
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SOLVING ROBUST MDPS
AS A SEQUENCE OF STATIC RL PROBLEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Designing control policies whose performance level is guaranteed to remain above
a given threshold in a span of environments is a critical feature for the adoption
of reinforcement learning (RL) in real-world applications. The search for such
robust policies is a notoriously difficult problem, related to the so-called dynamic
model of transition function uncertainty, where the environment dynamics are
allowed to change at each time step. But in practical cases, one is rather interested
in robustness to a span of static transition models throughout interaction episodes.
The static model is known to be harder to solve than the dynamic one, and seminal
algorithms, such as robust value iteration, as well as most recent works on deep
robust RL, build upon the dynamic model. In this work, we propose to revisit
the static model. We suggest an analysis of why solving the static model under
some mild hypotheses is a reasonable endeavor, based on an equivalence with the
dynamic model, and formalize the general intuition that robust MDPs can be solved
by tackling a series of static problems. We introduce a generic meta-algorithm
called IWOCS, which incrementally identifies worst-case transition models so as to
guide the search for a robust policy. Discussion on IWOCS sheds light on new ways
to decouple policy optimization and adversarial transition functions and opens new
perspectives for analysis. We derive a deep RL version of IWOCS and demonstrate
it is competitive with state-of-the-art algorithms on classical benchmarks.

1 INTRODUCTION

One major obstacle in the way of real-life deployment of reinforcement learning (RL) algorithms is
their inability to produce policies that retain, without further training, a guaranteed level of efficiency
when controlling a system that somehow differs from the one they were trained upon. This property
is referred to as robustness, by opposition to resilience, which is the ability to recover, through
continued learning, from environmental changes. For example, when learning control policies for
aircraft stabilization using a simulator, it is crucial that the learned controller be able to control
a span of aircraft configurations with different geometries, or masses, or in various atmospheric
conditions. Depending on the criticality of the considered application, one will prefer to optimize the
expected performance over a set of environments (thus weighting in the probability of occurrence of
a given configuration) or, at the extreme, optimize for the worst case configuration. Here, we consider
such worst case guarantees and revisit the framework of robust Markov Decision Processes (MDPs)
(Iyengar, 2005).

Departing from the common perspective which views robust MDPs as two-player games, we investi-
gate whether it is possible to solve them through a series of non-robust problems. The two-player
game formulation is called the dynamic model of transition function uncertainty, as an adversarial
environment is allowed to change the transition dynamics at each time step. The solution to this game
can be shown to be equivalent, for stationary policies and rectangular uncertainty sets, to that of the
static model, where the environment retains the same transition function throughout the time steps.

Our first contribution is a series of arguments which cast the search for a robust policy as a resolution
of the static model (Section 2). We put this formulation in perspective of recent related works in
robust RL (Section 3). Then, we introduce a generic meta-algorithm which we call IWOCS for
Incremental Worst-Case Search (Section 4). IWOCS builds upon the idea of incrementally identifying
worst case transition functions and expanding a discrete uncertainty set, for which a robust policy

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

can be approximated through a finite set of non-robust value functions. We instantiate two IWOCS
algorithms, one on a toy illustrative problem with a discrete state space, then another on popular,
continuous states and actions, robust RL benchmarks where it is shown to be competitive with
state-of-the art robust deep RL algorithms (Section 5).

2 PROBLEM STATEMENT

Reinforcement Learning (RL) (Sutton & Barto, 2018) considers the problem of learning a decision
making policy for an agent interacting over multiple time steps with a dynamic environment. At each
time step, the agent and environment are described through a state s P S, and an action a P A is
performed; then the system transitions to a new state s1 according to probability T ps1|s, aq, while
receiving reward rps, a, s1q. The tuple MT “ pS,A, T, rq forms a Markov Decision Process (MDP)
(Puterman, 2014), which is often complemented with the knowledge of an initial state distribution
p0psq. Without loss of generality and for the sake of readability, we will consider a unique starting
state s0 in this paper, but our results extend straightforwardly to a distribution p0psq. A stationary
decision making policy is a function πpa|sq mapping states to distributions over actions (writing πpsq
the action for the special case of deterministic policies). Training a reinforcement learning agent
in MDP MT consists in finding a policy that maximizes the expected γ-discounted return from s0:
Jπ
T “ Er

ř8

t“0 γ
trpst, at, st`1q|s0, at „ π, st`1 „ T s “ V π

T ps0q, where V π
T is the value function of

π in MDPMT , and γ P r0, 1q. An optimal policy inMT will be noted π˚
T and its value function V ˚

T . A
convenient notation is the state-action value functionQπ

T ps, aq “ Es1„T rrps, a, s1q`γV π
T ps1qs of pol-

icy π in MDP MT , and the corresponding optimal Q˚
T . Key notations are summarized in Appendix C.

Robust MDPs, as introduced by Iyengar (2005) or Nilim & El Ghaoui (2005), introduce an
additional challenge. The transition functions T are picked from an uncertainty set T and are allowed
to change at each time step, yielding a sequence T “ tTtutPN. A common assumption, called
sa-rectangularity, states that T is a Cartesian product of independent marginal sets of distributions
on S , for each state-action pair. The value of a stationary policy π in the sequence of MDPs induced
by T “ tTtutPN is noted V π

T . The pessimistic value function for π is V π
T psq “ minT V

π
T psq, where

the agent plays a sequence of actions at P A drawn from π, against the environment, which in turn
picks transition models Tt P T so as to minimize the overall return. The robust value function is
the largest such pessimistic value function and hence the solution to V ˚

T psq “ maxπ minT V
π
T psq.

The robust MDP problem can be cast as the zero-sum two-player game, where π̂ denote the decision
making policy of the adversarial environment, deciding Tt P T based on previous observations.
Then, the problem becomes maxπ minπ̂ V

π
π̂ psq, where V π

π̂ is the expected value of a trajectory
where policies π and π̂ play against each other. Hence, the optimal policy becomes the minimax
policy, which makes it robust to all possible future evolutions of the environment’s properties.

Robust Value Iteration. Following Iyengar (2005, Theorem 3.2), the optimal robust value
function V ˚

T psq “ maxπ minT V
π
T psq is the unique solution to the robust Bellman equation

V psq “ maxa minT Es1„T rrps, a, s1q ` γV ps1qs “ LV psq. This directly translates into a robust
value iteration algorithm which constructs the Vn`1 “ LVn sequence of value functions (Satia &
Lave Jr, 1973; Iyengar, 2005). Such robust policies are, by design, very conservative, in particular
when the uncertainty set is large and under the rectangularity assumption. Several attempts at
mitigating this intrinsic over-conservativeness have been made from various perspectives. For
instance, Lim et al. (2013) propose to learn and tighten the uncertainty set, echoing other works
that incorporate knowledge about this set into the minimax resolution (Xu & Mannor, 2010; Mannor
et al., 2012). Other approaches (Wiesemann et al., 2013; Lecarpentier & Rachelson, 2019; Goyal
& Grand-Clement, 2022) propose to lift the rectangularity assumption and capture correlations
in uncertainties across states or time steps, yielding significantly less conservative policies. Ho
et al. (2018) and Grand-Clément & Kroer (2021) retain the rectangularity assumption and propose
algorithmic schemes to tackle large but discrete state and action spaces.

The static model. In many applications, one does not wish to consider non-stationary transition
functions, but rather to be robust to any transition function from T which remains stationary
throughout a trajectory. This is called the static model of transition function uncertainty, by
opposition to the dynamic model where transition functions can change at each time step. Hence, the
static model’s minimax game boils down to maxπ minT V

π
T psq. If the agent is restricted to stationary

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

policies πpa|sq, then maxπ minT V
π
T psq “ maxπ minT V

π
T psq (Iyengar, 2005, Lemma 3.3), that

is the static and dynamic problems are equivalent, and the solution to the dynamic problem is found
for a static adversary.1 In this paper, we will only consider stationary policies.

No-duality gap. Wiesemann et al. (2013, Equation 4 and Proposition 9) introduce an important
saddle point condition stating that maxπ minT V

π
T psq “ minT maxπ V

π
T psq. 2

Incrementally solving the static model. Combining the static and dynamic models equivalence
and the no-duality gap condition, we obtain that, for rectangular uncertainty sets and stationary
policies, the optimal robust value function V ˚

T psq “ maxπ minT V
π
T psq “ maxπ minT V

π
T psq “

minT maxπ V
π
T psq “ minT V

˚
T psq. The key idea we develop in this paper stems from this

formulation. Suppose we are presented with MT0
and solve it to optimality, finding V ˚

0 psq “ V ˚
T0

psq.
Then, suppose we identify MT1

as a possible better estimate of a worst case MDP in T than T0. We
can solve for V ˚

T1
and V ˚

1 psq “ mintV ˚
T0

psq, V ˚
T1

psqu is the robust value function for the discrete
uncertainty set T1 “ tT0, T1u. The intuition we attempt to capture is that by incrementally identifying
candidate worst case MDPs, one should be able to define a sequence of discrete uncertainty sets
Ti “ tTjujPr0,is whose robust value function V ˚

i decreases monotonously, and may converge to
V ˚. In other words, it should be possible to incrementally robustify a policy by identifying the
appropriate sequence of transition models and solving individually for them, trading the complexity
of the dynamic model’s resolution for a sequence of classical MDP problems. The algorithm we
propose in Section 4 follows this idea and searches for robust stationary policies for the dynamic
model, using the static model, by incrementally growing a finite uncertainty set.

3 RELATED WORK

Robust RL as two-player games. A common approach to solving robust RL problems is to cast
the dynamic formulation as a zero-sum two player game, as formalized by Morimoto & Doya (2005).
In this framework, an adversary, denoted by π̂ : S Ñ T , is introduced, and the game is formulated as
maxπ minπ̂ Er

ř8

t“0 γ
trpst, at, st`1q|s0, at „ πp¨|stq, Tt “ π̂pst, atq, st`1 „ Ttp¨|st, atqs. Most

methods differ in how they constrain π̂’s action space within the uncertainty set. A first family of
methods define π̂pstq “ Tref ` ∆pstq, where Tref denotes the reference transition function. Among
this family, Robust Adversarial Reinforcement Learning (RARL) (Pinto et al., 2017) applies external
forces at each time step t to disturb the reference dynamics. For instance, the agent controls a planar
monopod robot, while the adversary applies a 2D force on the foot. In noisy action robust MDPs
(NR-MDP) (Tessler et al., 2019) the adversary shares the same action space as the agent and disturbs
the agent’s action πpsq. Such gradient-based approaches incur the risk of finding stationary points
for π and π̂ which do not correspond to saddle points of the robust MDP problem. To prevent
this, Mixed-NE (Kamalaruban et al., 2020) defines mixed strategies and uses stochastic gradient
Langevin dynamics. Similarly, Robustness via Adversary Populations (RAP) (Vinitsky et al., 2020)
introduces a population of adversaries, compelling the agent to exhibit robustness against a diverse
range of potential perturbations rather than a single one, which also helps prevent finding stationary
points that are not saddle points. Aside from this first family, State Adversarial MDPs (Zhang
et al., 2020; 2021; Stanton et al., 2021) involve adversarial attacks on state observations, which
implicitly define a partially observable MDP. The goal in this case is not to address robustness to
the worst-case transition function but rather against noisy, adversarial observations. A third family
of methods considers the general case of π̂pstq “ Tt where Tt P T . Minimax Multi-Agent Deep
Deterministic Policy Gradient (M3DDPG) (Li et al., 2019) is designed to enhance robustness in
multi-agent reinforcement learning settings, but boils down to standard robust RL in the two-agents
case. Max-min TD3 (M2TD3) (Tanabe et al., 2022) considers a policy π, defines a value function
Qps, a, T q which approximates Qπ

T ps, aq “ Es1„T rrps, a, s1q ` γV π
T ps1qs, updates an adversary π̂ so

as to minimize Qps, πpsq, π̂psqq by taking a gradient step with respect to π̂’s parameters, and updates
the policy π using a TD3 gradient update in the direction maximizing Qps, πpsq, π̂psqq. As such,
M2TD3 remains a robust value iteration method which solves the dynamic problem by alternating
updates on π and π̂, but since it approximatesQπ

T , it is also closely related to the method we introduce

1This does not imply the solution to the static model is the same as that of the dynamic model in general: the
optimal static π may be non-stationary and finding it is known to be NP-hard.

