
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PARAMETERIZATION AGNOSTIC RL:
FINE-TUNING MULTIPLE POLICY CLASSES WITH ACTOR-CRITIC RL

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in learning decision-making policies can largely be attributed to
training expressive policy models, largely via imitation learning. While imita-
tion discards non-expert data, offline and/or online fine-tuning via reinforcement
learning (RL) can still learn from suboptimal data. However, instantiating RL
training of a new policy class often presents a different challenge: most deep RL
machinery is co-developed with assumptions on the policy class, resulting in poor
performance when the policy class changes. For e.g., SAC utilizes a low-variance
reparameterization policy gradient for Gaussian policies, but this is unstable for
diffusion policies and intractable for autoregressive (e.g., transformer) categorical
policies. To address this issue, we develop an offline RL and online fine-tuning ap-
proach called parameterization-agnostic RL (PA-RL) that can effectively train
multiple policy classes, with varying architectures. The basic idea is that a uni-
versal supervised learning loss can replace the policy improvement step in RL, as
long as it is applied on “optimized” actions. To obtain these optimized actions, we
first sample multiple actions from a base policy, and run global optimization (i.e.,
re-ranking multiple action samples using the Q-function) and local optimization
(i.e., running gradient steps on an action sample) to maximize the critic on these
candidates. PA-RL enables fine-tuning diffusion and autoregressive policies via
RL, while improving performance and sample-efficiency compared to existing on-
line RL fine-tuning methods. PA-RL allows us to successfully fine-tune diffusion
policies and OpenVLA, a 7B parameter generalist robot policy on real robots.

1 INTRODUCTION

Recent successes in training decision-making policies in a number of domains such as robotics
and language agents largely stem from the use of expressive models combined with large-scale
imitation-style training (Zitkovich et al., 2023; Chi et al., 2023; Kim et al., 2024), an approach that
has been tried and tested in other sub-fields of machine learning, such as vision and NLP (Ouyang
et al., 2022). However, we have also realized that training a policy once and freezing it is not good
enough for many real-world deployment scenarios, where some adaptation is needed: for example,
a robot must adapt its behavior as the surrounding environment or task changes. The hallmark of an
adaptation process is in its use of autonomous, non-expert data.

In these cases, imitation alone is not enough to guarantee the most efficient learning and RL provides
an appealing alternative. In principle, off-the-shelf RL algorithms could be used to fine-tune any pol-
icy. For instance, by running actor-critic RL (Sutton & Barto, 2018), a policy can be trained towards
maximizing the Q-function. However, most existing deep RL algorithms entangle the choice of
training objectives and algorithm design decisions with the choice of the policy class. For exam-
ple, soft actor-critic (SAC) (Haarnoja et al., 2018a), the base learner for many offline and online
fine-tuning algorithms (Kumar et al., 2020; Nakamoto et al., 2024), has been extensively tuned for
Gaussian (and tanh-Gaussian) policies: swapping the policy for a diffusion policy causes instabil-
ity (Wang et al.). These instabilities can be severe to the extent that much weaker policy extraction
techniques, e.g., critic-based re-ranking (Hansen-Estruch et al., 2023) can outperform the complete
policy gradient Wang et al., even though theoretically and with other policy classes this is not the
case (Fujimoto et al., 2018a; Ghasemipour et al., 2021). Likewise, in order to extend conservative
Q-learning (CQL) (Kumar et al., 2020) to autoregressive policies, Chebotar et al. (2023) had to to
make many modifications to the loss in the CQL algorithm. Overall, this means that adapting the
best policy training methodologies or parameterization from one policy class to another can be chal-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

lenging, and depending upon the policy itself, practitioners are forced to choose a weaker algorithm
or spend cycles modifying other components of their approach.

In this paper, we tackle this challenge by developing a single offline RL and online fine-tuning
approach, which we call parameterization-agnostic RL (PA-RL), that works well regardless of the
choice of policy class or backbone. We can train any type of policy class and architecture, as long
as the policy updates use a supervised learning loss. Now, to perform policy improvement, we pro-
pose that the RL algorithm directly optimizes the action (instead of policy parameters). Doing so
decouples policy improvement from training the parameteric policy, which can now be done via
supervised learning, by maximizing the likelihood of “optimized” actions found by policy improve-
ment. To obtain these optimized actions, we first sample from the base policy several times to get
multiple action candidates, and then take gradient steps with respect to the value function to improve
those actions in the direction of maximizing values. Then these optimized action samples replace
the use of samples from the policy in any value-based RL algorithm, and are used to train the policy
themselves. Note that while prior work does use supervised losses for policy training, our main
contribution is to show that single approach of this sort can effectively train multiple policy classes.

We evaluate PA-RL empirically on a number of domains including simulated robotic manipula-
tion tasks and real robots, with Gaussian, diffusion and autoregressive categorical policies based
on transformer backbones, on offline RL and offline-to-online RL fine-tuning problems. Our re-
sults show that PA-RL attains state-of-the-art performance, outperforming the next best fine-tuning
approach by 13% in aggregate over various domains. PA-RL produces the largest gains on long-
horizon tasks that present multimodal offline data distributions (e.g., CALVIN (Mees et al., 2022) in
our experiments), where a more expressive policy class beyond standard tanh-Gaussian is necessary
for performance. Most notably, PA-RL improves diffusion policies on two manipulation tasks by
20-35% within only 1-2 hours of online RL fine-tuning on a real WidowX robot. We also show that
PA-RL is the first RL method to improve 7 billion parameter OpenVLA (Kim et al., 2024) by 75%
within 40 minutes of real-world interaction. We also perform a number of ablation experiments.

Our main contribution is PA-RL, a single approach for offline RL and online fine-tuning policies
with different parameterizations and classes via a supervised learning update on optimized actions.
The use of a supervised learning loss renders simplicity and universality to our approach. By com-
bining global optimization and local optimization, PA-RL is able to effectively train diffusion and
transformer policies with offline RL and offline-to-online RL algorithms (Nakamoto et al., 2024;
Kostrikov et al.; Ball et al., 2023). To the best of our knowledge, our results are the first to fine-tune
diffusion policies (Chi et al., 2023) (both in simulation and in the real-world), and autoregressive
categorical transformer policies (in simulation), all via a single actor-critic RL approach.

2 RELATED WORK

Contrary to prior belief, recent work (Park et al., 2024) shows that policy learning can be a big
bottleneck in RL, especially in offline RL (Levine et al., 2020). One implication is that enhancing
the policy extraction step with the most expressive architectures and the best loss functions would
be important, but prior works often tailor the RL approach to a specific policy class (e.g., most
work has focused on Gaussian policies). In principle, designing effective algorithms for only one
policy class can “overfit” resulting in methods that are actually worse for other policy classes. For
instance, while algorithms that use Gaussian policies reparameterize the policy gradient (Lillicrap
et al., 2015; Haarnoja et al., 2018a; Fujimoto et al., 2018b), doing so for diffusion policies (Wang
et al.) or flows (Mazoure et al., 2020) can be quite unstable and requires per-task tuning. Hence,
to make a stable algorithm, Hansen-Estruch et al. (2023) resort to Q-function re-ranking on top
of a frozen behavior policy, resulting in a somewhat less powerful policy improvement operator
(e.g., compared to EMaQ (Ghasemipour et al., 2021), which uses a similar reranking-based policy
improvement operator to TD3+BC (Fujimoto & Gu, 2021), which optimizes the policy through
the use of full policy gradient and generally performs better). Most offline RL algorithms that use
autoregressive categorical transformer policies run conditional (Kumar et al., 2019) or unconditional
supervised regression (Janner et al., 2021; Yamagata et al., 2023; Wu et al., 2024), but Park et al.
(2024) show that such approaches are unable to extract the best possible policy. In fact, to fine-tune
transformer policies directly via offline RL, Chebotar et al. (2023) had to modify value function
training.

Motivated by these findings, in this paper, we build a single actor-critic RL algorithm that is effective
for fine-tuning arbitrary policy classes, with a focus on diffusion and transformer policies. Related

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

works that fine-tune diffusion policies include: DPPO (Ren et al., 2024), which uses a two-layer
diffusion-specific policy gradient loss, whereas our approach is applicable outside of diffusion poli-
cies (Section 5); IDQL (Hansen-Estruch et al., 2023), which only utilizes action re-ranking akin to
global optimization in PA-RL, but does not distill it into the policy iteratively and hence results in
poor fine-tuning performance in our experiments; DIPO (Yang et al., 2023) and DDiffPG (Li et al.,
2024), which only utilizes the “action gradient” akin to local optimization in PA-RL, but unlike us
does so in an online setting, with no pre-training involved; and DQL (Wang et al.), which utilizes the
reparameterized policy gradient estimator but is quite unstable in practice, requiring specific check-
point selection schemes and regularization to succeed, unlike our approach. Psenka et al. learn
diffusion policies via score matching, which Ren et al. (2024) find to be quite unstable. Our method
outperforms IDQL (Hansen-Estruch et al., 2023), which is one of the most performant methods in
this category. We also instantiate our method for fine-tuning autoregressive categorical transformer
policies via offline RL and online fine-tuning methods in simulation successfully. To our knowledge,
there is no prior work that attempts to fine-tune such models via value-based RL, with the exception
of Chebotar et al. (2023), we make no modifications to value function learning.

Methodologically, our method PA-RL appears similar to prior approaches that pose “RL as super-
vised learning”, and use weighted or filtered negative log likelihood (NLL) losses for training (Peng
et al., 2019; Peters et al., 2010; Peters & Schaal, 2007; Oh et al., 2018; Abdolmaleki et al., 2018).
However, note a crucial difference: while these works largely use the dataset or replay buffer action
for training via an NLL loss, PA-RL samples new actions from the policy, optimizes them against the
critic, and then trains the policy via NLL on this action. This allows PA-RL to make aggressive up-
dates, thus avoiding the “slowness” associated with supervised regression (Tajwar et al.; Kostrikov
et al.; Park et al., 2024), while inheriting its simplicity.

