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ABSTRACT

Language model calibration refers to the alignment between the confidence of the
model and the actual performance of its responses. While previous studies point
out the overconfidence phenomenon in Large Language Models (LLMs) and show
that LLMs trained with Reinforcement Learning from Human Feedback (RLHF)
are overconfident with a more sharpened output probability, in this study, we reveal
that RLHF tends to lead models to express verbalized overconfidence in their own
responses. We investigate the underlying cause of this overconfidence and demon-
strate that reward models used for Proximal Policy Optimization (PPO) exhibit
inherent biases towards high-confidence scores regardless of the actual quality
of responses. Building upon this insight, we propose two PPO variants: PPO-M:
PPO with Calibrated Reward Modeling and PPO-C: PPO with Calibrated Reward
Calculation. PPO-M integrates explicit confidence scores in reward model training,
which calibrates reward models to better capture the alignment between response
quality and verbalized confidence. PPO-C adjusts the reward score during PPO
based on the difference between the current reward and the moving average of past
rewards. Both PPO-M and PPO-C can be seamlessly integrated into the current
PPO pipeline and do not require additional golden labels. We evaluate our meth-
ods on both Llama3-8B and Mistral-7B across six diverse datasets including
multiple-choice and open-ended generation. Experiment results demonstrate that
both of our methods can reduce calibration error and maintain performance com-
parable to standard PPO. We further show that they do not compromise model
capabilities in open-ended conversation settings.

1 INTRODUCTION

As Large Language Models (LLMs) significantly expand their functionality to a wide range of applica-
tions from complex problem solving (Wei et al., 2022; Song et al., 2023a) to science discovery (Imani
et al., 2023; OpenAI, 2023), the importance of their reliability becomes increasingly critical. A key
aspect of this reliability is language model calibration – the alignment between model confidence and
its actual performance. LLM confidence can be assessed through two primary methods: logit-based
approaches, derived from output token probability distributions, and verbalized expressions, where
the model explicitly states its confidence level. In this paper, we focus on verbalized confidence,
where we prompt LLMs to express a confidence score for their responses (Figure 1, Top).

Reinforcement Learning from Human Feedback (RLHF) has significantly improved LLM perfor-
mance through two key components: reward modeling, which learns to predict human preferences
from ranking datasets, and policy optimization guided by reward models, typically implemented with
Proximal Policy Optimization (PPO) (Schulman et al., 2017). However, recent studies (Kadavath
et al., 2022; OpenAI, 2023) show that RLHF-trained LLMs tend to exhibit overconfidence, potentially
due to sharpened output distributions. Previous works address LLM confidence through various
methods. Scaling-based approaches (Guo et al., 2017; Zhang et al., 2020) adjust model logits with
decoding temperature, while verbalized confidence is enhanced via prompting strategies (Tian et al.,
2023) and supervised fine-tuning (Lin et al., 2022) using ground truth accuracy. More recently,
RLHF-based calibration methods (Xu et al., 2024; Tao et al., 2024) are proposed.

Our study investigates the underlying causes of overconfidence introduced by RLHF. We demonstrate
empirical evidence that RLHF-LLMs elicit verbalized overconfidence compared to their pre-RLHF
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Figure 1: (Top): Illustration of verbalized confidence generation. An LLM incorrectly answers a
question with high confidence. (Bottom): Comparison between reward scores from a vanilla-trained
reward model Llama-3-8b-rm-mixture and our calibrated reward model Llama-3-8b-crm.
The vanilla model shows bias towards high confidence though the answer is incorrect. Our calibrated
reward model can correctly assign a higher reward to the low confidence for the incorrect answer.

counterparts. We then reveal a system bias in reward models favoring responses with high confi-
dence scores, regardless of the actual response quality, which potentially causes the poor calibration
in RLHF-LLMs. We propose two novel solutions to be seamlessly integrated into the RLHF process
without additional golden labels.

• PPO with Calibrated Reward Modeling (PPO-M) calibrates the reward modeling process. We
augment the binary pairwise ranking dataset with explicit confidence scores, and encourages the
reward model to align confidence levels with response quality (Figure 1, Bottom).

• PPO with Calibrated Reward Calculation (PPO-C) adjusts standard reward model scores during
PPO training. It maintains a running average of past reward scores as a dynamic reference, and
adjusts the reward scores based on model expressed verbalized confidence.

We conduct experiments on Llama3-8B and Mistral-7B across six datasets, and demonstrate
that both PPO-M and PPO-C consistently outperform vanilla PPO, achieving a lower Expected
Calibration Error (ECE) while maintaining comparable or higher accuracy (PPO-M on Llama3-8B
reduces ECE by 6.44 points and increases accuracy by 2.73 points on GSM8K (Cobbe et al., 2021)).
Moreover, evaluation on MT-Bench (Zheng et al., 2024) shows that PPO-M and PPO-C preserve
model capabilities in general open-ended conversation settings. We further demonstrate that PPO-M
generalizes well to Direct Preference Optimization (DPO) models (Rafailov et al., 2024), which
are implicit reward models. Experiments show that our extension, denoted as CDPO, reduces ECE
without sacrificing accuracy compared to standard DPO.

2 EXPLORING SYSTEMATIC BIASES AND OVERCONFIDENCE IN RLHF-LLMS

In this section, we demonstrate the preliminary experiments that reveal overconfidence in RLHF-
LLMs and systematic biases in Reward Models, which motivated the development of our methods.

2.1 RLHF-LLMS EXHIBIT OVERCONFIDENCE IN THEIR VERBALIZED CONFIDENCE

Previous studies have shown that LLMs tend to exhibit overconfidence when verbalizing their
confidence scores (Tian et al., 2023; Chen et al., 2024a; Xiong et al., 2023). However, there is a lack
of systematic comparisons between RLHF-LLMs and their pre-RLHF counterparts. To address this
gap, we conduct preliminary experiments here to further investigate this phenomenon.
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Llama3-8B-SFT and Llama3-8B-PPO; Tulu-2-7B and Tulu-2-DPO-7B

Figure 2: Confidence distributions and accuracy of two models on CommonsenseQA before and
after RLHF. Darker color means more samples fall in that confidence bin. Empty bins indicate
no responses with confidence scores in that range. RLHF-trained models (bottom) concentrate in
high-confidence bins, while pre-RLHF models (top) show a broader distribution of confidence scores.

Setup. We show results on a multiple-choice question answering dataset, CommonsenseQA (Talmor
et al., 2019). We use four off-the-shelf models 1 for our analysis. We compare RLHF models (trained
with PPO and DPO) with their pre-RLHF versions. For each question in the dataset, we explicitly
prompt the model to verbalize its confidence score on a scale from 0 to 10 after providing its answer
to the question. We report the distribution of these confidence scores in Figure 2. Evaluations on
other datasets and detailed information on the experimental setup, including prompts and parsing
details, are provided in Appendix D and E.1.

Observations. As illustrated in Figure 2, there is a clear trend on both datasets that the RLHF
models, whether trained using PPO or DPO, exhibit greater overconfidence compared to their
SFT counterparts. Specifically, the SFT models display a more diverse confidence distribution,
while RLHF models show confidence scores predominantly at the higher levels. This confirms the
phenomenon that RLHF models tend to be more confident when verbalizing their confidence scores.

2.2 REWARD MODELS ARE BIASED TOWARD HIGH CONFIDENCE SCORES

In this section, we hypothesize that the observed overconfidence in RLHF-LLMs stems from an
inherent bias in reward models favoring a higher confidence score appended after responses. We
conduct experiments to demonstrate this preference.

Setup. We employ the RewardBench Dataset (Lambert et al., 2024), following its experimental
configuration with certain adjustments to examine how reward models process explicit confidence
scores in responses. We evaluate RLHFlow/ArmoRM-Llama3-8B-v0.1 (Wang et al., 2024c)
and allenai/tulu-2-dpo-7b (Ivison et al., 2023). Specifically, we prepend a confidence-query
system prompt as illustrated in Figure 4; if the reward model does not support system prompts, we
prepend it into the user prompt instead. This helps the model interpret the scale of confidence scores.

Subsequently, we append a random confidence score, Confidence:{random score}, to each
model response. For a comprehensive comparison, we explore four modes: 1) ANSWER ONLY:
applying the original RewardBench dataset without modifications; 2) CONFIDENCE REVERSED:
the system prompt is prepended. A high confidence score (random integer from 7 to 10) is appended to
the rejected response, and a low confidence score (random integer from 0 to 3) to the chosen response;
3) CHOSEN WITH CONF: the system prompt is prepended, but we compare identical chosen responses

1OpenRLHF/Llama-3-8b-sft-mixture
OpenRLHF/Llama-3-8b-rlhf-100k
allenai/tulu-2-7b
allenai/tulu-2-dpo-7b

3
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Figure 3: Preference distributions for ArmoRM-Llama3-8B-v0.1, a reward model for PPO train-
ing (left) and Tulu-2-DPO-7B, a DPO model (right) on the modified RewardBench dataset
across four modes. From top to bottom: CONFIDENCE REVERSED, CHOSEN WITH CONF, RE-
JECTED WITH CONF, ANSWER ONLY. Red bar indicates the preference for a rejected or high-
confidence response, and blue bar indicates the preference for a chosen or low-confidence response.

System Prompt

For the following question, provide your best response first, followed by your confidence in the
accuracy or helpfulness of your response. Rate your confidence on a scale from 0 to 10.
‘‘‘ Example Format:
<Your generated responses>
Confidence: <Insert your numerical confidence level from 0 to 10, reflecting how certain you are
that your answer is accurate or helpful.>‘‘‘

Ensure that your response strictly adheres to this format. Explicitly include the word
‘Confidence:’ in your response.

