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Abstract1

Despite great advances, achieving high-fidelity emotional voice2

conversion (EVC) with flexible and interpretable control re-3

mains challenging. This paper introduces ClapFM-EVC, a4

novel EVC framework capable of generating high-quality con-5

verted speech driven by natural language prompts or refer-6

ence speech with adjustable emotion intensity. We first pro-7

pose EVC-CLAP, an emotional contrastive language-audio pre-8

training model, guided by natural language prompts and cat-9

egorical labels, to extract and align fine-grained emotional el-10

ements across speech and text modalities. Then, a FuEn-11

coder with an adaptive intensity gate is presented to seamless12

fuse emotional features with Phonetic PosteriorGrams from a13

pre-trained ASR model. To further improve emotion expres-14

siveness and speech naturalness, we propose a flow matching15

model conditioned on these captured features to reconstruct16

Mel-spectrogram of source speech. Subjective and objective17

evaluations validate the effectiveness of ClapFM-EVC.18

Index Terms: emotional voice conversion, natural language19

prompt, contrastive language-audio pretraining, conditional20

flow matching21

1. Introduction22

Emotional voice conversion (EVC) aims to convert the emo-23

tional state of source speech to a target category while preserv-24

ing original content and speaker identity [1]. Recently, EVC25

has garnered great attention within the speech processing realms26

and holds great potential for many practical applications such as27

voice assistant, audiobook production, and dubbing [2, 3, 4].28

In general, the key challenges for EVC lie in the accurate29

and efficient extraction, decoupling, and use of various speech30

attributes, such as the emotion [5, 6], content [7, 8], and timbre31

[9, 10] information from speech signals. With rapid progress32

in deep learning, existing EVC methods are generally based on33

generative adversarial networks (GANs) [11, 12, 13] and au-34

toencoder models [14, 15, 16]. StarGAN [11] used a cycle-35

consistent and class-conditional GAN to achieve EVC. [16] pro-36

posed AINN, an attention-based interactive disentangling net-37

work with a two-stage pipeline for fine-grained EVC. However,38

the converted speech of these systems lacks emotional diversity,39

which is crucial for realistic speech synthesis [17]. To this end,40

several studies [16, 17, 18] shifted towards incorporating inten-41

sity control modules into EVC framework to allow more pre-42

cise manipulation of emotional expression. Emovox [18] dis-43

entangled speaker style and controlled emotional intensity by44

encoding emotion in a continuous space. EINet [17] predicted45

emotional class and intensity via an emotion evaluator and in-46

tensity mapper, incorporating controllable emotional intensity47

to enhance naturalness and diversity of emotion conversion.48

Despite impressive advances, these approaches still face 49

challenges. First, current EVC systems based on GANs and au- 50

toencoders, while promising, have great potential for improve- 51

ments in emotional diversity, naturalness, and speech quality 52

[17, 19]. Second, current methods typically rely on reference 53

speech or categorical text labels as conditions to control a lim- 54

ited set of emotional expressions. Nevertheless, this paradigm 55

not only imposes constraints on the user experience, but restricts 56

the diversity of emotional expressions, while falling short in in- 57

tuitiveness and interpretability of conveyed emotions. 58

To mitigate the aforementioned issues, this paper presents 59

ClapFM-EVC, an innovative any-to-one EVC framework that 60

enables flexible and intuitive control of emotion conversion in 61

a user-friendly manner. To elaborate, we first propose EVC- 62

CLAP (Contrastive Language Audio Pretraining), which is 63

guided by both natural language prompts and emotional cate- 64

gorical labels, so as to extract and align the emotion features 65

across speech-text modalities. Additionally, we introduce an 66

end-to-end voice conversion (VC) model, termed AdaFM-VC, 67

composed of pre-trained ASR model, FuEncoder and condi- 68

tional flow matching (CFM) model. Using FuEncoder with an 69

adaptive intensity gate (AIG), AdaFM-VC is able to integrate 70

the captured emotional representations with Phonetic Posteri- 71

orgrams (PPGs) from a pre-trained ASR model HybridFormer 72

[20], while allowing flexible control over the emotional inten- 73

sity of the converted waveform. To further enhance emotional 74

expressiveness, naturalness and speech quality, we incorporate 75

a CFM-based decoder [21, 22] that samples the output of the 76

FuEncoder from random Gaussian noise and reconstructs the 77

