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Abstractive summarization of scientific papers has always been a research focus, yet existing methods face two
main challenges. First, most summarization models rely on Encoder-Decoder architectures that treat papers as
sequences of words, thus fail to fully capture the structured information inherent in scientific papers. Second,
existing research often use keyword mapping or feature engineering to identify the structural information, but
these methods struggle with the structural flexibility of scientific papers and lack robustness across different
disciplines. To address these challenges, we propose a two-stage abstractive summarization framework that le-
verages automatic recognition of structural functions within scientific papers. In the first stage, we standardize
chapter titles from numerous scientific papers and construct a large-scale dataset for structural function recog-
nition. A classifier is then trained to automatically identify the key structural components (e.g., Background,
Methods, Results, Discussion), which provides a foundation for generating more balanced summaries. In the
second stage, we employ Longformer to capture rich contextual relationships across sections and generating
context-aware summaries. Experiments conducted on two domain-specific scientific paper summarization
datasets demonstrate that our method outperforms advanced baselines, and generates more comprehensive

summaries. The code and dataset can be accessed at https://github.com/tongbao96/code-for-SFR-AS.

1. Introduction

With the rapid growth of scientific research and the academic com-
munity, numerous scientific papers are published daily. This notable
increase in publications has led to information overload and requiring
scholars to spend considerable time in reading and comprehending a
large volume of articles. The goal of automatic summarization is to
employ algorithms to extract key information and reorganize it into
shorter, concise summaries (Fl-Kassas, Salama, Rafea, & Mohamed,
2021). Automatic summarization holds significant research value in
fields such as information retrieval (Spina, Trippas, Cavedon, & Sand-
erson, 2017), question and answer system (Yulianti, Chen, Scholer,
Croft, & Sanderson, 2018), and content review (Hu, Chen, & Chou,
2017). Existing automatic summarization methods are broadly divided
into two categories: extractive methods and abstractive methods.
Extractive methods generate summaries by selecting sentences directly
from the original document, resulting in summaries that are more
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accurate and semantically consistent but may lack coherence. In
contrast, abstractive methods generate summaries based on an under-
standing of the text, rather than extracting sentences directly from the
original document. Therefore, summaries produced by this approach are
typically more coherent and better aligned with human reading pref-
erences (El-Kassas et al., 2021; Ghadimi & Beigy, 2022). In this paper,
we focus on abstractive summarization.

Despite sequence-to-sequence (seq2seq) models have achieved
impressive results on relatively short documents such as news and user
comments (Nallapati, Zhou, dos Santos, Gulcehre, & Xiang, 2016), sci-
entific articles differ from these in several key aspects. First, the average
length of scientific papers exceeds 3,000 words, while news articles
typically average around 700 words (Gidiotis & Tsoumakas, 2020). This
increased length raises computational complexity and introduces chal-
lenges in handling long-distance dependencies for generative models.
Secondly, scientific papers follow a structured format known as IMRaD
(Introduction, Methods, Results, and Discussion) (Andrade, 2011). Each
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section serves a specific purpose, and the summarization process need
consider the hierarchical structure and internal connections between
these sections (Fig. 1). Lastly, news article summaries typically cover
key information into about 100 words, a scientific paper summary needs
to comprehensively summarize content from multiple sections, often
exceeding 200 words and sometimes reaching up to 400 words (Oh,
Nam, & Zhu, 2023). These differences pose challenges that current
methods unsuitable for direct application to automatic summarization
of scientific papers.
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Existing methods to improving scientific paper summarization pri-
marily focus on two research directions. The first direction aims to
extracting key information to reduce the length of papers. Techniques
such as topic models or heterogeneous trees are commonly used by re-
searchers to selectively extract important words or sentence from the
text. For example, Zhu, Feng, Feng, Wu, and Qin (2023) employed a
heterogeneous tree structure and triplet position to perform extractive
summarization of scientific papers. Additionally, Han, Feng, and Qi
(2024) introduced TopicSum, a framework that uses a heterogeneous
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e TRUSTY study evaluated the efficacy of second-line trifluridine/tipiracil (FTD/TPI) plus bevacizumab in
metastatic colorectal cancer (mCRC).

his exploratory biomarker analysis of TRUSTY investigated the relationship between baseline plasma concentrations
of angiogenesis-related factors and cell-free DNA (cfDNA), and the efficacy of FTD/TPI plus bevacizumab in patients with mCRC.
The disease control rate (DCR) and progression-free survival (PFS) were compared between baseline
plasma samples of patients with high and low plasma concentrations (based on the median value) of angiogenesis-related

Correlations between cfDNA conc s and PFS were |

useline characteristics (n = 65) were as follows: male/female, 35/30; median age, 64 (range 25-84) years; and RAS status
wild-type/mutant, 29/36. Patients in the hepatocyte growth factor (HGF)-low and interleukin (IL)-8-low groups had a significantly
higher DCR (risk ratio [95% confidence intervals {CIs}]) than patients in the HGF-high (1.83 [1.12-2.98]) and IL-8-high (1.70
[1.02-2.82]) groups. PFS (hazard ratio {HR} [95% CI]) was significantly longer in patients in the HGF-low (0.33 [0.14-0.79]),
IL-8-low (0.31 [0.14-0.70]), IL-6-low (0.19 [0.07-0.50]), osteopontin-low (0.39 [0.17-0.88]), thrombospondin-2-low (0.42
[0.18-0.98]), and tissue inhibitor of metalloproteinase-1-low (0.26 [0.10-0.67]) groups versus those having corresponding high
plasma cc of these angic lated factors. No correlation was observed between cfDNA concentration and PFS.
Conclusion Low baseline plasma concentrations of HGF and IL-8 may predict better DCR and PFS in patients with mCRC
receiving FTD/TPI plus bevacizumab, however further studies are warranted.

Clinical Trial Registration Number jRCTs031180122.
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Discussion:

(b) Structural information within the flat abstract

Fig. 1. Examples of structural information in both structured and flat abstracts of scientific papers. The source article are from the paper (Sunakawa et al., 2024) and

(Fu, Li, Liu, Pirkkalainen, & Salo, 2020).
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graph neural network to leverage topic information as document-level
features for sentence selection. Despite their effort, these methods
often overlook semantic and logical consistency between the generated
summaries and the original text, leading to incomplete and shallow
summaries. Another research direction focuses on improve the effi-
ciency of summarizing long texts. Models such as Longformer (Beltagy
et al., 2020) and BigBird (Zaheer et al., 2020) have been proposed for
this purpose. However, the semantically connected nature of sections in
scientific papers presents challenges for directly summarizing them into
coherent abstracts. Some extractive summarization studies adopt
divide-and-conquer approaches, extracting key sentences from each
section and then connecting them into a summary (Gidiotis & Tsou-
makas, 2020; Miao, Zhang, Bai, & Cai, 2019). However, these studies
only use rules-based methods to locate the first-level titles of the sec-
tions, ignoring the fact that scientific papers do not follow a uniform
structure, in other words, the titles provided by authors exhibit flexi-
bility and diversity, which is particularly evident across different fields.
For example, in the computer science field, when authors propose a new
model, they tend to name the chapter according to their specific model
(Zhang, Zhang, & Wang, 2024). In such cases, it is difficult to accurately
locate titles and corresponding content using rule-based methods. This
limitation may lead to decline quality of the generated summaries, as the
system fail to receive the necessary section content and the function
information. Additionally, these studies treat the extraction of structure
information and summary generation as separate tasks, requiring a
re-extraction of structural information for different document structures
or summarization contexts, thus overlook the potential benefits of
integrating these two processes.

To address this gap, we propose a two-stage abstractive summari-
zation framework for scientific articles based on structural function
recognition. First, we collected original articles from arXiv and PubMed,
and standardized the section headings according to the IMRaD format to
construct a large-scale dataset for structural function recognition. Sec-
ond, a classifier was developed to identify structural function categories
within the chapters, where the beginning and ending portions of chap-
ters, which contain the highest information density, were selected to
improve classification performance. Finally, to fully grasp contextual
information, the identified chapter labels, along with the corresponding
content, were fed into Longformer, a model designed specifically for
processing long documents, to generate summaries for scientific papers.
We conducted thorough experiments on two public datasets and
demonstrated the advantages of our approach in scientific paper
abstractive summarization. The main contributions of this paper are as
follows:

e We proposed a two-stage framework for abstractive summarization
of scientific papers, which leverages automatic structural function
recognition to generate more balanced and comprehensive sum-
maries. To the best of our knowledge, we are the first to integrate
automatic structural function recognition into the task of abstractive
summarization for scientific papers.

A controlled experiment demonstrated that the beginning and
ending positions of chapters contain important information, which is
beneficial for structural function recognition. Additionally, through
systematic evaluation, we pointed out the biases in traditional
summary quality metrics when evaluating generative models, such
as GPT-4.

e A large-scale dataset was constructed to recognize structural func-
tions in scientific papers.

Experiments on two benchmarks demonstrate that our method out-
performs advanced baselines in scientific paper abstractive summa-
rization, with the generated summaries being more comprehensive
than those from the baseline models.