Action optimization from PA-RL also resembles prior work that uses CEM optimization to obtain
actions from a Q-function in the online RL setting (Kalashnikov et al., 2018; Simmons-Edler et al.,
2019; Pourchot & Sigaud, 2019), and supervised learning to improve a policy based on the obtained
actions (Neumann et al.; Shao et al., 2022). Unlike PA-RL, these methods do not make use of offline
pre-training to train the proposal distribution, which we show is important in offline RL and online
fine-tuning settings since the critic can give erroneous values outside the support of the dataset seen
so far (see Figures 12 and 13; initilization from the offline policy is important).

3 PROBLEM SETUP AND PRELIMINARIES

We want to find the optimal policy in a Markov Decision Process (MDP)M = (S,A, P, r, ρ, γ),
where S,A are the state and action spaces, P (s′|s, a) and r(s, a) are the dynamics and reward func-
tions, ρ(s) is the initial state distribution, and γ ∈ (0, 1) is the discount factor. Formally, the optimal
policy in an MDP, π∗ : S 7→ A attains the maximal cumulative discounted sum of rewards, denoted
by V π(s) = Eπ [

∑
t γ

tr(st, at)|s0 = s, at ∼ π(st), st+1 ∼ p(·|st, at)]. The Q-function of a policy
π is defined as Qπ(s, a) = Eπ [

∑
t γ

tr(st, at)|s0 = s, a0 = a, at+1 ∼ π(st+1), st+1 ∼ p(·|st, at)].
We use Qπθ to denote the estimate of the Q-function of a policy π as obtained via a neural network
with parameters θ. The action a is a d-dimensional continuous vector in [−1, 1]d.

Problem settings. We develop our approach for two settings: (a) fully offline (Levine et al., 2020)
and (b) offline-to-online fine-tuning (Nakamoto et al., 2024). In the former setting, we are given ac-
cess to an offline dataset of experience, Doff = {(si, ai, ri, s′i)}Ni=1, collected by a behavior policy,
πβ , and want to learn a policy that attains best performance using this dataset. In the latter setting,
we are supposed to optimize the policy learned offline, say πoff , using autonomously-collected inter-
action data inM. More concretely, we aim to obtain the optimal policy with the smallest number of
online samples, efficiently. Our approach, PA-RL prescribes a single approach to fine-tune policies
of different parameterizations / classes (e.g., diffusion, autoregressive transformers).

Policy parameterizations. In our experiments, we consider fine-tuning two types of policy classes:
diffusion and transformer policies. Diffusion policies use a conditional Denoising Diffusion Proba-
bilistic Model (DDPM, Ho et al. (2020)) to represent the distribution over action conditioned on the
state. A DDPM trains a diffusion step-dependant (t) denoising model, εϕ(a, t|s) that is trained with:

Lddpm(ϕ) = Et∼U(1,K),ϵ∼N (0,I),(s,a)∼D
[
∥ϵ− ϵϕ(

√
ᾱia+

√
1− ᾱiϵ, s, t)∥

]
(3.1)

where, given a fixed variance schedule β1, . . . , βK for the forward diffusion process, αt is defined as
1−βt, and ᾱt as

∏K
s=1 αs. To obtain the final action, we start with a random sample aK ∼ N (0, I),

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

and iteratively denoise the sample such that at−1 = 1√
αt

(
at − 1−αt√

1−ᾱt
εϕ(at, s, t)

)
+
√
βtz, where

z ∼ N (0, I) if t > 1 and 0 otherwise, for K total denoising steps. We also fine-tune transformer-
based policies that represent the policy πϕ(a|s) as a product of conditional categorical distributions:

πϕ(a|s) = Πd−1
i=1 πϕ(tokenize(ai)|s, a0:i−1). (3.2)

Offline RL and online fine-tuning methods. The approach we build only affects policy opti-
mization, and retains the same training procedure for the critic as the base algorithm. Our exper-
iments will focus on two classes of actor-critic based online fine-tuning algorithms (Park et al.,
2024): (1) algorithms that decouple critic updates from actor updates (e.g., Implicit Q-Learning,
IQL (Kostrikov et al.)), and (2) algorithms that sample from the actor to train the critic (e.g., Cal-
ibrated Q-Learning, Cal-QL (Nakamoto et al., 2024)). Briefly, Cal-QL trains the Q-function to
reduce temporal-difference (TD) error, with an additional regularizer that penalizes the learned Q-
values on out-of-distribution (OOD) actions as long as Q-values are higher than V µ(s), the values
of a reference policy, while compensating for this pessimism on actions seen within the training
dataset. The Cal-QL critic training objective is given by:

LCal-QLQ (θ;ϕ) = α
(
Es∼D,a∼πϕ(·|s) [max(Qθ(s, a), V

µ(s))]− Es,a∼D [Qθ(s, a)]
)

(3.3)

+
1

2
Es,a,s′∼D

[
(Qθ(s, a)− BπQ̄(s, a))2

]
.

Where Qθ is the learned critic, Q̄ is the delayed target Q-function, and BπQ̄(s, a) is the backup
operator: BπQ̄(s, a) = r(s, a) + γEa′∼π(a′|s′)[Q̄(s′, a′)]. Computing this loss requires sampling
actions from the learned policy πϕ(·|s), which is now an expressive policy class. In contrast, IQL
trains the Q-function to regress to a higher expectile of the value function, without needing to query
any new action samples from the learned policy (where Vψ(s) is the value network).

LIQL
V (ψ) = E(s,a)∼D

[
Lτ2(Qθ̂(s, a)− Vψ(s))

]
(3.4)

LIQL
Q (θ) = E(s,a,s′)∼D

[
(r(s, a) + γVψ(s

′)−Qθ(s, a))2
]

(3.5)

Where Lτ2(u) = |τ − 1(u < 0)|u2 is the expectile loss, and θ̂ are the target parameters for the
Q-function. Prior algorithms that fine-tune diffusion policies largely do not apply to transformer
policies as they make design choices specific to the diffusion process: for example, Ren et al. (2024)
exploits the structure of diffusion; Wang et al. cross-validates against the DDPM loss.

4 PA-RL: TRAINING MULTIPLE POLICY CLASSES WITH ACTOR-CRITIC RL

∇𝑎𝑄(𝑠, 𝑎)

…

Diffusion Policy

Flexible Policy Space

Base
Policy

Transformer Policy

…

a1

filter by Q-values

Global Optimization

behavior clone optimized actions

T gradient steps

…

discard bottom
(k-m) actions

𝑎11a2

ak-1

ak

a1

a2

am

Local Optimization

𝑎12

𝑎1
𝑚

𝑎21

𝑎22

𝑎2
𝑚

𝑎𝑇1

𝑎𝑇2

𝑎𝑇
𝑚

…
…

…

𝑎𝑇
𝑖

… …

Figure 1: An overview of PA-RL. Instead of directly passing critic
gradients through the policy parameters, PA-RL first “optimizes” actions
via critic re-ranking and gradient ascent. Then, it trains the policy to
mimic the most optimized action.

Our approach aims to fine-tune
multiple policy classes with RL,
regardless of scale or parame-
terization, stably and efficiently.
An approach to attain sample-
efficient policy improvement is
to use an off-policy RL algo-
rithm, which typically alters be-
tween fitting a Q-function and
updating the policy parameters
in the direction of larger pre-
dicted Q-values. Typically,
value learning treats the policy
as a black-box that provides ac-
tions for computing and opti-
mizing the Bellman update. Policy improvement, on the other hand, requires optimizing the value
function with respect to the policy parameters. Most continuous-action actor-critic RL algorithms
estimate the gradient∇ϕQ(s, πϕ(s)) with respect to the parameters of the policy ϕ for this purpose.
Unfortunately, estimating this gradient is quite challenging for most policy classes. For large dif-
fusion policies propagating the policy gradient through the denoising chain can be unstable, often
requiring extensive per-environment tuning of hyperparameters (Wang et al.) or truncating the gra-
dient propagation after a subset of denoising steps (Ren et al., 2024). Similarly, auto-regressive poli-
cies operate on discrete action tokens, so we must utilize a high-variance REINFORCE (Williams,
1992) policy gradient to optimize the policy.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Can we devise a simple yet universal approach to policy optimization in offline RL and online
fine-tuning? In order for an approach to be universal across parameterizations, one natural point is
to modify policy training to use a negative log likelihood (NLL) loss from supervised learning, since
most deep learning machinery is built around optimizing this loss (or a functional approximation).
To be able to do so, our method (Fig. 1) builds on the insight that policy improvement can be
performed via a supervised learning loss (Neumann et al.; Shao et al., 2022), as long as the loss
is applied on optimized actions. Thus, we can decompose the policy improvement step into two
stages: (1) directly optimizing action samples produced by the policy, and (2) training the policy to
imitate these “optimized” actions. This decomposition avoids having to compute∇ϕQ(s, πϕ(s)), or
estimate high-variance policy gradient estimates. We would expect this approach to inherit appealing
scaling, reliability, and tuning properties of supervised learning losses. In this section, we will detail
each of the two stages of the decomposition, and then describe the resulting algorithm.

4.1 ACTION OPTIMIZATION

Given a state s, a policy πϕ(·|s) checkpoint that appears in the process of learning, and a fixed
Q-function Qθ(s, a), the objective of this stage is to obtain an action sample that optimizes the Q-
function as much as possible, while staying close to the support of seen actions at state s. We use
πϕ(·|s) as an initializer for the action optimization procedure. In the offline setting, doing so allows
us to find the best action close to the support at the current state (and wihtin the support of actions
at the current state for a pessimistic algorithm). During fine-tuning, this enables us to still leverage
priors learned by the offline policy while adapting it to maximize returns on the task.