2The static-dynamic equivalence and the no-duality gap property’s context is recalled in Appendix B.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

in the next section. Wang et al. (2023) introduced a policy gradient method for robust MDPs with
global convergence guarantees. While their work shares some conceptual similarities with ours
in optimizing policies using a static model, it differs in key aspects. Their approach is limited to
policy-based methods, whereas ours is more versatile, applicable to any RL algorithm, and scalable
to larger state and action spaces.

Regularization. Derman et al. (2021); Eysenbach & Levine (2022) also highlighted the strong
link between robust MDPs and regularized MDPs, showing that a regularized policy learned during
interaction with a given MDP was actually robust to an uncertainty set around this MDP. Kumar
et al. (2023) propose a promising approach in which they derive the adversarial transition function
in a closed form and demonstrate that it is a rank-one perturbation of the reference transition function.
This simplification results in more streamlined computation for the robust policy gradient.

Domain randomization (DR) (Tobin et al., 2017) learns a value function V psq “

maxπ ET„UpT qV
π
T psq which maximizes the expected return on average across a fixed distribu-

tion on T . As such, DR approaches do not optimize the worst-case performance. Nonetheless,
DR has been used convincingly in applications (Mehta et al., 2020; OpenAI et al., 2019). Similar
approaches also aim to refine a base DR policy for application to a sequence of real-world cases (Lin
et al., 2020; Dennis et al., 2020; Yu et al., 2018).

For a more complete survey of recent works in robust RL, we refer the reader to the work of Moos
et al. (2022). To the best of our knowledge, the approach sketched in the previous section and
developed in the next one is the only one that directly addresses the static model. For that purpose,
it exploits the equivalence with the dynamic model for stationary policies and solves the dual of
the minimax problem, owing to the no-duality gap property.

4 INCREMENTAL WORST-CASE SEARCH

In order to search for robust policies, we consider the no-duality gap property: the best performance
one can expect in the face of transition function uncertainty maxπ minT V

π
T ps0q, is also the worst per-

formance the environment can induce for each transition function’s optimal policy minT V
˚
T ps0q. If

the value V π
T ps0q was strictly concave/convex with respect to π/T respectively, we could hope to solve

for the robust policy through a (sub)gradient ascent/descent method. Unfortunately, it seems V π
T ps0q

easily admits more convoluted optimization landscapes, involving stationary points, local minima and
maxima. The maxπ problem often benefits from regularization (Geist et al., 2019). Although one
could study regularization for the minT problem (Grand-Clément & Petrik, 2022) or the equivalence
with a regularized objective (Derman et al., 2021), we turn towards a simpler process conceptually.

Algorithm. We consider a (small) discrete set of MDPs Ti “ tTjujPr0,is, for which we derive the
corresponding optimal value functions Q˚

Tj
. Then we define Qi as the function that maps any pair

s, a to the smallest expected optimal outcome Qips, aq “ minjPr0,istQ
˚
Tj

ps, aqu. The corresponding
greedy policy is πipsq P argmaxaQips, aq and is a candidate for the robust policy. Let us define
Ti`1 P argminTPT V

πi

T ps0q. Then, if V πi

Ti`1
ps0q “ Qips0, πips0qq, we have found a robust policy

for all transition models in T . Otherwise, we can solve forQ˚
Ti`1

, append Ti`1 to Ti to form Ti`1, and
repeat. Consequently, the idea we develop is to incrementally expand Ti by solving minTPT V

πi

T ps0q

using optimization methods that can cope with ill-conditioned optimization landscapes. We call
Incremental Worst Case Search (IWOCS) this general method, which we summarize in Algorithm 1.

Rectangularity. One should note that Ti is a subset of a (supposed) sa-rectangular uncertainty
set, but is not sa-rectangular itself, so there is no guarantee that the static-dynamic equivalence
holds in Ti, and Qi is a pessimistic value function for the static case only, on the Ti uncertainty
set. However, one can consider the sa-rectangular set T̃i “

Ś

s,atTjp¨|s, aqujPr0,is composed of the
cartesian product of all local tTjp¨|s, aqujPr0,is sets for each s, a pair.

Property 1. For any i, s, a, we have

Qips, aq ě Q˚

T̃i
ps, aq ě Q˚

T ps, aq.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Incremental Worst-Case Search meta-algorithm (in blue: the sub-algorithms)
Input: T , T0, max nb of iterations M , tolerance on robust value ϵ
for i “ 0 to M do

Find non-robust Q˚
Ti

“ maxπQ
π
Ti

Define Ti “ tTjujďi

Define robust Qi : s, a ÞÑ minjďitQ
˚
Tj

ps, aqu

Define candidate πipsq “ argmaxapQips, aqq

Find worst Ti`1 “ argminTPT V
πi

T ps0q

if |V πi

Ti`1
ps0q ´Qips0, πips0q| ď ϵ then

return πi, Ti`1, V πi

Ti`1
ps0q

end if
end for
return πM , TM`1, V πM

TM`1
ps0q

0 10 20 30 40 50
0

1

2

3

4

5

6

7

Ga
p

to
 V

*

RVI
IWOCS

Figure 1: Convergence to V ˚ vs Bellman iterates (right) in the Windy walk grid-world (left).

The proof follows directly from the fact that Ti Ă T̃i Ă T . We abusively call Qi the Ti-robust value
function. In s0, Qi coincides with the robust value function for the static model of uncertainty with
respect to the Ti uncertainty set.
Property 2. For any i, s, a, we have

Qi`1ps, aq ď Qips, aq.

The proof is immediate as well since Qi`1 drawn among the same finite set of functions as Qi,
complemented with Q˚

Ti`1
. Hence the Qi functions form a monotonically decreasing sequence.

Since Qi is lower bounded (by Q˚
T), IWOCS is necessarily convergent.3

Choosing Ti`1. One could define a variant of Algorithm 1 which picks Ti`1 using another criterion
than the worst-case transition model for πi, for instance by drawing Ti`1 uniformly at random,
without loosing the two properties above. This underlines that the procedure for choosing Ti`1

is a heuristic part of IWOCS. In all cases, the sequence of Qi remains monotonous and hence
convergence in the limit remains guaranteed. Specifically, if, in the limit, Ti converges to T (under
some appropriate measure on uncertainty sets), then Qi converges to the robust value function by
definition. Whether this occurs or not, strongly depends on how Ti`1 is chosen at each iteration. In
particular, premature stopping can occur if Ti`1 is among Ti. We conjecture choosing the worst-case
transition model for πi is an intuitive choice here, and reserve further theoretical analysis on this
matter for future work. One bottleneck difficulty of this selection procedure for Ti`1 lies in solving
the minT problem accurately enough. However this difficulty is decoupled from that of the policy
optimization process, which is only concerned with static MDPs.

Illustration. We implement an IWOCS algorithm on a toy example, using value iteration (VI) as
the policy optimization algorithm and a brute force search across transition functions to identify worst-
case MDPs (V πi

T ps0q is evaluated through Monte-Carlo rollouts). Detailed pseudo-code is provided
in Appendix E. The goal here is to illustrate the behavior of IWOCS, compare it to the seminal
robust value iteration (RVI) algorithm, and validate empirically that IWOCS is able to find worst-case
static MDPs and robust policies. This vanilla IWOCS is evaluated on the “windy walk” grid-world

3Although not necessarily to Q˚
T .

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

MDP illustrated on Figure 1, where an agent wishes to navigate from a starting position S to a goal
G. Actions belong to the discrete tN,S,E,W u set and transitions are deterministic, except in the
“corridors”, where wind can knock back the agent to the left. In the topmost corridor, the probability
of being knocked left is α, in the middle corridor it is α3 and it is α6 in the bottom corridor. Hence,
the uncertainty set is fully parameterized by α, which takes 25 discrete values, uniformly distributed
in r0, 0.5s. Rewards are ´1 at each time step and the goal is an absorbing state yielding zero reward.

Figure 1 illustrates how IWOCS converges to the robust value function V ˚. RVI builds the sequence
Vn`1 “ LVn and we plot |Vnps0q ´ V ˚

T ps0q| versus the number of robust Bellman iterates n. On
the other hand, IWOCS requires its first policy optimization to terminate before it can report its first
Qips0, πips0qq. Thus, we plot |Qips0, πips0qq´V ˚

T ps0q| after a fixed number of 100 standard Bellman
backups for VI. It is important to note that one iterate of the standard Bellman operator requires solving
a maxa in each state, while an iterate of the robust Bellman operator requires solving a more costly
maxa minT problem in each state. Therefore, the x-axis does not account for computational time.
IWOCS finds the worst-case static model after two iterations and converges to the same value as RVI.

Computational complexity. Recall that the complexity of robust value iteration (RVI), in discrete
state and action MDPs, and for a sa-rectangular uncertainty set, is Opcn2

SnA logp1{ϵq{ logp1 ´ γqq,
where nS is the number of states, nA the number of actions, ϵ is the tolerance for the robust value
function and c is the cost of computing a single minT solution (Iyengar, 2005). Recall also that the
complexity of value iteration (VI) is Opn2SnA logp1{ϵq{ logp1 ´ γqq (VI is a special case of RVI
with a singleton as uncertainty set, so c “ 1). Comparing IWOCS and RVI is a delicate matter
because IWOCS is not based on a contraction mapping and has no convergence guarantees to the
robust value function. Consequently, comparisons should be taken with a grain of salt. Yet, it is
legitimate to wonder whether one can analyse the time complexity of IWOCS versus RVI. One
iteration of IWOCS in discrete state and action spaces, as presented in Section 4, has the complexity
of VI for the policy search part, plus the complexity of finding a worst case transition function
in an sa-rectangular uncertainty set, which is OpcnSnAq. Hence, the overall complexity for M
iterations of IWOCS is OpMpn2SnA logp1{ϵq{ logp1 ´ γq ` cnSnAqq. Compared to RVI, this bound
will be smaller when c is large, which is the case when one deals with complex uncertainty sets and
without further hypotheses. This short discussion provides a rationale to why IWOCS might be a
time-efficient algorithm in large scale robust RL problems.

5 DEEP IWOCS

We now turn towards challenging robust control problems and introduce an instance of IWOCS
meant to accommodate large and continuous state and action spaces, using function approximators
such as neural networks. This instance of IWOCS uses Soft Actor Critic (SAC) Haarnoja et al. (2018)
as the policy optimization method, as it has been proven to yield a locally robust policy around the
MDP it is trained upon (Eysenbach & Levine, 2022). Our code is available at https://anonymous.url
and experimental computing setup is summarized in Appendix D.

5.1 METHOD

Accounting for regularization terms. Since SAC learns a regularized Q-function which accounts
for the policy’s entropy, and lets the importance of this term vary along the optimization, orders
of magnitude may change between QTi and QTj . To avoid the influence of this regularization term
when defining the Ti-robust Q-function, we train an additional unregularized Q-network which only
takes rewards into account. We call πT the policy network which approximates the optimal policy of
the regularized MDP based on T . This policy’s (regularized) value function is approximated by the
Q1

T network (our implementation uses double Q-networks as per the common practice — all details
in Appendix F), while an additional QT network (double Q-network also) tracks the unregularized
value function of πT . The Ti-robust Q-function is defined with respect to this unregularized value
function as Qips, aq “ minjPr0,istQTj

ps, aqu.

