroVault samples: we show the average sparse Gaussian represen-
tation used in standard meta-analysis procedures (left) along with the Peaks2Image reconstruction
(right) for NeuroVault samples containing certain terms. The reconstruction yields more extended
networks (audition, face, language production) and sometimes biases the image away from the ini-
tial map (sadness). In some rare cases (visual) it focuses the activity patterns.
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Figure 8: Zero-shot decoding performance on NeuroVault: we use Peaks2Image to produce dense
brain images for neuroscientific studies. We train a decoder from the generated data on a broad
set of cognitive terms. We evaluate the decoding performance on NeuroVault data. Peaks2Image
succesfully decodes a large part of those terms in a zero-shot setting. Peaks2Image could extend to
any word from the studies’ vocabulary, but could be evaluated on the NeuroVault annotations only.
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