Mel-spectrogram of the source speech. During inference, EVC- 78

CLAP can generate target emotional embeddings based on the 79

given natural language prompt, and then AdaFM-VC lever- 80

ages the target emotion vectors, source PPGs, and predefined 81

emotional intensity to reconstruct the target Mel-spectrogram, 82

which is ultimately converted into the target speech by a pre- 83

trained vocoder [23]. Extensive experiments and ablation stud- 84

ies demonstrate that our ClapFM-EVC significantly outper- 85

forms several existing EVC approaches in terms of emotional 86

expressiveness, speech naturalness, and speech quality. 87

2. METHODOLOGY 88

2.1. System Overview 89

As illustrated in Fig. 1, ClapFM-EVC can be characterized as 90

a conditional latent model, where the proposed EVC-CLAP, 91

FuEncoder, CFM-based decoder, as well as pretrained ASR 92

[20] and vocoder [23] models serve as its core components. 93

Similarly to [24, 25], we first train EVC-CLAP using a 94

symmetric Kullback-Leibler divergence based contrastive loss 95

(symKL-loss) along with soft labels derived from natural lan- 96



Figure 1: Overall training architecture of the proposed ClapFM-EVC framework.

guage prompts and their corresponding categorical emotion la-97

bels. In this way, EVC-CLAP can effectively extract and align98

emotional representations across audio and text modalities,99

while enabling ClapFM-EVC to capture fine-grained emotional100

information conveyed by natural language prompts. Then, we101

train the AdaFM-VC using the obtained emotional elements102

and content representations extracted by EVC-CLAP and pre-103

trained HybridFormer, respectively. The FuEncoder within104

AdaFM-VC facilitates the seamless integration of emotional105

and content characteristics, with its AIG module explicitly con-106

trolling the intensity of emotional conversion. Concurrently, the107

CFM model in AdaFM-VC samples the outputs of the FuEn-108

coder from random Gaussian noise, and, conditioned on the109

target emotional vector produced by EVC-CLAP, it generates110

the Mel-spectrogram features of target speech. Finally, the111

generated Mel-spectrogram features are fed into a pre-trained112

vocoder to synthesize the converted speech.113

During inference, it is worth noting that our ClapFM-EVC114

framework provides three modes for obtaining the target emo-115

tional embeddings: (1) directly based on the provided reference116

speech; (2) directly based on the given natural language emo-117

tional prompt; and (3) EVC-CLAP retrieves relevant data from118

a pre-constructed high-quality reference speech corpus using119

specified natural language emotional prompt, subsequently ex-120

tracting the target emotion elements from the retrieved speech.121

2.2. Soft-Labels-Guided EVC-CLAP122

Overall, the purpose of Emo-CLAP training is to minimize the123

distance between data pairs within the same class, while simul-124

taneously maximizing the distance between pairs of data from125

different categories.126

Assume that the input data pair is {Xa
i , X

y
i , X

p
i }, where127

Xa
i is the source speech, Xy

i and Xp
i denote its correspond-128

ing emotional label and natural language prompt, i∈[0, N ] and129

N is the batch size. Our EVC-CLAP first adopts a pre-trained130

HuBERT1 [26] based audio encoder and a pre-trained XLM-131

RoBERTa2 [27] based text encoder to compress Xa
i and Xp

i132

into two latent variables Za∈RN×D and Zp∈RN×D , where D133

equals 512, representing the hidden state dimension. Following 134

this, we compute their corresponding similarity matrices Sa
pred 135

and Sp
pred as: 136

Sa
pred = εa × (Za · Zp

T )

Sp
pred = εt × (Zp · Za

T )
(1)

where εa and εt are two learnable hyper-parameters, with their 137

values empirically initialized to 2.3. Subsequently, we employ 138

symKL-loss to train Emo-CLAP with the guidance of the soft 139

labels Ms
GT ∈ RN×N derived from Xy

i and Xp
i . 140

Ms
GT = αeM

y
GT + (1− αe)M

p
GT (2)

where αe is a hyper-parameter to adjust My
GT and Mp

GT, empiri- 141

cally set to 0.2 in our case. In detail, if the categorical emotional 142

labels or natural language prompt labels of different data pairs 143

within the same batch are identical, their corresponding ground 144

truth is assigned a value of 1; otherwise, it is set to 0. To en- 145

sure the consistency of the label distributions across the batch, 146

the class similarity matrices ME
GT and MP

GT are normalized such 147

that the sum of each row equals 1, effectively capturing the rel- 148

ative similarity between data pairs. Therefore, the training loss 149

of EVC-CLAP can be formulated as: 150

LsymKL =
1

4

(
KL
(
Sa

pred||Ms
GT
)
+ KL

(
M̃s

GT||S
a
pred

)
+KL

(
Sp

pred||M
s
GT
)
+ KL

(
M̃s

GT||S
p
pred

)) (3)