Partial state space coverage. In large state space MDPs, it is likely that interactions will not explore
the full state space. Consequently, the different QTj

functions are trained on replay buffers whose
empirical distribution’s support my vary greatly. Evaluating neural networks outside of their training

6

https://anonymous.url

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

distribution is prone to generalization errors. This begs for indicator functions specifying on which
ps, aq pair each QT is relevant. We chose to implement such an indicator function using predictive
coding (Rao & Ballard, 1999) on the dynamical model Tj . Note that other choices can be equally
good (or better), such as variance networks (Neklyudov et al., 2019), ensembles of neural networks
(Lakshminarayanan et al., 2016) or 1-class classification (Béthune et al., 2023). Our predictive coding
model for Tj predicts T̂jps, aq “ s1 for deterministic dynamics, by minimizing the expected value
of the loss ℓpT̂jps, aq; s1q “ }T̂jps, aq ´ s1}1. At inference time, along a trajectory, we consider QTj

has been trained on sufficient data in st, at, if ℓpT̂jpst´1, at´1q; stq ď ρj , ie. if the prediction error
for st is below the threshold ρj (details about tuning ρj in Appendix G). We set Q˚

Tj
to be `8 in

all states where ℓpT̂jpst´1, at´1q; stq ą ρj , so that it does not participate in the definition of Qi.

Worst case identification. When V πi

T ps0q is non differentiable with respect to T (or T ’s
parameters), one needs to fall back on black-box optimization to find Ti`1 “ argminTPT V

πi

T ps0q.
We turn to evolutionary strategies, and in particular CMA-ES (Hansen & Ostermeier, 2001) for that
purpose, for its ability to escape local minima and efficiently explore the uncertainty set T even
when the latter is high-dimensional (hyperparameters in Appendix F). Note that making V π

T ps0q

differentiable with respect to T is feasible by making the critic network explicitly depend on T ’s
parameters, as in the work of Tanabe et al. (2022). We do not resort to such a model, as it induces
the risk for generalization errors, but it constitutes a promising alternative for research. To evaluate
V πi

T ps0q for a given T , we run a roll-out from s0 by applying πipsq in each encountered state s.
Since we consider continuous action spaces and keep track of the critics QTj

, Q1
Tj

and the actor
πTj

for all Tj P Ti, we can make direct use of πTj
which is designed to mimic an optimal policy

in MTj
. Specifically, in s, we evaluate j˚ “ argminjďiQ

˚
Tj

ps, πTj
psqq, and apply πipsq “ πj˚ psq.

If no Q˚
Tj

is valid in s, we fall back to a default policy trained with domain randomization.

5.2 EMPIRICAL EVALUATION

Experimental framework. This section assesses the proposed algorithm’s worst-case performance
and generalization capabilities. Experimental validation is performed on optimal control problems
using the MuJoCo simulation environments4 (Todorov et al., 2012). IWOCS is benchmarked
against state-of-the-art robust reinforcement learning methods, including M2TD3 (Tanabe et al.,
2022), M3DDPG (Li et al., 2019), and RARL (Pinto et al., 2017). We also compare with Domain
Randomization (DR) (Tobin et al., 2017) for completeness. For each environment, two versions
of the uncertainty set are considered, following the benchmarks reported by Tanabe et al. (2022).
In the first one, T is parameterized by a global friction coefficient and the agent’s mass. In the second
one, a third, environment-dependent parameter is included (details in Appendix J). To ensure a fair
comparison we also aligned with the sample budget of Tanabe et al. (2022): performance metrics
were collected after 4 million steps for environments with a 2D uncertainty set and after 5 million
steps for those with a 3D uncertainty set. All reference methods optimize a single policy along
these 4 or 5 million steps, but IWOCS optimizes a sequence of non-robust policies, for which we
divide this sample budget: we constrain IWOCS to train its default policy and each subsequent SAC
agent for a fixed number of interaction steps, so that the sum is 4 or 5 million steps (Appendix H
and I).5 Results for all methods other than IWOCS are taken from the work of Tanabe et al. (2022).
All results reported below are averaged over 10 distinct random seeds.

IWOCS*. We define a variant of IWOCS by replacing CMA-ES with a plain grid search across the
uncertainty set, mimicking the worst case search of Tanabe et al. (2022), in order to assess whether
CMA-ES effectively finds adequate worst-case transition models. Contrarily to CMA-ES, this will not
scale to larger uncertainty set dimensions, but provides a safe baseline for optimization performance.

Worst-case performance. Table 1 reports the normalized worst-case scores comparing IWOCS,
M2TD3, SoftM2TD3, M3DDPG, RARL, and DR using TD3.6 The worst-case scores for all final

4Note that these do not respect the rectangularity assumption.
5Additional experiments allowing more samples to SAC at each iteration of IWOCS showed only marginal

performance gains. This also illustrates how IWOCS can accomodate sub-optimal value functions and policies.
6Note that this DR agent is independent of the one we use as a default policy for IWOCS.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Avg. of normalized worst-case performance over 10 seeds for each method (HC=half-
cheetah, H=hopper, HS=humanoid-standup, IP=inverted-pendulum, W=walker).

Env M2TD3 SoftM2TD3 M3DDPG RARL DR (TD3) IWOCS* IWOCS

Ant 2 1.00 ˘ 0.04 0.92 ˘ 0.06 ´0.72 ˘ 0.05 ´1.32 ˘ 0.04 0.02 ˘ 0.05 0.27 ˘ 0.36 ´0.27 ˘ 0.44
Ant 3 1.00 ˘ 0.09 0.97 ˘ 0.18 ´0.36 ˘ 0.20 ´1.28 ˘ 0.06 0.61 ˘ 0.03 0.28 ˘ 0.24 0.43 ˘ 0.68
HC2 1.00 ˘ 0.05 1.07 ˘ 0.05 ´0.02 ˘ 0.02 ´0.05 ˘ 0.02 0.84 ˘ 0.04 1.13 ˘ 0.02 0.75 ˘ 0.28
HC3 1.00 ˘ 0.14 1.39 ˘ 0.15 ´0.03 ˘ 0.05 ´0.13 ˘ 0.05 1.10 ˘ 0.04 0.61 ˘ 0.05 0.56 ˘ 0.15
H2 1.00 ˘ 0.05 1.09 ˘ 0.06 0.46 ˘ 0.06 0.61 ˘ 0.17 0.87 ˘ 0.03 6.52 ˘ 0.01 6.34 ˘ 0.11
H3 1.00 ˘ 0.09 0.68 ˘ 0.08 0.22 ˘ 0.04 0.56 ˘ 0.17 0.73 ˘ 0.13 4.94 ˘ 0.17 4.64 ˘ 0.16
HS2 1.00 ˘ 0.12 1.25 ˘ 0.16 0.98 ˘ 0.12 0.88 ˘ 0.13 1.14 ˘ 0.14 1.02 ˘ 0.12 0.98 ˘ 0.25
HS3 1.00 ˘ 0.11 0.96 ˘ 0.07 0.97 ˘ 0.07 0.88 ˘ 0.13 0.86 ˘ 0.06 1.18 ˘ 0.08 1.12 ˘ 0.21
IP2 1.00 ˘ 0.37 0.38 ˘ 0.08 ´0.00 ˘ 0.00 ´0.00 ˘ 0.00 0.15 ˘ 0.01 2.82 ˘ 0.00 2.82 ˘ 0.00
W2 1.00 ˘ 0.14 0.83 ˘ 0.15 0.04 ˘ 0.04 ´0.08 ˘ 0.01 0.71 ˘ 0.17 1.34 ˘ 0.02 1.23 ˘ 0.10
W3 1.00 ˘ 0.23 1.03 ˘ 0.20 0.06 ˘ 0.05 ´0.10 ˘ 0.01 0.65 ˘ 0.19 2.33 ˘ 0.10 2.10 ˘ 0.50

Agg. 1.0 ˘ 0.13 0.96 ˘ 0.11 0.15 ˘ 0.06 ´0.0 ˘ 0.07 0.7 ˘ 0.08 2.04 ˘ 0.11 1.88 ˘ 0.26

policies are evaluated by defining a uniform grid over the transition function’s parameter space and
performing roll-outs for each transition model. To obtain comparable metrics across environments,
we normalize each method’s score v using the vanilla TD3 (trained on the default transition function
only) reference score vTD3 as a minimal baseline and the M2TD3 score vM2TD3 as target score:
pv ´ vTD3q{|vM2TD3 ´ vTD3|. Hence this metric reports how much a method improves upon
TD3, compared to how much M2TD3 improved upon TD3. Non-normalized scores are reported
in Appendix K. IWOCS* and IWOCS demonstrate competitive performance, outperforming all
other methods in 7 out of the 11 environments (note that we did not report results on simpler 1D
uncertainty sets). IWOCS* permits a 2.04-fold improvement on average across environments, over
the state-of-the-art M2TD3. This validates in practice the soundness of solving a sequence of static
models as an alternative to traditional methods building on dynamic models of uncertainty. It seems
that Ant is an environment where IWOCS struggles to reach convincing worst case scores. We
conjecture this is due to the wide range of possible mass and friction parameters, which make the
optimization process very noisy (almost zero mass and friction is a worst-case T making the ant’s
movement rather chaotic and hence induces a possibly misleading replay buffer) and may prevent the
policy optimization algorithm to yield good non-robust policies and value functions given its sample
budget. However, IWOCS provides a major (up to 6.5-fold) improvement on other environments.

Average performance. While our primary aim is to maximize the worst-case performance, we
also appreciate the significance of average performance in real-world scenarios. Table 2 reports the
normalized average score (non-normalized scores in Appendix K) obtained by the resulting policy
over a uniform grid of 100 transition functions in 2D uncertainty sets (1000 in 3D ones). Interestingly,
M3DDPG and RARL feature negative normalized scores and perform worse on average than vanilla
TD3 on most environments (as M2TD3 on 3 environments). DR and IWOCS display the highest
average performance. Although this outcome was anticipated for DR, it may initially seem surprising
for IWOCS, which was not explicitly designed to optimize mean performance. We posit this might be
attributed to two factors. First, in MDPs which have not been identified as worst-cases, encountered
states are likely to have no valid QTj value function. In these MDPs, if we were to apply any of
the πTj , its score could be as low as the worst cast value (but not lower, otherwise the MDP should
have been identified as a worst case earlier). But since IWOCS’ indicator functions identify these
states as unvisited, the applied policy falls back to the DR policy, possibly providing a slightly better
score above the worst case value for these MDPs. Second, the usage of indicator functions permits
defining the IWOCS policy as an aggregate of locally optimized policies, possibly avoiding averaging
issues. As for the worst-case scores, IWOCS does not perform well on Ant environments. However,
it provides significantly better average scores than both DR and M2TD3 on all 9 other benchmarks.

Worst case paths in the uncertainty set. IWOCS aims at solving iteratively the robust optimization
problem by covering the worst possible case at each iteration. IWOCS and IWOCS* seem to reliably
find worst case MDPs and policies in a number of cases, and we could expect the value of the
candidate robust policy πi to increase throughout iterations. Table 3 permits tracking the worst
case MDPs and policies along iterations for the Humanoid 2D environment (all other results in
Appendix M). Specifically, it reports the worst case T1 “ pψ0

1 , ψ
1
1q for the default policy π0, and its

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Avg. of normalized average performance over 10 seeds for each method.
Env. M2TD3 SoftM2TD3 M3DDPG RARL DR (TD3) IWOCS* IWOCS