The rest of the paper is structured as follows: Section 2 summarizes
related works. We present our method in Section 3, and the experiments
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are provided in Section 4. The results are reported in Section 5. We
discuss the implications and limitations of this paper in Section 6.
Finally, the conclusion and future work are outlined in Section 7.

2. Related work

In this section, we first review related works on abstractive sum-
marization, specifically focus on summarization in scientific papers. We
then briefly introduce research on chapter structure recognition within
scientific papers.

2.1. Abstractive summarization

Abstractive Summarization aims to generate summaries by under-
standing the meaning of the text, rather than simply extracting key
sentences or phrases from the original documents. Khan (2014), Mohan,
Sunitha, Ganesh, and Jaya (2016) and Oh et al. (2023) have classified
existing abstractive summarization methods into three categories:
structure-based approaches (Ganesan, Zhai, & Han, 2010; Wang & Ling,
2016), semantic-based approaches (Alshaina, John, & Nath, 2017; Khan
etal., 2018; Mohan et al., 2016) and deep learning approaches. Over the
past decade, the seq2seq architecture based on Recurrent Neural Net-
works (RNNs) has achieved widespread success in NLP tasks, making
deep learning approaches the dominant framework for abstractive
summarization (Hou, Hu, & Bei, 2018). For instance, Rush, Chopra, and
Weston (2015) were the first to apply the encoder-decoder framework in
automatic text summarization tasks. Gu, Lu, Li, and Li (2016) introduced
a coverage mechanism to addresses out-of-vocabulary (OOV) issues by
copying words directly from the original text with a certain probability.
Cohan, Dernoncourt, Kim, Bui, Kim, Chang, and Goharian (2018) pro-
posed a hierarchical decoder structure that treats the documents as a
collection of paragraphs, achieving strong performance on summariza-
tion tasks involving lengthy articles.

With the advent of pre-trained language models, researchers have
started shifting from traditional deep learning approaches to leveraging
pre-training models in pursuit of better summarization performance. Liu
and Lapata (2019) proposed BERTSUM, which applied the pre-training
BERT (Devlin, Chang, Lee, & Toutanova, 2019) model to abstractive
summarization. Aksenov, Moreno-Schneider, Bourgonje, Schwarzen-
berg, Hennig, and Rehm (2020) optimized BERT’s encoding process
using a sliding window strategy, improving its effectiveness for longer
documents. Liu, Cao, Yang, and Wen (2022) incorporated phrase-level
prior knowledge into the Transformer-based summarization model to
improve summarization quality. Following this work, researchers have
further enhanced the generative summarization by advancing the BERT-
based architectures, such as PEGASUS (Zhang, Zhao, Saleh, & Liu,
2020), T5 (Raffel et al., 2020), BART (Lewis, Liu, Goyal, Ghazvininejad,
Mohamed, Levy, Stoyanov, & Zettlemoyer, 2019) and BigBird (Zaheer
et al., 2020). However, these methods encounter challenges when pro-
cessing long documents or addressing OOV issues, which can lead to
disjointed or repetitive summaries (Hou et al., 2018; Lund et al., 2023;
Miao et al., 2019). Recently, the emergence of LLMs, such as ChatGPT,
has significantly reshaped the paradigms of NLP tasks. Several studies
have demonstrated that LLMs surpass human-level performance in
abstractive summarization tasks. For example, Basyal and Sanghvi
(2023) conducted a comparative study exploring the performance of
various LLMs on text summarization, revealing the broad potential of
LLMs in cross-domain summarization. Deroy, Ghosh, and Ghosh (2024)
applied general-domain LLMs in legal case judgments summarization
and found that generative models produce summaries that are more
aligned with human preferences. Zhang et al. (2024) found that LLMs
achieve high-quality news summarization through instruction tuning,
and their evaluations revealed that LLM-generated summaries are
comparable to those written by humans.

In summary, abstractive summarization has remained a key research
focus, progressing from early structure-based approaches to the current
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LLMs-based methods, which have achieved remarkable performance.
Despite these advancements, most summarization research has focused
on general domains. Applying these methods to scientific articles,
however, still presents unique challenges due to the complex structure
and length of scientific texts. Therefore, in this paper, we focus on
generative summarization for scientific articles. To achieve this, we
proposed a two-stage abstractive summarization framework, which le-
verages automatic structural function recognition to generate more
balanced and informative summaries. Experiments on two widely used
datasets validated the effectiveness of automatic structural function
recognition in abstractive summarization for scientific papers.

2.2. 2.2 Abstractive summarization of scientific papers

Most abstractive summarization methods primarily designed for
general domains and news articles. However, scientific papers differ
greatly from news articles in terms of text length, structure, terminology,
and audience, making direct application of these methods to scientific
paper summarization unsuitable (Andrade, 2011; Gidiotis & Tsoumakas,
2020; Oh et al., 2023). Saggion and Lapalme (2000) introduced the
“selective analysis” method, which automatically generate informative
abstracts for scientific articles by identifying their main topics. Ganesan
et al. (2010) presented a graph neural network-based summarization
model that effectively generates concise, abstractive summaries of
highly redundant opinions. Several studies have incorporated citation
contexts in scientific paper summarization. Elkiss et al. (2008) generated
abstracts by extracting key sentences from the citations of the target
paper, while Galgani, Compton, and Hoffmann (2015) combined cita-
tion themes, the target paper, and citation content to create compre-
hensive summaries. Fisas Elizalde, Ronzano, and Saggion (2016)
improved summaries by utilizing citations directed at the target paper.
Lauscher, Glavas, and Eckert (2017) developed an automated abstract-
ing system for scientific papers by ranking and categorizing key sen-
tences from target papers. Agrawal, Mittal, and Pudi (2019) employed a
K-Nearest Neighbors (KNN) classifier to extract elements such as the
title, citation sentences, and abstract, to generating a more compre-
hensive summary.

Several researchers have effectively incorporated the unique features
of scientific papers, such as graphical information and chapter length, to
enhance summarization. Bhatia and Mitra (2012) applied traditional
machine learning methods, manually creating a set of features from
scientific papers to summarize document elements. Yang, Lu, Zhang,
Wei, and An (2016) developed a system using a data-weighted recon-
struction approach to generate extended summaries that capture the
most important aspects of a scientific article. He, Li, and Zhuge (2016)
proposed applying topic models to distinguish unique features for the
effective generation of group-specific abstracts. Additionally, Erera,
Shmueli-Scheuer, Feigenblat, Nakash, Boni, Roitman, Cohen, Weiner,
Mass, Rivlin, Lev, Jerbi, Herzig, Hou, Jochim, Gleize, Bonin, and
Konopnicki (2019) summarized computer science articles by processing
user queries and key entities. Wang, Liang, Meng, Zou, Li, Qu, and Zhou
(2023) selected impactful sentences and reordered them to generate
abstracts for multiple scientific articles on a given topic. Luo, Xie, and
Ananiadou (2023) proposed a citation graph-based summarization
framework, which integrates key contents from references to enhance
summary relevance. Van Veen et al. (2024) employed mainstream LLMs
for summarizing clinical medical texts, and achieved performance that
surpassed that of medical experts.

The work most similar to ours is by Oh et al. (2023), who propose a
divide-and-conquer method using full-text section information for
structured abstract summarization. However, their approach relies on
simple keyword mapping to identify chapter labels and trains separate
summarization models for each section due to input length limitations.
This restricts the model’s flexibility in handling diverse chapter struc-
tures. Unlike their approach, we train a classifier on a large-scale chapter
structure classifications corpus to automatically identify the structure
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function in scientific papers. Furthermore, for the abstractive summa-
rization stage, we adopt Longformer as the backbone, which is better
suited to capture longer contextual information, resulting in more
comprehensive summaries compared to training separate summariza-
tion models for each section.

2.3. Structural function recognition within scientific papers

The structural organization of a scientific paper not only offers
readers a logical s for comprehension but also serves as the foundation
for fine-grained knowledge analysis. The IMRaD format is widely
adopted in the academic community as a standard for scientific writing
and structural organization (Ma, Zhang, Wang, & Deng, 2022; Oh et al.,
2023). Generally, automated recognition of the structural functions in
scientific articles primarily includes two categories: rule-based methods
and deep learning-based methods. For instance, Lin, Karakos, Demner-
Fushman, and Khudanpur (2006) leveraged the IMRaD format to
annotate biomedical abstracts, achieving notable success through the
incorporation of bi-gram features and the Hidden Markov Model
(HMM). Kiela, Guo, Stenius, and Korhonen (2015) extracted bi-grams,
lexical information, and sentence structure features to recognize chap-
ter structures using a semi-supervised method. Similarly, Cox, Harper,
and de Waard (2018) applied verb features and utilized random forest
and decision tree algorithms to automatically parse the structure of
medical literature.