151

M̃s
GT = (1− α) ·Ms

GT +
α

N
(4)

152

KL(S||M) =
∑
i,j

S(i, j) log
S(i, j)

M(i, j) (5)

where α is a hyper-parameter, empirically set to 1×10−8. 153

154

1https://huggingface.co/TencentGameMate/chinese-hubert-large
2https://huggingface.co/FacebookAI/xlm-roberta-base



2.3. AdaFM-VC155

2.3.1. FuEncoder with AIG156

As a pivotal intermediate component within ClapFM-EVC,157

FuEncoder aims to seamlessly integrate content features ex-158

tracted by HybridFormer with emotional embeddings derived159

from EVC-CLAP, while offering flexible control over the emo-160

tion intensity through the adaptive intensity gate, namely AIG.161

Detailed, FuEncoder comprises a preprocessing network162

(PreNet), a positional encoding module, an AIG module, an163

adaptive fusion module, and a linear mapping layer. First,164

PreNet is presented to compress the source content features165

Zc to a latent space, preventing overfitting through a dropout166

mechanism. Next, a positional encoding module is advocated167

to employ sinusoidal positional encoding to extract the posi-168

tional characteristics of Zc and performs element-wise addition169

withZc to ensure that FuEncoder learns its sequential and struc-170

tural information. Afterwards, we propose an AIG module to171

multiply a learnable hyperparameter by the EVC-CLAP’s emo-172

tional features to flexibly adjust the emotional intensity. As the173

core of FuEncoder, the adaptive fusion module consists of mul-174

tiple fusion blocks, each of which contains a multi-head self-175

attention layer, two emotion adaptive layer norm layers [28],176

and a position-wise feed-forward network layer, enabling effi-177

cient fusion of content and emotional information, thus generat-178

ing rich embedding representations that contain both linguistic179

and emotional characteristics. The fused features are ultimately180

mapped to the specific dimensions f∈RB×T×D through a fully181

connected layer.182

2.3.2. Conditional Flow Matching-based Decoder183

To further enhance emotion expressiveness, speech natural-184

ness, and quality, we incorporate an optimal transport (OT)-185

based CFM model to reconstruct the target Mel-spectrogram186

x1 = p1(x) from a standard Gaussian noise x0 = p0(x) =187

N (x; 0, I). To elaborate, conditioned on the captured EVC-188

CLAP’s emotional embeddings, an OT flow ψt : [0, 1]×Rd →189

Rd is adopted to train our CFM-based decoder, which consists190

of 6 CFM blocks with timestep fusion. Each CFM block con-191

tains a ResNet [29] module, a multi-head self-attention [30]192

module and a FiLM [31] layer. By utilizing an ordinary differ-193

ential equation to model a learnable and time-dependent vector194

field vt : [0, 1]× Rd → Rd, the flow can approximate the opti-195

mal transport path from p0(x) to the target distribution p1(x):196

d

dt
ψt(x) = vt(ψt(x), t) (6)

where ψ0(x) = x and t ∈ [0, 1]. Besides, drawing inspiration197

from previous works [32], which suggest adopting straighter198

trajectories, we simplify the OT flow formula as follows:199

ψt,z(x) = µt(z) + σt(z)x (7)

where µt(z) = tz, σt(z) = (1 − (1 − σmin)t), and z repre-200

sents the random conditioned input. σmin denotes the minimum201

standard deviation of the white noise introduced to perturb in-202

dividual samples, with its value empirically set to 0.0001.203

Consequently, the training loss for AdaFM-VC is defined204

as:205

L = Et,p(x0),q(x1)∥(x1−(1−σ)x0)−vt(ψt,x1(x0)|h)∥
2 (8)