A2 1.00 ˘ 0.02 1.04 ˘ 0.00 ´0.13 ˘ 0.12 ´1.04 ˘ 0.02 1.28 ˘ 0.03 1.03 ˘ 0.02 1.03 ˘ 0.02
A3 ´1.00 ˘ 0.44 ´0.36 ˘ 0.46 ´6.98 ˘ 0.44 ´8.94 ˘ 0.18 0.92 ˘ 0.22 ´0.24 ˘ 0.58 ´1.06 ˘ 2.00
HC2 1.00 ˘ 0.03 1.10 ˘ 0.04 ´1.08 ˘ 0.07 ´1.94 ˘ 0.03 1.84 ˘ 0.09 2.12 ˘ 0.02 2.11 ˘ 0.04
HC3 1.00 ˘ 0.07 1.17 ˘ 0.03 ´1.43 ˘ 0.14 ´2.48 ˘ 0.05 2.33 ˘ 0.12 2.86 ˘ 0.02 2.82 ˘ 0.12
H2 1.00 ˘ 0.07 0.74 ˘ 0.12 ´0.40 ˘ 0.11 1.86 ˘ 0.92 0.36 ˘ 0.08 2.27 ˘ 0.00 2.26 ˘ 0.07
H3 ´1.00 ˘ 0.23 ´1.20 ˘ 0.13 ´2.20 ˘ 0.37 1.63 ˘ 1.53 1.17 ˘ 0.23 7.33 ˘ 0.30 7.30 ˘ 0.23
HS2 ´1.00 ˘ 0.67 0.67 ˘ 0.83 ´1.83 ˘ 0.67 ´3.00 ˘ 1.33 0.50 ˘ 0.67 5.33 ˘ 1.83 5.00 ˘ 4.00
HS3 1.00 ˘ 0.75 0.38 ˘ 0.37 0.00 ˘ 0.50 ´1.75 ˘ 0.87 0.38 ˘ 0.87 7.75 ˘ 0.25 7.75 ˘ 0.25
IP2 1.00 ˘ 0.68 1.06 ˘ 0.46 ´1.10 ˘ 0.25 ´0.47 ˘ 0.32 2.47 ˘ 0.03 2.86 ˘ 0.00 2.86 ˘ 0.00
W2 1.00 ˘ 0.06 0.83 ˘ 0.16 ´0.53 ˘ 0.11 ´1.21 ˘ 0.02 0.91 ˘ 0.15 1.13 ˘ 0.00 1.14 ˘ 0.01
W3 1.00 ˘ 0.13 0.96 ˘ 0.18 ´0.57 ˘ 0.09 ´1.43 ˘ 0.04 1.13 ˘ 0.10 1.94 ˘ 0.05 1.95 ˘ 0.05

Agg. 0.45 ˘ 0.29 0.58 ˘ 0.25 ´1.48 ˘ 0.26 ´1.71 ˘ 0.48 1.21 ˘ 0.24 3.13 ˘ 0.28 3.01 ˘ 0.62

Table 3: Humanoid standup 2, worst parameters search for each iteration over 10 seeds.
ψ0
1 ψ1

1 Jπ0

T1
Jπ1

T1
ψ0
2 ψ1

2 Jπ1

T2
Jπ2

T2
ψ0
3 ψ1

3 Jπ2

T3
Jπ3

T3
ψ0
4 ψ1

4 Jπ3

T4

0 7.21 14.41 5.67 12.25 0.1 11.23 7.12 11.97 0.1 9.64 7.46 13.24 0.1 9.64 7.46
1 7.21 14.41 5.67 6.99 0.1 8.05 7.32 12.66 0.1 8.05 7.32 - - - -
2 7.21 14.41 5.67 6.99 0.1 9.64 7.46 2.9 0.1 9.64 7.46 - - - -
3 7.21 14.41 5.67 14.47 4.84 14.41 6.54 7.39 4.84 14.41 7.46 - - - -
4 7.21 14.41 5.67 14.66 0.1 12.82 7.03 8.31 0.1 12.82 7.03 - - - -
5 7.21 14.41 5.67 10.06 6.42 14.41 6.88 9.31 6.42 14.41 6.88 - - - -
6 7.21 14.41 5.67 15.81 7.21 14.41 5.67 - - - - - - - -
7 7.21 14.41 5.67 15.35 7.21 14.41 5.67 - - - - - - - -
8 7.21 14.41 5.67 13.80 7.21 14.41 5.67 - - - - - - - -
9 7.21 14.41 5.67 15.16 7.21 14.41 5.67 - - - - - - - -

score Jπ0

T1
(all scores are divided by 104 for readability). The next set of columns repeats these values

for later iterations. Each line corresponds to a different random seed. In all lines, the worst case value
Jπi

Ti`1
steadily increases until convergence. In some runs (last 4 seeds), IWOCS’s stopping criterion

is met after a single iteration: the worst case T2 “ p7.21, 14.41q for π1 is the same as T1, upon which
π1 was trained. Overall the path through transition models and candidate robust policies illustrates
the algorithmic behavior of IWOCS. As indicated in Section 4, IWOCS is guaranteed to converge
but may miss the optimal pT, πq pair because the selection criterion for Ti`1 is a (well motivated)
heuristic. This happens for a few seeds, where IWOCS seems to reach a different saddle point after 2
or 3 iterations.

6 CONCLUSION

The search for robust policies in uncertain MDPs is a long-standing challenge. In this work, we
proposed to revisit the static model of transition function uncertainty, which is equivalent to the
dynamic model in the case of sa-rectangular uncertainty sets and stationary policies. We proposed
to exploit this equivalence and the no-duality-gap property to design an algorithm that trades the
resolution of a two-player game, for a sequence of one-player MDP resolutions. This led to the
IWOCS (Incremental Worst-Case Search) meta-algorithm, which incrementally builds a discrete, non-
sa-rectangular uncertainty set and a sequence of candidate robust policies. An instance of IWOCS,
using SAC for policy optimization, and CMA-ES or grid-search for worst-case search, appeared as a
relevant method on popular robust RL benchmarks, and outperformed the state-of-the-art algorithms
on a number of environments. IWOCS proposes a new perspective on the resolution of robust MDPs
and robust RL problems, which appears as a competitive formulation with respect to traditional
methods. It also poses new questions, like the tradeoffs between policy optimization precision and
overall robustness, gradient-based methods for worst-case search, bounds due to approximate value
functions, or validity of using Qi as a surrogate of the robust value function for the Ti uncertainty set.
All these open interesting avenues for future research.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Louis Béthune, Paul Novello, Thibaut Boissin, Guillaume Coiffier, Mathieu Serrurier, Quentin
Vincenot, and Andres Troya-Galvis. Robust one-class classification with signed distance function
using 1-lipschitz neural networks. In Proceedings of the 40th International Conference on Machine
Learning. PMLR, 2023.

Michael Dennis, Natasha Jaques, Eugene Vinitsky, A. Bayen, Stuart J. Russell, Andrew Critch, and
S. Levine. Emergent complexity and zero-shot transfer via unsupervised environment design.
Neural Information Processing Systems, 2020.

Esther Derman, Matthieu Geist, and Shie Mannor. Twice regularized mdps and the equivalence
between robustness and regularization. Advances in Neural Information Processing Systems, 34,
2021.

Benjamin Eysenbach and Sergey Levine. Maximum entropy rl (provably) solves some robust rl
problems. In International Conference on Learning Representations, 2022.

Matthieu Geist, Bruno Scherrer, and Olivier Pietquin. A theory of regularized markov decision
processes. In International Conference on Machine Learning, pp. 2160–2169. PMLR, 2019.

Vineet Goyal and Julien Grand-Clement. Robust markov decision processes: Beyond rectangularity.
Mathematics of Operations Research, 2022.

Julien Grand-Clément and Christian Kroer. Scalable first-order methods for robust mdps. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 12086–12094, 2021.

Julien Grand-Clément and Marek Petrik. On the convex formulations of robust markov decision
processes. arXiv preprint arXiv:2209.10187, 2022.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft actor-critic algorithms
and applications. arXiv preprint arXiv: Arxiv-1812.05905, 2018.

Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-adaptation in evolution
strategies. Evolutionary Computation, 9(2):159–195, 2001. doi: 10.1162/106365601750190398.

Chin Pang Ho, Marek Petrik, and Wolfram Wiesemann. Fast bellman updates for robust mdps. In
International Conference on Machine Learning, pp. 1979–1988. PMLR, 2018.

Garud Iyengar. Robust dynamic programming. Technical report, CORC Tech Report TR-2002-07,
2022.

Garud N Iyengar. Robust dynamic programming. Mathematics of Operations Research, 30(2):
257–280, 2005.

Parameswaran Kamalaruban, Yu ting Huang, Ya-Ping Hsieh, Paul Rolland, C. Shi, and V. Cevher.
Robust reinforcement learning via adversarial training with langevin dynamics. Neural Information
Processing Systems, 2020.

Navdeep Kumar, Esther Derman, Matthieu Geist, Kfir Levy, and Shie Mannor. Policy gradient for
s-rectangular robust markov decision processes. arXiv preprint arXiv:2301.13589, 2023.

B Lakshminarayanan, A Pritzel, and C Blundell. Simple and scalable predictive uncertainty estimation
using deep ensembles. arxiv. arXiv preprint arXiv:1612.01474, 2016.

Erwan Lecarpentier and Emmanuel Rachelson. Non-stationary markov decision processes, a worst-
case approach using model-based reinforcement learning. Advances in neural information process-
ing systems, 32, 2019.

Shihui Li, Yi Wu, Xinyue Cui, Honghua Dong, Fei Fang, and Stuart Russell. Robust multi-agent
reinforcement learning via minimax deep deterministic policy gradient. In Proceedings of the
AAAI conference on artificial intelligence, volume 33, pp. 4213–4220, 2019.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Shiau Hong Lim, Huan Xu, and Shie Mannor. Reinforcement learning in robust markov decision
processes. Advances in Neural Information Processing Systems, 26, 2013.

Zichuan Lin, Garrett Thomas, Guangwen Yang, and Tengyu Ma. Model-based adversarial meta-
reinforcement learning. In Advances in Neural Information Processing Systems, volume 33, pp.
10161–10173, 2020.

Shie Mannor, Ofir Mebel, and Huan Xu. Lightning does not strike twice: robust mdps with coupled
uncertainty. In Proceedings of the 29th International Coference on International Conference on
Machine Learning, pp. 451–458, 2012.

Bhairav Mehta, Manfred Diaz, Florian Golemo, Christopher J. Pal, and Liam Paull. Active domain
randomization. In Proceedings of the Conference on Robot Learning, volume 100, pp. 1162–1176,
2020.

Janosch Moos, Kay Hansel, Hany Abdulsamad, Svenja Stark, Debora Clever, and Jan Peters. Robust
reinforcement learning: A review of foundations and recent advances. Machine Learning and
Knowledge Extraction, 4(1):276–315, 2022.

Jun Morimoto and Kenji Doya. Robust reinforcement learning. Neural computation, 17(2):335–359,
2005.

Kirill Neklyudov, Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov. Variance networks:
When expectation does not meet your expectations. In International Conference on Learning
Representations, 2019.

Arnab Nilim and Laurent El Ghaoui. Robust control of markov decision processes with uncertain
transition matrices. Operations Research, 53(5):780–798, 2005.

OpenAI, Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur
Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, Jonas Schneider, Nikolas
Tezak, Jerry Tworek, Peter Welinder, Lilian Weng, Qiming Yuan, Wojciech Zaremba, and Lei
Zhang. Solving rubik’s cube with a robot hand. arXiv preprint arXiv: Arxiv-1910.07113, 2019.

Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Robust adversarial rein-
forcement learning. In International Conference on Machine Learning, pp. 2817–2826. PMLR,
2017.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Rajesh PN Rao and Dana H Ballard. Predictive coding in the visual cortex: a functional interpretation
of some extra-classical receptive-field effects. Nature neuroscience, 2(1):79–87, 1999.

Jay K Satia and Roy E Lave Jr. Markovian decision processes with uncertain transition probabilities.
Operations Research, 21(3):728–740, 1973.

Samuel Stanton, Rasool Fakoor, Jonas Mueller, Andrew Gordon Wilson, and Alex Smola. Robust
reinforcement learning for shifting dynamics during deployment. In Workshop on Safe and Robust
Control of Uncertain Systems at NeurIPS, 2021.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Takumi Tanabe, Rei Sato, Kazuto Fukuchi, Jun Sakuma, and Youhei Akimoto. Max-min off-policy
actor-critic method focusing on worst-case robustness to model misspecification. In Advances in
Neural Information Processing Systems, 2022.

Chen Tessler, Yonathan Efroni, and Shie Mannor. Action robust reinforcement learning and applica-
tions in continuous control. In International Conference on Machine Learning, pp. 6215–6224.
PMLR, 2019.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Domain
randomization for transferring deep neural networks from simulation to the real world. In 2017
IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 23–30. IEEE,
2017.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012. doi: 10.1109/IROS.2012.6386109.

Eugene Vinitsky, Yuqing Du, Kanaad Parvate, Kathy Jang, Pieter Abbeel, and Alexandre Bayen.
Robust reinforcement learning using adversarial populations. arXiv preprint arXiv:2008.01825,
2020.