With the rapid advancement of deep learning models, there has been
a growing research trend in utilizing neural network models for the
structural functional recognition of scientific papers. Dasigi, Burns,
Hovy, and de Waard (2017) were first to introduced a structure recog-
nition model that incorporates attention mechanisms and Long Short-
Term Memory networks (LSTM). Ma et al. (2022) proposed a deep
learning-based classification model that integrated contextual informa-
tion and relative positional features, resulting in improved classification
accuracy. As one of the text classifications tasks, structural function
recognition of scientific articles has yielded competitive performance.
However, these studies utilize structural information for abstractive
summarization, focusing on first-level section headings or simple
keyword matching to define section structures (Cohan et al., 2018).
Since the headings provided by authors are highly flexible and often
inconsistent, the summaries generated by these models may fail to
capture the complete context and logical relationships within para-
graphs, leading to incomplete and unbalanced summaries (Gidiotis &
Tsoumakas, 2020; Miao et al., 2019).

To address this issue, we reconstruct a large-scale dataset for struc-
tural function recognition in scientific papers. Specifically, we collect
full-text scientific papers from arXiv and PubMed datasets and further
normalize all chapter headings into four commonly used categories:
Background, Methods, Result and Conclusion. Based on this dataset, we
employ the SciBERT model to train a classifier that automatically
identifies the structural functions within the paper and achieves highly
competitive classification results. The identified chapter functions and
corresponding content are then fed into Longformer, which is a model
specifically designed to handle long documents, to generate balanced
summaries. Our framework integrates automatic structural function
recognition with abstractive summarization to ensure that the generated
summaries contain key information while maintaining the logic and
comprehensiveness for scientific papers.

3. Methodology
In this section, we first introduce the overall framework of this study,

and then provide a detailed explanation of the implementation process
for our proposed method.
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3.1. Overadll framework of this study

As mentioned above, we propose a two-stage abstractive summari-
zation method for scientific papers that leverages automatic structural
function recognition. The overall workflow of the model illustrated in
Fig. 2.

The framework includes three components: data collection, struc-
tural function recognition, and abstract generation. First, we collected
chapter title and content pairs from papers in the arXiv and PubMed
datasets. Then, these pairs were normalized using a title mapping file to
construct a chapter structure classification dataset. In the structural
function recognition phase, title-content pairs extracted from scientific
papers are used to train the chapter structure recognition model that
classifies each unannotated chapter into predefined categories. The
identified chapter labels, along their corresponding content, are then fed
into the second abstract generation phase, where they serve as seg-
mentation markers for the full-text article. This guides the summariza-
tion model in generate balanced and comprehensive summaries. Lastly,
for models with shorter input length limits than the combined length of
all chapters, we apply a divide-and-conquer approach by generating
individual summaries for each chapter and then concatenating them
into the final summary. For models capable of processing longer docu-
ments, we input the full content of all chapters along with their function
labels to produce a comprehensive summary.

3.2. Task formalization

The specific descriptions of the structural function recognition and
the abstractive summarization are as follows:

=

Pubmed
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i |
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' ———a{Pwaye— |
Chapter title 7 ‘| Chapter title 2 ~ [ Chapter titlen | |
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Fig. 2. Overall framework of the study, where chapter function and their
corresponding content are recognized and used as segmentation markers for the
abstractive summarization phase.

Formerd abstract
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Structural function recognition (SFR): Given a source document
D, {cj, ¢z, ..., cp} represents each chapter of D, n represents the number
of structures in the given document, and a corresponding set of labels L
={l3, Ly, ..., I} represents the function categories of structures, the goal
of SFR is to build a classification model f that assigns each chapter c; to
one predefined categories ;.

Abstractive Summarization (AS): Given a source document D,
represented as a sequence of sentences {sj, Sz, ..., S}, the objective of
abstractive summarization is to generate a short and precise summary S
that captures the key information and main ideas of D. The summary is
not constrained to be an extractive subset of sentences from D, Unlike
extractive methods, the summary is not limited to selecting sentences
directly from the source text. Instead, it involves creating a new sum-
mary by rephrasing, paraphrasing, and synthesizing information in a
more innovative and cohesive manner.

3.3. Model implementation

Our proposed abstractive summarization model includes two tasks:
structural function recognition and abstractive summarization. Fig. 3
illustrates the specific implementation process between these two tasks.
The process begins with an input text that embedded with positional,
segment, and token embeddings based on SciBERT. These embeddings
are then processed through multiple transformer layers to capture
contextual information from the input text. The output from the trans-
former layers was fed into a Softmax function to assign a function label
to each input text. At this point, we can automatically obtain the chapter
structure information for each paper. Finally, an encoder-decoder ar-
chitecture-based model is chosen to perform the abstractive summari-
zation task, where the encoder generates a context vector from the
classified text, and the decoder uses this vector to produce a summary
for each identified section. In the following sections, we will provide the
definition of each task and the implementation process.

3.3.1. SFR model in scientific papers

In this task, to recognize the structure of scientific articles, we
introduce a text classification model based on SciBERT, which is spe-
cifically pretrained on biomedical and computer science articles.

Summary

Context vector

Multi-head 7
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Fig. 3. Abstractive summarization for scientific papers based on structural
function recognition, where SciBERT and Longformer are selected as the
backbones for two sequential tasks.
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Assuming the input chapter text is C, = (P, Po, ..., Py), where C, rep-
resents the chapter text composed of multiple paragraphs from P; to Pp,.
The chapter text C,, undergoes sentence segmentation, resulting in a set
of sentences X = (X3, X2, ..., X;). During this process, we employ the
SciBERT model to vectorize each sentence, as shown in Fig. 3.

In the encoding process, SciBERT introduces a [CLS] token at the
beginning of the text as the starting annotation, and the final repre-
sentation vector denoted as:

H = SciBERT(X) 6})

Next, the CLS vector is identified as the definitive feature represen-
tation vector of the chapter, serving as input for a fully connected layer.
We then apply the Softmax function to obtain the final probability dis-
tribution over the label categories m.

Ym = Softmax(Hcys) 2)

Finally, we use the Cross-Entropy function to compute the loss be-
tween the predicted probability distribution y;, and the true labels. This
loss function is defined as:

m n

1
Loss = —— D> Yilog(p(x;)) ®

=1 -1

where m is the number of samples, n is the number of classes, y; is the
true label, which is 1 for the correct class and 0 for the others, and p(x;)
is the predicted probability for class j of the i-th sample.

3.3.2. AS model in scientific papers based on SFR

After completing the SFR task, we obtain the chapter contents and
associated functional labels for each unlabeled article. These chapter
content, along with their label marks, are then used as input text and
segmentation labels for all generative models involved in the AS task to
generate summaries. To obtain rich contextual information and accu-
rately reflect the article’s structure, we selected the Longformer model,
which is specifically designed to process long documents, as the back-
bone of the summarization stage. Assuming the input chapter is repre-
sented as a sequence X, the input text is encoded through the Longformer
Encoder layer to obtain embedded vectors E:

E = Longformer_Encoder(X) ()]

In the self-attention mechanism of Longformer, each embedding
vector is transformed into three distinct vectors: Query (Q), Key (K), and
Value (V), to calculate attention scores and aggregate contextual infor-
mation. The Q vector represents the current token’s focus or intent to
attend to other tokens within the sequence. The K vector encodes fea-
tures of the tokens to be matched against the Q vector, while the V vector
contains the actual information that will be weighted to produce the
final output of the attention mechanism. The multi-layer self-attention
in Longformer then computes relevance scores between these vector
representations, which are used to generate contextually enriched token
embeddings:

Attention(Q, K, V) = softmax (Q—KT> 1% (5)
Y Vi

where /dy is used to normalize the dot product QK" to ensure the
attention scores remain within a stable range. The softmax function is
applied to converts the similarity scores into probabilities.

In the end, we obtain the corresponding output sentence of chapter
through the Longformer Decoder layer.

Y = Longformer_Decoder(E, Attention(Q, K, V)) (6)
4. Experiments

We conduct comprehensive experiments to evaluate the performance

Expert Systems With Applications 261 (2025) 125529

of our proposed model. In this section, we will describe the details of the
experiment, including the datasets, baselines, implementation details,
and evaluation metrics.

4.1. Dataset

To facilitate comprehensive experiments and evaluate our proposed
model, we restructured datasets for both the structural function recog-
nition and abstractive summarization phases.

4.1.1. Dataset of structural function recognition

We conduct experiments on two widely used scientific paper sum-
marization datasets, PubMed and arXiv (Cohan et al., 2018), to evaluate
the model’s performance. The PubMed dataset consists of 133,215 ar-
ticles from the biomedical domain, while the arXiv dataset comprises
215,913 articles from diverse scientific fields such as physics, computer
science, and mathematics. Each article in both datasets provides meta-
data including article ID, abstract, section names, and section contents,
but excluding figures and tables. To address the variability in chapter
headings across scientific papers, we standardized the chapter titles
according to the IMRaD format using National Library of Medicine
(NLM) files (Guimaraes, 2006). The NLM files contain 3032 unique
chapter labels, categorized into five broader NLM categories: Back-
ground, Objective, Method, Result, and Conclusion. However, since this file
was generated based on biomedical text and our dataset includes articles
from arXiv, which spans multiple disciplines such as computer science,
physics, and mathematics, we constructed a corpus based on these
sources to train a classifier. As shown in Table 1, in this file, Introduction
is categorized under the broader class of Background, while Discussion is
grouped under Conclusions. Therefore, Background, Method, Result, and
Conclusion represents a broader version of the IMRaD format. Notably,
considering that the Objective is typically addressed in or following the
Background section (Oh et al., 2023), we categorize it under Background
category in this study.