To produce an optimized action, we utilize a combination of different types of action optimization
procedures. First, we consider global optimization or sampling that samples multiple actions from
the pre-trained policy and discards all but top few actions with highest Q-values under the critic
(for computational efficiency). Let Aπϕ,k(s) := {a0, a1, · · · , ak−1} ∼ πϕ(·|s) denote k sampled
actions from the policy. And let Ãπϕ,k(s) := {a[0], a[1], · · · , a[k−1]} denote the setAπϕ,k(s) with
actions put in order of their ranking obtained from the Q-function, i.e., Qθ(s, a[i]) ≥ Qθ(s, a[j]),
for i ≤ j. Then, global optimization retains the following subset:

Ãπϕ,m(s) = {a[0], a[1], · · · , a[m− 1]}, m ≤ k. (global optimization) (4.1)

Given this subset of the top m actions at a state s, we now locally improve each action “particle”, by
performing gradient steps on the action in the direction of the gradient of the Q-function, directly,
without changing the policy parameters at all. This sort of a fine-grained local optimization is
complementary to the fairly coarse global optimization procedure above as it perturbs the action to
another one in its vicinity. Formally, given an action sample a[i], we run T steps of gradient ascent
starting from a0[i] := a[i] to obtain the locally optimal action, aT [i] as shown below.

for j = 0, · · · , T − 1, aj+1[i] = aj [i] + α∇aQθ(s, a)
∣∣
a=aj [i]

, (local optimization), (4.2)

where α is an appropriate learning rate that we choose for optimization. Applying both of these
steps enables action optimization to leverage complementary benefits of both of these steps, while
avoiding failure modes of either approach (e.g., being trapped in local minima vs not being fine-
grained enough). Concretely, let us denote the action set obtained by running local optimization on
Ãπϕ,m(s) as ÃTπϕ,m

(s). A pseudocode for action optimization is in Algorithm 1.

4.2 POLICY TRAINING VIA SUPERVISED LEARNING

The second stage of PA-RL distills optimized actions into the learned policy model. Crucially, this
distillation is performed via standard likelihood maximization procedures from supervised learning
that most deep learning models are trained to do. While the most direct option is to simply take the
action from the set ÃTπϕ,m

(s) that attains the highest Q-value (say, a∗(π,m, T, s)) and maximize
its likelihood under the learned policy πϕ(·|s), another alternative is to distill all action samples
from ÃTπϕ,m

(s), but weight the contributions of different actions using the Q-value. We prescribe a
simple strategy to choose between these methods (Appendix B.1). To accomplish this, we define a
categorical policy distribution over the optimized action samples:

πOpt
ϕ (a|s,m) := I

[
a ∈ ÃTπϕ,m

(s)
]
· exp(Qθ(s, a))∑

a′∈ÃT
πϕ,m(s) exp(Qθ(s, a

′))
, (4.3)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

and train the policy πϕ(·|·) to match this distribution. To do so, we annotate all states in the dataset
(including the replay buffer in online fine-tuning) with an action sample from πOpt

ϕ (a|s,m), and
maximize the likelihood of these actions under the policy, following best practices for supervised
learning on this policy class. Formally, we denote this dataset of optimized actions as:

DOpt
(ϕ,θ,m) = {(si, ã

Opt
i }, ãOpt

i ∼ πOpt
ϕ (a|si,m). (4.4)

For instance, if the policy πϕ is parameterized as a diffusion model, we follow the DDPM (Ho et al.,
2020) behavior cloning (BC) objective, and train the policy to predict noise:

Lddpm
policy(ϕ; θ) = Et∼U(1,T),ϵ∼N (0,I),(s,a)∼DOpt

(ϕ,θ,m)

[
∥ϵ− ϵϕ(

√
ᾱia+

√
1− ᾱiϵ, s, t)∥

]
(4.5)

By using this loss instead of the reparameterized Q-function gradient, we avoid ever backpropagat-
ing through the denoising chain, and instead supervise every step of the chain independently. For
auto-regressive transformer policies, we use cross-entropy loss objective for next-token prediction.

Finally, we would like to note that while prior work does explore supervised learning losses for
training policies (Peng et al., 2019; Abdolmaleki et al., 2018; Oh et al., 2018), the crucial differences
between PA-RL and these prior techniques stem from the fact that: (a) action samples are drawn
from the current policy, instead of a previous policy or a behavioral policy (Peng et al., 2019), (b)
local optimization and global optimization employed by PA-RL enable aggressive updates on action
samples to draw them to novel regions that are otherwise not possible with non-parametric methods
that operate on the space of actions directly. While these differences might appear small, we show
in our experiments that they have a substantial impact on downstream efficiency of RL training.

4.3 PUTTING IT ALL TOGETHER: FINAL PA-RL ALGORITHM

PA-RL can be used to replace the policy improvement step in multiple RL algorithms. In our ex-
periments, we primarily focus on online fine-tuning and adaptation of offline RL. Hence, we in-
stantiate PA-RL using two popular RL fine-tuning methods: Cal-QL (Nakamoto et al., 2024) and
IQL (Kostrikov et al.). PA-RL only modifies the policy improvement step of each of these meth-
ods, while keeping the critic training as it is. Since IQL training does not utilize policy backups,
using PA-RL in conjunction with IQL is straightforward: simply replace the advantage-weighted
regression (AWR) update with the above supervised learning update (e.g., Equation 4.5 for diffu-
sion policies). On the other hand, for Cal-QL and other actor-critic algorithms, where the policy
πϕ(·|s) is used to generate action samples for performing the TD-backup, we utilize the optimized
action set ÃTπϕ,m

for the Bellman backup. Formally, this means that instead of computing Bellman

targets using an updated πϕ, we simply compute targets using the optimized policy πOpt
ϕ (·|·,m)

(Equation 4.3) for Cal-QL. A pseudocode of the algorithm along with the corresponding changes in
red is shown in Algorithm 2.

Implementation details. We provide a detailed list of hyperparamters and best practices for running
PA-RL in Appendix B.1. In our experiments, we run PA-RL with both state-based and image-based
environments, where we utilize best design practices for the critic (Kumar et al., 2022). We also
find that additionally including the action a appearing at a given state in the dataset into action
optimization can sometimes be helpful. Finally, since native gradient ascent for local optimization
is not guaranteed to improve the Q-value for a larger than ideal step size, we only execute a local
update if it increases the Q-value after that step.

Conceptual comparison of PA-RL with filtered BC or advantage-weighted regression (AWR).
We now list down a condition under which PA-RL optimizes the Q-function better than AWR.
Concretely, we show that using a combination of local and global optimization, PA-RL is able to
improve the policy to a larger extent than AWR. Formally, consider a single state and Ãπϕ,m(s)
from Equation 4.1. If local optimization is run for T steps, with a step size α, then the Q-values of
actions under the optimized policy πOpt

ϕ (a|s,m) is given as the left hand side of Equation 4.6. With
no local optimization at all (or when the Q-function is used to filter actions in the data as in AWR),
the resulting Q-value of the optimized action is given by the right hand side of Equation 4.6. It is
easy to see that with high probability, when either T or m or both are large, this inequality holds.
Thus, we expect PA-RL to generally lead to aggressive updates over AWR.

with high prob, max
i=1,2,··· ,m

(
Q(s, ai) + αTEt

[
||∇aQ(s, ati)||22

])
≥ max
i=1,2,··· ,m

Q(s, ai). (4.6)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

In practice though, AWR simply upweights the dataset action so it should be less aggressive than
RHS of Equation 4.6. Obtaining the LHS of Equation 4.6 requires Taylor’s expansion at every step
of local optimization, under the assumption that step size α is small enough.

Algorithm 1 Action Optimization πopt
(ϕ,θ)

Require: base policy πϕ, Q-function Qθ
1: Sample actions from π to obtain Aπϕ,k(s).
2: Run global optimization for every state s to

retain top m actions, Ãπϕ,m(s)

3: for a in Ãπϕ,m(s) ∪ {adata(s)} do
4: for i in {1, . . . , T} do
5: a(i) ← a(i−1) + α∇aQθ(s, a(i−1))
6: if Qθ(s, a(i)) ≤ Qθ(s, a(i−1)) then
7: a(i) ← a(i−1)

8: else
Break

9: return πopt
(ϕ,θ) computed via Equation 4.3

Algorithm 2 Cal-QL + PA-RL

Require: BC loss Lpolicy, e.g. Lddpmpolicy
1: Pre-train policy πϕ via offline RL / BC
2: Initialize Q-function Qθ
3: for step t in {1, . . . , M} do
4: Train Q-function using Eq. 3.3, but use

optimized actions for TD targets

θt = θt−1 − ηQ∇θLCal-QLQ (θ;ϕ)

5: Distill optimized actions to policy

ϕt = ϕt−1 + ηπ∇ϕLpolicy(ϕ; θ)

6: Collect new online rollouts:
7: at ∼ πopt(ϕ,θ); st+1 ∼ p(st+1|st, at)
8: D ← D ∪ {(st, at, r(st, at), st+1)}

5 EXPERIMENTAL EVALUATION

The goal of our experiments is to understand the efficacy of PA-RL in fine-tuning policies of various
parameterizations and classes via RL. To this end, we evaluate PA-RL and several prior approaches,
on a number of benchmark domains that require learning policies from static offline data (offline
RL (Levine et al., 2020)) and then fine-tuning them with limited online interaction in the MDP
(offline-to-online fine-tuning (Nair et al., 2020)). Then, we will also present results validating the
efficacy of PA-RL on two real-robot manipulation tasks and show OpenVLA fine-tuning results
with PA-RL in Appendix C. Finally, we perform ablation experiments to understand the utility of
different components of PA-RL. We first describe our main results and then present ablations.

5.1 RESULTS: SIMULATED BENCHMARKS FROM STATE AND IMAGE OBSERVATIONS

We first compare PA-RL with prior methods on several benchmark tasks from the D4RL (Fu et al.,
2020) suite. Since we report performance in both the offline RL and offline-to-online RL settings,
we apply PA-RL on top of Cal-QL (Nakamoto et al., 2024) and IQL (Kostrikov et al.), two common
offline RL and offline-to-online fine-tuning algorithms, although majority of our results use Cal-QL.
We first demonstrate the efficacy of PA-RL in training diffusion policies, and compare it to methods
that also train diffusion policies. Specifically, we compare PA-RL to: (1) Implicit Diffusion Q-
Learning (IDQL, Hansen-Estruch et al. (2023)), which extends IQL to use diffusion policies via
critic-based reranking; (2) Diffusion Policy Policy Optimization (DPPO, Ren et al. (2024)), which
fine-tunes diffusion policies learned via imitation learning using PPO; and (3) Diffusion Q-Learning
(DQL, Wang et al.), which trains diffusion policies via a reparameterized policy gradient estimator
akin to standard SAC (Haarnoja et al., 2018b).