Qiuhao Wang, Chin Pang Ho, and Marek Petrik. Policy gradient in robust mdps with global
convergence guarantee. In Proceedings of the 40th International Conference on Machine Learning,
ICML’23. JMLR.org, 2023.

Wolfram Wiesemann, Daniel Kuhn, and Berç Rustem. Robust markov decision processes. Mathe-
matics of Operations Research, 38(1):153–183, 2013.

Huan Xu and Shie Mannor. Distributionally robust markov decision processes. Advances in Neural
Information Processing Systems, 23, 2010.

Wenhao Yu, C. K. Liu, and Greg Turk. Policy transfer with strategy optimization. International
Conference On Learning Representations, 2018.

Huan Zhang, Hongge Chen, Chaowei Xiao, Bo Li, Mingyan Liu, Duane Boning, and Cho-Jui Hsieh.
Robust deep reinforcement learning against adversarial perturbations on state observations. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural
Information Processing Systems, volume 33, pp. 21024–21037, 2020.

Huan Zhang, Hongge Chen, Duane S Boning, and Cho-Jui Hsieh. Robust reinforcement learning
on state observations with learned optimal adversary. In International Conference on Learning
Representations, 2021.

A APPENDIX

B KEY RESULTS FROM THE LITERATURE

In order to ease the reading of this paper, we recall the two theoretical results that Section 2 builds
upon. We reproduce the text from the original papers (Iyengar, 2022; Wiesemann et al., 2013) but, for
the sake of consistency, we use the notations of the present paper and indicate [in brackets] whenever
we adjusted the original notation. All results quoted below apply to sa-rectangular uncertainty sets.

Definition of the static and dynamic models, in the introduction of section 3 of (Iyengar, 2005).

(i) Static model: The adversary is restricted to choose the same, but unknown,
[T p¨|s, aq] every time the state-action pair ps, aq is encountered.
(ii) Dynamic model: The adversary is allowed to choose a possibly different con-
ditional measure [T p¨|s, aq] every time the state-action pair ps, aq is encountered.
[...]
As mentioned in the introduction, the goal of the robust formulation is to systemati-
cally mitigate the effect of errors associated with estimating the state transitions;
i.e., the state transition is, in fact, fixed but the decision maker is only able to
estimate it to within a set. Thus, the static model is appropriate for this scenario.
However, computing the optimal policy for the static model is NP-hard, therefore,
we will restrict attention to the dynamic model. Clearly the value function in the
dynamic model is a lower bound for the value function in the static model. We
contrast the implications of the two models in Lemma 3.3.

Equivalence of the value functions under the static and dynamic models (Iyengar, 2005, Lemma
3.3).

Lemma 3.3 (Dynamic vs. static adversary). Let [π : S Ñ A be a] stationary policy.
Let V π and V̂ π be the value of the π in the dynamic and static model respectively.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Then V π “ V̂ π .
[...]
In the proof of the result we have implicitly established that the “best-response” of
dynamic adversary when the decision maker employs a stationary policy is, in fact,
static [...].

Non-equivalence of the static and dynamic models for non-stationary policies, at the end of
Section 3 of (Iyengar, 2005)

Lemma 3.3 highlights an interesting asymmetry between the decision maker and
the adversary that is a consequence of the fact that the adversary plays second.
While it is optimal for a dynamic adversary to play static (stationary) policies
when the decision maker is restricted to stationary policies, it is not optimal for the
decision maker to play stationary policies against a static adversary.

No-duality gap property (Wiesemann et al., 2013, Equation 4).

To date, the literature on robust MDPs has focused on (s, a)-rectangular ambiguity
sets. For this class of ambiguity sets, it is shown in (Iyengar, 2005) and (Nilim
& El Ghaoui, 2005) that the worst-case expected total reward [...] is maximized
by a deterministic stationary policy for finite and infinite horizon MDPs. Optimal
policies can be determined via extensions of the value and policy iteration. For
some ambiguity sets, finding an optimal policy, as well as evaluating (2) for a
given stationary policy, can be achieved in polynomial time. Moreover, the policy
improvement problem satisfies the following saddle point condition

sup
π

inf
TPT

E

«

8
ÿ

t“0

γtrpst, at, st`1q|s0

ff

“ inf
TPT

sup
π

E

«

8
ÿ

t“0

γtrpst, at, st`1q|s0

ff

C NOTATIONS

Table 4 recalls all key notations used throughout the paper. The first block in Table 4 is for standard
(non-robust) MDP quantities (used in Section 2 and after), the second for standard robust MDP
quantities (Section 2 and after), the third for IWOCS-specific quantities (Section 4 and after), and
finally the fourth for Deep-IWOCS notations (Section 5 and after).

Table 4: Key notations
Symbol Meaning

MT “ pS,A, T, rq MDP with transition kernel T
π Stationary policy S Ñ A
V π
T , Qπ

T State and state-action value functions of policy π in MT

Jπ
T Scalar value V π

T ps0q of initial state under π in MT

π˚
T Optimal policy in MT

V ˚
T , Q˚

T Optimal state and state-action value functions in MT

T Uncertainty set
V π
T Value function of policy π under sequence of transition kernels T
V π
T , Qπ

T Pessimistic value function of policy π for uncertainty set T
V ˚
T , Q˚

T Robust value function for uncertainty set T
Ti Non-sa-rectangular discrete uncertainty set
T̃i sa-rectangular uncertainty superset of Ti
Qi Ti-robust value function
πT SAC’s approximation of π˚

T
QT SAC’s approximation of Q˚

T
Q1

T SAC’s estimate of πT ’s regularized value function
T̂j Predictive coding model for Tj

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

D COMPUTING RESOURCES

All experiments were run on a desktop machine (Intel i9, 10th generation processor, 64GB RAM)
with a single NVIDIA RTX 3090 GPU. Averages, medians, and standard deviations were computed
from 10 independent repetitions of each experiment.

E WINDY-WALK GRIDWORLD

The windy-walk environment used in Section 4 is a discrete grid-world environment illustrated in
Figure 2. It features 36 discrete states corresponding to positions on the grid, and 4 discrete actions
corresponding to cardinal moves. Six states are unreachable and correspond to walls, defining three
corridors. The transition model is deterministic by default, except in the corridors where the wind
blows. This transition model is parameterized by a scalar parameters α. In the Northern corridor:

• the W action moves West with probability 1,
• the N and S actions leave the position unchanged with probability 1 ´ α and the agent is

pushed West with probability α,
• the E action moves East with probability 1 ´ α and West with probability α.

The middle corridor works the same way, but with probability α3 instead of α. In the Southern
corridor:

• the W action moves West with probability 1,
• the N (resp. S) action move the agent respectively North (resp. South) with probability
1 ´ α6 (unless it runs into a wall in which case the position is unchanged), and West with
probability α6,

• the E action moves East with probability 1 ´ α6 and West with probability α6.

Rewards are -1 for all transitions and the G state is an absorbing goal states yielding zero reward.
The agent always starts in state S. Consequently, windy-walk is a stochastic shortest path. For small
values of α, the optimal policy is to go straight from S to G, but as α increases, the wind blows
harder, and it becomes more interesting to make a detour through the middle then Southern corridors.
The corresponding robust MDP problem features an uncertainty set spanned by 25 discrete values of
α, uniformly distributed in r0, 0.5s.

The instance of IWOCS evaluated in Section 4 uses value iteration as a policy optimization algorithm
and a brute-force grid search as a search method for worst-case transition functions, as summarized
in Algorithm 1. In Algorithm 1 we abusively write Tα the transition model parameterized by α.

In the experiments of Section 4, value iteration is run until a tolerance of 10´3 is met. γ is set to
0.95. Monte-Carlo estimates of V πi

T ps0q use 300 independent rollouts (of length at most 104) from
the starting state.

Figure 2: Windy walk grid-world.

F SOFT ACTOR-CRITIC AND CMA-ES HYPERPARAMETERS

Deep IWOCS uses SAC (Haarnoja et al., 2018) for policy optimization and trains jointly a predictive
coding model to predict the outcome of a state-action pair. Specifically, a single network called

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Algorithm 1: IWOCS with value iteration and brute force worst-case search
Input: T , T0, max number of iterations M , tolerance on robust value ϵ
for i “ 0 to M do

1 Find Q˚
Ti

“ value_iterationpTiq /* Non-robust policy optimization
*/

2 Define Ti “ tTjujPr0,is

3 Define Qi : s, a ÞÑ minjPr0,istQ
˚
Tj

ps, aqu /* Ti-robust value function */

4 Define πipsq “ argmaxapQips, aqq /* Candidate policy */
5 V πi

Ti`1
ps0q “ `8

6 for α P T do /* Identify worst T */
7 Ṽ “ Monte-Carlo_rolloutspπiq

8 if Ṽ ă V πi

Ti`1
ps0q then

9 V πi

Ti`1
ps0q “ Ṽ

10 Ti`1 “ Tα

11 if |V πi

Ti`1
ps0q ´Qips0, πips0q| ď ϵ then

12 return πi, Ti`1, V πi

Ti`1
ps0q /* Early termination condition */

return πM , TM`1, V πM

TM`1
ps0q

“enhanced critic” is trained to predict the regularized value function Q1ps, aq, the unregularized value
function Qps, aq and a prediction of the transition outcome T̂ ps, aq. The critic network’s architecture
is summarized in Figure 3. All activation functions are ReLU except for the output layers (identity
functions). Note that one more layer was necessary to appropriately estimate Q compared to Q1. Our
implementation also uses double critics as per the common practice, to avoid overestimating Q and
Q1 (totally independent networks, no shared layers). Given a replay buffer D, learning Q minimizes
the loss

LQ “ Es,a,s1„D,a1„π

“

Qps, aq ´ rr ` γQ´ps1, a1qs
‰2
,

where Q´ is a target network, updated through Polyak averaging. Similarly, Q1 minimizes

L1
Q “ Es,a,s1„D,a1„π

“

Q1ps, aq ´ rr ` γpQ1´ps1, a1q ´ α log πpa1|s1qqs
‰2
.

Finally, T̂ minimizes
LT̂ “ Es,a,s1„D

”

}T̂ ps, aq ´ s1}1

ı

.

These three objective functions are minimized in turn with three distinct Adam optimizers to account
for possible different orders of magnitude.

The actor network is a standard SAC actor trained with respect to the regularized Q-function Q1.
The network’s architecture is depicted in Figure 4. All activation functions are ReLU, except for
the output values (identify for µ and tanh for log σ as per the common practice). The output action
drawn from the network’s output is run through an additional tanh function following the usual SAC
implementations.

The search for worst case transition functions is performed by using the CMA-ES black-box opti-
mization method (Hansen & Ostermeier, 2001). The implementation used is the reference one of
https://github.com/CyberAgentAILab/cmaes, off-the-shelf.

All hyperparameter values for SAC and CMA-ES are summarized in Table 5. These values are the
same across all experiments.

G ADAPTIVE THRESHOLDING FOR PREDICTIVE CODING

As introduced in Section 5, the SAC-based implementation of IWOCS used in the experiments
exploits a predictive coding mechanism in order to characterize each policy’s training distribution
support and to avoid using a given πTi on samples outside its training distribution. Policy πTi and

15

https://github.com/CyberAgentAILab/cmaes

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

.45

Figure 3: Enhanced critic

.45

Figure 4: Actor

Figure 5: Network architectures

value function QTi are deemed usable in state st along the current trajectory if st was accurately
predicted by the dynamics model T̂ipst´1, at´1q. Specifically, we consider a threshold ρi on the
prediction error and consider QTi and πTi to be viable in st if ℓpT̂ipst´1, at´1q, stq ď ρi, with
ℓpT̂ipst´1, at´1q, stq “ }T̂ipst´1, at´1q ´ st}1. In states where QTi

is non-viable, we arbitrarily set
its value to `8 so that it does not participate inQips, aq “ minjďitQTj

ps, aqu. We noted in the main
text that alternative characterizations of the support distribution were possible, and we do not claim
the present choice outperforms the alternatives. Notably, all choices induce a number of parameters
to tune (here ρi). This leads to a number of design choices that make the implementation somehow
more convoluted than the simple principle of IWOCS. While the main text kept things focused on
the principles of IWOCS, we provide here a full pseudo-code (which is more representative of the
provided code) for the sake of completeness. Appendix F already covered the network structure, the
training losses and the training hyperparameters for SAC and CMA-ES. Hence, the present section
focuses on how to adjust each ρi.