Subsequently, we randomly selected 30,000 articles from each
dataset to construct the structural function recognition dataset. Table 2
presents the statistics of the selected papers from both PubMed and
arXiv datasets.

4.1.2. Dataset of abstractive summarization

From the structural function recognition dataset, we additionally
selected articles that contained the Background, Methods, Results, and
Conclusions sections. Each section in both datasets was constrained to a
maximum of 1500 words, and the abstract length ranged between 50
and 300 words. Finally, to account for economic costs and time con-
straints, we randomly sampled 10,000 papers from each dataset for
abstractive summarization. Table 3 provides the statistics of these
selected articles.

4.2. Baselines

For the SFR task, we conduct a comparative analysis of various
methods related to structural function recognition. The baselines
include:

Table 1
Examples of NLM mapping for different chapter types.

Type of Example of NLM Categories

Chapter

Background Background, Introduction, Motivation, Hypothesis, Instruction,
Aim

Method Method, Methodology, Approach, Experiment, Measurement,
Techniques

Result Result, Finding, Evaluation, Innovations, Outcome, Output

Conclusion Conclusion, Discussion, Impact, Implication, Summary,

Limitation, Future work, Recommendation
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Table 2

Statistical for the structure function recognition datasets used in this work.
Dataset PubMed arXiv
\Chapter

Num Word,yg  Senty,;  Num Wordayg  Sentayg

Background 38,678 390 14 35,277 798 37
Method 80,622 405 15 48,164 989 44
Result 42,746 549 20 34,616 1425 67
Conclusion 61,292 526 20 39,535 858 40

Note: “Num” refers to the number of chapters in each category, “Word,yg” and
“Sent,yg” represent the average number of words per chapter and the average
number of sentences per chapter, respectively.

Table 3
Statistical features of the scientific article from arXiv and PubMed datasets.

Dataset #Doc Avg.doc length Avg. abstract length
Words Sentences Words Sentences

PubMed 10K 3107 92 201 8

arXiv 10K 5042 217 225 10

(1) BiLSTM* (Dasigi et al., 2017): A widely-used sequence model in
NLP tasks that captures contextual information from both pre-
ceding and succeeding directions in a sequence.

(2) BERT® (Devlin et al.,, 2019): One of the most successful pre-
trained language models, often used as a standard baseline in
automatic summarization tasks.

(3) RoBERTa’ (Liu, Ott, Goyal, Du, Joshi, Chen, Levy, Lewis, Zet-
tlemoyer, & Stoyanov, 2019): An enhanced version of BERT,
trained on a larger dataset and improved training techniques.

(4) T5-base’ (Raffel et al., 2020): A text-to-text Transformer model
that classifies category labels in a generates manner.

For the AS task, we compare Longformer with several well-known
PLMs. Notable models include:

(1) BERTSUM® (Liu & Lapata, 2019): A model that modified the
transformer architecture of BERT to text summarization tasks.

(2) BART’ (Lewis et al., 2019): A model based on Bidirectional and
Auto-Regressive Transformers, excelling in various generative
tasks through sequence-to-sequence pre-training.

(3) PEGASUS'’ (Zhang et al., 2020): A large pre-trained model
specifically designed for text summarization tasks.

(4) T5-base (Raffel et al., 2020): A unified text-to-text Transformer
model treating all tasks as generative tasks.

(5) Discourse-Aware'' (Cohan et al., 2018): An abstractive sum-
marization model with a hierarchical encoder for discourse
structure and an attentive discourse-aware decoder.

(6) SCiBERTSUM'? (Sefid & Giles, 2022): An extractive summari-
zation model which enhances BERTSUM by incorporating section
embeddings and a sparse attention mechanism.

(7) ExtSum-LG + RdLoss'® (Xiao & Carenini, 2020): An extractive
summarization model that incorporates s a redundancy loss term

https://github.com/edvisees/sciDT.
https://huggingface.co/google-bert/bert-base-uncased.
https://huggingface.co/FacebookAl/roberta-base.
https://huggingface.co/google-t5/t5-base.
https://github.com/nlpyang/PreSumm.
https://huggingface.co/facebook/bart-base.
https://huggingface.co/google/pegasus-x-base.
https://github.com/armancohan/long-summarization.
https://github.com/atharsefid/SciBERTSUM.
https://github.com/Wendy-Xiao/redundancy_reduction_longdoc.
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during the sentence scoring phase to reduce sentence
redundancy.

(€)) BigBird-Pegasus14 (Zaheer et al., 2020): A sparse attention-
based model that extends the Transformer-based Pegasus to
handle longer text.

(9) GPT-4'>: A generative language model developed by OpenAl,
recognized as the most powerful generative LLM to date.

4.3. Implementation details

Structural function recognition: Ma et al. (2022) highlight the
critical influence of title and content positioning in scientific articles on
structural recognition. Inspired by them, we conducted controlled ex-
periments to investigate the impact of different combinations of content
on the SFR task:

(1) Titles: The title is a carefully chosen phrase by the author that
reflects the theme and structure of the chapter.

(2) Full Chapter Text: Complete chapter contents providing
comprehensive information for understanding the organizational
structure.

(3) Head and Tail of Chapter Contents: The head and tail portions
of each chapter contain the author’s overall introduction and
summary, which are crucial for structural recognition.

We employed the SciBERT within the PyTorch'° for training the SFR
model, with the weights sourced from ’scibert scivocab uncased’ on
Hugging Face. The model was trained on a GPU with A5000-24G, with
the dataset split into training, validation, and testing sets in a ratio of
8:1:1. In a preliminary experiment, we use {le—4, 1le—5, 2e—5} as
learning rate value and {4, 8, 16, 32} as batch size value. We obtain the
best results with a learning rate of 1e—5 and a batch size of 16. Other
hyper-parameters were fine-tuned according to the performance on
validation datasets. In the end, the model was trained for 10 epochs with
a batch size of 16 for training and 8 for validation. We used Adam
optimizer for acceleration and applied a warm-up training strategy with
100 steps to expedite convergence. For the other models, we choose the
appropriate parameters based on the original paper to give them optimal
performance.

Abstractive summarization: The PEGASUS, BART, BigBird and T5-
base and Longformer were sourced from Hugging Face and all in base-
uncased mode, while the other models were obtained from the orig-
inal repositories as provided in the corresponding papers. We set the
model-generated summaries to a length range of 50 to 300 words. For
models such as BART, where the input length is exceeded model’s ca-
pacity to process the full text, we use a divide-and-conquer approach to
generate short summary for each section, which are then concatenated
to create the final summary. For Longformer, we input both the chapter
structure information and the content of the sections together for
abstractive summarization. We conducted a preliminary with different
values to balance the trade-off between summary quality and compu-
tational cost. For the n-gram repeat limit, we tested values ranging from
2 to 4 to control repetition in the generated summaries, and obtain the
best results at 2. In beam search, we experimented with the number of
beams from 3 to 7 and achieved the best results with 5, while other
parameters were set to default values. To account for the varying con-
tributions of each section to the overall summary, we followed the work
of Ermakova, Bordignon, Turenne, and Noel (2018) and Li and Xu
(2023), assigning 30 %, 25 %, 30 %, and 15 % weights to the Back-
ground, Methods, Results, and Conclusions sections, respectively. As a
result, the lengths of the Background, Methods, Results, and Conclusions

14 https://huggingface.co/google/bigbird-pegasus-large-arxiv/pubmed.
15 https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4.
16 https://huggingface.co/allenai/scibert_scivocab_uncased.
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https://huggingface.co/allenai/scibert_scivocab_uncased
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sections were no more than 90, 75, 90, and 45 words, respectively. For
GPT-4 (gpt-4-0613), we used the API provided by OpenAl, and input the
source article with the prompt “Summarize the following scientific
paper no more than 300 words”, and the other parameters in the API are
set to default values.

4.4. Evaluation metrics

Evaluation Metrics on the SFR task. The precision, recall, and F;-
score were selected to evaluate classification performance. The formulas
used are as follows:

The number of chapters correctly classified into a category C
The total number of chapters classified into C by classifier

7

Precision =

The number of chapters correctly classified into a category C
The total Number of chapters that classified into C by human

®

Recall =

Precision x Recall
F._S =2X— 9
1->core x Precision + Recall ©)

where C is a particular category of the chapter. To evaluate the overall
performance across all categories, we utilize the Sklearn package to
compute the macro-average of precision, recall, and F1-score as follows:

n
Macro_P = % ZPi 10)
o1
1 n
Macro R = - ZR,- an
p

Macro_P x Macro_R
Macro.F; =2 X —m ———— 12
! Macro_P + Macro_R 12

where n is the number of classification categories, P; and R; represent the
precision and recall of a specific category of chapters.