where x0∼p(x0), x1∼q(x1), t∼U [0, 1], q(x1) denotes the true206

yet potentially non-Gaussian distribution of the data, h refers to207

the conditional emotion embeddings extracted by EVC-CLAP.208

3. EXPERIMENTS 209

3.1. Experimental Setups 210

3.1.1. Datasets 211

Since no open-source EVC corpus with comprehensive emo- 212

tional natural language prompts is currently available, we lever- 213

age an internally developed expressive single-speaker Mandarin 214

corpus for training the proposed ClapFM-EVC system. This 215

corpus encompasses 20 hours of speech data sampled at 24 kHz. 216

From this, we specifically selected 12,000 utterances represent- 217

ing 7 original categorical emotion classes (neutral, happy, sad, 218

angry, fear, surprise, disgust). To ensure high-quality annota- 219

tions, we enlisted 15 professional annotators to provide natural 220

language prompts for the selected waveforms. 221

3.1.2. Implementation Details 222

In all experiments, the proposed EVC-CLAP and AdaFM-VC 223

models are trained end-to-end using 8 NVIDIA RTX 3090 224

GPUs. For training the EVC-CLAP model, the Adam opti- 225

mizer is employed with an initial learning rate of 1× 10−5 and 226

a batch size of 16. All models are trained for 40 epochs within 227

the PyTorch framework. Afterwards, the AdaFM-VC approach 228

is trained using the AdamW optimizer over 500,000 iterations 229

on the same GPU setup, with an initial learning rate of 2×10−4
230

and a batch size of 32. During inference, the Mel-spectrogram 231

of the target waveform is sampled using 25 Euler steps within 232

the CFM-based decoder, with a guidance scale set to 1.0. 233

3.1.3. Evaluation Metric 234

To assess speech quality and emotion similarity of ClapFM- 235

EVC, we perform subjective and objective evaluations. Regard- 236

ing speech quality, a variety of objective metrics are used, in- 237

cluding Mel-cepstral distortion (MCD), root mean squared error 238

(RMSE), character error rate (CER), and predicted MOS (UT- 239

MOS). For emotion similarity, we employ a pretrained speech 240

emotion recognition model3 [33] to compute the cosine similar- 241

ity of emotion embeddings between the converted and reference 242

speech, referred to as the emotion embedding cosine similarity 243

(EECS). The CER and UTMOS are calculated using pretrained 244

CTC-based ASR4 and MOS prediction5 approaches. Besides, 245

the subjective Mean Opinion Score (MOS) with a 95% confi- 246

dence interval is used to measure naturalness (nMOS) and emo- 247

tion similarity (eMOS). In practice, we invite 12 professional 248

raters to participate in the evaluation. The scoring scale ranges 249

from 1 to 5, with increments of 1, where higher scores indicate 250

better performance. The audio samples are available online6. 251

252

3.2. Main Results 253

3.2.1. EVC by Reference Speech 254

To evaluate the performance of ClapFM-EVC, we compare it 255

with several existing EVC methods, i.e., StarGAN-EVC7 [11], 256

Seq2seq-EVC8 [34], and MixEmo9 [35]. Since these baselines 257

3https://github.com/ddlBoJack/emotion2vec
4https://huggingface.co/facebook/hubert-large-ls960-ft
5https://github.com/tarepan/SpeechMOS
6https://anonymous.4open.science/w/clapfm-evc-ACF1
7https://github.com/glam-imperial/EmotionalConversionStarGAN
8https://github.com/KunZhou9646/seq2seq-EVC
9https://github.com/KunZhou9646/Mixed Emotions



Table 1: Overall comparison results of the speech quality and emotion similarity between our proposed ClapFM-EVC system and other
SOTA baseline methods using reference speech. nMOS and eMOS are presented with 95% confidence intervals.

Model MCD (↓) RMSE (↓) CER (↓) UTMOS (↑) nMOS (↑) EECS (↑) eMOS (↑)
StarGAN-EVC [11] 8.85 19.48 13.07 1.45 2.09 ± 0.12 0.49 1.97 ± 0.09
Seq2seq-EVC [34] 6.93 15.79 10.56 1.81 2.52 ± 0.11 0.54 2.23 ± 0.11

MixEmo [35] 6.28 13.84 8.93 2.09 2.98 ± 0.07 0.65 2.58 ± 0.13
ClapFM-EVC 5.83 10.91 6.76 3.68 4.09 ± 0.09 0.82 3.85 ± 0.06

employ the reference waveform to facilitate EVC, we first ex-258

amine their performance using reference speech.259

As evidenced in Table 1, our ClapFM-EVC consistently260

attains state-of-the-art performance in both speech quality261

and emotion similarity. With regard to emotion similarity,262

ClapFM-EVC exhibits significant advancements over baseline263

approaches, achieving notable relative improvements of at least264

26.2% in EECS and 53.1% in eMOS, respectively. This in-265

dicates that our proposed ClapFM-EVC framework has a re-266

markable capability to precisely capture and effectively trans-267

fer the target emotional characteristics during emotional voice268

conversion. Regarding speech quality, the experimental results269

reveal that ClapFM-EVC exhibits superior results across multi-270

ple objective metrics. Detailed, ClapFM-EVC shows enhanced271

performance by achieving the lowest values in MCD, RMSE,272

and CER metrics, respectively. Moreover, subjective evalua-273

tion confirms that ClapFM-EVC gains the highest scores in both274

nMOS and UTMOS, with relative improvements of 37.2% and275

49.2%, respectively, over the best-performing baseline method.276

These results underscore its exceptional capability in maintain-277

ing superior perceptual quality.278

3.2.2. EVC by Natural Language Prompt279

To compare the performance of ClapFM-EVC when using ref-280

erence speech (Reference) versus natural language prompts281

(Prompt), we further conduct an ABX preference test.282

Figure 2: The ABX preference test results compare the Refer-
ence with Prompt.