Figure 4: Confidence-Query System Prompt for verbalizing confidence scores.

with high versus low confidence scores; 4) REJECTED WITH CONF: similar to CHOSEN WITH CONF,
but comparing high and low confidence scores for identical rejected responses. We report the
preference count for each model. Given that DPO models are implicit reward models (Rafailov et al.,
2024), we also include evaluation on DPO models. We provide more details on the modified data and
evaluations on other reward models in Appendix C.1 and E.2

Observations. According to Figure 3, when evaluated on the original RewardBench
dataset (ANSWER ONLY), both models effectively discriminate between chosen and rejected re-
sponses by assigning higher reward scores to chosen responses. It is important to note that in typical
pairwise preference datasets, distinctions between the chosen and rejected responses – such as length,
tone, and correctness – are usually pronounced. However, even accounting for these differences,
simply modifying the query prompt and assigning a low confidence score to the chosen response and
a high confidence score to the rejected response can significantly alter model behavior. As depicted
in CONFIDENCE REVERSED, the number of preferred rejected responses with high confidence largely
increases, indicating that the model’s ability to distinguish between chosen and rejected response
is distorted. In CHOSEN WITH CONF and REJECTED WITH CONF where identical responses are
compared with different confidence scores, we observe that reward models clearly prefers responses
with higher confidence scores, regardless of whether the response is originally chosen or rejected.
These observations suggest that reward models exhibit a systematic bias towards responses with high
confidence scores, and potentially explain the overconfidence of RLHF-LLMs.

3 CALIBRATED REWARD MODELING AND CALCULATION

Drawing from observations in previous sections, we propose two methods here to address the bias in
reward scores: calibrated reward modeling (PPO-M) and calibrated reward calculation (PPO-C).

Background: Reward Modeling. Typical reward model training uses a pairwise human preference
data with binary ranking labels (chosen and rejected). Let D = {(xi, y

i
c, y

i
r)}ni=1 be the training
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dataset for the reward model, where xi is the prompt, and yic is the chosen response preferred over
the rejected response yir. A binary preference ranking loss (Ouyang et al., 2022) is applied to enforce
that the chosen responses receives a higher score than the rejected one, as illustrated in equation 1.

Lpreference = −E(x,yc,yr)∼D [log σ (Rθ(x, yc)−Rθ(x, yr))] (1)

where the reward model Rθ is typically initialized from the SFT model. The LM head on top of the
last layer is replaced with a linear layer to yield a single scalar reward prediction Rθ (x, y) for a given
prompt x and response y. Here, yc and yr denote the chosen and rejected responses respectively.

PPO-M: PPO with Calibrated Reward Modeling. Existing reward model training datasets
typically do not include prompts requesting verbalized confidence scores or responses including
explicit confidence levels. To address this gap, we propose a straightforward modification to the
existing binary pairwise ranking dataset by incorporating a confidence-query system prompt (as
shown in Fig. 4) and appending random confidence scores to model responses, consistent with the
format in our preliminary experiments. This results in a modified training dataset for the reward
model, denoted as D̂ =

{(
x̂i,

(
yic, h

i
c

)
,
(
yic, l

i
c

)
,
(
yir, h

i
r

)
,
(
yir, l

i
r

))}n

i=1
, where x̂i represents the

prompt with confidence-query system prompt prepended, h and l represent random high and low
confidence scores, respectively. We propose the calibrated reward modeling loss as follows:

LCRM =− E(x̂,(yc,hc),(yc,lc),(yr,hr),(yr,lr)))∼D̂

[
log σ (Rθ (x̂, (yc, hc))−Rθ (x̂, (yc, lc)))

+ log σ (Rθ (x̂, (yr, lr))−Rθ (x̂, (yr, hr)))
] (2)

This encourages the reward model to prefer high over low verbalized confidence for chosen responses
and prefer low over high verbalized confidence for rejected responses. Note that the calibration dataset
is not intended for training reward models from scratch. To clarify, we fine-tune these pre-existing
reward models using our proposed loss on calibration dataset. Then in PPO training, we replace the
pre-calibrated reward model with this calibrated one to generate reward scores.

Figure 5: Framework for PPO-C.

PPO-C: PPO with Calibrated Reward Calculation. While PPO-M addresses bias in reward
model training, we propose an alternative approach, PPO-C, to directly improve PPO training by
adjusting the reward calculation process. PPO-C can be seamlessly integrated into the original PPO
procedure without modifying the reward model.

We modify the original PPO training set by replacing a certain amount of prompts with the confidence-
query system prompt (shown in Fig. 4) to ask for both the answer and verbalized confidence. This
results in a mixed dataset with each sample denoted as (xi, yi, si) where xi and yi are the prompt and
corresponding model response, and si is an optional verbalized confidence generated by the model if
xi asks for a confidence score. For samples without confidence querying, we simply use their original
reward ri = R(xi, yi) for model updating. For samples with confidence querying, we propose a
calibrated reward calculation procedure to mitigate the bias in the reward score ri = R(xi, yi, si).

We first parse and remove the confidence score from the model response to obtain an unbiased
response (xi, yi). This allows us to obtain an unbiased reward score r̂i = R(xi, yi). We maintain a
moving average of the reward scores, defined by ∆rt = α ∗ r̂t + (1− α) ∗∆rt−1, where α is set to
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0.1, to serve as a dynamic threshold for classifying the current model response as positive or negative,
with r̂t representing the batch mean of r̂i at time t. We then adjust the reward score as follows:

ri = r̂i + w ∗ (r̂i −∆r) ∗ (si − 0.5) (3)

where w∗(r̂i−∆r)∗(si−0.5) is the reward adjustment factor, denoted as γ. w is a scaling coefficient
set to 2.0, which adjusts the extent of the adjustment applied to the unbiased reward r̂, based on
the rescaled confidence score si, which is normalized to a range of 0 to 1.0. We handle missing
confidence scores by assigning a default confidence of 0.5, to keep the reward score unchanged. The
overall framework for PPO-C is illustrated in Fig. 5.

4 EXPERIMENTS

We evaluate PPO-M and PPO-C on two model families: Llama3-8B and Mistral-7B.
We use their supervised fine-tuned versions2 (i.e., OpenRLHF/Llama-3-8b-sft-mixture,
teknium/OpenHermes-2.5-Mistral-7B) as the starting point for reward model and RLHF
training. We explore two prompting strategies: Direct Answers (DA) and Zero-Shot Chain-of-
Thought (CoT) (Kojima et al., 2022). For Direct Answers, we utilize regex parsing to extract model
responses and confidence scores. For Zero-Shot CoT, we use gpt-4o-2024-08-06 (Achiam
et al., 2023) to parse confidence scores and compare model responses with golden answers. Detailed
descriptions of prompts, implementation, and parsing methods are available in Appendix D.5. We
consider three evaluation metrics: Expected Calibrated Error (ECE) (Guo et al., 2017), Area Under
the Receiver Operating Characteristic Curve (AUC) (Hendrycks & Gimpel, 2016), and accuracy.

4.1 EXPERIMENTAL SETUP

We employ OpenRLHF3 (Hu et al., 2024) for reward model and RLHF training. All training
experiments are conducted on four A100 GPUs, and evaluations are carried out on one A100 GPU.

RM Checkpoints. For Llama3-8B, we employ the readily available reward model
OpenRLHF/Llama-3-8b-rm-mixture (Hu et al., 2024), trained from the corresponding SFT
checkpoint. For Mistral-7B, we train a reward model using logsigmoid loss, as shown in Eq. 1,
from scratch on Skywork/Skywork-Reward-Preference-80K-v0.1 (Liu & Zeng, 2024).
For additional training details, please refer to Appendix D.1.

RM Calibration Dataset. We employ a mixture of open-source datasets, and filter samples to
ensure a high distinction between scores of chosen and rejected responses. Subsequently, we prepend
the confidence-query system prompt shown in Fig 4 to each response. We then randomly assign
high and low confidence scores to create four response types: chosen with high/low confidence and
rejected with high/low confidence. Detailed information on dataset compositions is in Appendix C.3.

RLHF Dataset. We use a subset of RLHFlow/prompt-collection-v0.1 (Dong et al.,
2024) considering computational resources. We randomly select 20,480 prompts and integrate a
confidence-query system prompt into 25% of single-turn prompts to elicit verbalized confidence from
the model, as exemplified in Figure 4. For clarity, we refer the original 20,480 prompts as the clean
version and those with the confidence-query system prompts added as the modified version.

Evaluation Datasets. We use six diverse datasets for model evaluation: GSM8K (Cobbe et al.,
2021), CommonsenseQA (Talmor et al., 2019), SciQ (Welbl et al., 2017), ObjectCounting from
BigBench (Srivastava et al., 2022), four Professional Knowledge datasets in MMLU (Hendrycks
et al., 2020), and TruthfulQA (Lin et al., 2021). The datasets include both open-ended generation and
multiple-choice questions.

2These models are instruction-tuned and do not undergo the RLHF process.
3https://github.com/OpenRLHF/OpenRLHF
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Compared Methods. We compare our PPO-M and PPO-C with the following methods: (1) the SFT
model, which is the initial checkpoint before RLHF training; (2) the PPO model, which uses vanilla
reward model in standard PPO training on the clean version dataset without confidence querying
in system prompt; (3) PPO†, an ablation of our PPO-M, which includes confidence-query system
prompts (modified version) in PPO training, but still uses the vanilla reward model.