We study: (1) AntMaze tasks from D4RL (Fu et al., 2020) that require controlling the joints of
a quadruped ant to reach a goal location in four different maze layouts with a sparse reward; (2)
FrankaKitchen tasks from D4RL (Gupta et al., 2020), which require solving a sequence of four
manipulation tasks in a kitchen environment with a 9-Dof Franka robot; and (3) CALVIN bench-
mark (Mees et al., 2022; Shi et al., 2023) (D→ D, with distractor objects), which requires solving a
sequence of four manipulation tasks in a tabletop environment directly from visual observations and
with human-teleoperated play data. This offline data presents fairly low action coverage but pretty
high coverage over different modes of semantic behavior. Due to the diversity of offline data, we
believe the CALVIN should stress test the ability of any approach in effectively utilizing the multi-
modal nature of diffusion policies for improving efficiency of fine-tuning. All of these tasks present
long horizons; and the FrankaKitchen and CALVIN tasks require chaining skills.

Results: PA-RL significantly improves learning efficiency and asymptotic performance of Cal-QL
with diffusion policies. We compare different approaches for offline RL training and online fine-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 200 400 600 800 10000

20

40

60

80

100

No
rm

ali
ze

d s
co

re

CALVIN

0 200 400 600 800 10000

20

40

60

80

100 kitchen-complete-v0

0 200 400 600 800 10000

20

40

60

80

100 kitchen-mixed-v0

0 200 400 600 800 10000

20

40

60

80

100 kitchen-partial-v0

0 200 400 600 800 1000
Online Episode

0

20

40

60

80

100

No
rm

ali
ze

d s
co

re

antmaze-large-diverse-v2

0 200 400 600 800 1000
Online Episode

0

20

40

60

80

100 antmaze-large-play-v2

0 200 400 600 800 1000
Online Episode

0

20

40

60

80

100antmaze-medium-diverse-v2

0 200 400 600 800 1000
Online Episode

0

20

40

60

80

100antmaze-medium-play-v2

Ours
IDQL
DQL
CALQL
DPPO

Figure 2: Learning curves of online fine-tuning with various methods. Observe that PA-RL + Cal-QL (red)
largely always dominates or attains similar performance to the next best method. Other methods for fine-tuning
diffusion policies (IDQL, DQL, DPPO) are a bit unstable, and perform substantially worse. Since DPPO is
substantially more data inefficient, we plot it with different x-axis units: for kitchen each unit is 500 episodes
(axis goes from 0 to 500k), for antmaze each unit is 100 episodes (axis goes from 0 to 100k) and for calvin
each unit is 10 episodes (axis goes until 10k).

Domain / Task IDQL DQL DPPO Cal-QL PA-RL + Cal-QL (Ours)
CALVIN 19→ 35 19→ 22 13→ 18 6→ 36 28→ 61

Kitchen (-v0)
complete 65→ 72 70→ 44 55→ 76 19→ 57 59→ 90
mixed 60→ 70 56→ 57 45→ 75 37→ 72 67→ 77
partial 70→ 90 56→ 46 38→ 69 59→ 84 78→ 94

Antmaze (-v2)
large-diverse 66→ 69 22→ 38 0→ 1 33→ 95 73→ 95
large-play 53→ 41 60→ 18 2→ 17 26→ 90 87→ 98
medium-diverse 83→ 86 14→ 70 43→ 95 75→ 98 88→ 98
medium-play 81→ 77 25→ 78 19→ 91 54→ 97 88→ 98

Aggregate 497→ 540 322→ 373 215→ 442 309→ 629 568→ 711

Table 1: Offline-to-online fine-tuning on simulated benchmarks. PA-RL + Cal-QL outperforms every other
approach in aggregate, both in terms of the offline performance (left of →) and performance after 1k episodes
of fine-tuning (right of →). This indicates the efficacy of PA-RL in fine-tuning diffusion policies effectively.

tuning in Table 1 and present corresponding learning curves in Figure 2. First, observe that PA-RL
attains higher offline performance than other methods that use diffusion policies, as well as standard
Cal-QL with a tanh-Gaussian policy. Fine-tuning from the offline RL policy learned by PA-RL also
leads to the best fine-tuned performance in aggregate across all the methods. Concretely, the fine-
tuning performance of PA-RL is 13% higher than the next best method. On the hardest CALVIN
task (where we must learn to control policies from raw visual observations), PA-RL attains a 69%
improvement over the next best method. This perhaps hints at the efficacy of PA-RL in effectively
leveraging the increased capacity and expressive power of diffusion policies. Diving deeper, the
learning curves in Figure 2 reveal a much stronger trend: the performance of PA-RL largely stays
above the performance of all other methods throughout training. This indicates the efficacy of PA-
RL in effectively utilizing the expressivity of diffusion policies during fine-tuning. We also evaluate
PA-RL in conjunction with IQL on the FrankaKitchen tasks in Table 2, and observe that PA-RL +
IQL also outperforms standard IQL. This indicates that PA-RL is broadly effective.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Task

tanh-Gaussian
RLPD
@ 200

Diffusion
PA-RL + RLPD

@ 200

Gaussian
IQL

@ 1k

Diffusion
. PA-RL + IQL

@ 1k

tanh-Gaussian
Cal-QL
@ 1k

Transformer
PA-RL + Cal-QL

@ 1k

partial 0→ 18 58→ 73 40→ 60 62→ 75 59→ 84 33→ 95
mixed 0→ 14 58→ 58 48→ 48 69→ 73 37→ 72 42→ 84
complete 0→ 34 70→ 81 57→ 50 63→ 88 19→ 57 8→ 90

Table 2: Combining PA-RL with different policy parameterizations and critic learning algorithms. In
the hybrid RL setting, PA-RL + RLPD is able to effectively improve a pre-trained diffusion policy without
requiring pre-training the critic. PA-RL + IQL attains a similar performance on the FrankaKitchen domain
as IDQL, proving our method can work with different objectives for the critic. Transformer PA-RL improves
an auto-regressive transformer 224%. To the best of our knowledge, this is the first time an auto-regressive
transformer was improved with the Actor-Critic architecture.

Results: PA-RL with hybrid RL. Next, we run PA-RL on top of RL with Prior Data (RLPD Ball
et al. (2023)), a method that incorporates offline data into an online RL training run but does not
use offline RL pre-training. In this case, we replace the standard tanh-Gaussian policy in RLPD
with a diffusion policy and keep the critic randomly initialized. As shown in Table 2 (left), observe
that PA-RL is able to improve upon the imitation-learning performance of the diffusion policy after
200 episodes to substantially better performance values than when a Gaussian policy is used for
training itself. This further corroborates the efficacy of PA-RL in leveraging expressivity of the
policy architecture to do sample-efficient learning in the setting of online RL with offline data.

Results: PA-RL + Cal-QL with autoregressive categorical policies. Our experiments so far eval-
uate the efficacy of PA-RL in fine-tuning diffusion policies. Our next results show that PA-RL is
also effective in training transformer-based policies that model the distribution over actions autore-
gressively using categorical distributions. Concretely, this type of policy discretizes each dimension
of the action space independently into a set of 128 bins, and then trains an autoregressive model
over this sequence of discrete per-dimension action tokens. Observe in Table 2 (right) that PA-RL is
also able to effectively improve autoregressive categorical policies with Cal-QL, and attains perfor-
mance 26% better than using tanh-Gaussian policies on average across the three tasks considered.
This establishes the efficacy of PA-RL in fine-tuning policies of multiple classes.

5.2 RESULTS: RL FINE-TUNING OF ROBOT POLICIES IN THE REAL WORLD

We now show that PA-RL, can enable fine-tuning diffusion policies on a real robot, resulting in sub-
stantial improvements in success rates of the pre-trained policy initialization within just 30 minutes
to 2 hours (i.e., 30-70 episodes) of real-world autonomous interaction. To our knowledge, this is one
of the first results to effectively fine-tune diffusion policies on a real robot with actor-critic RL.

Task
DDPM
(offline)

Iterated
Filtered BC

Cal-QL + PA-RL
(offline→ online)

Cup to Rack 50% 50% 55%→ 90%

Pot to Sink
(w/ dist. shift) 50% - 80%→ 100%

Table 3: Real-robot fine-tuning results for PA-RL. PA-RL im-
proves the performance of an offline pre-trained diffusion policy on
two real robot tasks. Notably, while iterating filtered BC, a simple
and stable approach for fine-tuning, does not meaningfully improve
over fine-tuning on task (a), PA-RL improves substantially. PA-RL
is similarly effective on task (b) under distribution shift.

Real-world robot and task setup.
We study two manipulation tasks
(Figures 3 and 7) on a WidowX-
250 robotic arm with six degrees of
freedom and a single third-person
mounted camera. Our setup is in-
spired by Ebert et al. (2022); Walke
et al. (2023) and the policy controls
the end-effector pose at a frequency
of 5 Hz. The tasks are: (a) “cup to
drying rack”, which requires grasp-
ing a plastic cup and placing it in
the drying rack across the sink; and
(b) “pot to sink”, which requires picking and moving a toy pot from the drying rack to the sink.
For task (a) the sink contains distractor objects and for both tasks, the positions and rotation of the
target object are randomized. In each case, we collect 20 tele-operated human demonstrations to
pre-train the diffusion policy and the critic via Cal-QL + PA-RL that we then fine-tune online. For
task (b), we consider a “distribution shift” fine-tuning scenario, where the demonstrations show no
distractors, but fine-tuning is done with distractor objects. While seemingly benign, this sort of dif-
ference between pre-training and fine-tuning setups is still challenging as it leads to poor fine-tuning
performance (Kumar et al., 2022).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Fine-tuning setup and comparisons. In each case, we fine-tune with a sparse reward function that
is based on the detected positions of the target objects and the gripper state. After every robot trial,
we perform a manual reset and randomization of the object position and orientation. When running

Figure 3: Evolution of learned behaviors during online fine-tuning with
PA-RL on task (a), with a new cup placement. The offline initialization
(in red) fails to both grasp the cup and place it on the rack. During interme-
diate online interaction episodes (in yellow), it successfully grasps the cup,
but fails to place it on the rack. After 50 episodes (in green), it learns to
successfully grasp the cup and place it on the rack.