Evaluation Metrics on the AS task. We employ Recall-Oriented
Understudy for Gisting Evaluation (ROUGE-N) to computer the lexical
overlap between generated summaries and the golden truth human-
written abstracts. The formula of ROUGE-N are as follows:

ZSEreference Zgramnins Countmﬂfdl (gT amy )

Rxcall — (3)
ZS creference ZgrumNinS Count (gf' amy )
Rrecall _ ES creference Z gramyinS Countngen (87' amy ) 14)
N ESEreference ZgramNinS Count (gr amy )
2. Rprecision .Rrecall
Ry = o (15)

recision
RII)\I + R}r\e]zcall

where S € reference denotes a sentence or document in the reference set
(which is the golden truth), gramy represents the sequence of N
consecutive words within the reference sentence, Countqn(gramy) in-
dicates the number of times the N-gram appears in both the prediction
and the reference, and Count(gramy) is the total occurrence of the N-
gram in the reference text. In this paper, we utilize the office package
based on python to compute ROUGE-1, ROUGE-2, and ROUGE-L. Ac-
cording to the official ROUGE evaluation script,'” all reported ROUGE
scores have a 95 % confidence interval in this paper.

Additionally, we selected the GEM-score (Ermakova et al., 2018) to
evaluate the comprehensiveness of the generated summary, which is
calculated as the sum of the weights of section classes w(sc) that appear

17 https://pypi.org/project/pyrouge/.
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in both the summary and the source article. However, while GEM
measures the coverage of important sections, it does not account for the
efficiency or conciseness of the summary. To address this, we integrated
the compression rate (CR) to balance between content coverage and
summary length. The combined metric, GEM¢y, is defined as follows:

Zsce(AscmFTsc)W(SC)

Lsourceara'cle
) 16)
2 scerrscW(SC)

GEMCR =

Norm(
‘generatedsummary

where FTSC and ASC represent the section classes in the source article
and in the generated summary, respectively. (sc) denotes the importance
weight of a section. Lourcearticte aNd Lgenerqtedsummary T€present the lengths of
the source article and the generated summary, respectively. Norm refers
the normalization function.

Implementation Details of GEMcg Metric. The GEMcg metric
needs to identify whether the summary includes a specific section
structure. To accomplish this, we used Stanford CoreNLP'® to segment
the sentences in the generated summary, and then applied sentence-
BERT'Y (Reimers & Gurevych, 2019) to compute the cosine similarity
between each sentence and the sections of the source article. The section
category with the highest similarity score is then assigned as the cor-
responding category for each sentence.

5. Results

In this section, we first report the results of the SFR task, followed by
the results of the AR task. Additionally, to better evaluate the model’s
performance, we also include the results of human evaluation and
ablation experiments. Finally, we provide a case study for detailed
sample analysis.

5.1. Results on the SFR task

Experimental results for the SFR performance are presented in
Table 4. The traditional deep learning method Bi-LSTM performs the
worst on the PubMed and arXiv datasets with Macro_F1 values of 89.41
% and 85.40 %, respectively. The pre-trained models outperform the
traditional deep learning methods, with SciBERT achieving the best
results on both PubMed and arXiv datasets, with Macro_F1 values of
91.79 % and 88.42 %, respectively, particularly demonstrating a sig-
nificant performance lead on the arXiv dataset. Additionally, SciBERT
outperforms BERT with improvements of 1.06 % on the PubMed dataset
and 0.82 % on the arXiv dataset in terms of Macro_F1. This highlights
the effectiveness of domain-specific pre-training in enhancing classifi-
cation performance on SFR task. Moreover, it is evident that all models
demonstrate better performance on the PubMed dataset compared to the
arXiv dataset. This difference can be attributed to several factors: First,
articles on the PubMed dataset represent finalized research works that
have undergone review and standardization processes, whereas the
arXiv dataset contains unpublished preprints from a wide range of dis-
ciplines. The complexity and diverse structure of arXiv articles make it
difficult for the models to accurately capture the necessary patterns in
the SFR task. Second, arXiv articles are generally longer than PubMed
articles, which poses challenges for pretrained models constrained by
token limits, typically around 512 tokens. As a result, important nuances
and details beyond this limit may not be fully captured.

Table 5 presents the impact of different chapter composition on the
SFR task, focusing on the performance of three closely related models:
T5, RoBERTa, and SciBERT. Results indicate that the SciBERT model,
employing only the chapter title provided by authors yields a Macro_F;
score of 90.59 % for the PubMed dataset and 86.77 % for the arXiv
dataset, which surpass those obtained when using the full chapter

18 https://stanfordnlp.github.io/CoreNLP/.
19 https://github.com/UKPLab/sentence-transformers.
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Table 4
The overall performance of different models on the SFR task.
Model PubMed arXiv
Macro_P (%) Macro_R (%) Macro_F; (%) Macro_P (%) Macro_R (%) Macro_F; (%)
BiLSTM - 89.97 88.85 89.41 86.21 84.62 85.40
CI [89.65, 90.29] [88.54, 89.20] [89.05, 89.74] [85.92, 86.58] [84.29, 84.81] [85.10, 85.71]
BiLSTM-ATT - 90.12 89.39 89.75 86.74 85.29 86.01
CI [89.71, 90.55] [89.04, 89.72] [89.40, 90.18] [86.39, 87.13] [84.96, 85.87] [85.69, 86.52]
BERT - 91.35 90.11 90.73 88.19 87.02 87.60
CI [90.02, 91.70] [89.83, 90.53] [90.42, 91.14] [87.89, 88.57] [86.77, 87.37] [87.31, 87.89]
RoBERTa — 91.72 90.67 91.20 88.33 87.17 87.74
CI [91.41, 91.92] [90.35, 91.07]1 [90.82, 91.65] [88.01, 88.62] [86.90, 87.48] [87.43, 88.06]
T5-base - 92.21 91.24 91.72 87.90 86.61 87.25
CI [91.80, 92.63] [90.85, 91.67] [91.39, 92.01] [87.55, 88.24] [86.22, 87.04] [86.91, 87.65]
SciBERT - 92.38 91.21 91.79 89.017 87.84" 88.421
CI [92.01, 92.82] [90.88, 91.64] [91.42, 92.06] [88.77, 89.42] [87.51, 88.20] [88.10, 88.73]

*Where the best results are in bold and CI represents the 95% confidence interval. A } symbol indicates a significant difference compared to other models.

Table 5
The impact of different chapter compositions on the SFR task (Macro_F; %).
Composition PubMed arXiv
T5-base RoBERTa SciBERT T5-base RoBERTa SciBERT
Chapter title - 89.74 89.71 90.59' 84.96 85.21 86.77"
I [89.46, 89.98] [89.48, 90.08] [90.22, 90.94] [84.73, 85.23] [84.90, 85.65] [86.39, 87.21]
Chapter text - 89.92 88.94 90.47% 85.38 85.46 86.241
cl [89.60, 90.17] [88.71, 89.16] [90.21, 90.72] [85.10, 85.76] [85.15, 85.86] [85.87, 86.57]
Title + Chapter text - 91.43 91.02 91.68 85.92 85.97 86.937
I [91.07, 91.70] [90.61, 91.44] [91.30, 91.97] [85.45, 86.42] [85.56, 86.38] [86.51, 87.42]
Title + 25 %(head + tail) - 90.81 90.53 91.18 86.11 86.28 87.48"
a1 [90.38, 91.05] [90.05, 90.73] [90.73, 91.53] [85.84, 86.40] [85.91, 86.64] [87.04, 87.70]
Title + 50 %(head + tail) - 91.34 90.76 91.42 87.25 87.74 88.42" "
cl [90.92, 91.76] [90.31, 91.21] [90.15, 91.78] [86.91, 87.65] [87.43, 88.06] [88.10, 88.73]
Title + 75 %(head + tail) - 91.72 91.20 91.79 86.87 87.29 88.15"
I [91.39, 92.01] [90.82, 91.65] [91.42, 92.06] [86.41, 87.36] [86.88, 87.76] [87.74, 88.63]
#Average - 90.83 90.36 91.19 86.08 86.33 87.34"
a1 [90.47, 91.11] [90.00, 90.71] [90.67, 91.50] [85.74, 86.47] [85.97, 86.73] [86.94, 87.71]

*Where the best results are in bold, and CI represents the 95% confidence interval. A { symbol indicates a significant difference compared to other models. A * symbol

indicates a composition that significantly outperforms other compositions.

content as input. This can be attributed to the conciseness of titles, which
are used by the authors to convey the core content, while full-text
content tends to include more noisy text. Furthermore, when
combining titles with chapter content, the Macro_F; score improves as
the proportion of content increases. The optimal head-to-tail ratio for
the PubMed dataset is 75 %, though the 50 % ratio yields similar results
with no significant difference observed, as the confidence intervals for
both ratios overlap, indicating that the differences are not pronounced.
However, the 75 % ratio shows a slightly higher average score and more
favorable upper and lower bounds in the confidence interval. This
suggests that while both ratios perform comparably, the 75 % ratio may
provide slightly better stability and robustness in the results. For the
arXiv dataset, the optimal ratio is 50 %. In addition, SciBERT achieved
the best Macro_F; across all compositions and average scores on both
datasets, with a notable advantage on the arXiv dataset. It’s important to
note that the average chapter length in the arXiv dataset exceeds 790
words, surpassing SciBERT’s 512-token input limit. Similarly, sections
like Results and Conclusions in the PubMed dataset also exceed this limit.
Therefore, filtering out important information, such as the beginning
and end of chapters, is beneficial for reducing input length while
enhancing the performance of the SFR task.