4.2 MAIN RESULTS

Both PPO-M and PPO-C consistently outperform other baselines across Llama3-8B and
Mistral-7B. In Table 1 we show the results of all five methods on six datasets. If we compare
vanilla PPO and SFT, vanilla PPO indeed shows a degradation in calibration (higher ECE and lower
AUC) though generally improves in accuracy. Among all methods, PPO-M and PPO-C consistently
demonstrate lower ECE and higher AUC than all the baselines across both models and prompting
strategies, indicating their improved calibration ability. Meanwhile, PPO-M and PPO-C preserve
comparable and even higher accuracy, showing that their calibration ability is not compromised by
model performance. Compared to PPO†, an ablation of PPO-M, PPO-M and PPO-C demonstrate
better calibration ability. This is because while PPO† includes confidence-query system prompts in
PPO training, it still uses the vanilla reward model instead of the calibrated reward model introduced
in Sec. 3. This further indicates that properly calibrating the reward score could mitigate the bias
towards high-confidence responses.
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Figure 6: Preference distributions for Llama3-8b-rm-mixture (Pre-Calibrated Version) and
Llama3-8b-crm (Calibrated Version) on the modified RewardBench dataset across four modes:
CONFIDENCE REVERSED, CHOSEN WITH CONF, REJECTED WITH CONF, ANSWER ONLY.
Calibrated Reward Models. Figure 6 compares the preference distributions of the calibrated
reward model compared to the pre-calibrated version. The chosen and rejected ratio on the original
responses without appended confidence scores (row 4) does not exhibit a significant difference.
However, when evaluated on rejected responses with high and low confidence scores (row 3), the
pre-calibrated version consistently favors high-confidence responses. In contrast, our calibrated
reward model tends to favor responses with low confidence – a behavior we aim to achieve.

5 ANALYSIS

In this section, we explore how our proposed methods affect language model abilities in instruction-
following and engagement in conversational settings. Additionally, we also present an extension of
our approach to Direct Preference Optimization (DPO) models.

5.1 INSTRUCTION-FOLLOWING CAPABILITIES

Dataset. To assess whether PPO-M and PPO-C compromise the instruction-following abilities of
LLMs gained through PPO, we evaluate their performance on two benchmarks: MT-Bench (Zheng
et al., 2024) and Arena-Hard (Li et al., 2024). MT-Bench consists of 80 high-quality, multi-turn
questions designed to evaluate LLMs across various aspects, while Arena-Hard contains 500 technical
problem-solving queries and demonstrates a higher agreement with human preference rankings.

PPO-M and PPO-C do not compromise LLM instruction-following abilities. Table 2
presents the average MT-Bench and Arena-Hard scores. It is observed that PPO en-
hances model performance compared to SFT, as expected. Furthermore, PPO-M and PPO-
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Methods GSM8K SciQ CommonsenseQA

ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑
Llama3-8B

DA

SFT 0.8608 0.5184 0.1221 0.0931 0.6067 0.873 0.2075 0.5889 0.7183

PPO 0.8843 0.5021 0.1099 0.0683 0.6507 0.911 0.1729 0.5815 0.7641
PPO† 0.8954 0.5 0.1046 0.0958 0.5047 0.904 0.2222 0.5113 0.7748

PPO-M 0.8393 0.57 0.119 0.0267 0.6115 0.898 0.1206 0.5568 0.7707
PPO-C 0.8025 0.5343 0.1046 0.0319 0.5892 0.906 0.0457 0.5835 0.7699

CoT

SFT 0.4369 0.5138 0.5481 0.0944 0.65 0.856 0.1928 0.6155 0.7101

PPO 0.2566 0.5229 0.7392 0.0862 0.6763 0.879 0.1767 0.6287 0.7363
PPO† 0.2553 0.5044 0.743 0.1265 0.5452 0.868 0.2654 0.5615 0.7191

PPO-M 0.1909 0.5499 0.7703 0.0392 0.6635 0.877 0.1555 0.579 0.7346
PPO-C 0.1546 0.5579 0.7635 0.0183 0.6473 0.868 0.1166 0.6049 0.7191

Mistral-7B

DA

SFT 0.8628 0.5747 0.0902 0.0952 0.5877 0.882 0.1634 0.56 0.774

PPO 0.8675 0.583 0.097 0.0973 0.5497 0.89 0.1772 0.5594 0.7748
PPO† 0.8851 0.5464 0.0877 0.1117 0.5439 0.885 0.1848 0.5674 0.7756

PPO-M 0.7963 0.5055 0.1016 0.0108 0.5090 0.888 0.1163 0.5303 0.7625
PPO-C 0.8161 0.534 0.0849 0.0399 0.5791 0.887 0.1311 0.5426 0.7592

CoT

SFT 0.4124 0.5277 0.5785 0.1124 0.6238 0.872 0.1908 0.6205 0.7518

PPO 0.4146 0.5228 0.58 0.1126 0.5794 0.877 0.1867 0.6238 0.7699
PPO† 0.3932 0.5096 0.6035 0.1044 0.5693 0.885 0.2056 0.6135 0.7518

PPO-M 0.3379 0.5974 0.5982 0.0388 0.6584 0.886 0.1157 0.6118 0.7666
PPO-C 0.377 0.5641 0.6065 0.0848 0.6951 0.886 0.1311 0.6367 0.774

Methods TruthfulQA Object Counting Professional Knowledge

ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑
Llama3-8B

DA

SFT 0.4613 0.5506 0.4113 0.5054 0.5212 0.483 0.4308 0.5175 0.4798

PPO 0.425 0.5443 0.4651 0.508 0.4988 0.491 0.4078 0.4944 0.5046
PPO† 0.5477 0.5246 0.4406 0.497 0.5 0.503 0.4951 0.4975 0.5009

PPO-M 0.3991 0.5813 0.47 0.4789 0.5227 0.505 0.3848 0.4926 0.502
PPO-C 0.3486 0.4856 0.4455 0.4405 0.5309 0.509 0.3318 0.5263 0.4798

CoT

SFT 0.4436 0.5745 0.4174 0.4545 0.5102 0.54 0.4644 0.5571 0.4242

PPO 0.4726 0.5851 0.4113 0.3651 0.5023 0.634 0.4309 0.5606 0.4635
PPO† 0.5535 0.5921 0.4076 0.337 0.5 0.663 0.5496 0.5219 0.4316

PPO-M 0.4283 0.5674 0.437 0.2863 0.5341 0.703 0.4329 0.5422 0.4424
PPO-C 0.3285 0.5193 0.4676 0.2525 0.5253 0.696 0.3798 0.5971 0.4353

Mistral-7B

DA

SFT 0.3307 0.5755 0.5704 0.5083 0.4989 0.491 0.4134 0.5018 0.5031

PPO 0.3335 0.5567 0.5826 0.5008 0.5 0.499 0.4303 0.4889 0.4994
PPO† 0.3233 0.5651 0.601 0.5119 0.499 0.488 0.4571 0.4919 0.4872

PPO-M 0.245 0.5568 0.6071 0.4248 0.5067 0.483 0.3716 0.489 0.502
PPO-C 0.2679 0.5456 0.5887 0.4947 0.5242 0.484 0.3693 0.51 0.505

CoT

SFT 0.3657 0.6067 0.5398 0.4862 0.5072 0.512 0.4863 0.5369 0.4554

PPO 0.3677 0.5911 0.5581 0.4599 0.4991 0.54 0.4783 0.5275 0.4761
PPO† 0.3657 0.6089 0.5594 0.455 0.5022 0.543 0.4735 0.5215 0.4865

PPO-M 0.3142 0.6399 0.541 0.4134 0.5496 0.56 0.4090 0.5526 0.4579
PPO-C 0.3213 0.6108 0.5545 0.4344 0.5095 0.563 0.4248 0.5588 0.4731

Table 1: Performance comparison across various methods on six datasets. SFT: Supervised Fine-
Tuned checkpoints, serving as the starting points for all methods. PPO†: an ablation of our PPO-M
method which uses vanilla reward model in PPO training but on our modified dataset (with confidence-
query system prompts).
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C trained model also exhibit comparable to or even slightly better scores than PPO, indi-
cating that our calibration methods do not compromise instruction-following abilities. In
contrast, PPO† shows inferior performance relative to our proposed methods and PPO.

Model Method MT-Bench ↑ Arena-Hard ↑

Llama3-8B

SFT 7.34 10.0

PPO 8.00 14.6
PPO† 7.81 13.4

PPO-M 8.05 14.1
PPO-C 7.87 13.7

Mistral-7B

SFT 7.65 9.2

PPO 7.84 10.5
PPO† 7.83 11.7

PPO-M 7.95 9.9
PPO-C 7.92 11.4

Table 2: Results on MT-Bench and Arena-Hard.

We hypothesize that this is due to the reduced
prompt diversity brought by confidence-query
system prompt. We verified that increasing the
proportion of the same system prompt correlates
with decreased MT-Bench score, as detailed in
Appendix E.6.

5.2 EXTENSION TO DPO

Setup. As CRM loss in Eq. 2 calibrates the
reward model using an augmented binary pair-
wise dataset, we can naturally extend it to Direct
Preference Optimization (DPO) training. This is
because DPO models are implicit reward mod-
els (Rafailov et al., 2024). We denote our exten-
sion as Calibrated DPO (CDPO), and illustrate the loss function in Eq. 4.