PA-RL on the real robot, we
found it important to collect
20 warmup episodes from the
pre-trained policy before up-
dating it. We also com-
pare our approach to a fil-
tered BC for autonomous im-
provement, based on Zhou
et al. (but without goal con-
ditioning or diffusion policy)
for one of the tasks (task (a)).
We omit this comparison for
task (b) since the pre-trained
DDPM policy did not pro-
duce any successes under dis-
tribution shift on task (b) for
seeding iterative filtered BC.
We found the diffusion policy
to be brittle on task (b).

Real-robot fine-tuning results. We observed significant and efficient performance improvement on
both tasks when fine-tuning with PA-RL, resulting in a 20-35% higher success rate within 50-110
minutes. We noticed a performance drop during the first 50 episodes of fine-tuning in the “cup to
drying rack” task, which was consistent with our findings in CALVIN task and many other works
studying online fine-tuning (Nakamoto et al., 2024). Our policy enables the robot to quickly recover
its behavior and show improvement within the next 20 episodes.

5.3 ABLATION STUDIES AND CONTROLLED EXPERIMENTS (APPENDIX D)

Task
PA-RL

no global opt.
PA-RL

no local opt. PA-RL
antmaze-large-diverse 0→ 0 74→ 95 73→ 93
CALVIN 215→ 389 201→ 357 234→ 455

Table 4: Understanding the importance of global and local opti-
mization. We compare the performance of PA-RL + Cal-QL with and
without global optimization as measured by average return obtained
Note that not using both local and global optimization leads to worse
performance. On diverse data such as antmaze-large-diverse, we find
global optimization is crucial. On somewhat more narrow data, (e.g.,
play data in CALVIN) local optimization is also important.

We ran some ablation experi-
ments to understand the impor-
tance of each component of PA-
RL. Concretely we aim to an-
swer: (1) when is global opti-
mization (Equation 4.1) critical
for improving the policy? and
(2) when is local optimization
(Equation 4.2) critical for im-
proving the policy? On the two
tasks we study (antmaze-large-
diverse and CALVIN), we make
a number of interesting observations. First, we find that both local and global optimization are criti-
cal for performance on some environment: on antmaze-large-diverse global optimization is critical,
but local optimization is not as important. On CALVIN, both of the components are important. This
tells us that global optimization is important in general, but local optimization is perhaps only useful
when we have a somewhat narrow dataset (e.g., action coverage on CALVIN is narrow; while action
coverage on antmaze is quite high). Thus, we recommend the workflow of always deploying global
optimization when running PA-RL and strongly using local optimization when the dataset action
distributions are somewhat narrow to make more targeted edits to the actions locally.

Discussion and Conlcusion. In this paper, we developed PA-RL, a method to fine-tune policies
of various classes and parameterizations via actor-critic RL. We showed state-of-the-art online fine-
tuning results across a number of simulation tasks and on two real-robot tasks. Despite promising
results, PA-RL still has some limitations that future work should aim to address. Most importantly,
PA-RL requires sampling multiple actions from the policy, which is expensive for large foundation
policies. That said, future work can attempt to reduce this computational cost by caching actions
from past rounds and training on them using ideas from off-policy policy gradient. Understanding
interplay between global and local optimization better is also a viable direction.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

6 REPRODUCIBILITY STATEMENT

In order to foster reproducibility of our work, we have outlined all the implementation details needed
to implement our method in Appendix B.1 and Section 4. We have also provided more information
about our experiments and settings in Appendix A and B.1 along with a listing of our hyperparame-
ters. Code to reproduce our results will be made available upon acceptance of this paper.

REFERENCES

A. Abdolmaleki, J. T. Springenberg, Y. Tassa, R. Munos, N. Heess, and M. Riedmiller. Maximum a
posteriori policy optimisation. In International Conference on Learning Representations (ICLR),
2018.

Philip J Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learn-
ing with offline data. In International Conference on Machine Learning, pp. 1577–1594. PMLR,
2023.

Yevgen Chebotar, Quan Vuong, Karol Hausman, Fei Xia, Yao Lu, Alex Irpan, Aviral Kumar, Tianhe
Yu, Alexander Herzog, Karl Pertsch, et al. Q-transformer: Scalable offline reinforcement learning
via autoregressive q-functions. In Conference on Robot Learning, pp. 3909–3928. PMLR, 2023.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The Inter-
national Journal of Robotics Research, pp. 02783649241273668, 2023.

Frederik Ebert, Yanlai Yang, Karl Schmeckpeper, Bernadette Bucher, Georgios Georgakis, Kostas
Daniilidis, Chelsea Finn, and Sergey Levine. Bridge data: Boosting generalization of robotic
skills with cross-domain datasets. Robotics: Science and Systems, 2022.

Jesse Farebrother, Jordi Orbay, Quan Vuong, Adrien Ali Taiga, Yevgen Chebotar, Ted Xiao, Alex
Irpan, Sergey Levine, Pablo Samuel Castro, Aleksandra Faust, et al. Stop regressing: Training
value functions via classification for scalable deep rl. In Forty-first International Conference on
Machine Learning.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
arXiv preprint arXiv:2106.06860, 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. arXiv preprint arXiv:1812.02900, 2018a.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In International Conference on Machine Learning (ICML), pp. 1587–1596,
2018b.

Seyed Kamyar Seyed Ghasemipour, Dale Schuurmans, and Shixiang Shane Gu. Emaq: Expected-
max q-learning operator for simple yet effective offline and online rl. In International Conference
on Machine Learning, pp. 3682–3691. PMLR, 2021.

Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy
learning: Solving long-horizon tasks via imitation and reinforcement learning. In Conference on
Robot Learning, pp. 1025–1037. PMLR, 2020.

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor. In arXiv, 2018a. URL https://arxiv.org/
pdf/1801.01290.pdf.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and appli-
cations. arXiv preprint arXiv:1812.05905, 2018b.

11

https://arxiv.org/pdf/1801.01290.pdf
https://arxiv.org/pdf/1801.01290.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
Idql: Implicit q-learning as an actor-critic method with diffusion policies. arXiv preprint
arXiv:2304.10573, 2023.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. In Advances in Neural Information Processing Systems, 2021.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, and Sergey Levine. Qt-opt:
Scalable deep reinforcement learning for vision-based robotic manipulation. In CoRL, 2018.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
vision-language-action model. arXiv preprint arXiv:2406.09246, 2024.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations (ICLR), 2015.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. In International Conference on Learning Representations.

A. Kumar, X.B. Peng, and S. Levine. Reward-conditioned policies. arXiv 2019, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191,
2020.

Aviral Kumar, Anikait Singh, Frederik Ebert, Yanlai Yang, Chelsea Finn, and Sergey Levine. Pre-
training for robots: Offline rl enables learning new tasks from a handful of trials. arXiv preprint
arXiv:2210.05178, 2022.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Zechu Li, Rickmer Krohn, Tao Chen, Anurag Ajay, Pulkit Agrawal, and Georgia Chalvatzaki.
Learning multimodal behaviors from scratch with diffusion policy gradient. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024. URL https:
//openreview.net/forum?id=vU1SiBb57j.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Bogdan Mazoure, Thang Doan, Audrey Durand, Joelle Pineau, and R Devon Hjelm. Leveraging
exploration in off-policy algorithms via normalizing flows. In Conference on Robot Learning, pp.
430–444. PMLR, 2020.

Oier Mees, Lukas Hermann, Erick Rosete-Beas, and Wolfram Burgard. Calvin: A benchmark for
language-conditioned policy learning for long-horizon robot manipulation tasks. IEEE Robotics
and Automation Letters (RA-L), 7(3):7327–7334, 2022.

Ashvin Nair, Murtaza Dalal, Abhishek Gupta, and Sergey Levine. Accelerating online reinforcement
learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Mitsuhiko Nakamoto, Simon Zhai, Anikait Singh, Max Sobol Mark, Yi Ma, Chelsea Finn, Aviral
Kumar, and Sergey Levine. Cal-ql: Calibrated offline rl pre-training for efficient online fine-
tuning. Advances in Neural Information Processing Systems, 36, 2024.

Samuel Neumann, Sungsu Lim, Ajin George Joseph, Yangchen Pan, Adam White, and Martha
White. Greedy actor-critic: A new conditional cross-entropy method for policy improvement. In
The Eleventh International Conference on Learning Representations.

12

https://openreview.net/forum?id=vU1SiBb57j
https://openreview.net/forum?id=vU1SiBb57j

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Junhyuk Oh, Yijie Guo, Satinder Singh, and Honglak Lee. Self-imitation learning. In International
conference on machine learning, pp. 3878–3887. PMLR, 2018.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Seohong Park, Kevin Frans, Sergey Levine, and Aviral Kumar. Is value learning really the main
bottleneck in offline rl? arXiv preprint arXiv:2406.09329, 2024.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

J. Peters and S. Schaal. Reinforcement learning by reward-weighted regression for operational space
control. In International Conference on Machine Learning (ICML), 2007.

Jan Peters, Katharina Mülling, and Yasemin Altün. Relative entropy policy search. In Proceedings of
the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI’10, pp. 1607–1612. AAAI
Press, 2010.

Aloïs Pourchot and Olivier Sigaud. Cem-rl: Combining evolutionary and gradient-based methods
for policy search. In 7th International Conference on Learning Representations, ICLR 2019,
2019.

Michael Psenka, Alejandro Escontrela, Pieter Abbeel, and Yi Ma. Learning a diffusion model policy
from rewards via q-score matching. In Forty-first International Conference on Machine Learning.

Allen Z Ren, Justin Lidard, Lars L Ankile, Anthony Simeonov, Pulkit Agrawal, Anirudha Majum-
dar, Benjamin Burchfiel, Hongkai Dai, and Max Simchowitz. Diffusion policy policy optimiza-
tion. arXiv preprint arXiv:2409.00588, 2024.

Lin Shao, Yifan You, Mengyuan Yan, Shenli Yuan, Qingyun Sun, and Jeannette Bohg. Grac: Self-
guided and self-regularized actor-critic. In Conference on Robot Learning, pp. 267–276. PMLR,
2022.

Lucy Xiaoyang Shi, Joseph J Lim, and Youngwoon Lee. Skill-based model-based reinforcement
learning. In Conference on Robot Learning, pp. 2262–2272. PMLR, 2023.