Although SciBERT achieved notably better results on the arXiv
dataset, the overlapping confidence intervals on the PubMed dataset
indicate no statistically significant differences between SciBERT, T5-
base, and RoBERTa in certain cases. In light of these results, we
further investigated the training efficiency of these models to assess their
practicality for large-scale tasks. As shown in Table 6, SciBERT, despite
being the smallest model with only 110 M parameters, consistently

achieves the highest Macro_F; scores on both the PubMed (91.79 %) and
arXiv (88.42 %) datasets. It outperforms larger models like T5-base (220
M) and RoBERTa (125 M), highlighting its robustness in handling
diverse scientific domains. Moreover, SciBERT reached optimal perfor-
mance with fewer training epochs and shorter training times. Specif-
ically, SciBERT converged in 6 epochs on PubMed and 3 epochs on
arXiv, compared to T5-base, which needed 9 and 7 epochs, and RoB-
ERTa, which took 7 and 5 epochs, respectively. In terms of training time,
SciBERT was also more efficient, averaging 1 h and 20 min per epoch on
PubMed and 33 min per epoch on the arXiv dataset. These results
highlight SciBERT’s significant advantages in training efficiency,
computational demands, and energy consumption, which is beneficial
for reducing hardware dependency during local deployment. Therefore,
in order to achieve a balanced performance and operational cost, Sci-
BERT was selected as the backbone for the SFR task.

5.2. Results on the AS task

Experimental results for the AS performance are presented in
Table 7. Results show that the Longformer achieves the highest scores in
ROUGE-1, ROUGE-2, ROUGE-L and GEMcgR, with scores of 44.51, 18.26,
39.64 and 0.69 for the arXiv dataset, and 45.38, 19.27, 40.97 and 0.71
for the PubMed dataset, respectively. This indicates that the summaries
generated by Longformer are closer to human-written abstracts lexical
and comprehensive aspects. In contrast, models such as PEGASUS, and
TS5 struggle with long scientific papers due to input length limitations.
Although divide-and-conquer strategies have been employed to address
these limitations, a significant portion of the arXiv dataset remains
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Table 6
Training Efficiency of SciBERT, RoBERTa and T5-base on the SFR Task.
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Model #Size Training time/epoch Optimal epoch Macro_F; (%)
PubMed arXiv PubMed arXiv PubMed arXiv
RoBERTa 125 M 92 + 10 min 37 + 4 min 7 5 91.19 87.77
T5-base 220 M 147 £+ 16 min 58 £+ 7 min 9 7 91.72 87.23
SciBERT 110 M 80 + 7 min 33 + 3 min 6 3 91.76 88.46
Table 7
ROUGE-1/2/L scores of different models on the PubMed and arXiv datasets.
Models PubMed arXiv
ROUGE-1 ROUGE-2 ROUGE-L GEMcr ROUGE-1 ROUGE-2 ROUGE-L GEMcr
BERTSUM 34.39 13.24 30.90 0.42 31.98 10.02 27.75 0.25
BART 37.44 15.39 32.71 0.51 34.87 12.82 29.83 0.37
PEGASUS 36.94 15.05 31.81 0.48 33.36 11.18 28.94 0.32
T5-base 37.75 14.92 32.65 0.50 33.75 11.76 29.01 0.33
Discourse-Aware 38.93 15.37 35.21 0.59 35.80 11.05 31.80 0.42
SciBERTSUM 45.13 19.03 40.80 0.65 44.05 15.67 39.15 0.64
BigBird-Pegasus 42.81 18.71 39.23 0.63 42.47 17.95 37.29 0.59
ExtSum-LG + RdLoss 45.30 20.42 40.95 0.66 44.01 17.79 39.09 0.62
GPT-4 30.02 09.17 27.62 0.74 29.96 09.13 27.01 0.71
Longformer 45.38 19.27 40.97 0.83 44.51 18.26 39.64 0.78

challenging for these models to capture text patterns. As a result, their
performance is less robust compared to Longformer and BigBird-
Pegasus. The ExtSum-LG + RdLoss model performed better than the
PLMs such as BART, PEGASUS, and T5-base. This is because ExtSum-LG
+ RdLoss is an extractive model that forms summaries by directly
extracting sentences from the original article, which more accurately
reflects the lexical similarity of the article compared to generative
models.

Additionally, despite GPT-4's outstanding performance on various
general NLP tasks, there is still considerable room for improvement in
scientific paper summarization when evaluated with ROUGE scores.
One possible explanation is that we only use a simple prompt to guide
GPT-4 in generating summarization results, with no restrictions on
content or format. As a result, the summary generated by GPT-4 is more
random and diverse, which may not align well with the human-written
abstract at the lexical level (Wang et al., 2023; Yang, Li, Zhang, Chen, &
Cheng, 2023). From a comprehensive perspective, GPT-4 achieved the
second-best GEMcg score, indicating that despite lexical differences
from human-written summaries, it still effectively captures and conveys
key information during summarization.

Fig. 4 shows the length distribution of generated summaries by BART
(Fig. 4a and b), Longformer (Fig. 4c and d) and GPT-4 (Fig. 4e and f)
across the PubMed and arXiv datasets. As mentioned in Section 3.2,
scientific papers in the arXiv dataset have longer abstracts compared to
those in the PubMed dataset. When the model’s output length is limited,
there are minimal differences observed in the range of summaries
lengths generated by the PLMs. However, the distribution of these
summary lengths differs. For instance, both BART and GPT-4 consis-
tently generate summaries clustered between 150 and 190, whereas
Longformer’s summaries are centered around 200 to 220 words in both
datasets, closely aligning with the average abstract lengths in the orig-
inal data. This alignment likely contributes to Longformer’s superior
performance on both datasets.

5.3. Human evaluation vs LLM evaluation

5.3.1. Results on the human evaluation

In our comparison using ROUGE scores, we observed that GPT-4,
although considered the most advanced generative model, had the
lowest scores. However, since ROUGE measures lexical overlap between
generated summaries and human-written abstracts, it’s important to

note that a low ROUGE score doesn’t indicate a poor summary quality
(Fu, Ng, Jiang, & Liu, 2024; Liu, Iter, Xu, Wang, Xu, & Zhu, 2023).
Therefore, to provide a more comprehensive evaluation, we conducted a
human evaluation for the generated summaries from the informative-
ness, coherence, and readability perspectives.

In the first step, we randomly selected a total of 100 summaries from
the PubMed and arXiv datasets. The summaries generated by the base-
line model, as well as the associated golden truth human-written ab-
stracts, are provided. To mitigate potential biases, the models are
labeled with numbers rather than their actual names. Then, three
second-year doctoral students majoring in information science were
invited to compare the generated summaries with the corresponding
golden truth abstracts and rate them based on three aspects: (1) How
informative is the generated summary? (3) How coherent is the gener-
ated summary? (2) How readability is the generated summary? Each
aspect of the summaries is scored on a scale ranging from 1 to 5, with 1 is
the worst and 5 indicating the best. The criteria of informativeness,
coherence and readability are shown in Tables 8-10, respectively.

As shown in Table 11, despite GPT-4's lower ROUGE scores, it ach-
ieved the highest overall performance across all three aspects of human
evaluation. Notably, the summaries generated by GPT-4 exhibited
significantly high readability, consistent with the findings of (Lozi¢ &
Stular, 2023). As the most advanced generative model to date, GPT-4 is
designed to generate content that align with human preferences, which
is beneficial for improving the fluency of summaries. Additionally, the
higher informativeness and coherence score from GPT-4 indicate its
strength in capturing key information and maintaining logical connec-
tions. Finally, Longformer, the model selected in our study, achieved the
second-highest performance in human evaluation, demonstrating its
robustness under different evaluation scenarios.

5.3.2. Results on the LLM evaluation

To balance the potential biases in human evaluation due to indi-
vidual differences in knowledge, we also using LLM to evaluate the
summaries from the same criteria as the human evaluation. For instance,
we selected G-EVAL (Liu et al., 2023) metric, which is specifically
designed to use GPT-4 to assess the quality of natural language gener-
ation outputs through the chain-of-thought (CoT). The process of LLM
evaluation is shown in Fig. 5. In this experiment, we first guided the LLM
to rate the human-written abstracts based on the criteria, and then we
conducted a comparative evaluation between the generated summaries
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Table 8
The criteria for human-oriented informativeness score.
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Table 11
The human evaluation results for summaries generated by different models.