LCDPO(πθ;πref) =− E(x,yc,yr,x̂,(yc,h),(yc,l),(yr,h),(yr,l)))∼D [log σ(r(x, yc)− r(x, yr))

+w(log σ(r(x̂, (yc, h))− r(x̂, (yc, l))) + log σ(r(x̂, (yr, l))− r(x̂, (yr, h))))]
(4)

where r(x, y) = β log πθ(y|x)
πref(y|x) represents the implicit reward defined by model πθ and its reference

model πref. (yc, h) and (yr, l) denote the model responses paired with high and low confidence
respectively, and the subscripts indicate whether it is a chosen or rejected response. x̂ represents the
prompt with confidence-query system prompt prepended. w is the scaling coefficient.

The first term in Eq. 4 maintains the original DPO objective to prevent forgetting, since DPO models
rely on subtle probability differences to distinguish between chosen and rejected responses.

We use the Mistral-7B DPO version (i.e., teknium/OpenHermes-2.5-Mistral-7B) as
reference model and the DPO model NousResearch/Nous-Hermes-2-Mistral-7B-DPO
for the experiment, and fine-tune the DPO models on our RM calibration Dataset using Eq. 4.

Model Method MT-Bench ↑ Arena-Hard ↑

Mistral-7B

SFT 7.65 9.2
DPO 7.83 13.4

DPO† 7.83 14.3
CDPO 7.85 15.9

Table 3: Comparison of DPO and CDPO on MT-
Bench And Arena-Hard scores for Mistral-7B.

Results. As shown in Table 4, CDPO signifi-
cantly improves model calibration across all six
datasets by achieving consistent lower ECE, and
higher AUC compared to other methods. No-
tably, CDPO reduces ECE by more than 50%
in TruthfulQA, CommonsenseQA, and Profes-
sional Knowledge. Although a slight decline
in performance is observed between CDPO and
DPO†, CDPO still exhibits peformance com-
parable to the DPO checkpoint, affirming that
calibration does not compromise overall model performance. Results on MT-Bench and Arena-Hard
are reported in Table 3. For Mistral-7B, training on additional data yields improvements in both
MT-Bench and Arena-Hard scores; CDPO further amplifies these enhancements compared to standard
DPO on the calibration dataset (DPO†). Results for Llama3-8B are included in Appendix E.11.

6 RELATED WORKS

LLM Calibration. Model Calibration aims to align a model’s confidence with its accuracy. Recent
studies show that LLMs often exhibit overconfidence (Tian et al., 2023; Chen et al., 2024a; Xiong
et al., 2023; Achiam et al., 2023). Previous studies have explored methods such as scaling-based (Deng
et al., 2023; Guo et al., 2017; Zhang et al., 2020) approaches and nonparametric methods such as
binning (Zadrozny & Elkan, 2001). Recent work has introduced verbalized confidence (Lin et al.,
2022), where models are prompted to directly output confidence scores. Most studies focus on
pre-trained and instruction-tuned LLMs (Lin et al., 2022; Han et al., 2024), while other studies
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Methods GSM8K SciQ CommonsenseQA

ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑

DA

SFT 0.8628 0.5747 0.0902 0.0952 0.5877 0.882 0.1634 0.56 0.774
DPO 0.8704 0.5916 0.0887 0.0845 0.581 0.892 0.177 0.5744 0.7682

DPO† 0.8057 0.5409 0.0826 0.0149 0.5215 0.884 0.1157 0.5491 0.7772
CDPO 0.6767 0.6163 0.0781 0.0967 0.7236 0.89 0.0513 0.6165 0.7666

CoT

SFT 0.4124 0.5277 0.5785 0.1124 0.6238 0.872 0.1908 0.6205 0.7518
DPO 0.4184 0.5253 0.5716 0.094 0.5837 0.896 0.1849 0.6145 0.7625

DPO† 0.3456 0.5953 0.5989 0.0214 0.6687 0.898 0.0916 0.6553 0.7764
CDPO 0.1889 0.7178 0.6164 0.0553 0.7623 0.883 0.0676 0.6498 0.7633

Methods TruthfulQA Object Counting Professional Knowledge

ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑

DA

SFT 0.3307 0.5755 0.5704 0.5083 0.4989 0.491 0.4134 0.5018 0.5031
DPO 0.2912 0.5725 0.6181 0.5149 0.501 0.485 0.4321 0.4967 0.4913

DPO† 0.2124 0.5674 0.6487 0.4336 0.5436 0.485 0.3649 0.5208 0.5091
CDPO 0.104 0.6225 0.661 0.3955 0.5304 0.491 0.2574 0.5451 0.4972

CoT

SFT 0.3657 0.6067 0.5398 0.4862 0.5072 0.5120 0.4863 0.5369 0.4554
DPO 0.3251 0.629 0.6022 0.4581 0.5003 0.5430 0.4950 0.5314 0.4609

DPO† 0.2169 0.6176 0.6377 0.4037 0.5585 0.539 0.3679 0.5587 0.4961
CDPO 0.1756 0.685 0.6193 0.322 0.5139 0.553 0.2917 0.614 0.4817

Table 4: Performance comparison of SFT, DPO, DPO†, and CDPO across six datasets using
Mistral-7B. SFT and DPO denote the reference and trained DPO models, respectively. DPO†
and CDPO initiate from the trained DPO checkpoint; DPO† applies standard DPO on the calibration
dataset, focusing on chosen and rejected pairs to assess the impact of training with additional data.

examine RLHF-trained LLMs, proposing calibration through prompting strategies (Xiong et al., 2023;
Tian et al., 2023). More recent work leverages Reinforcement Learning for calibration (Xu et al.,
2024; Tao et al., 2024), which aligns closely with our study. Our study contributes by identifying the
potential cause for overconfidence in RLHF-LLMs and proposing calibration of the reward models or
reward score calculations to be seamlessly integrated into the existing PPO framework. In addition,
our approach does not compromise the model’s generalization capabilities in open-ended generation.

LLM Alignment And Reward Modeling. Reinforcement Learning from Human Feedback
(RLHF) (Ouyang et al., 2022; Christiano et al., 2017; Bai et al., 2022) has been widely applied
to align LLMs with human preferences. This pipeline typically involves Supervised Fine-Tuning
(SFT), reward modeling, and policy optimization using Proximal Policy Optimization (PPO) (Schul-
man et al., 2017). Recent works have explored variations of this pipeline to address the challenge
of noisy human preferences (Hong et al., 2022; Wang et al., 2024a) and to improve computational
efficiency with Direct Preference Optimization (DPO) (Rafailov et al., 2024; Dubey et al., 2024) to
eliminate the need of a separate reward model.

We leave a more comprehensive discussion of related works in Appendix A.

7 CONCLUSION

This paper addresses overconfidence in RLHF-LLMs by identifying a systematic bias in reward mod-
els that favors high-confidence responses regardless of their actual quality. We propose two solutions,
PPO-M, which calibrates reward modeling by aligning confidence levels with response quality, and
PPO-C, which adjusts standard reward model scores during PPO training. Both methods can be
seamlessly integrated into the RLHF process. Extensive experiments across various benchmarks
demonstrate the effectiveness of our methods in reducing expected calibration error without com-
promising accuracy and the instruction following ability in open-ended generation. Future research
directions include extending our study to logit-based confidence, as well as exploring confidence
calibration methods for open-ended questions.
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REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we provide detailed information on the datasets used (see Appendix C),
implementation details (see Appendix D), and additional results (see Appendix E).
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A RELATED WORKS

LLM Calibration. Model Calibration aims to align a model’s confidence with its accuracy. It
has been observed that modern neural network, including Large Language Models (LLMs), often
exhibit overconfidence, suggesting poor calibration (Tian et al., 2023; Chen et al., 2024a; Xiong et al.,
2023; Achiam et al., 2023). Previous studies have explored methods such as scaling-based (Deng
et al., 2023; Guo et al., 2017; Zhang et al., 2020) approaches and nonparametric methods such as
binning (Zadrozny & Elkan, 2001). Among these, temperature scaling (Guo et al., 2017; Zhang
et al., 2020) has been proved to be effective when combined with large pre-trained LLMs (Kadavath
et al., 2022; Xiao et al., 2022; Kuhn et al., 2023). However, previous evaluations often focus on
probabilities derived from model logits (Hendrycks et al., 2020; Mukhoti et al., 2020; Guo et al.,
2017; Minderer et al., 2021), which can be inaccessible in proprietary models and are unintuitive to
human users.

Recently, verbalized confidence has been introduced (Lin et al., 2022), prompting models to directly
output confidence scores. While most studies focus on pre-trained LLMs and calibrate them through
supervised fine-tuning (Lin et al., 2022; Han et al., 2024), which typically involves sampling responses
and calculating average accuracy as the ground truth confidence score, other studies have examined
verbalized confidence in instruction-tuned and RLHF-trained LLMs, proposing calibration through
prompting strategies (Xiong et al., 2023; Tian et al., 2023).

More recent work leverages Reinforcement Learning for calibration (Xu et al., 2024; Tao et al., 2024),
which aligns closely with our study. Our study contributes by identifying the potential cause for
overconfidence in RLHF-LLMs and proposing calibration of the reward models or reward score
calculations to reduce this issue. The proposed methods can be seamlessly integrated into the existing
PPO framework and, unlike supervised fine-tuning (SFT) methods that require a dataset with ground
truth labels for accuracy calculation—limiting their use in open-ended generation—our approach
does not compromise the model’s generalization capabilities in such settings.