Training of the enhanced critic network does not provide a usable value for ρi and experimental
results demonstrated that accurate characterization of the training distribution’s support required
per-MDP tuning. Since ρi needs to be tuned for πTi

during iteration i (and is kept fixed thereafter),
we couple its search with that of the worst case transition model to permit better overall efficiency.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 5: Hyperparameters of SAC
Hyperparameter Value
Learning rate actor 3e-4
Learning rate critic 1e-3
Adam epsilon 1e-5
Adam pβ1, β2q (0.9, 0.999)
Batch size 256
Memory size 1e6
Gamma 0.99
Polyak update 0.995
Number of steps before training 1e4

CMA-ES generations 6
CMAS-ES population size 100
CMA ES mean 0.5
CMA ES std 0.5

Specifically, at iteration i, we consider a discrete set R of possible values for threshold ρi. For each
value in R, we identify the worst case transition model. Then, we keep the value of ρi that enabled
the best pessimistic value. In a sense, this makes ρi a parameter of the candidate robust policy. This
parameter is single-dimensional and hence its optimization is computationally undemanding. We
emphasize that this tuning mechanism is both very naive and arbitrary. It is naive since it performs
a grid search over discrete values of ρi, where it could have exploited optimization methods. It is
arbitrary in the sense that it picks ρi by keeping as a selection heuristic the overall goal of identifying
robust policies.

Algorithm 2 summarizes the complete IWOCS process with adaptive thresholding for predictive
coding. In the experiments of Section 5, R is a discrete set of 10 values evenly spaced between 0.1
and 1.

H SAMPLE BUDGETS

In order to enable a fair comparison with the results of Tanabe et al. (2022) which we report in Table 1,
we evaluate IWOCS with the same overall sample budget, ie. 4 million samples in 2D uncertainty set
environments and 5 million samples in 3D uncertainty set environments.

In 2D environments, the default DR policy is trained for 1.6 ¨ 106 steps, then 3 IWOCS iterations of
8 ¨ 105 each are run, for a total of 4 ¨ 106 collected samples.

In 3D environments, the default DR policy is trained for 1.8 ¨ 106 steps, then 4 IWOCS iterations of
8 ¨ 105 each are run, for a total of 5 ¨ 106 collected samples.

No fine-tuning of these training durations was performed.

I COMPUTATIONAL OVERHEAD DUE TO IWOCS

In Table 6 we report the average wall-clock time needed for our implementation of SAC to cover
the 4 (resp. 5) million samples allocated for 2D (resp. 3D) environments without IWOCS. Then, we
report the time required by IWOCS to cover the same sample budget. This permits a fair evaluation
of the overhead computational cost of IWOCS, without the bias due to implementation optimizations.

J UNCERTAINTY SETS IN MUJOCO ENVIRONMENTS

The experiments of Section 5 follow the evaluation protocol proposed by Tanabe et al. (2022) and
based on MuJoCo environments (Todorov et al., 2012). These environments are designed with 2D or
3D uncertainty sets. Table 7 lists all environments evaluated, along with their uncertainty sets. The

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Algorithm 2: Deep IWOCS with adaptive threshold
Input: T , T0, maximum number of iterations M , discrete thresholds set R
for i “ 0 to M do

Find QTi , πTi , T̂i “ SACpTiq // Non-robust SAC and pred coding
1 Define Ti “ tTjujPr0,is

2 Define V̂ “ ´8 // candidate worst value
3 for ρ P R do // loop over thresholds

4 Define Q̃Ti
ps, aq “

"

`8 if ℓpT̂ipst´1, at´1q; stq ą ρ for s “ st
QTips, aq otherwise.

5 Define Q̃ips, aq “ minjďitQ̃Tj
ps, aqujPr0,is,@s, a // Ti-robust value

function

6 Define J˚psq “ argminjďi Q̃Tj
ps, πTj

psqq,@s

7 Define π̃ipsq “

"

πdefaultpsq if Q̃ips, aq “ `8,
πTj˚ psq with j˚ P J˚psq otherwise. // Candidate policy

8 Find T̃i`1, V
π̃i

T̃i`1
ps0q “CMA-ESpV π̃i

T ps0qq // Identify worst T

9 if V π̃i

T̃i`1
ps0q ě V̂ then // keep best ρ

10 Set ρj “ ρ, V̂ “ V π̃i

T̃i`1
ps0q

11 Define Ti`1 “ T̃i`1, πi “ π̃i, V πi

Ti`1
ps0q “ V π̃i

T̃i`1
ps0q, Qi “ Q̃i

12 if |V πi

Ti`1
ps0q ´Qips0, πips0q| ď ϵ then

13 return πi, Ti`1, V πi

Ti`1
ps0q // Early termination condition

return πM , TM`1, V πM

TM`1
ps0q

Environment SAC IWOCS
Ant 2 18h 36h
Ant 3 22.5h 40h
Halfcheetah 2 20h 38.5h
Halfcheetah 3 25h 41h
Walker 2 19h 40h
Walker 3 24h 45h
Hopper 2 20h 38h
Hopper 3 25h 47h
HumanoidStandup 2 18h 40h
HumanoidStandup 3 22.5h 48h

Table 6: Average wall-clock time for plain SAC and for IWOCS for the same number of samples.

uncertainty sets column defines the ranges of variation for the parameters within each environment.
The reference parameters column indicates the nominal or default values. The uncertainty parameters
column describes the physical meaning of each parameter.

Table 7: List of environment and parameters for the experiements
Environment Uncertainty set T Reference values Uncertainty parameters

Ant 2 r0.1, 3.0s ˆ r0.01, 3.0s p0.33, 0.04q torso mass; front left leg mass
Ant 3 r0.1, 3.0s ˆ r0.01, 3.0s ˆ r0.01, 3.0s p0.33, 0.04, 0.06q torso mass; front left leg mass; front right leg mass

HalfCheetah 2 r0.1, 4.0s ˆ r0.1, 7.0s p0.4, 6.36q world friction; torso mass
HalfCheetah 3 r0.1, 4.0s ˆ r0.1, 7.0s ˆ r0.1, 3.0s p0.4, 6.36, 1.53q world friction; torso mass; back thigh mass

Hopper 2 r0.1, 3.0s ˆ r0.1, 3.0s p1.00, 3.53q world friction; torso mass
Hopper 3 r0.1, 3.0s ˆ r0.1, 3.0s ˆ r0.1, 4.0s p1.00, 3.53, 3.93q world friction; torso mass; thigh mass

HumanoidStandup 2 r0.1, 16.0s ˆ r0.1, 8.0s p8.32, 1.77q torso mass; right foot mass
HumanoidStandup 3 r0.1, 16.0s ˆ r0.1, 5.0s ˆ r0.1, 8.0s p8.32, 1.77, 4.53q torso mass; right foot mass; left thigh mass
InvertedPendulum 2 r1.0, 31.0s ˆ r1.0, 11.0s p4.90, 9.42q pole mass; cart mass

Walker 2 r0.1, 4.0s ˆ r0.1, 5.0s p0.7, 3.53q world friction; torso mass
Walker 3 r0.1, 4.0s ˆ r0.1, 5.0s ˆ r0.1, 6.0s p0.7, 3.53, 3.93q world friction; torso mass; thigh mass

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 8: Avg. ˘ std. error of worst-case performance over 10 seeds for each method
Environment M2TD3 SoftM2TD3 M3DDPG RARL DR (TD3) IWOCS* IWOCS

Ant 2 4.13 ± 0.11 3.92 ± 0.14 -0.25 ± 0.13 -1.77 ± 0.09 1.64 ± 0.13 2.27 ± 0.91 0.90 ± 1.13
Ant 3 0.10 ± 0.10 0.07 ± 0.20 -1.38 ± 0.22 -2.38 ± 0.07 -0.32 ± 0.03 -0.69 ± 0.26 -0.52 ± 0.74
HalfCheetah 2 2.61 ± 0.16 2.82 ± 0.16 -0.58 ± 0.06 -0.70 ± 0.05 2.12 ± 0.13 3.02 ± 0.07 1.81 ± 0.87
HalfCheetah 3 0.93 ± 0.21 1.53 ± 0.23 -0.66 ± 0.08 -0.81 ± 0.07 1.09 ± 0.06 0.33 ± 0.07 0.25 ± 0.23
Hopper 2 5.33 ± 0.28 5.79 ± 0.29 2.58 ± 0.29 3.34 ± 0.89 4.68 ± 0.15 33.58 ± 0.03 32.68 ± 0.54
Hopper 3 2.84 ± 0.25 1.98 ± 0.22 0.73 ± 0.11 1.64 ± 0.46 2.10 ± 0.35 13.47 ± 0.45 12.66 ± 0.42
HumanoidStandup 2 6.50 ± 0.70 7.94 ± 0.90 6.37 ± 0.72 5.78 ± 0.73 7.31 ± 0.78 6.62 ± 0.71 6.41 ± 1.46
HumanoidStandup 3 6.20 ± 0.64 5.99 ± 0.37 6.01 ± 0.38 5.54 ± 0.76 5.41 ± 0.34 7.19 ± 0.46 6.86 ± 1.19
InvertedPendulum 2 3.56 ± 1.32 1.36 ± 0.30 0.02 ± 0.00 0.02 ± 0.00 0.57 ± 0.02 10 ± 00 10 ± 00
Walker 2 3.14 ± 0.39 2.64 ± 0.43 0.39 ± 0.11 0.06 ± 0.04 2.31 ± 0.50 4.10 ± 0.07 3.80 ± 0.28
Walker 3 1.94 ± 0.40 2.00 ± 0.35 0.28 ± 0.09 0.00 ± 0.02 1.32 ± 0.34 4.29 ± 0.18 3.89 ± 0.89

Table 9: Avg. ˘ std. deviation of average performance over 10 seeds for each method
Environment M2TD3 SoftM2TD3 M3DDPG RARL (DDPG) DR (TD3) IWOCS* IWOCS

Ant 2 5.44 ± 0.05 5.56 ± 0.01 1.86 ± 0.38 -1.00 ± 0.06 6.32 ± 0.09 5.54 ± 0.06 5.53 ± 0.06
Ant 3 2.66 ± 0.22 2.98 ± 0.23 -0.33 ± 0.22 -1.31 ± 0.09 3.62 ± 0.11 3.04 ± 0.29 2.63 ± 1.00
HalfCheetah 2 4.35 ± 0.05 4.52 ± 0.07 0.77 ± 0.12 -0.70 ± 0.05 5.79 ± 0.15 6.28 ± 0.04 6.26 ± 0.07
HalfCheetah 3 3.79 ± 0.09 4.02 ± 0.04 0.58 ± 0.18 -0.81 ± 0.07 5.54 ± 0.16 6.24 ± 0.03 6.19 ± 0.16
Hopper 2 2.51 ± 0.07 2.26 ± 0.12 1.15 ± 0.11 3.34 ± 0.89 1.89 ± 0.08 3.74 ± 0.00 3.73 ± 0.07
Hopper 3 0.85 ± 0.07 0.79 ± 0.04 0.49 ± 0.11 1.64 ± 0.46 1.50 ± 0.07 3.35 ± 0.09 3.34 ± 0.07
HumanoidStandup 2 0.97 ± 0.04 1.07 ± 0.05 0.92 ± 0.04 0.85 ± 0.08 1.06 ± 0.04 1.35 ± 0.11 1.33 ± 0.24
HumanoidStandup 3 1.09 ± 0.06 1.04 ± 0.03 1.01 ± 0.04 0.87 ± 0.07 1.04 ± 0.07 1.63 ± 0.02 1.63 ± 0.02
InvertedPendulum 2 6.13 ± 1.42 6.26 ± 0.95 1.76 ± 0.51 3.07 ± 0.66 9.18 ± 0.07 10 ± 00 10 ± 00
Walker 2 4.72 ± 0.12 4.37 ± 0.32 1.63 ± 0.22 0.26 ± 0.05 4.54 ± 0.31 4.99 ± 0.01 5.00 ± 0.02
Walker 3 4.27 ± 0.21 4.21 ± 0.30 1.65 ± 0.15 0.21 ± 0.07 4.48 ± 0.16 5.84 ± 0.08 5.86 ± 0.08

K NON-NORMALIZED RESULTS

Table 8 reports the non-normalized worst case scores, averaged across 10 independent runs for each
benchmark. Table 9 reports the average score obtained by each agent across a grid of environments,
also averaged across 10 independent runs for each benchmark.