Riley Simmons-Edler, Ben Eisner, Eric Mitchell, Sebastian Seung, and Daniel Lee. Q-learning for
continuous actions with cross-entropy guided policies. arXiv preprint arXiv:1903.10605, 2019.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. Second edition,
2018.

Fahim Tajwar, Anikait Singh, Archit Sharma, Rafael Rafailov, Jeff Schneider, Tengyang Xie, Ste-
fano Ermon, Chelsea Finn, and Aviral Kumar. Preference fine-tuning of llms should leverage
suboptimal, on-policy data. In Forty-first International Conference on Machine Learning.

Homer Walke, Kevin Black, Abraham Lee, Moo Jin Kim, Max Du, Chongyi Zheng, Tony Zhao,
Philippe Hansen-Estruch, Quan Vuong, Andre He, Vivek Myers, Kuan Fang, Chelsea Finn, and
Sergey Levine. Bridgedata v2: A dataset for robot learning at scale. In Conference on Robot
Learning (CoRL), 2023.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. In The Eleventh International Conference on Learning
Representations.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992.

Jeffrey Wu, Seohong Park, Zipeng Lin, Jianlan Luo, and Sergey Levine. V-former: Offline RL
with temporally-extended actions, 2024. URL https://openreview.net/forum?id=
rOpK0ToM3o.

13

https://openreview.net/forum?id=rOpK0ToM3o
https://openreview.net/forum?id=rOpK0ToM3o

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Taku Yamagata, Ahmed Khalil, and Raul Santos-Rodriguez. Q-learning decision transformer:
Leveraging dynamic programming for conditional sequence modelling in offline rl. In Inter-
national Conference on Machine Learning, pp. 38989–39007. PMLR, 2023.

Long Yang, Zhixiong Huang, Fenghao Lei, Yucun Zhong, Yiming Yang, Cong Fang, Shiting Wen,
Binbin Zhou, and Zhouchen Lin. Policy representation via diffusion probability model for rein-
forcement learning. arXiv preprint arXiv:2305.13122, 2023.

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous con-
trol: Improved data-augmented reinforcement learning. In International Conference on Learning
Representations.

Zhiyuan Zhou, Pranav Atreya, Abraham Lee, Homer Rich Walke, Oier Mees, and Sergey Levine.
Autonomous improvement of instruction following skills via foundation models. In 8th Annual
Conference on Robot Learning.

Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart,
Stefan Welker, Ayzaan Wahid, et al. Rt-2: Vision-language-action models transfer web knowledge
to robotic control. In Conference on Robot Learning, pp. 2165–2183. PMLR, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Appendices
A ENVIRONMENT DETAILS

(a) Ant Maze Environment (b) Franka Kitchen Environment (c) Calvin Environment

Figure 4: Simulation Environments

D4RL AntMaze: We test methods across two maze sizes (medium and large) and two dataset
types (play and diverse). The diverse and large datasets differ in the starting locations and goal
locations of trajectories. The diverse dataset consists of trajectories with random initial and goal
locations, whereas play contains a set of specific hand-picked locations. The offline datasets for this
benchmark have high coverage over states and actions.

D4RL FrankaKitchen: The FrankaKitchen benchmark contains three tele-operated datasets:
kitchen− complete, which contains trajectories that fully solve all sub-tasks, but is 37 times smaller
than the other datasets; kitchen− partial, where there are both trajectories that fully solve all sub-
tasks, and undirected data that performs unrelated behaviors; and kitchen−mixed, where no tra-
jectory solves all tasks, requiring exploration from the agent.

Calvin: We use the task setup introduced by Shi et al. (2023), in which the robot arm needs to
complete four tasks (OpenDrawer, TurnonLightbulb, MoveSliderLeft, and TurnonLED), with
the distinction that we only use image observations (i.e., the agent doesn’t have access to propri-
oception nor object states). To ensure Markovian rewards, we make the reward function is equal
to the number of completed sub-tasks at each time-step (i.e., the agent only gets reward +4 if all
sub-tasks are completed). The evaluation score for a trajectory is the maximum number of sub-tasks
completed simultaneously at any single point in the trajectory.

Results for all environments and experiments are averaged over 5 random seeds and 32 evaluations
per seed at each evaluation time-step (Figure 2). Scores are scaled from [0, 4] to [0, 100]. Shaded
regions in the plots are standard errors over random seeds.

B EXPERIMENT DETAILS

B.1 DETAILS AND HYPERPARAMETERS FOR PA-RL

Action optimization hyperparameters: For all experiments shown on the paper except for abla-
tions, the number of actions sampled from the base policy is 32, which are filtered down to the
top ten, and then propagated through the Q-function for ten gradient steps with gradient step size
of 3e-4. While we find that these values are robust to all the tested settings, these choices might
require changes according to the characteristics of the available dataset and action space. For exam-
ple, larger action spaces (such as bimanual manipulation) might require larger gradient step sizes or
close-to-optimal datasets might perform well with significantly fewer action samples and gradient
steps.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Distributional critic: When any of the random seeds in a domain showed instability in the critic
pre-training (i.e. had exploding Q-values) we switched the critic from an MLP that predicts the con-
tinuous action value to a distributional critic and trained with the HL-Gauss loss (Farebrother et al.)
instead. Specifically, we switched to a distributional critic for the AntMaze and FrankaKitchen
domains, and we trained with MSE on Calvin and the real robot experiments.

Sampling vs argmax for action candidate selection: For environments in which CQL/Cal-QL
used the max-backup version of Q-target calculation (namely, all 4 AntMaze environments), we find
that taking the argmax of πOpt

ϕ during inference yielded slightly faster convergence than sampling
from the considered actions. During policy distillation, to decide whether to imitate only the argmax
of πOpt

ϕ or whether to imitate all samples, we keep track of the variance of action candidate Q-
values during pre-training. If the variance is too small, we find that training only with the argmax
performs better. Otherwise, training with samples from the categorical distribution yields slightly
better results.

Environment Policy Training Argmax Action Policy Training Softmax
kitchen-partial-v2 89.375 95.3125
kitchen-complete-v2 90.3125 94.53125
kitchen-mixed-v2 67.96875 75.15625
CALVIN 60.6771 46.5625

Table 5: Comparison between doing policy distillation with samples from πOpt
ϕ and only the

argmax.

Environment STD of Action Candidate Q-values
kitchen-partial-v2 1.56
kitchen-complete-v2 2.66
kitchen-mixed-v2 11.54
CALVIN 0.02

Table 6: Standard deviation of the Q-values of action candidates (ÃTπ,m) during pre-training.

Details for image-based domains: Following Yarats et al. we augment image observations with
random shift augmentations of 4 pixels. To mitigate the failure case in which the Q-values for
different actions on the same state collapse to the same value, we use the Q-function architecture
introduced by Kumar et al. (2022). At every layer of the critic MLP, we concatenate the action vector
to the inputs, so that the network places more importance to the actions.

Base policy hyperparameters: We use the same Diffusion Policy architecture and training hy-
perparameters as IDQL (Hansen-Estruch et al., 2023). In particular, we use batch size 1024, T=5
diffusion steps, cosine beta schedule, the LN_Resnet architecture with hidden dimension size = 256
and n = 3 blocks. We pre-train the diffusion policy with learning rate decay but with a constant
learning rate during fine-tuning. For image-based domains (CALVIN and real robot) we use a
ResNet 18 encoder trained from scratch. For the auto-regressive transformer policy, we discretize
each action dimension into 128 bins, and do not use discretization for the state observations. We use
a transformer architecture with 4 layers, 256 hidden size, 8 heads, and learning rate 3e-5.

Reward scale and bias: To maintain consistency of hyperparameters across all domains, we bias all
rewards from the offline dataset and replay buffer such that the maximum possible timestep reward
is zero, and other possible rewards are negative. In particular, we use bias = -1 for AntMaze and
real robot, and -4 for FrankaKitchen and CALVIN.

Cal-QL hyperparameters: We carry over most hyper-parameter choices from Cal-QL: critic
architecture and learning rate, discount, mixing ratio.

Table of hyperparameters:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Critic LR 3e-4
Discount γ 0.99
Critic batch size 256
Base policy batch size 1024 (Diffusion Policies), 256 (Transformers)
CQL α 0.005 (AntMaze), 0.005 (Kitchen), 0.01 (CALVIN & Real robot)
Mixing ratio 0.25 (Kitchen), 0.5 (Rest)
Optimizer (critic and base policy) Adam (Kingma & Ba, 2015)
Critic pre-training grad steps 1e6 (AntMaze), Rest: 5e5

Base policy grad steps
Diffusion policies: 3e6

Transformers: 2e6
Critic hidden layer sizes [256, 256, 256, 256] (AntMaze), [512, 512, 512] (Rest)

B.2 DETAILS AND HYPERPARAMETERS FOR BASELINES

IDQL We use the IDQL-Imp version of IDQL, in which the Q-function, the value function, and
the diffusion policy are fine-tuned with new experiences. We use the same network architectures as
PA-RL. For the IQL τ expectile, we use 0.9 for AntMaze and 0.7 for everything else. We remark
that results for IDQL are not entirely comparable to their paper because Hansen-Estruch et al. (2023)
used the “-v0” antmaze datasets from D4RL, but Fu et al. (2020) deprecated the “-v0” datasets in
favor of “-v2” due to a bug associated with termination flags in -v0 datasets.

DQL We extensively tuned DQL for fine-tuning in the absence of any official fine-tuning results.
For the main η RL weight hyperparameter, we performed an environment-specific hyperparameter
search at the pre-training phase, selected the one that performed best, and then kept η fixed
for fine-tuning. For AntMaze tasks we tried η = {0.05, 0.5, 1, 3, 3.5, 5, 7, 9, 11, 13, 15}. We
chose η = 11 for large-diverse, η = 15 for large-play, η = 9 for medium-diverse, and η = 7
for medium-play. For FrankaKitchen tasks we tried η = {0.005, 0.01, 0.05, 0.1}. For partial,
complete, and mixed, we chose η = 0.005. For CALVIN we tried η = {0.01, 0.1, 1, 5, 10, 15}. We
picked η = 0.01. For offline checkpoint selection, we follow the original methodology of selecting
the checkpoint with second lowest DDPM loss, saving checkpoints every 50k gradient steps.