LLM Alignment And Reward Modeling. Reinforcement Learning from Human Feedback
(RLHF) (Ouyang et al., 2022; Christiano et al., 2017; Bai et al., 2022) has been widely applied
to align LLMs with human preferences. This pipeline typically involves three steps: Supervised
Fine-Tuning (SFT), the collection of pairwise ranking data and the development of a reward model,
and optimization of the policy model obtained from the first step using Proximal Policy Optimization
(PPO) (Schulman et al., 2017). The effectiveness of PPO relies on the accuracy and robustness of
the reward model. Following traditional Bradley-Terry reward models (Bradley & Terry, 1952),
training typically utilizes a binary pairwise dataset. However, human-labeled preferences can be
noisy or present conflicting indications (Hong et al., 2022; Knox et al., 2022; Wang et al., 2024a).
Several methods have been proposed to address this challenge, such as introducing a margin to guide
the reward model in assigning a greater discrepancy to more separable comparison pairs (Touvron
et al., 2023; Wang et al., 2024a), and empolying multi-objective reward modeling that considers joint
preference such as “helpfulness, correctness, coherence”, etc. (Dong et al., 2023b; Zhou et al., 2023;
Wang et al., 2024b; Chen et al., 2024b; Chakraborty et al., 2024; Wang et al., 2024c).

While RLHF pipeline has been proven effective in aligning LLMs with human preferences, PPO
involves several challenges, including reward hacking, sensitivity to hyperparameters, and substantial
computational resource requirements, which complicate its implementation and usage. Several
variants have been proposed (Dong et al., 2023a; Yuan et al., 2023; Zhao et al., 2023; Rafailov et al.,
2024; Song et al., 2023b; Azar et al., 2023; Ethayarajh et al., 2024; Hong et al., 2024; Liu et al.,
2024; Meng et al., 2024), and among these, Direct Preference Optimization (DPO) has been widely
adopted (Rafailov et al., 2024; Dubey et al., 2024). DPO defines the preference loss as a function of
the policy model directly, thereby eliminating the need for a separate reward model.

Despite these advancements, there remains a lack of research on how reward models contribute to the
confidence calibration of LLMs. In this study, we bridge this gap by demonstrating the vulnerability
of reward models trained using various methods, which can be biased by a simple confidence score.
Additionally, we explore methods to calibrate these models to reduce overconfidence in RLHF-LLMs.
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B LIMITATION AND BROADER IMPACT

B.1 LIMITATION

Although we demonstrate that directly applying PPO-M style training loss to DPO training can reduce
ECE and increase AUC, thereby enhancing calibration, this method is not specifically tailored for
DPO. We observe some performance degradation, suggesting that future work could explore specific
hyperparameter tuning or a more specially designed dataset.

B.2 BROADER IMPACT

Since our work focuses on model calibration, it can be applied to various fields in need of well-
calibrated language models to improve reliability for general AI systems.

C DATASETS

In this section, we provide detailed descriptions of the datasets used in this study.

C.1 PRELIMINARY EXPERIMENTS DATASET

In Section 2.2, we demonstrate the inherent bias in reward models toward responses with high con-
fidence scores by modifying allenai/reward-bench. This modification involves prepending
a confidence-query system prompt and appending random confidence scores to the original model
responses. We assigned scores ranging from 0 to 3 for low confidence and 7 to 10 for high confidence.
Figure 7 displays an example from the modified dataset on REJECTED WITH CONF, featuring a
rejected response with low confidence scores appended.

Moified Reward Bench Example

System Prompts:
For the following question, provide your best response first, followed by your confidence in the
accuracy or helpfulness of your response. Rate your confidence on a scale from 0 to 10.
‘‘‘ Example Format:
<Your generated responses>
Confidence: <Insert your numerical confidence level from 0 to 10, reflecting how certain you are
that your answer is accurate or helpful.>‘‘‘

Ensure that your response strictly adheres to this format. Explicitly include the word
‘Confidence:’ in your response.

User Prompt:
How do I detail a car?

Model Response:
Detailing a car involves washing the exterior and interior of the car, as well as polishing and
waxing the exterior. Interior detailing typically involves vacuuming, cleaning the upholstery and
air vents, polishing the dashboard and console, and dusting. Polishing and waxing the exterior
will depend on the condition of the paint, but typically involves applying a polish and wax to make
it shine.
Confidence: 2.

Figure 7: An example from the Modified RewardBench in mode: REJECTED WITH CONF

C.2 REWARD MODEL TRAINING DATASETS

For Mistral-7B, we employ Skywork/Skywork-Reward-Preference-80K-v0.1 (Liu
& Zeng, 2024) to train the reward model from scratch.
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C.3 REWARD MODEL CALIBRATION DATASETS.

To compile the dataset for calibrating reward models, we filtered samples from open-source datasets.
Below, we list the datasets utilized and the thresholds set for each in Table 5.

Initially, we filter out samples that are multi-turn or have a tokenized length exceeding 8192, as
multi-turn formats are unsuitable for assigning confidence scores and we aim to prevent truncation.
The threshold indicates the preference strength (Wang et al., 2024a), defined as the difference between
chosen and rejected scores. Notably, in datasets such as RLHFlow/Argilla-Math-DPO-standard, a
preference strength less than 1 often means that both chosen and rejected responses yield the same
answer through different reasoning paths. The goal is to calibrate the reward model to assign higher
scores to to high-confidence chosen responses and lower scores to high-confidence rejected responses,
while doing the opposite for low-confidence responses. However, when both responses yield the same
mathematical solution through different reasoning, it is inappropriate for low-confidence rejected
responses to get higher scores. Consequently, we exclude these samples and retain those with a
significant discrepancy between chosen and rejected responses. We set the threshold to retain about
2,500 samples per dataset considering computational resources. For datasets without specific chosen
and rejected scores, we randomly select 2,500 samples.

Dataset Threhold
argilla/distilabel-capybara-dpo-7k-binarized (Daniele & Suphavadeeprasit, 2023) 1

RLHFlow/CodeUltraFeedback-standard (Weyssow et al., 2024) 3

argilla/ultrafeedback-binarized-preferences-cleaned (Bartolome et al., 2023) 3.5

RLHFlow/Helpsteer-preference-standard (Wang et al., 2023) 2.5

RLHFlow/Helpsteer2-standard (Wang et al., 2024d) 2

RLHFlow/Orca-distibalel-standard (Lian et al., 2023) 2.0

RLHFlow/SHP-standard (Ethayarajh et al., 2022) 50

RLHFlow/HH-RLHF-Helpful-standard (Bai et al., 2022) NA

RLHFlow/Argilla-Math-DPO-standard 1

RLHFlow/PKU-SafeRLHF-30K-standard (Ji et al., 2024) NA

CyberNative/Code Vulnerability Security DPO NA

fblgit/simple-math-DPO (Murias, 2024) NA

Table 5: Datset compositions.

C.4 PPO DATASETS

For PPO training, we filter out prompts with a tokenized length exceeding 8192 to prevent truncation
and randomly select 20,480 prompts from RLHFlow/prompt-collection-v0.1 (Dong et al.,
2024). We integrate a confidence-query system prompt into single-turn prompts to elicit verbalized
confidence from the model. The system prompt is used in 25% of the single-turn prompts for main
results. Figure 8 illustrates an example from the dataset that incorporates this system prompt.

C.5 EVALUATION DATASETS.

We examine six datasets encompassing six distinct categories: Arithmetic Reasoning, Common-
sense Knowledge, Symbolic Reasoning, Truthful Reasoning, and Professional Knowledge Col-
lectively, these datasets include a mix of open-ended generation tasks and multiple-choice questions.
The specific datasets are detailed below:

• GSM8K (Cobbe et al., 2021): This dataset contains high-quality, linguistically diverse
grade school math word problems. We utilize the test split, which contains 1319 samples.

18

https://huggingface.co/datasets/RLHFlow/Argilla-Math-DPO-standard
https://huggingface.co/datasets/argilla/distilabel-capybara-dpo-7k-binarized
https://huggingface.co/datasets/RLHFlow/CodeUltraFeedback-standard
https://huggingface.co/datasets/argilla/ultrafeedback-binarized-preferences-cleaned
https://huggingface.co/datasets/RLHFlow/Helpsteer-preference-standard
https://huggingface.co/datasets/RLHFlow/Helpsteer2-standard
https://huggingface.co/datasets/argilla/RLHFlow/Orca-distibalel-standard
https://huggingface.co/datasets/RLHFlow/SHP-standard
https://huggingface.co/datasets/RLHFlow/HH-RLHF-Helpful-standard
https://huggingface.co/datasets/RLHFlow/Argilla-Math-DPO-standard
https://huggingface.co/datasets/RLHFlow/PKU-SafeRLHF-30K-standard
https://huggingface.co/datasets/CyberNative/Code_Vulnerability_Security_DPO
https://huggingface.co/datasets/fblgit/simple-math-DPO
https://huggingface.co/datasets/RLHFlow/prompt-collection-v0.1


972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

PPO Prompts Example

System Prompts:
For the following question, provide your best response first, followed by your confidence in the
accuracy or helpfulness of your response. Rate your confidence on a scale from 0 to 10.
‘‘‘ Example Format:
<Your generated responses>
Confidence: <Insert your numerical confidence level from 0 to 10, reflecting how certain you are
that your answer is accurate or helpful.>‘‘‘

Ensure that your response strictly adheres to this format. Explicitly include the word
‘Confidence:’ in your response.