L SOFT ACTOR CRITIC BASELINE

We conducted additional experiments using SAC to train on the reference transition kernel across all
environments. These experiments aimed to confirm the performance similarities with TD3 and to
emphasize the performance gap with IWOCS. The results are summarized in Table L.

Overall, SAC performs poorly in terms of worst-case score, reinforcing our earlier observation of its
similarity to TD3. Specifically, SAC exhibits variability across different environments, sometimes
outperforming TD3 and sometimes not. However, the scores generally remain within the same order
of magnitude. For instance, in the Hopper environment, SAC achieves scores of 14 and 5.8 on Hopper
2 and Hopper 3, respectively, which surpass previous state-of-the-art methods. Despite this, IWOCS
still shows a significant improvement, with final scores of 32.68 and 12.66, respectively. These results
highlight the distinct advantages of our approach in achieving robust performance.

M WORST-CASE PATHS

Table 3 illustrated the path followed by the successive identified worst-case transition functions Ti in
the 2D uncertainty set of the Humanoid Standup 2 environment, across 10 independent optimization
runs. For the sake of completeness, we provide here the same results for all environments, which
permit drawing similar conclusions. Tables 11 and 12 start by recalling the physical meaning of each
transition function’s parameters. Then, Tables 13 to 21 follow the same logic as Table 3 and report
the evolution of worst-case parameters and values on all other environments than Humanoid Standup
2.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Environment Avg ± Std
Ant 2 -1.0 ± 0.4
Ant 3 -2.1 ± 0.1
Halfcheetah 2 -0.2 ± 0.002
Halfcheetah 3 -0.26 ± 0.04
Hopper 2 14 ± 0.99
Hopper 3 5.8 ± 0.4
Humanoid 2 3.8 ± 0.1
Humanoid 3 3.6 ± 0.27
Walker 2 0.8 ± 0.9
Walker 3 0.5 ± 0.7

Table 10: Avg ˘ std. error of worst-case performance over 10 for SAC

Table 11: Physical meaning of transition function parameters in 2D environments
Environment ψ1 ψ2

Ant 2 torso mass front left leg mass
Halfcheetah 2 world friction torso mass
Hopper 2 world friction torso mass
HumanoidStandup 2 right foot mass torsomass
Walker 2 world friction torso mass

N HOW MANY VALID POLICIES IN s?

The Deep-IWOCS method proposed in Section 5 introduced indicator functions constraining the use
of a given policy to a subset of states. Depending on the environment and uncertainty parameters, we
expect some policies to remain within the same set of explored states, while others will cover a very
different state distribution. To quantify this aspect, we ran an experiment where the IWOCS final
policy is run on the Hopper 3 benchmark, across a grid of transition functions. For each encountered
state, we count how many policies are valid. Figure 6 reports the corresponding histograms (note the
log-scale on the y-axis).

Figure 6: Counting how many policies are valid in each state, in Hopper 3

O ON THE VARIANCE OF THE DOMAIN RANDOMIZATION POLICY

Domain randomization on the full uncertainty set yields policies with a very large span of worst-case
scores from one random seed to the other (Table 22). In other words, DR provides policies with
a very large variance in worst-case performance. In turn, running a separate DR training for each

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 12: Physical meaning of transition function parameters in 3D environments
Environment ψ1 ψ2 ψ3

Ant 3 torso mass front left leg mass front right leg mass
Halfcheetah 3 world friction torso mass back thigh mass
Hopper 3 world friction torso mass thigh mass
HumanoidStandup 3 torso mass left thigh mass right foot mass
Walker 3 world friction torso mass thigh mass

Table 13: Ant 2, worst parameters search for each iteration over 10 seeds.
ψ0
1 ψ1

1 Jπ0

T1
Jπ1

T1
ψ0
2 ψ1

2 Jπ1

T2
Jπ2

T2
ψ0
3 ψ1

3 Jπ2

T3
Jπ3

T3
ψ0
4 ψ1

4 Jπ3

T4

0 0.68 0.608 0.5 2.87 0.1 0.01 2.5 2.44 0.1 0.01 2.5 - - - -
1 0.68 0.608 0.5 3.58 0.1 0.309 2.5 2.8 0.1 0.01 2.5 - - - -
2 0.68 0.608 0.5 0.06 0.1 0.01 2.5 2.32 0.1 0.01 2.5 - - - -
3 0.68 0.608 0.5 3.54 0.1 0.01 2.67 2.17 0.1 0.01 2.67 - - - -
4 0.68 0.608 0.5 5.13 0.1 0.01 2.47 0.69 0.1 0.01 2.47 - - - -
5 0.68 0.608 0.5 1.77 0.1 0.01 3.56 0.51 0.1 0.01 3.56 - - - -
6 0.68 0.608 0.5 4.81 0.1 2.103 0.83 2.1 0.1 2.103 0.83 - - - -
7 0.68 0.608 0.5 0.4 0.1 2.402 1.81 1.91 0.1 0.01 2.55 1.3 0.39 0.01 2.55
8 0.68 0.608 0.5 0.03 0.1 0.01 2.5 3.1 0.1 0.01 2.5 - - - -
9 0.68 0.608 0.5 4.88 0.1 0.01 2.51 2.3 0.1 0.01 2.51 - - - -

seed of IWOCS induces a large variance on scores across seeds from the first iteration. IWOCS still
converges, but this variance is carried through the iterations. For the sake of completeness, Table 23
report the scores of IWOCS and IWOCS* with a varying starting policy which is issued from the
(very noisy) DR optimization process. Interestingly, even with these very noisy policies, IWOCS still
outperforms other algorithms on average across environments. However the variance of obtained
scores is quite high. The columns of Table 23 should be compared with those of Table 1 in the main
text of the paper, showing that variance in IWOCS’ performance with variables DR initial policy is
mostly due to the large variance in DR’s initial policies.

P IMPACT STATEMENT

This paper presents work whose goal is to advance the field of reinforcement learning. It tack-
les generic mathematical and computational challenges, which might have potential societal and
technological consequences, none of which we feel must be specifically highlighted here.

Q LIMITATIONS

The IWOCS algorithm assumes that all transition kernels in the uncertainty set T are known during
training. In real-world applications, obtaining such detailed information is not always feasible. This

Table 14: Halfcheetah 2, worst parameters search for each iteration over 10 seeds.
ψ0
1 ψ1

1 Jπ0

T1
Jπ1

T1
ψ0
2 ψ1

2 Jπ1

T2
Jπ2

T2
ψ0
3 ψ1

3 Jπ2

T3
Jπ3

T3
ψ0
4 ψ1

4 Jπ3

T4

0 3.61 0.79 1.57 5.28 3.61 0.1 3.02 7.23 3.61 0.1 3.02 - - - -
1 3.61 0.79 1.57 6.93 3.61 0.1 3.02 7.23 3.61 0.1 3.02 - - - -
2 3.61 0.79 1.57 7.82 3.61 0.1 3.01 6.32 3.61 0.1 3.01 - - - -
3 3.61 0.79 1.57 5.70 3.61 0.1 3.09 6.40 3.61 0.1 3.09 - - - -
4 3.61 0.79 1.57 7.83 3.61 0.1 3.02 7.26 3.61 0.1 3.02 - - - -
5 3.61 0.79 1.57 4.29 3.61 0.1 3.02 7.04 3.61 0.1 3.02 - - - -
6 3.61 0.79 1.57 4.80 3.61 0.1 2.98 7.62 3.61 0.1 2.98 - - - -
7 3.61 0.79 1.57 7.70 3.61 0.1 3.03 8.56 3.61 0.1 3.03 - - - -
8 3.61 0.79 1.57 5.17 3.61 0.1 3.02 6.28 3.61 0.1 3.02 - - - -
9 3.61 0.79 1.57 4.89 3.61 0.1 3.03 6.79 3.61 0.1 3.03 - - - -

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 15: Hopper 2, worst parameters search for each iteration over 10 seeds.
ψ0
1 ψ1

1 Jπ0

T1
Jπ1

T1
ψ0
2 ψ1

2 Jπ1

T2
Jπ2

T2
ψ0
3 ψ1

3 Jπ2

T3
Jπ3

T3
ψ0
4 ψ1

4 Jπ3

T4

0 2.13 0.1 3.35 2.43 2.13 0.1 3.35 - - - - - - - -
1 2.13 0.1 3.35 1.07 2.13 0.1 3.35 - - - - - - - -
2 2.13 0.1 3.35 3.51 2.13 0.1 3.35 - - - - - - - -
3 2.13 0.1 3.35 1.35 2.13 0.1 3.35 - - - - - - - -
4 2.13 0.1 3.35 3.32 2.13 0.1 3.35 - - - - - - - -
5 2.13 0.1 3.35 3.53 2.13 0.1 3.35 - - - - - - - -
6 2.13 0.1 3.35 1.20 2.13 0.1 3.35 - - - - - - - -
7 2.13 0.1 3.35 3.33 2.13 0.1 3.35 - - - - - - - -
8 2.13 0.1 3.35 3.48 2.13 0.1 3.35 - - - - - - - -
9 2.13 0.1 3.35 1.90 2.13 0.1 3.35 - - - - - - - -

Table 16: Walker 2, worst parameters search for each iteration over 10 seeds.
ψ0
1 ψ1

1 Jπ0

T1
Jπ1

T1
ψ0
2 ψ1

2 Jπ1

T2
Jπ2

T2
ψ0
3 ψ1

3 Jπ2

T3
Jπ3

T3
ψ0
4 ψ1

4 Jπ3

T4

0 3.22 0.1 3.77 3.27 3.22 0.1 4.1 1.57 3.22 0.1 4.1 - - - -
1 3.22 0.1 3.77 4.92 3.22 0.1 4.1 6.6 3.22 0.1 4.1 - - - -
2 3.22 0.1 3.77 3.17 3.22 0.1 4.14 5.47 3.22 0.1 4.14 - - - -
3 3.22 0.1 3.77 5.91 3.22 0.1 4.13 5.09 3.22 0.1 4.13 - - - -
4 3.22 0.1 3.77 6.72 3.22 0.1 4.11 5.4 3.22 0.1 4.11 - - - -
5 3.22 0.1 3.77 3.93 3.22 0.1 4.1 5.87 3.22 0.1 4.1 - - - -
6 3.22 0.1 3.77 4.67 3.22 0.1 3.8 6.25 3.22 0.59 3.81 3.22 0.59 3.92 5.4
7 3.22 0.1 3.77 6.54 3.22 1.08 4.07 3.33 3.22 0.1 4.07 - - - -
8 3.22 0.1 3.77 4.88 3.22 0.1 4.15 4.37 3.22 0.1 4.15 - - - -
9 3.22 0.1 3.77 3.99 3.22 0.1 4.14 3.28 3.22 0.1 4.14 - - -

Table 17: Ant 3, worst parameters search for each iteration over 10 seeds.
ψ0
1 ψ1