Informativeness Criteria
score Models Informativeness ~ Coherence  Readability =~ #Average
1 The summary includes very little or none of the key BERTSUM 2.38 2.16 2.45 2.33
information from the human-written abstract. BART 3.01 2.89 291 2.94
2 The summary includes some information but misses the key PEGASUS 2.82 2.75 3.04 2.87
points from the human-written abstract. T5-base 2.94 3.22 2.97 3.04
3 The summary includes around half of the key points from the Discourse-Aware 3.23 3.39 3.13 3.25
human-written abstract but lacks critical details. SciBERTSUM 3.59 3.67 3.38 3.55
4 The summary includes most of the key points from the BigBird-Pegasus 3.28 3.56 3.59 3.48
human-written abstract, with only minor details missing. ExtSum-LG + RdLoss ~ 3.52 3.65 3.72 3.63
5 The summary includes almost all key points from the human- Longformer 3.61 3.76 3.85 3.74
written abstract with strong detail and accuracy. GPT-4 3.64 3.94 4.17 3.91
provided by the author, the structure obtained through direct keyword
Table9 ) matching from the mapping file, and the structure recognized through
The criteria for human-oriented coherence score. SFR task in our proposed method
Coherencescore  Criteria As shown in Table 13, when only the article title and full-text content
1 The summary lacks coherence, with sentences that are were used, the performance of Longformer dropped substantially across
disconnected and lack logical flow. both datasets. Specifically, ROUGE 1/2/L and GEMcg scores dropped by
2 1”“’: S‘I‘;mary has h“f‘te‘_i coherence, with noticeable issues in 1.66, 1.52, 2.49, and 0.28 on the PubMed dataset, respectively. Simi-
tion. .
oglca How or orgarization . - larly, the scores decreased by 2.75, 2.64, 2.46, and 0.19 on the arXiv
3 The summary is generally coherent, though it contains minor i X o R
breaks in flow or organization. dataset, respectively. With the addition of the author-provided struc-
4 The summary is mostly coherent, with clear logical flow and only ture, both ROUGE and GEMcp scores showed significant improvement.
g p
oceasional minor disruptions in structure or clarity. We speculate that this improvement arises because most human-written
5 The summary is fully coherent, with seamless logical flow and abstracts include key components such as Background, Methods, Results,
structure, making it easy to understand. . . . . .
and Conclusions. Therefore, incorporating chapter structure information
helps the summaries better reflect the structural elements of the paper,
thus enhancing alignment with human-written abstracts. Moreover, a
Table ?0 . . . notable trend observed is that the method using direct keyword mapping
The criteria for human-oriented readability score. . . . . .
via a mapping file slightly outperformed the author-provided structure
Readabilityscore  Criteria but still fell short of the performance achieved by the SFR task. This is
1 The language is disjointed, with significant grammar or word because the mapping file was derived from the biomedical domain,
usage errors, and difficult to read. making it well-suited to the PubMed dataset. In contrast, for the arXiv
2 ;he I}alnguagel?“ta“? “°“ceab.}f§ramnc‘la‘ or word usage errors, dataset, which predominantly focuses on computer science and physics,
tt t . . . . .
ut the overal meaning can St be rea . the keyword mapping proves less effective due to differences in struc-
3 The language flows generally smooth but contains a few K i
grammatical or word usage errors, it remains readable. ture and terminology across these fields.
4 The language reads mostly smooth, with minor grammar or word Overall, the observed conclusions demonstrate that, firstly, normal-
usage errors, but overall reads well. izing section titles to focus on four main sections helps mitigate the
5 The language flows very smooth, with no grammar or word usage

errors, and is easy to read.

and the golden truth abstracts.

As shown in Table 12, the human-written abstracts received the
highest ratings in the LLM evaluation. The scores of all three aspects
increased compared to the human evaluation, but there is still room for
improvement to match the standard of human-written abstracts.
Excluding from the human-written abstracts, the summaries generated
by GPT-4 still received the highest score. Although studies have found
that LLM-based evaluations tend to provide overly positive feedback (Fu
et al., 2024), summaries generated by Longformer still achieved the
second-highest performance under the same evaluation criteria and
models, demonstrating its robustness across different evaluation sce-
narios. Additionally, this observation also the biases in traditional
summary evaluation metrics, such as ROUGE, which primarily evaluate
summary quality based on lexical overlap with golden truth texts, and
may not fully capture the strengths of generative models like GPT-4 in
summarization tasks.

5.4. Ablation study

We conducted ablation experiments to further validate the impact of
structure information in scientific paper summarization. In the first step,
we removed all section headings and retained only the article title and
full-text content. Then, based on this, we separately added the structure

12

structural uncertainty introduced by author-provided titles. Secondly,
training a classifier on a large corpus for the SFR task provides a more
stable and effective method for structural function recognition
compared to the direct use of keyword mapping, further validating the
positive contributions of different components in our proposed
framework.

5.5. Case study

Fig. 6 presents an example of a scientific paper from the PubMed
dataset. The first section displays the original abstract, while the second,
third, and fourth sections report the output summaries of the BART,
Longformer, and GPT-4 models, respectively. It is observed that Long-
former notably includes details on the analysis of “serum blood urea ni-
trogen (bun), creatinin, na+, k+, cl+, ca+, p+, and creatininity clearance
was analyzed and they were repeated at 24, 48, and 72 h following contrast
administration. spot urine il8 levels” and “was observed at 24 and 48 h
following radioclast administration, but it was not statistically significant (p
= 0.052 and p = 0.285, respectively)” which is the main method and the
result of the source article. Additionally, Longformer captures longer
continuous sentences and phrases, while GPT-4 focuses on generating
summaries across the entire document but does not consistently align
with the human-written abstract. Furthermore, all generative models
tend to extract sentences from the opening parts of different sections in a
scientific paper, which aligns with findings in the SFR task that the
beginning and ending parts of sections often contain more important
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/11 ) Task Introduction

as follows:
e Criteria for informativeness:
e Criteria for readability:

e Criteria for coherence:

(2) Evaluation Steps

Evaluation Criteria.

Human-written summary:
Generated Summary:

o Informativeness:

e Coherence:

® Readability:

\_

You will be given a generated summary and a Human-written summary for a scientific paper. Your task is to rate
the generated summary on three aspects: informativeness, readability, coherence. The criteria for each aspect are

1. Read the Human-written summary carefully and assess its key points, clarity, and logical flow as a reference.
2. Read the generated summary and compare it to the Human-written summary.
3. Assign a score for each aspect on a scale of 1 to 5, where 1 is the lowest and 5 is the highest based on the

4. Your output should only be the score, without additional comments or explanations.

\

Fig. 5. The evaluation process for generated summaries using G-EVAL metric.

Table 12
The results of the LLM evaluation of the generated summaries from different
models.

Models Informativeness ~ Coherence  Readability = #Average
Human-written 4.51 4.48 4.60 4.53
BERTSUM 2.81 2.46 2.71 2.66
BART 3.37 3.06 3.18 3.28
PEGASUS 3.32 3.29 3.29 3.22
T5-base 3.31 3.54 3.20 3.35
Discourse-Aware 3.73 3.75 3.38 3.62
SciBERTSUM 3.83 3.98 3.61 3.80
BigBird-Pegasus 3.64 3.95 3.87 3.82
ExtSum-LG + RdLoss  3.84 4.02 4.09 3.98
Longformer 3.98 4.14 4.15 4.09
GPT-4 4.20 4.27 4.42 4.30
Table 13

The abstractive summarization performance of the Longformer w/o structure
information.

Model PubMed
ROUGE- ROUGE- ROUGE- GEMcr
1 2 L
Ours 45.38 19.27 40.97 0.83
w/ title + full-text 43.72 17.75 38.48 0.55
w/ title + full-text + author- 44.08 19.25 39.64 0.70
provided structure
w/ title + full-text + keywords 44.12 19.30 39.73 0.74
mapping structure
Model arXiv
ROUGE- ROUGE- ROUGE- GEMcr
1 2 L
Ours 44.51 18.26 39.64 0.78
wy/ title + full-text 41.76 15.62 37.18 0.59
wy/ title + full-text 4+ author- 43.28 18.18 38.29 0.64
provided structure
wy/ title + full-text + keywords 42.77 18.14 37.96 0.61

mapping structure

13

information.

6. Discussion

In this section, we summarize the main findings of this paper and
discuss their implications. Then, we highlight some limitations of our
work and suggest areas for further improvement.

6.1. Implications

Automated summarization of scientific papers is important for
managing large volumes of literature and enhancing research efficiency
in the field. In this paper, we propose a two-stage framework for
abstractive summarization of scientific papers. In the first stage, we
automatically identify the main sections (e.g. Background, Method,
Result, and Conclusion) of scientific papers that are most relevant to the
human-written abstract, which helps improve the comprehensiveness of
the summary while reducing computational complexity. In this task, the
SciBERT mode demonstrates superior performance compared to other
deep learning methods. Additionally, we observe that the beginning and
end of each chapter contain more important information, which con-
tributes to improving the structural function recognition in scientific
papers.

Based on this finding, we further analyzed the distribution of similar
sentences between abstracts and full texts using cosine similarity, as
illustrated in Fig. 7. The results highlight a clear preference for the
beginning and end of the articles, which are more conducive to sum-
marization. Furthermore, we conduct a comparative analysis of main-
stream PLMs in abstractive summarization. The results show that
Longformer outperform other baseline models. In contrast, GPT-4 ex-
hibits the lowest ROUGE scores when compared to human-written ab-
stracts, yet achieves high performance in both human evaluations and
LLM evaluations. A case study reveals that GPT-4 frequently employs
connectives, pronouns, and excessive elaboration, contributing to its
lower ROUGE scores. However, its strong performance in human and
LLM assessments highlights GPT-4's strengths in coherence and read-
ability. These findings highlight the bias and limitations of using tradi-
tional summary evaluation metrics, such as ROUGE and BLEU, in assess
generative models like GPT-4.