User Prompt:
Write me an excel function to sum up the values in the cells in a column to the left if the cell is full

Figure 8: PPO Prompt Example.

• SciQ (Welbl et al., 2017) : This dataset contains crowdsourced science exams. We use
the test split for evaluation, which includes 1000 example. It is a multiple-choice dataset,
each question offering four answer options. Similar to TruthfulQA and CommonsenseQA,
we assign a letter to each answer option and request the model to output the corresponding
answer letter.

• CommonsenseQA (Talmor et al., 2019): This dataset comprises a multiple-choice question-
answering format that requires commonsense knowledge. We utilize the test split, which
contains 1221 samples.

• TruthfulQA (Lin et al., 2021):4 This dataset contains 817 questions designed to test
whether the model can generate truthful responses without failing to recognize false beliefs
and misconceptions. We utilize the multiple-choice format of the dataset and consider one
single target answer. We randomly shuffle the answer options and corresponding true labels
to ensure that the correct label is not predictably the first one. We format the questions as
lettered multiple-choices and instruct the model to select the best answer from the options
provided.

• Object Counting in BigBench (Srivastava et al., 2022): BigBench is a collaborative
benchmark encompassing over 200 tasks. For Symbolic Reasoning, we focus solely on one
subset, Object Counting, which includes exactly 1000 samples. This open-ended generation
task evaluates whether models can correctly identify the number of objects mentioned in the
question prompt.

• Professional Knowledge in MMLU (Hendrycks et al., 2020): MMLU is a multitask
benchmark that includes multiple-choice questions from diverse knowledge domains. For the
Professional Knowledge category, we combine the test sets from four subsets: Professional
Accounting, Professional Law, Professional Medicine, and Professional Teaching.

D IMPLEMENTATION DETAILS

In this section, we describe the implementation details for all experiments.

D.1 REWARD MODEL TRAINING

This study utilizes two reward models. For Llama3-8B, we use an off-the-shelf checkpoint from
OpenRLHF/Llama3-8b-rm-mixture . For Mistral-7B, the reward model is trained from
scratch using teknium/OpenHermes-2.5-Mistral-7B as the starting point, referred to as
Mistral-7B-RM.

4https://huggingface.co/datasets/truthfulqa/truthful_qa/viewer/
multiple_choice
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D.1.1 HYPERPARAMETERS

We list the hyperparameters used for training Mistral-7B-RM in Table 6.

Parameter Mistral-7B

Train BS 512
Micro Train BS 1
Learning Rate 2e-6
Max Length 8192

LR Scheduler cosine with min lr
Warmup Ratio 0.03

Optimizer AdamW
Weight Decay 0.01

Epoch 2

Table 6: Hyperparameters for training Mistral-7B-RM.

D.2 REWARD MODEL CALIBRATION

As stated in Section 3, we asssume reward models for calibration are already trained be-
forehand and generally perform well. Therefore, we utilize trained RM checkpoints, namely
OpenRLHF/Llama3-8b-rm-mixture and Mistral-7B-RM for calibration. The calibrated
versions are referred to as Llama3-8b-crm and Mistral-7B-crm.

D.2.1 HYPERPARAMETERS

We list the hyperparameters used for calibrating OpenRLHF/Llama3-8b-rm-mixture and
Mistral-7B-RM in PPO-M in Table 7.

Parameter Llama3-8b-crm Mistral-7B-crm

Train BS 256 256
Micro Train BS 1 1
Learning Rate 9e-6 5e-6
Max Length 8192 8192

LR Scheduler cosine with min lr cosine with min lr
Warmup Ratio 0.03 0.03

Optimizer Adam Adam
Epoch 1 2

Table 7: Hyperparameters for Training Llama3-8B-crm and Mistral-7B-crm.

D.3 PPO TRAINING

Following the standard RLHF pipeline, we initialize the policy model using supervised
fine-tuning checkpoints: OpenRLHF/Llama3-8b-sft-mixture for Llama3-8B, and
teknium/OpenHermes-2.5-Mistral-7B for Mistal-7B.

For standard PPO and PPO-C, we utilize the pre-calibrated reward models, namely
OpenRLHF/Llama3-8b-rm-mixture and Mistral-7B-RM. For standard PPO, we input
the entire sequence into the reward model to retrieve the score. For PPO-C, we perform our proposed
calibrated reward calculation (see Section 3 for method descriptions).

For PPO-M, we use the calibrated reward models, Llama3-8b-crm and Mistral-7B-crm, to
calculate reward scores.
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D.3.1 HYPERPARAMETERS

For each model (Llama3-8B and Mistral-7B), we use a consistent set of hyperparameters across
PPO, PPO-M, and PPO-C as shown in Table 8.

Parameter Llama3-8B Mistral-7B

Train BS 64 64
Micro Train BS 2 2

Micro Rollout BS 4 4
Rollout BS 512 512

Prompt max len 1024 1024
Generate max len 1024 1024

Actor Learning Rate 5e-7 1e-7
Critic Learning Rate 9e-6 1e-6
Actor Weight Decay 0.0 0.01
Critic Weight Decay 0.0 0.0

Init KL Conf 0.01 0.05
LR Scheduler cosine with min lr cosine with min lr
Warmup Ratio 0.03 0.03

Optimizer Adam Adam
Epoch 1 1

Table 8: Hyperparameters for PPO Training.

D.4 DPO TRAINING

In Section 5.2, we extend calibrated reward modeling (PPO-M) to DPO training using Eq. 4. Similar
to the calibration of reward models, we utilize trained DPO checkpoints.

For Llama3-8B, we use Llama-3-Base-8B-SFT-DPO as DPO checkpoint, and use
princeton-nlp/Llama-3-8B-Base-SFT as reference model.

For Mistral-7B, we use NousResearch/Nous-Hermes-2-Mistral-7B-DPO as DPO
checkpoint, with teknium/OpenHermes-2.5-Mistral-7B serving as reference model.

D.4.1 HYPERPARAMETERS

We list the hyperparameters used for DPO training Nous-Hermes-2-Mistral-7B-DPO and
Llama-3-Base-8B-SFT-DPO in Table 9. The same set of hyperparameters is applied to both
DPO and CDPO; however, the scaling coefficient w is not utilized in DPO.

Parameter Llama3-8B Mistral-7B

Train BS 128 128
Micro Train BS 1 1

Max Length 4096 4096
Learning Rate 3e-7 3e-7

Beta 0.01 0.01
Weight Decay 0.0 0.0
LR Scheduler cosine with min lr cosine with min lr
Warmup Ratio 0.03 0.03

Optimizer Adam Adam
Epoch 1 1

Zero Stage 3 2
Adam Offload True False

w (scaling coefficient) 1.0 0.5

Table 9: Hyperparameters for DPO and CDPO Training.
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D.5 EVALUATION AND PARSING

We detail the generation configuration, prompting strategies, and parsing strategies utilized in our
evaluations.

D.5.1 GENERATION CONFIGURATION

We maintain consistent configuration settings across both preliminary and main experiments: tem-
perature is set at 1.0, top-p at 1.0, and top-k at 50. The maximum token count is set at 16 for direct
answers and 256 for zero-shot CoT.

D.5.2 EVALUATION HYPERPARAMETERS.

Evaluations are conducted on a single A100 80GB GPU with a batch size of 8.

D.6 EVALUATION PROMPTS

Following the format described in Tian et al. (2023), we modify the prompt to enhance clarity and
simplify result interpretation. We consider two prompting stratgies for evaluation: Direct Answer
and Zero-Shot CoT (Kojima et al., 2022). The exact prompt is shown in Fig 9 and Fig 10, which
also include a model response from GSM8K. For answer_type: we use option letter for
multiple-choice questions and number for open-ended math problems. For demo: we use (A) for
multiple-choice questions and 1 for open-ended math problems. The prompt formatting utilizes
the chat template in the tokenizer. Instructions are placed in the system prompt, and the question is
placed in user prompt. For models like Tulu-2 (Ivison et al., 2023) that lacks a system prompt section
in the tokenizer chat template, we append the question after the instruction as the user prompt.

Prompt for Direct Answers

System Prompts:
For the following question, provide your answer including only the {answer type} first, followed
by your confidence in the accuracy or helpfulness of your response. Rate your confidence on a
scale from 0 to 10.
Please respond only with your answer and a numerical confidence score. Do not include any
additional text, characters, or explanations. Use the format demonstrated below for your
response.
‘‘‘ Example Format:
Answer: <Insert only the {answer type} here (e.g., {demo})>
Confidence: <Insert your numerical confidence level from 0 to 10, reflecting how certain you are
that your answer is correct.>‘‘‘

Ensure that your response strictly adheres to this format and contain only the {answer type} and
the confidence score. Explicitly include the words ‘Answer:’ and ‘Confidence:’ in your response.

User Prompt:
Question: James decides to run 3 sprints 3 times a week. He runs 60 meters each sprint. How
many total meters does he run a week?

Model Output:
Answer: 540
Confidence: 10

Figure 9: Direct Answers Prompt.
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Prompt for Zero-Shot CoT

System Prompts:
For the following question, provide a step-by-step explanation of your thought process first, then
offer your best answer and rate your confidence in the accuracy or helpfulness of each response
on a scale from 0 to 10.
Use the format demonstrated below for your response.
‘‘‘ Example Format:
Explanation: <Your detailed explanation here, outlining how you arrived at your answer.>
Answer: <Insert your concise answer here, which should include a {answer type} (e.g.,
{demo})>
Confidence: <Insert your numerical confidence level from 0 to 10, reflecting how certain you are
that your answer is correct.>‘‘‘

Ensure that your response strictly adheres to this format. Explicitly include the words
‘Explanation:’, ‘Answer:’, and ‘Confidence:’ in your response.