1 ψ3
1 Jπ0

T1
Jπ1

T1
ψ0
2 ψ1

2 ψ3
2 Jπ1

T2
Jπ2

T2
ψ0
3 ψ1

3 ψ3
3 Jπ2

T3
Jπ3

T3
ψ0
4 ψ1

4 ψ3
4 Jπ3

T4

0 0.68 0.01 0.309 -1.21 3.59 0.68 0.01 0.309 -1.21 4.59 - - - - - - - - -
1 0.68 0.01 0.309 -1.21 0.54 1.26 1.505 2.701 -1.08 2.54 1.26 1.804 2.402 -0.9 2.3 1.26 1.804 2.402 -0.9
2 0.68 0.01 0.309 -1.21 5.92 2.13 0.309 1.804 -0.44 3.92 2.13 0.309 1.804 -0.44 - - - - -
3 0.68 0.01 0.309 -1.21 -1.35 2.13 0.309 1.804 -0.44 1.23 2.13 0.309 1.804 -0.44 - - - - -
4 0.68 0.01 0.309 -1.21 2.58 0.68 0.608 2.701 -1.02 2.71 0.1 0.309 2.402 -0.75 2.4 0.1 0.309 2.402 -0.75
5 0.68 0.01 0.309 -1.21 3.07 2.42 0.608 2.103 -0.78 5.29 2.42 0.608 2.103 -0.78 - - - - -
6 0.68 0.01 0.309 -1.21 2.07 2.42 1.505 0.01 -0.92 3.33 2.71 0.309 2.103 -0.63 5.42 2.71 0.309 2.103 -0.63
7 0.68 0.01 0.309 -1.21 1.94 0.39 1.804 0.608 -1.02 2.21 0.1 1.505 2.103 -0.84 6.08 0.1 1.505 2.103 -0.84
8 0.68 0.01 0.309 -1.21 2.33 2.13 0.309 1.804 -0.44 4.21 2.13 0.309 1.804 -0.43 - - - - -
9 0.68 0.01 0.309 -1.21 1.44 2.13 0.309 1.804 -0.44 2.1 2.13 0.309 1.804 -0.45 - - - - -

Table 18: Halfcheetah , worst parameters search for each iteration over 10 seeds.
ψ0
1 ψ1

1 ψ3
1 Jπ0

T1
Jπ1

T1
ψ0
2 ψ1

2 ψ3
2 Jπ1

T2
Jπ2

T2
ψ0
3 ψ1

3 ψ3
3 Jπ2

T3
Jπ3

T3
ψ0
4 ψ1

4 ψ3
4 Jπ3

T4

0 2.44 5.62 0.39 0.28 10.11 2.44 5.62 0.39 0.28 - - - - - - - - - -
1 2.44 5.62 0.39 0.28 4.31 2.83 2.86 0.1 0.37 8.79 2.83 2.86 0.1 0.37 - - - - -
2 2.44 5.62 0.39 0.28 8.74 2.44 5.62 0.39 0.28 - - - - - - - - - -
3 2.44 5.62 0.39 0.28 9.78 2.44 5.62 0.39 0.28 - - - - - - - - - -
4 2.44 5.62 0.39 0.28 10.30 2.44 5.62 0.39 0.28 - - - - - - - - - -
5 2.44 5.62 0.39 0.28 8.9 2.83 6.31 0.39 0.35 8.0 2.83 6.31 0.39 0.35 - - - - -
6 2.44 5.62 0.39 0.28 9.8 2.83 6.31 0.1 0.30 8.37 2.83 6.31 0.01 0.31 8.22 2.83 6.31 0.1 0.34
7 2.44 5.62 0.39 0.28 8.39 3.22 5.62 0.1 0.49 7.04 3.22 5.62 0.1 0.49 - - - - -
8 2.44 5.62 0.39 0.28 11.60 2.44 5.62 0.39 0.28 - - - - - - - - - -
9 2.44 5.62 0.39 0.28 9.15 2.44 5.62 0.39 0.28 - - - - - - - - - -

Table 19: Hopper 3, worst parameters search for each iteration over 10 seeds.
ψ0
1 ψ1

1 ψ3
1 Jπ0

T1
Jπ1

T1
ψ0
2 ψ1

2 ψ3
2 Jπ1

T2
Jπ2

T2
ψ0
3 ψ1

3 ψ3
3 Jπ2

T3
Jπ3

T3
ψ0
4 ψ1

4 ψ3
4 Jπ3

T4

0 2.71 0.1 0.49 1.23 3.41 2.71 0.1 0.49 1.23 3.73 - - - - - - - - -
1 2.71 0.1 0.49 1.23 3.81 2.71 0.39 0.1 1.31 3.51 2.71 0.39 0.1 1.35 2.81 2.71 0.39 0.1 1.35
2 2.71 0.1 0.49 1.23 2.29 2.71 0.39 0.1 1.31 3.24 2.71 0.39 0.1 1.31 - - - - -
3 2.71 0.1 0.49 1.23 3.16 2.71 0.39 0.1 1.30 2.21 2.71 0.39 0.1 1.32 3.29 2.71 0.39 0.1 1.34
4 2.71 0.1 0.49 1.23 3.88 2.71 0.39 0.1 1.32 3.8 2.71 0.39 0.1 1.326 2.203 2.71 0.39 0.1 1.326
5 2.71 0.1 0.49 1.23 3.65 2.42 0.1 0.88 1.362 3.89 2.42 0.1 0.88 1.364 3.505 2.71 0.1 0.49 1.46
6 2.71 0.1 0.49 1.23 3.39 2.71 0.39 0.1 1.32 3.47 2.71 0.39 0.1 1.32 - - - - -
7 2.71 0.1 0.49 1.23 3.11 2.71 0.39 0.1 1.31 3.65 2.71 0.39 0.1 1.31 - - - - -
8 2.71 0.1 0.49 1.23 3.37 2.71 0.1 0.88 1.32 3.76 2.71 0.39 0.1 1.33 3.75 2.71 0.39 0.1 1.33
9 2.71 0.1 0.49 1.23 3.12 2.71 0.39 0.1 1.34 3.24 2.71 0.39 0.1 1.344 3.81 2.71 0.39 0.1 1.35

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 20: Humanoid 3, worst parameters search for each iteration over 10 seeds.
ψ0
1 ψ1

1 ψ3
1 Jπ0

T1
Jπ1

T1
ψ0
2 ψ1

2 ψ3
2 Jπ1

T2
Jπ2

T2
ψ0
3 ψ1

3 ψ3
3 Jπ2

T3
Jπ3

T3
ψ0
4 ψ1

4 ψ3
4 Jπ3

T4

0 14.41 0.59 0.1 6.88 15.37 14.41 0.59 0.1 6.88 - - - - - - - - - -
1 14.41 0.59 0.1 6.88 8.19 14.41 0.59 0.1 6.88 - - - - - - - - - -
2 14.41 0.59 0.1 6.88 14.05 12.82 1.57 0.1 8.41 12.02 12.82 1.57 0.1 8.41 - - - - -
3 14.41 0.59 0.1 6.88 14.18 14.41 0.59 0.1 7.41 8.23 14.41 0.59 0.1 7.41 - - - - -
4 14.41 0.59 0.1 6.88 13.42 14.41 0.59 0.1 6.88 - - - - - - - - - -
5 14.41 0.59 0.1 6.88 10.43 14.41 0.59 0.1 6.88 - - - - - - - - - -
6 14.41 0.59 0.1 6.88 11.38 14.41 0.59 0.1 7.10 13.39 14.41 0.59 0.1 7.10 - - - - -
7 14.41 0.59 0.1 6.88 12.78 14.41 0.59 0.1 7.10 11.86 14.41 0.59 0.1 7.10 - - - - -
8 14.41 0.59 0.1 6.88 13.20 14.41 2.06 0.1 7.171 9.27 14.41 2.06 0.1 7.171 - - - - -
9 14.41 0.59 0.1 6.88 15.43 14.41 2.06 0.1 7.175 14.37 14.41 2.06 0.1 7.175 - - - - -

Table 21: Walker 3, worst parameters search for each iteration over 10 seeds.
ψ0
1 ψ1

1 ψ3
1 Jπ0

T1
Jπ1

T1
ψ0
2 ψ1

2 ψ3
2 Jπ1

T2
Jπ2

T2
ψ0
3 ψ1

3 ψ3
3 Jπ2

T3
Jπ3

T3
ψ0
4 ψ1

4 ψ3
4 Jπ3

T4

0 3.22 4.02 0.1 3.92 4.84 3.22 4.02 0.1 3.92 - - - - - - - - - -
1 3.22 4.02 0.1 3.92 5.14 2.05 3.53 0.69 4.28 4.44 2.05 3.53 0.69 4.28 - - - - -
2 3.22 4.02 0.1 3.92 5.36 3.22 4.02 0.1 3.92 - - - - - - - - - -
3 3.22 4.02 0.1 3.92 4.60 3.22 2.55 0.1 4.21 4.75 3.22 2.55 0.1 4.21 - - - - -
4 3.22 4.02 0.1 3.92 5.24 2.05 3.53 0.69 4.287 4.49 2.05 3.53 0.69 4.287 - - - - -
5 3.22 4.02 0.1 3.92 3.16 2.05 3.53 0.69 4.28 3.3 2.05 3.53 0.69 4.28 - - - - -
6 3.22 4.02 0.1 3.92 4.87 2.44 4.02 0.1 4.06 4.21 3.22 2.55 0.1 4.61 4.42 3.22 2.55 0.1 4.61
7 3.22 4.02 0.1 3.92 4.70 3.61 0.1 0.1 4.45 5.92 3.61 0.1 0.1 4.45 - - - - -
8 3.22 4.02 0.1 3.92 5.91 3.61 0.1 0.1 4.19 5.97 3.61 0.1 0.1 4.19 - - - - -
9 3.22 4.02 0.1 3.92 3.51 3.61 0.1 0.1 4.29 4.23 3.61 0.1 0.1 4.29 - - - - -

reliance on precise uncertainty set knowledge limits the practical usage of our algorithms in some
cases.

Another limitation of the Deep IWOCS algorithm is the need for hand-tuning or grid-search for the
threshold ρ. A promising approach is using a variance network to detect non-valid value functions
automatically. We plan to work on this for future developments.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Environment Jπ0

T1

Ant 2 ´0.43 ˘ 0.96
Ant 3 ´0.32 ˘ 0.50
HalfCheetah 2 0.66 ˘ 0.30
HalfCheetah 3 0.41 ˘ 0.11
Hopper 2 1.78 ˘ 2.16
Hopper 3 2.33 ˘ 1.44
HumanoidStandup 2 0.51 ˘ 0.50
HumanoidStandup 3 0.45 ˘ 0.89
InvertedPendulum 2 2.32 ˘ 0.42
Walker 2 1.06 ˘ 0.29
Walker 3 1.74 ˘ 0.40
Aggregated 0.96 ˘ 0.72

Table 22: Worst-case score distribution of π0 trained with DR on each environment.

Table 23: Avg. of normalized worst-case performance over 10 seed for IWOCS* and IWOCS without
fixed initial policy

Environment IWOCS* without fixed π0 IWOCS without fixed π0
Ant 2 0.12 ˘ 0.81 ´0.27 ˘ 0.44
Ant 3 0.19 ˘ 0.52 0.43 ˘ 0.68
HalfCheetah 2 0.72 ˘ 0.31 0.75 ˘ 0.28
HalfCheetah 3 0.51 ˘ 0.18 0.56 ˘ 0.15
Hopper 2 5.41 ˘ 1.15 6.34 ˘ 0.11
Hopper 3 4.34 ˘ 0.32 4.64 ˘ 0.16
HumanoidStandup 2 0.69 ˘ 0.30 0.98 ˘ 0.25
HumanoidStandup 3 0.86 ˘ 0.72 1.12 ˘ 0.21
InvertedPendulum 2 2.82 ˘ 0.00 2.82 ˘ 0.00
Walker 2 1.14 ˘ 0.30 1.23 ˘ 0.10
Walker 3 1.90 ˘ 0.42 2.10 ˘ 0.50

Aggregated 1.7 ˘ 0.46 1.88 ˘ 0.26

24

	Introduction
	Problem statement
	Related work
	Incremental Worst-case Search
	Deep IWOCS
	Method
	Empirical evaluation

	Conclusion
	Appendix
	Key results from the literature
	Notations
	Computing resources
	Windy-walk gridworld
	Soft Actor-Critic and CMA-ES hyperparameters
	Adaptive thresholding for predictive coding
	Sample budgets
	Computational overhead due to IWOCS
	Uncertainty sets in MuJoCo environments
	Non-normalized results
	Soft Actor Critic baseline
	Worst-case paths
	How many valid policies in s?
	On the variance of the domain randomization policy
	Impact statement
	Limitations