Cal-QL Since we branch off our hyperparameter choices from Cal-QL, this baseline shares most
of PA-RL’s hyperparameters. We used (256, 256) hidden sizes for the policy architecture for every
environment.

DPPO We train a diffusion-based PPO policy based on a DPPM model pretrained on an offline
dataset in each simulated task. For the state-based tasks AntMaze and FrankaKitchen, we train
DPPO-MLP with 40 parallelized environments and an action chunking size of 6 for AntMaze and
8 for FrankaKitchen. For the pixel-based task CALVIN, we train DPPO-ViT-MLP with 50 paral-
lelized environments and an action chunking size of 4.

RLPD For Table 2, we train a gaussian policy from scratch with UTD ratio of 10 (same as with
Diffusion PA-RL + RLPD), critic ensemble size ten, and critic ensemble subsample size of two.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C REAL-WORLD FINE-TUNING OF OPENVLA WITH PA-RL

Move vegetable
to sink

Starting position

Success

Failure

(a) Zero-shot language-based trials with OpenVLA
Zero-shot language-conditioned trials (E.g. OpenVLA)

Few demonstrations (Diffusion Policies)

Move vegetable
to sink

Starting position

Real-World Online Fine-Tuning

OpenVLA frequently grabs incorrect object

After 40 minutes, performance improves 75%

Starting position

Policy Agnostic RL

Policy
Distillation

Action
Optimization

Q-Function
Training

(b) Online fine-tuning with PA-RL

Figure 5: Filmstrips of the manipulation task we fine-tune OpenVLA on. (Left) the new task, “vegetable
to sink”, requires identifying the vegetable from the distractor (a fried chicken wing), grasping it, and placing
it on the pink plate. We collect 50 trials by zero-shot prompting OpenVLA to solve the task. 40% of the trials
are successful. (Right) we deploy PA-RL to improve OpenVLA for this task, interacting on the real-robot. We
observe that OpenVLA frequently grasps the distractor object instead of the vegetable. After 40 minutes of
wall clock time, we evaluate the resulting fine-tuned policy. OpenVLA + PA-RL attained a 70% success rate.

We present a real-world fine-tuning result of OpenVLA Kim et al. (2024), the 7B-parameter gener-
alist robot policy. PA-RL improves OpenVLA performance by 75% on a real-world manipulation
task after 1 hour of zero-shot language-conditioned trials, and 40 minutes of online RL fine-tuning
on the real robot.

Task and experimental setup: We consider a new task in the same kitchen environment as our pre-
vious two real-world tasks: “vegetable to sink”, which requires grasping a toy cabbage and placing it
on a plate in the sink. There additionally is a distractor on the scene. We collect 50 rollout episodes
by zero-shot prompting OpenVLA with the instruction “put the vegetable on the plate”, and use
them to pre-train a Q-function with Cal-QL + PA-RL. Note that while our toy kitchen resembles a
kitchen that was present in the training dataset for OpenVLA, the specific task is novel and there
are likely significant differences in camera angles and background that affect OpenVLA zero-shot
performance. The base OpenVLA model achieves a 40% success rate on this task.

Results: After pre-training the critic, we run PA-RL + Cal-QL fine-tuning in the real world for
40 minutes (which includes both robot interaction time and OpenVLA training time) with a sparse
reward function, manual resets of the environment, and object randomization, similarly to the pre-
vious real-robot experiments. The resulting fine-tuned OpenVLA policy obtained a 70% success
rate, which is 75% higher than the base OpenVLA, and 40% higher than without the 40 minutes of
real-world fine-tuning (i.e., offline only). We believe that this is the first result that fine-tunes a
large generalist policy with 7B parameters with actor-critic RL successfully in the real world.

Systems and implementation details for OpenVLA: To accelerate training, after each epoch of
policy training we maintain a cache to store actions the fine-tuned OpenVLA policy would take at
each state by sampling 16 actions from this generalist policy. This cache enables the Q-function
training in Cal-QL to still run at similar speeds as it would have with a much smaller policy, because
actions in the cache can be utilized for TD backups for multiple gradient steps. To speed up action
caching, we ran 12 distributed processes to cache OpenVLA actions after each epoch of training.
Since the pre-training stage doesn’t update the base policy parameters (distillation only comes in
during fine-tuning) we only need to cache at the beginning of that stage. During online fine-tuning,
we now update the parameters of the generalist OpenVLA policy. Concretely, we distill optimized
actions into OpenVLA via LoRA fine-tuning with rank=32 to speed up training. During environment
interaction, we also run action optimization at inference. In this case, we reduce the the number of
action samples used for a single observation from OpenVLA to 4 to be able to maintain an action
frequency of 3hz. Aside from reducing the number of samples from the base policy due to memory
constraints, and reduced distillation learning rate for stability, all hyperparameters are the same as
used to fine-tune diffusion policies.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 6: OpenVLA real-robot fine-tuning results.

D ADDITIONAL FIGURES

D.1 REAL ROBOT FINE-TUNING ON TASK (B)

Figure 7: Evolution of learned behaviors during autonomous online finetuning of PA-RL on
task (b) on a difficult pot placement. The offline initialization (in red) fails to grasp the pot, and
gets stuck when attempting to move it to the sink. After only 10 online fine-tuning episodes (in
green), PA-RL learns to successfully complete the task.

D.2 LEARNING CURVES FOR AUTO-REGRESSIVE TRANSFORMERS AND IQL WITH PA-RL

Figure 8: Learning Curves for Auto-Regressive Transformers with PA-RL and Cal-QL, and
Diffusion Policies with PA-RL and IQL.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

D.3 LOCAL AND GLOBAL OPTIMIZATION ABLATION EXPERIMENTS

0 3 5 10 15
#Gradient Steps for Local Optimization (T)

40

50

60

70

80

N
or

m
al

iz
ed

 S
co

re

CALVIN

0 1 3 5 10 15
#Gradient Steps for Local Optimization (T)

90

92

94

96

98

100

N
or

m
al

iz
ed

 S
co

re

antmaze-large-diverse-v2

Figure 9: Ablation for the number of gradient steps for local optimization (T). We plot the evaluation
performance for PA-RL + Diffusion Policy at the end of a fine-tuning budget of 1k episodes on CALVIN (left)
and antmaze-large-diverse-v2 (right), taking different numbers of gradient steps during the Local Optimization
procedure. We chose to analyze the effect of local optimization on these two tasks because they sit on opposite
sides of the data coverage spectrum: CALVIN features relatively little coverage over actions, since the provided
dataset is "play data", while antmaze-large-diverse-v2 provides high-coverage over actions (as measured by
delta x, delta y, which is more relevant to the task). (Left) CALVIN benefits significantly from increased
number of gradient steps, getting up to 20% increase in final performance compared to taking no gradient
steps. (Right) antmaze-large-diverse-v2 already reaches 96% success rate without taking any gradient steps
(i.e., without the local optimization step). We hypothesize that because of the high-coverage, using global
optimization with a large-enough number of samples from the base policy already recovers good actions.

1 5 10 15 25 32 48
#DDPM Samples for Global Optimization (k)

20

30

40

50

60

70

80

N
or

m
al

iz
ed

 S
co

re

CALVIN

1 2 3 4 5 10 15 2532 48
#DDPM Samples for Global Optimization (k)

0

20

40

60

80

100

N
or

m
al

iz
ed

 S
co

re

antmaze-large-diverse-v2

Figure 10: Ablation for the number of samples from the base policy (k). We plot the evaluation
performance for PA-RL + Diffusion Policy at the end of a fine-tuning budget of 1k episodes on
CALVIN (left) and antmaze-large-diverse-v2 (right), sampling different number of actions from the
base policy to generate action candidates both for policy distillation and during inference. (Left)
CALVIN benefits significantly from increased number of samples from the base policy, attaining
33% higher normalized score when taking 32 samples (the default value used for PA-RL) from the
policy compared to only 1 sample. (Right) antmaze-large-diverse-v2 exhibits a sharp decrease in
final performance when taking fewer than 5 samples from the base policy.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

0 200 400 600 800 1000
Online Episode

0.00010

0.00005

0.00000

0.00005

0.00010

A
ct

io
n

ST
D

 D
iff

er
en

ce

CALVIN

0 200 400 600 800 1000
Online Episode

0.00

0.05

0.10

0.15

0.20

A
ct

io
n

ST
D

 b
ef

or
e

gr
ad

ie
nt

 st
ep

s CALVIN

0 200 400 600 800 1000
Online Episode

0.00

0.02

0.04

0.06

0.08

0.10

0.12

L1
 N

or
m

 o
f a

ct
io

n
ch

an
ge

CALVIN

Ours

Figure 11: Analysis of the effects of local optimization. To test whether local optimization re-
sults in duplicated action samples, we plot the difference between the standard deviation of action
samples before and after taking gradient steps (left) during evaluation episodes on the CALVIN task
throughout fine-tuning. The difference in standard deviations is extremely low throughout training.
Further, to ensure action samples were not largely duplicates to begin with, and to put the value scale
into perspective, we plot the raw standard deviation of action samples before taking gradient steps
(center). Standard deviation of actions changes by less than 0.1% on average during training. Thus,
local optimization does not lead to action sample duplication. (Right) we plot the L1-Norm of the
change in actions by the local optimization procedure (i.e. the L1 norm of the difference in actions
before and after the gradient steps). The biggest direct effect on actions happens in the beginning
of fine-tuning, and it quickly decays throughout online training. Note that because of policy dis-
tillation, action changes from the local optimization step are compounding (i.e., the actions before
applying the gradient steps have already been optimized in past iterations). This might explain the
decay in action changes from local optimization.