User Prompt:
Question: James decides to run 3 sprints 3 times a week. He runs 60 meters each sprint. How
many total meters does he run a week?

Model Output:
Explanation: James runs 3 sprints of 60 meters each, and he does this 3 times a week. Therefore,
he runs 3 sprints * 60 meters per sprint = 180 meters per session. Since he does this 3 times a
week, he runs a total of 180 meters/session * 3 sessions = 540 meters in a week.
Answer: 540 meters
Confidence: 10

Figure 10: Zero-Shot CoT Prompt.
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D.7 PARSING DETAILS

Regex Parsing Details. To parse the confidence score from model generation, we implement a
stopping criterion that halts only when digits follow the phrase “Confidence: ”. For responses that
are initially unparseable, we set a retry limit of ten attempts. If parsing failures persist, we manually
append “Confidence: ” to the model response and resubmit it to the model for completion of the
sentence and score generation. This helps us achieve nearly 100% success in parsing all responses. If
parsing fails, which is very rare, we use an empty string as the default answer. Instead of assigning an
arbitrary confidence of 5.0, which could introduce bias and decrease ECE, we use the most frequently
observed confidence scores from successfully parsed responses as the default value for these rare
cases, since they are the most representative confidence scores of the model.

GPT-4o Evaluation Prompt

System Prompt:
You are a specialized evaluator designed to assess model responses against golden answers for
various tasks and extract model confidence. Output your evaluation in JSON format.

User Prompt:
Evaluate the semantic equivalence between the given model response and the provided golden
answer. Determine if they convey the same meaning.
If the model response accurately matches the golden answer (i.e., the model response is correct),
assign a score of 1. If the model response does not match the golden answer, assign a score of 0.
Additionally, extract the confidence score from the model response. If the model response does
not explicitly state a confidence score, return -100.
Provide your answer in the following JSON format: {‘correctness’: 1 or 0, ‘confidence’: X.X}

Figure 11: Prompts for GPT4-o Evaluation.

GPT-4o Evaluation Details. We use gpt-4o-2024-08-06 to evaluate zero-shot CoT results.
Utilizing the structured output feature of GPT, we configure the model to output results in JSON
format for easy parsing. The prompt is shown in Figure 11.

E MORE RESULTS AND ANALYSIS

E.1 OVERCONFIDENCE IN RLHF-LLMS

In this section, we provide additional results for our preminlinary experiments, which demonstate
overconfidence in RLHF-LLMs on five more datasets, as shown in Figure 12, 13, 14, 15, and 16. The
results indicate that RLHF-LLMs generally express verbalized overconfidence on various datasets.

E.2 REWARD MODELS ARE BIASED TOWARD HIGH CONFIDENCE SCORES

Following Section 2.2, we present additional results from various reward models to further substantiate
the observed phenomenon.

A concern arises that the reward model may be biased by the confidence-query system prompt, which
is included to ensure that the model verbalizes its confidence level. To further investigate the impact
of this system prompt, we conduct additional experiments both with and without the system prompt.
As shown in Figure 17, 18, and 19, the plots on the left follow the setting outlined in preliminary
experiments, where a confidence-query system prompt is prepended and random confidence scores
are appended to model responses. These plots demonstrate that every tested reward model exhibits
a biased preference towards high-confidence responses to varying degrees. On the right, we still
consider four modes, but this time without the confidence-query system prompts, and only random
confidence scores are appended to the model responses. For instance, in REJECTED WITH CONF, the
comparison would involve the same chosen responses with a high confidence score against that with
a low confidence score. The results reveal a similar, albeit more subtle, phenomenon.
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Figure 12: Confidence distributions of models on ObjectCounting before (top) and after (bottom)
RLHF.
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Figure 13: Confidence distributions of models on GSM8K before (top) and after (bottom) RLHF.
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Figure 14: Confidence distributions of models on Prof.Knowl before (top) and after (bottom) RLHF.
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Figure 15: Confidence distributions of models on SciQ before (top) and after (bottom) RLHF.
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Figure 16: Confidence distributions of models on TruthfulQA before (top) and after (bottom) RLHF.
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prompt.
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(b) CIR-AMS/BTRM Qwen2 7b 0613 with (left) and w/o (right) conf.-query prompt.
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(c) openbmb/Eurus-RM-7b (Yuan et al., 2024) with (left) and w/o (right) conf.-query prompt.
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Comparison of Preference Over Responses
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Comparison of Preference Over Responses
for FsfairX-LLaMA3-RM-v0.1

(d) sfairXC/FsfairX-LLaMA3-RM-v0.1 (Dong et al., 2023a) with (left) and w/o (right) conf.-query
prompt.

0 500 1000 1500 2000 2500

confidence
reversed

chosen
with_conf

rejected
with_conf

answer
only

1537
prefer high-confidence rejected

1445
prefer low-confidence chosen

2859
prefer high confidence

125
prefer low confidence

2792
prefer high confidence

170
prefer low confidence

450
prefer rejected

2531
prefer chosen

Comparison of Preference Over Responses
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0 500 1000 1500 2000 2500

confidence
reversed

chosen
with_conf

rejected
with_conf

answer
only

584
prefer high-confidence rejected

2392
prefer low-confidence chosen

2078
prefer high confidence

865
prefer low confidence

2063
prefer high confidence

820
prefer low confidence

450
prefer rejected

2531
prefer chosen

Comparison of Preference Over Responses
for Llama-3-8b-rm-700k

(e) OpenRLHF/Llama-3-8b-rm-700k (Hu et al., 2024) with (left) and w/o (right) conf.-query prompt.

Figure 17: Preference Distributions for various reward models across four modes (Part 1). Left
follows the same setting in preliminary experiments. Right represents the setting where all confidence-
query system prompts are removed, and only random confidence scores are appended.
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Comparison of Preference Over Responses
for Skywork-Reward-Llama-3.1-8B
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Comparison of Preference Over Responses
for Skywork-Reward-Llama-3.1-8B

(a) Skywork/Skywork-Reward-Llama-3.1-8B (Liu & Zeng, 2024) with (left) and w/o (right) conf.-
query prompt.
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Comparison of Preference Over Responses
for stablelm-2-12b-chat
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Comparison of Preference Over Responses
for stablelm-2-12b-chat

(b) stabilityai/stablelm-2-12b-chat (Bellagente et al., 2024) with (left) and w/o (right) conf.-
query prompt.
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Comparison of Preference Over Responses
for tulu-2-dpo-7b
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Comparison of Preference Over Responses
for tulu-2-dpo-7b

(c) allenai/tulu-2-dpo-7b (Ivison et al., 2023) with (left) and w/o (right) conf.-query prompt.
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Comparison of Preference Over Responses
for UltraRM-13b

(d) openbmb/UltraRM-13b (Cui et al., 2023) with (left) and w/o (right) conf.-query prompt.
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Comparison of Preference Over Responses
for URM-LLaMa-3.1-8B

(e) LxzGordon/URM-LLaMa-3.1-8B (Cui et al., 2023) with (left) and w/o (right) conf.-query prompt.

Figure 18: Preference Distributions for various reward models across four modes (Part 2). Left
follows the same setting in preliminary experiments. Right represents the setting where all confidence-
query system prompts are removed, and only random confidence scores are appended.
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Comparison of Preference Over Responses
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Comparison of Preference Over Responses
for Llama-3-8b-rm-mixture

(a) OpenRLHF/Llama-3-8b-rm-mixture (Hu et al., 2024) with (left) and w/o (right) conf.-query prompt.
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Comparison of Preference Over Responses
for Llama-3-OffsetBias-RM-8B
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Comparison of Preference Over Responses
for Llama-3-OffsetBias-RM-8B

(b) NCSOFT/Llama-3-OffsetBias-RM-8B (Park et al., 2024) with (left) and w/o (right) conf.-query
prompt.
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Comparison of Preference Over Responses
for oasst-rm-2.1-pythia-1.4b-epoch-2.5

(c) OpenAssistant/oasst-rm-2.1-pythia-1.4b-epoch-2.5 with (left) and w/o (right) conf.-
query prompt.
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Comparison of Preference Over Responses
for Ziya-LLaMA-7B-Reward

(d) IDEA-CCNL/Ziya-LLaMA-7B-Reward (Cui et al., 2023) with (left) and w/o (right) conf.-query prompt.
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Comparison of Preference Over Responses
for internlm2-20b-reward

(e) internlm/internlm2-20b-reward with (left) and w/o (right) conf.-query prompt.

Figure 19: Preference Distributions for various reward models across four modes (Part 3). Left
follows the same setting in preliminary experiments. Right represents the setting where all confidence-
query system prompts are removed, and only random confidence scores are appended.
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E.3 CALIBRATED REWARD MODELS

Section 4.2 demonstrates the preference distributions of our calibrated reward model compared to
the pre-calibrated version for Llama3-8B on REJECTED WITH CONF. Here we present a complete
result and also extend to the Mistral-7B model.

CHOSEN WITH CONF REJECTED WITH CONF

Figure 20: Comparison of preference distributions between the calibrated reward model
Llama-3-8b-crm and the pre-calibrated version Llama-3-8b-rm-mixture on two modes:
CHOSEN WITH CONF and REJECTED WITH CONF.