Finally, our research holds notable implications for fields that
heavily rely on literature reviews. For example, in the computer science
and biology domains, rapid technological advancements have resulted
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Radiocontrast administration is an important cause of acute renal failure. in this study , compared the plasma
creatinine levels with spot urine il-18 levels following radiocontrast administration. twenty patients (11 males,
9 females ) underwent radiocontrast diagnostic and therapeutic - enhanced examinations. the rin mehran risk
score was low (5). the radiocontrast agents used were 623 mg / ml iopromid (1.5 ml / kg ), and 100 ml of 650
mg / ml meglumine diatrizoate as three - way oral and rectal contrast material for abdominal computed
tomography (ct scans. serum blood ureanitrogen, creatinin , na, k, cl, ca, p, creatinine clearance , and spot
urine il-18 levels were analyzed before and repeated at 24 , 48, and 72 h after radiocontrast administration. six
and 24-h urinary il-18 levels were measured with a human il-18 elisa kit following radiocontrast administration.
an increase in plasma creatinine 24 and 48 h following radiocontrast administration was observed compared
with precontrast values, but it was not statistically significant ( p=0.052 and p=0.285 , respectively). a
statistically significant increase in il-18 levels was observed at 6 and 24 h , compared with precontrast values
( p=0.048 and p=0.028 , respectively). a tendency for postcontrast 24-h urinary il-18 levels to increase was
observed compared with 6 h , but the increase was not statistically significant (p=0.808). our results show that
plasma creatinine starts to increase at 24th hour ; however , spot urineil-18 levels go up at 6th hour following

radiocontrast administration implying urine il-18 to be an earlier parameter for kidney injury.

B1: induced nephropathy (rin) can lead tohmf increases treatment cost
due to sepsis, hemorrhage, respiratory failure, and a long hospitalization.

Ml

j at the department of internal medicine from january 2009 to march 2009. The study was approved
by the institute ethics committee and written consent was obtained from the selected patients based on a low
mehran risk score (5) serum creatininelevelsim:M compared with
precontrast levels, although the result

R3:a sllght increase in creat in 48h was observed, but they fell to pre Contrast values at 72 h. spot -
in patients were significantly increased.

C3:The most common definition of rin is _ of 0.5 mg/dl or higher 72h after contrast

administration or 25% higher than the basal . The first 24 h remains unclear in patients

with acute renal injury, but BISNEREE start to increase within 4-6 h.

ROUGE-1:0.4387 ROUGE-2:0.1571 ROUGE-L: 0.4238

BI] induced nephropathy (rin) S ANMMDONANNEAISEO! hospital-acquir cdEMGTCRANINTENa

and is responsible for 12% of cases.

Bl9:recent studies have reported that urine levels of il-18(a pro-inflammatory cytokine), kidney injury

molecule-1, and neutrophil gelatinase - associated lipocalin (ngal) levels are important for early detection of

rin.

- in this study. we aimed 1o compare the plasma creatinine levels with spot urine il-8 levels following

intravenous iopromid (623 mg/ml, 1.5 ml/kg;ultravist 300) administration.

at the department of internal medicine from january 2009 to march 2009.

M 7:a precontrast-enhanced examination of

were measured with a human I8 elisa kit before and 6 and 24 h after
intravenous iopremid administration.
M30:the statistical analysis was performed with the ncss pass 2007 and 2008 statistical software (kaysville,ut,
usa)

R3:a slii]it increase in the level of spot urinary il8 was observed at

ROUGE-1:0 9 ROUGE-2:0.2851 ROUGE-L: 0.5519

B1: induced nephropathy (RIN) can cause (ARF), leading to dialysis therapy.
ARF increases treatment costs due to complications such as sepsis, hemorrhage, respiratory failure, and lengthy
hospital stays. RIN is responsible for 12% of hospital-acquired ARF cases. Possible mechanisms for RIN
include renal medullary hypoxia and the toxic effects of contrast agents on renal tubules. Risk factors for RIN
include renal insuff

M1 SN ERRIESNHUEHRNE o - -SNSNESRNSRaNoN - 1 c Department
of Internal Medicine from January to March 2009.

?2:The study had ethical approval and written consent from the patients. Pre-and post-contrast examinations
were conducted to analyze various blood and urine parameters. Specific contrast materials were used for the
examinations.

R1:After receiving radiocontrast, serum creatinine levels increased but were

However, there was a slight increase in creatinine levels at 48 hours, which returned to precontrast levels at 72
hoursﬁ also slightly increased at 24 and 48 hours, but again, it was not statistically
significant.

R9:0n the other hand, postcontrast urinary levels of il-18 at 6 and 24 hours significantly increased compared
to precontrast levels.

C4:There was a tendency for The common definition of renal injury (RIN) is am
mg/dl or higher 72 hours after contrast administration or 25% higher than the baseline level.

ﬁ ﬁ within 24 hours in 80% of RIN patients, peaking at 48-72 hours, and returning to normal
after 2 weeks. The first 24 hours are unclear, but H

ROUGE-1:0.3377 ROUGE-2: 0.0744 ROUGE-L: 0.3245

begin to increase within 4-6h.

Fig. 6. A comparative case study between the generated summary and the golden truth abstracts from the source paper. (The source article is from the paper
PMC3459524, https://doi.org/10.4103/0971-4065.98756). Letters to the left of each sentence indicate different sections, where B, M, R, and C stand for Back-
ground, Methods, Results, and Conclusion, and the numbers indicate the respective line positions within each section. The portions overlapping with the golden

summary are highlighted in green.

in a high volume of new publications daily. Summarizing these papers is
crucial for improving research efficiency in these areas. In particular, the
advancement of open access policies providing convenient to freely
download these papers in PDF format. Moreover, recent developments
in efficient PDF parsing tools, such as GPTpdf,”" LlamaParse®' and

20 https://github.com/CosmosShadow/gptpdf;.
2 https://github.com/run-llama/llama_parse.
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PymuPDF,?? have further enhanced the ability to process scientific
documents. Therefore, in this context, our work can serve as a founda-
tion for future automated summarization from scientific papers, and
further contributing to research on review generation.

22 https://github.com/pymupdf/PyMuPDF.
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Fig. 7. The distribution of sentence positions in arXiv and PubMed articles corresponding to abstracts.

6.2. Limitations

This paper has several limitations. Firstly, our proposed two-stage
framework for abstractive summarization of scientific articles, which
includes two sequential tasks: structural function recognition and
abstractive summarization, may introduce potential errors in task
transmission. Secondly, while we applied PLMs like BART, PEGASUS,
T5, and Longformer for abstractive summarization, we did not fine-tune
them specifically to the arXiv and PubMed datasets. Fine-tuning these
models on domain-specific datasets could help enhance their perfor-
mance for specific tasks (Liu et al., 2019). Lastly, due to equipment
limitations, our proposed two-stage model did not utilize larger and
more recent models, so its performance could be further improved in the
future.

Another limitation is that our model, while designed to work effec-
tively with papers following the IMRaD structure, may struggle with
non-IMRaD articles. Specifically, the modeling of scientific paper
structures has always been one of the research hotspots. Although the
IMRaD format is widely adopted in the natural sciences, models such as
the Harmsze (Harmsze, 2000) also hold an important place in the
structure of scientific papers. Additionally, for papers in the social sci-
ences, there is greater structure flexibility due to the use of varied
theoretical frameworks and a wide range of research methods (Mohajan,
2018). Therefore, IMRaD format is not universally applicable across all
disciplines, and exploring more generalizable structures for organizing
scientific papers will be a focus in the future.

7. Conclusion and future work

In this paper, we propose a novel two-stage framework for
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abstractive summarization of scientific papers, which is based on auto-
matic structural function recognition to generate comprehensive sum-
maries. To achieve this, we first normalized the chapter titles of
numerous scientific papers and reconstructed a structural function
recognition corpus. We then developed a long text classification model
by fine-tuning a pre-trained model on this corpus, and achieved
improved performance by leveraging key information from the begin-
ning and end of chapters. Next, this model was used to automatically
recognize important structural functions such as Background, Method,
Results, and Conclusion, where were input into a generative model to
produce a comprehensive and balanced summary. Additionally, in view
of the fact that most traditional summarization evaluation metrics only
reflect lexical overlap with human-written summaries, we further
designed new evaluation criteria to assess the generated summaries
from both human and LLM perspectives.

In the experiments, our model outperformed mainstream PLMs on
two publicly available scientific paper summarization datasets
(PubMed, arXiv), and the summaries generated by our model were more
comprehensive. We also demonstrated the positive impact of chapter
structure information on improving the quality and completeness of
scientific paper summarization.

We hope our work provides valuable insights into the application of
abstractive summarization for scientific papers. Meanwhile, we notice
that the proposed two-stage framework could be optimized by exploring
alternative backbones. In our future research, more advanced LLM will
be investigated for structure information extraction and abstractive
summarization to further enhance performance.
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