D.4 CEM OPTIMIZER + RANDOM INITIALIZATION COMPARISONS

0 250 500 750 1000
Online Episode

0

20

40

60

80

100

N
or

m
al

iz
ed

 S
co

re

kitchen-partial-v2

0 250 500 750 1000
Online Episode

0

20

40

60

80

100

N
or

m
al

iz
ed

 S
co

re

kitchen-complete-v2

0 250 500 750 1000
Online Episode

0

20

40

60

80

100

N
or

m
al

iz
ed

 S
co

re

kitchen-mixed-v2

CEM + Cal-QL Ours

0 250 500 750 1000
Online Episode

0

20

40

60

80

100

N
or

m
al

iz
ed

 S
co

re

antmaze-medium-diverse-v2

0 250 500 750 1000
Online Episode

0

20

40

60

80

100

N
or

m
al

iz
ed

 S
co

re

antmaze-large-diverse-v2

CEM + Cal-QL Ours

Figure 12: Comparison with CEM optimizer. Instead of using the action optimization proce-
dure detailed in Section 4, any time the Cal-QL algorithm queries the policy we perform a Cross-
Entropy Method optimization process to obtain actions. We use the same CEM hyper-parameters
as Simmons-Edler et al. (2019), and maintain the Cal-QL hyper-parameters and architectures as
PA-RL. for all tested environments, the performance after pre-training (i.e. at step 0, before taking
any online steps) is at or close to 0, and performance improves over the course of fine-tuning, but
remaining well below PA-RL with a diffusion policy.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

0 250 500 750 1000
Online Episode

20

40

60

80

100

Q
 -

M
C

kitchen-complete-v2

0 250 500 750 1000
Online Episode

500

750

1000

1250

1500

1750

Q
 -

M
C

kitchen-partial-v2

0 250 500 750 1000
Online Episode

250

500

750

1000

1250

1500

Q
s

kitchen-partial-v2

CEM + Cal-QL
(distributional critic)

CEM + Cal-QL
(regression critic)

Figure 13: CEM exploits Q-function over-optimism. (Left) We plot the difference between pre-
dicted Q-values of CEM actions, and the Monte-Carlo discounted returns that those actions actually
got, on kitchen-complete-v2, a task whose dataset contains optimal actions. The critic is trained
in the same manner as in Figure 12. We observe that at the beginning of fine-tuning, predicted Q-
values are much higher than the MC returns, even much higher than the predicted Q-values further
into training, when task performance is much higher (see Figure 12). This points to the fact that
the CEM optimizer is able to find actions that maximize the Q-function, but are not actually good.
(Center) We repeat the same experiment but with a regression-trained critic instead of a distribu-
tional critic trained with HL-Gauss. The distributional critic bounds the predicted values by design,
which limits over-estimation. By training a Cal-QL critic without a fixed value range (on kitchen-
partial-v2), we see much larger over-estimation of Q-values. In fact, predicted Q-values become
large positive numbers (right), where rewards for this task are always non-positive.

D.5 CEM OPTIMIZER + PRE-TRAINED POLICY INITIALIZATION

0 250 500 750 1000
Online Episode

0

20

40

60

80

100

N
or

m
al

iz
ed

 S
co

re

kitchen-partial-v2

0 250 500 750 1000
Online Episode

0

20

40

60

80

100

N
or

m
al

iz
ed

 S
co

re

kitchen-complete-v2

0 250 500 750 1000
Online Episode

0

20

40

60

80

100

N
or

m
al

iz
ed

 S
co

re

kitchen-mixed-v2

CEM + Cal-QL (pre-trained policy initialization) Ours

0 250 500 750 1000
Online Episode

0

20

40

60

80

100

N
or

m
al

iz
ed

 S
co

re

antmaze-large-diverse-v2

0 250 500 750 1000
Online Episode

0

20

40

60

80

100

N
or

m
al

iz
ed

 S
co

re

CALVIN

CEM + Cal-QL (pre-trained policy initialization) Ours

Figure 14: Comparison with CEM optimizer with a pre-trained policy initialization. We com-
pare to using a CEM optimization procedure where the initial population of actions comes from
the same pre-trained policy used for PA-RL. PA-RL results in 42% better offline-only performance
across tested domains. In antmaze-large-diverse-v2, kitchen-partial-v2, and kitchen-mixed-v2, CEM
quickly catches up and ends with very similar asymptotic performance. In kitchen-mixed-v2 and
CALVIN PA-RL significantly outperforms CEM, with 66% and 172% better performance respec-
tively. kitchen-complete-v2 and CALVIN have lower coverage of actions in their datasets, and
CALVIN has highly multi-modal data. We hypothesize these dataset characteristics, which are
highly common in real-world robotics datasets, are hurting CEM performance, since CEM can av-
erage the different modes of behavior, resulting in OOD actions. Further, CEM lacks an equivalent
of the local optimization step to direct exploration towards actions the critic rates highly.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

D.6 COMPARISON WITH SELF-IMITATION LEARNING

Figure 15: Comparison with Self-Imitation Learning (Oh et al., 2018) on antmaze-large-
diverse-v2. We implement a Diffusion-Policy version of Self-Imitation learning (i.e., single action
sample from the replay buffer weighted by positive advantages) on top of our codebase by disabling
local optimization and global optimization (i.e., sampling a single action from the base policy, and
not taking any gradient steps), and adding an exponentiated advantage weight to the policy distilla-
tion targets. For fairness, critic pre-training and fine-tuning are done in the same manner as PA-RL.
On antmaze-large-v2, Self-Imitation Learning never attains positive performance. We hypothesize
that poor performance is due to taking a single sample from the base policy (Figure 10 shows that
taking more samples greatly improves performance).

D.7 COMPARISON WITH COMPUTING ACTIONS FOR BELLMAN BACKUP WITH THE BASE
POLICY

Figure 16: Ablation for the choice of using the optimized action for Bellman backups. To ablate
the choice of computing targets using the optimized policy πOpt

(ϕ,θ)(·|·,m), we compare it against
directly sampling from the base policy πϕ, and test it on antmaze-large-diverse-v2 fine-tuning. Both
methods start from the same pre-trained critic checkpoints. Using the base policy for Bellman
targets makes fine-tuning much more unstable, with a sharp drop in performance in the beginning,
but ultimately obtains similar performance.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

D.8 LEARNING CURVES FOR GAUSSIAN POLICIES WITH PA-RL

0 250 500 750 1000
Online Episode

0

20

40

60

80

100

N
or

m
al

iz
ed

 sc
or

e

kitchen-complete-v2

0 250 500 750 1000
Online Episode

0

20

40

60

80

100
kitchen-mixed-v2

0 250 500 750 1000
Online Episode

0

20

40

60

80

100
kitchen-partial-v2

Gaussian PA-RL Diffusion PA-RL Cal-QL

Figure 17: Learning curves for gaussian policies with PA-RL, compared with Diffusion Policies
with PA-RL and the standard Cal-QL with gaussian policies. As with other experiments, we first
train the base gaussian policy with BC on each dataset, and then do critic pre-training, followed by
online RL fine-tuning. The only hyper-parameter we change for gaussian policies is the distillation
learning rate, setting it to 3e-4. We observe Gaussian PA-RL performs competitively with the stan-
dard Cal-QL on kitchen tasks.

E TRAINING TIME DISCUSSION

PA-RL optimizes actions using the procedure described in Section 4 any time an action from the
policy is needed. We discuss how this affects the App of our method at different stages.

Figure 18: Performance on CALVIN task as a function of wall clock time for PA-RL, IDQL,
and DQL. All three methods ran on the same compute instence type (TPU v4), were implemented
in the same codebase. Observe that PA-RL improves at a similar rate per unit amount of wall-clock
time as IDQL, but is able to improve far beyond to a better performance value. DQL largely remains
flat as a function of more unit wall-clock time put into training.

Critic training. In principle, action optimization should increase memory and computation require-
ments to critic training, but it also enables using an action cache to compute ahead of time, even in a
distributed manner, when sufficient numbers of actions from the base policy are available. To make
sure that this cache is not stale and to ensure that the critic models the optimal / on-policy value
function, the actions cache is updated after every epoch of policy training via supervised learning.
When sampling from the base policy is more than T times more expensive than taking T gradient
steps of the critic (as is the case with OpenVLA or with diffusion policies with a large number of
denoising steps), PA-RL can be significantly more efficient than alternatives that do not do caching.

Policy distillation. Compared to standard offline RL and online fine-tuning objectives, the super-
vised learning objective PA-RL can be significantly more efficient than policy improvement through
reparameterization. For example, for a diffusion policy, backpropagating critic gradients through the

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

diffusion chain uses a larger memory footprint than the DDPM objective PA-RL uses, by a factor
equal to the number of denoising steps.

Inference. During inference, PA-RL can optionally also apply action optimization by querying the
base policy multiple times to sample an action. This can significantly increase the memory require-
ments of our method. That said, we do note that the number of samples from the base policy during
inference can be much smaller than during training, as we do with OpenVLA (see Appendix C).
PA-RL additionally requires taking multiple gradient steps of the critic with respect to the actions.
We note that depending on the architecture used, this can be much cheaper than doing multiple full
forward passes through the Q-function. For example, for image-based domains, the bulk of the com-
putation happens for image encoding, which does not depend on the action. Therefore, the gradient
steps will ignore that part of the network. There is also room for improvement for future work to
investigate reducing the number of gradient steps further into training (as Figure 11 right suggests
local optimization might have diminishing effects as fine-tuning progresses).

25

	Introduction
	Related Work
	Problem Setup and Preliminaries
	PA-RL: Training Multiple Policy Classes with Actor-Critic RL
	Action Optimization
	Policy Training via Supervised Learning
	Putting it All Together: Final PA-RL Algorithm

	Experimental Evaluation
	Results: Simulated Benchmarks from State and Image Observations
	Results: RL Fine-Tuning of Robot Policies in the Real World
	Ablation Studies and Controlled Experiments mygreen(Appendix D)

	Reproducibility Statement
	Environment details
	Experiment Details
	Details and hyperparameters for PA-RL
	Details and hyperparameters for baselines

	Real-World Fine-Tuning of OpenVLA with PA-RL
	Additional Figures
	Real Robot Fine-tuning on task (b)
	Learning Curves for Auto-Regressive Transformers and IQL with PA-RL
	Local and Global Optimization Ablation Experiments
	CEM Optimizer + Random Initialization Comparisons
	CEM Optimizer + pre-trained policy initialization
	Comparison with Self-Imitation Learning
	Comparison with computing actions for Bellman Backup with the base policy
	Learning curves for Gaussian Policies with PA-RL

	Training time discussion