As shown in Fig. 2, the first test aims to evaluate the emo-283

tional similarity between the converted speech driven by Ref-284

erence and Prompt. 47 participants were asked to rate speech285

samples generated by Prompt, with Reference serving as the286

benchmark, on a scale from -1 to 1. Here, -1 indicates that287

the converted speech driven by Reference shows better emo-288

tion similarity, and 0 indicates no preference. The results289

revealed that 57.4% of participants selected ”no preference,”290

while 19.1% favored the ”Prompt,” suggesting that ClapFM-291

EVC can effectively control the emotional expression of con-292

verted speech via Prompt. In addition, we assess the quality293

of the converted speech relative to ground truth samples. Par-294

ticipants were required to choose the converted speech sample295

that is closer to ground truth in speech quality. As shown in the296

figure, the preference rates for speech driven by Reference and297

Prompt are 25.5% and 23.4%, showcasing that ClapFM-EVC is298

able to achieve high-quality EVC driven by Prompt. 299

3.3. Ablation Study 300

To evaluate the contributions and validity of each component of 301

the proposed system, we conduct ablation studies. All results 302

are summarized in Table 2. 303

Table 2: Ablation results of the proposed ClapFM-EVC driven
by natural language prompts. ’w/o emo label’ denotes removing
emotional categorical labels when training EVC-CLAP, ’w/o
symKL’ represents replacing symKL-loss with KL-Loss, ’w/o
AIG’ denotes removing the AIG module of AdaFM-VC.

Model UTMOS (↑) nMOS (↑) EECS (↑) eMOS (↑)
ClapFM-EVC 3.63 4.01 ± 0.06 0.79 3.72 ± 0.08

w/o emo label 3.61 3.96 ± 0.11 0.66 3.01 ± 0.07
w/o symKL 3.57 3.89 ± 0.05 0.71 3.28 ± 0.08

w/o AIG 3.25 3.62 ± 0.12 0.74 3.52 ± 0.05

From the table above, we can easily reach the following 304

conclusions: (1) In the absence of categorical emotional la- 305

bels, the EECS and eMOS scores exhibit a significant decline, 306

while the speech quality metrics remain largely unaffected. This 307

demonstrates the effectiveness and rationality of the proposed 308

soft-label-guided training strategy in our EVC-CLAP. (2) When 309

training EVC-CLAP with KL-Loss, the EECS and eMOS val- 310

ues showed a relative performance drop of 10.1% and 11.8%, 311

indicating that the proposed symKL-Loss can effectively en- 312

hance the emotion representation capability of EVC-CLAP. (3) 313

The removal of the AIG module leads to a notable deteriora- 314

tion in speech quality and a slight performance reduction in 315

emotional similarity. This underscores the critical role of the 316

proposed AIG module in adaptively integrating content and 317

emotional characteristics, thereby improving the overall perfor- 318

mance of our proposed ClapFM-EVC system. 319

4. CONCLUSIONS 320

In this study, we propose ClapFM-EVC, an innovative and ef- 321

fective high-fidelity any-to-one EVC framework that features 322

flexible and interpretable emotion control along with adjustable 323

emotion intensity. Specifically, the proposed ClapFM-EVC 324

initially employs EVC-CLAP to extract and align emotional 325

elements across audio-text modalities. To enhance the emo- 326

tional representational capacity, we utilize symKL-Loss to train 327

the proposed EVC-CLAP model, guided by soft labels derived 328

from the natural language prompts and their corresponding cat- 329

egorical emotion labels. Subsequently, we introduce AdaFM- 330

VC based on the pre-trained ASR model, the proposed FuEn- 331

coder and CFM-based decoder to achieve high-fidelity and flex- 332

ible emotion voice conversion. Extensive experiments indicate 333

that our ClapFM-EVC is able to generate converted speech with 334

precise emotion control and high speech quality driven by nat- 335

ural language prompts. 336
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