CHOSEN WITH CONF REJECTED WITH CONF

Figure 21: Comparison of preference distributions between the calibrated reward model
Mistral-7B-crm and the pre-calibrated version Mistral-7B-RM on two modes: CHO-
SEN WITH CONF and REJECTED WITH CONF.

As shown in Figure 20 and 21, both calibrated models exhibit a similar trend. When evaluated on
chosen responses with high and low confidence scores, the calibrated reward models do not exhibit
the same level of certainty as their pre-calibrated counterparts. Additionally, when evaluated on
rejected responses with high and low confidence scores, both calibrated models show a preference
for the low-confidence responses, suggesting that our calibrated reward models are more capable at
identifying overconfident statements.

E.4 VISUALIZATION OF THE CONFIDENCE DISTRIBUTION

In Figure 22, we present the confidence distributions of the PPO and PPO-M models on the left, and
the DPO and CDPO models on the right. Notably, the confidence distribution for PPO-M is slightly
shifted to the left relative to PPO, indicating a reduction in high-confidence scores (e.g., confidence
level 10, representing a highly overconfident state) and an increase in lower-confidence categories.
For CDPO, this phenomenon is even more pronounced; compared to DPO, the confidence distribution
of CDPO is more dispersed across categories, with a noticeable increase in lower-confidence levels.
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PPO and PPO-M DPO and CDPO

Figure 22: Confidence distributions of PPO and PPO-M (left) and DPO and CDPO (right)

E.5 MODEL LOGITS FOR CONFIDENCE SCORES

In Figure 23, we present the density distribution of numbers 0 to 10 based on log probabilities
extracted from model responses to the TruthfulQA dataset for both PPO and PPO-M models. Specif-
ically, we forward the model responses on TruthfulQA and focus on the log probabilities at the
position corresponding to the original confidence score within the response. We then analyze the
log probabilities of other numbers at that specific position. The figure illustrates that certain num-
bers exhibit notably high density; for example, the number 10 shows a high density for the PPO
model, while the number 9 demonstrates a similar pattern for the PPO-M model. This non-uniform
distribution of log probabilities indicates that the model does not randomly generate numbers at the
confidence score position but instead tends to favor specific numbers.

PPO PPO-M

Figure 23: Density Plot of LogProb for Confidence Scores for PPO and PPO-M on TruthfulQA

E.6 PARAMETER SENSITIVITY

In Eq. 3, we introduce a reward adjustment factor γ, defined as γ = w ∗ (r̂i −∆rt) ∗ (si − 0.5).
Here w represents a scaling coefficient set to 2.0 in our main results. To evaluate the impact of w, we
conduct a hyperparameter sensitivity study, detailed in this section. The results, presented in Table 10,
reveal a clear positive correlation between calibration performance and w, and a negative correlation
between model instruction-following performance and w. This demonstrates a trade-off between
calibration effectiveness and model instruction-following capabilities as w increases. Increasing w
from 0.5 to 2.0 significantly enhances calibration performance, as indicated by a decrease in ECE.
However, this improvement is accompanied by a slight reduction in MT-Bench and Arena-Hard
scores. Based on our primary focus on confidence calibration, we select w = 2.0 for the main results.

In Tables 11 and 12, we present ablation studies on α, the decay factor for the running average, for
both difference-based and threshold-based PPO-C. This parameter controls how quickly the running
average adapts to new data and reflects the recent performance of the model. For the main results, we
select α = 0.1, a commonly used value for running averages, as it balances stability with filtering
out short-term variability. Here, we compare this choice to α = 1.0, where the running average is
updated to match the batch mean at each iteration, and α = 0.0, where the running average remains
fixed at its initial value (in this case, the reward mean on the evaluation set when the reward model is
trained). As shown in the tables, α = 1.0 leads to a notable decline in calibration performance and
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w MT/Arena-Hard GSM8K SciQ CommonsenseQA

ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑
0.5 8.03 / 14.7 0.8792 0.521 0.1099 0.0703 0.6031 0.896 0.1552 0.5678 0.7674
1.0 7.91 / 13.8 0.8238 0.4937 0.119 0.0087 0.578 0.898 0.1153 0.585 0.7625
2.0 7.87 / 13.7 0.8025 0.5342 0.1046 0.0319 0.5892 0.906 0.0457 0.5835 0.7699

w MT/Arena-Hard TruthfulQA Object Counting Professional Knowledge

ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑
0.5 8.03 / 14.7 0.4428 0.5549 0.4553 0.4856 0.5036 0.512 0.4286 0.5027 0.4906
1.0 7.91 / 13.8 0.4104 0.515 0.4492 0.4774 0.5118 0.496 0.383 0.509 0.4902
2.0 7.87 / 13.7 0.3486 0.4856 0.4455 0.4405 0.5309 0.509 0.3318 0.5263 0.4798

Table 10: Performance of PPO-C with different w coefficient on Llama3-8B. Prompts: (DA)

α MT-Bench GSM8K SciQ CommonsenseQA

ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑
0 7.97 0.8832 0.5 0.1168 0.0967 0.5244 0.902 0.2251 0.5111 0.7715
0.1 7.87 0.8025 0.5343 0.1046 0.0319 0.5892 0.906 0.0457 0.5835 0.7699
1.0 7.97 0.8658 0.5009 0.1114 0.0373 0.6426 0.905 0.0821 0.5646 0.7756

α MT-Bench TruthfulQA Object Counting Professional Knowledge

ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑
0 7.97 0.5502 0.5332 0.437 0.4947 0.501 0.505 0.4877 0.4985 0.5072
0.1 7.87 0.3486 0.4856 0.4455 0.4405 0.5309 0.509 0.3318 0.5263 0.4798
1.0 7.97 0.3846 0.524 0.4443 0.4899 0.4985 0.506 0.381 0.52 0.4728

Table 11: Difference-Based PPO-C with different α for ∆r on Llama3-8B. Prompts: DA

α MT-Bench GSM8K SciQ CommonsenseQA

ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑
0 7.79 0.8833 0.5034 0.116 0.1056 0.5238 0.891 0.2178 0.5568 0.7649
0.1 8.05 0.8638 0.516 0.1031 0.0282 0.6513 0.904 0.1286 0.5621 0.7756
1.0 8.03 0.8827 0.5112 0.1145 0.0849 0.5493 0.907 0.1992 0.5632 0.7625

α MT-Bench TruthfulQA Object Counting Professional Knowledge

ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑
0 7.79 0.5185 0.5655 0.4394 0.4948 0.498 0.505 0.4753 0.5119 0.5024
0.1 8.05 0.4426 0.5303 0.4431 0.4839 0.5178 0.503 0.3949 0.4902 0.502
1.0 8.03 0.4965 0.5595 0.4333 0.4797 0.5011 0.52 0.4614 0.4968 0.4935

Table 12: Threshold-Based PPO-C with different α for ∆r on Llama3-8B. Prompts: DA

Percentage MT-Bench GSM8K SciQ CommonsenseQA

ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑
0.25 8.05 0.8393 0.57 0.119 0.0267 0.6115 0.898 0.1206 0.5568 0.7707
0.5 7.88 0.86 0.5185 0.1031 0.0389 0.5829 0.896 0.134 0.5399 0.7682
1.0 7.74 0.8608 0.5065 0.1243 0.0471 0.7165 0.898 0.074 0.6341 0.7658

Percentage MT-Bench TruthfulQA Object Counting Professional Knowledge

ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑
0.25 8.05 0.3991 0.5813 0.47 0.4789 0.5227 0.505 0.3848 0.4926 0.502
0.5 7.88 0.4453 0.5283 0.4357 0.5119 0.5413 0.473 0.3988 0.5221 0.4935
1.0 7.74 0.3438 0.5737 0.4786 0.5087 0.5052 0.487 0.3501 0.5184 0.502

Table 13: Performance of PPO-M on downstream tasks using Prompt Dataset with various percentage
of single-turn prompts prepending confidence-query system prompts on Llama3-8B. Prompts: DA
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a slight increase in the MT-Bench score for difference-based PPO-C. Similarly, α = 0.0 results in
inferior performance compared to α = 0.1 in both calibration performance and MT-Bench scores.

E.7 IMPACT OF CONFIDENCE-QUERY SYSTEM PROMPTS

For the main experiments, we select 25% of the single-turn prompts to prepend a confidence-query
system prompt. Here, we present our study on the effect of varying the percentage of single-turn
prompts with this system prompt. As shown in Table 13, the impact on calibration does not show a
consistent trend; however, we observe a decrease in MT-Bench scores as the percentage increases.
Given our primary goal to maintain model capability while improving calibration, we opt for 25%.

E.8 IMPACT OF COMBINING EQ. 1 AND 2

Given that Eq. 2 does not inherently force the preference of chosen over rejected. In this section, we
compare models trained using the combined loss from Eq.1 and Eq.2 against those trained solely
with Eq.2. It is important to note that we are not training the reward model from scratch; instead,
we fine-tune it on the calibration dataset. As shown in Figure 14, the model trained exclusively with
Eq 2 maintains a similar trend of distinguishing between chosen and rejected responses as the model
trained with the combined loss. Furthermore, Table 14 shows that PPO-M using the reward model
trained with the combined loss does not yield better calibration results.

Figure 24: Training Details of reward model with Eq. 2 alone (orange) and in combination with
Eq. 1 (red). Left column: reward of chosen / rejected responses. Middle column: reward of chosen
responses with high confidence / reward of rejected responses with low confidence. Right column:
reward of chosen responses with low confidence / reward of rejected responses with high confidence.

Loss MT-Bench GSM8K SciQ CommonsenseQA

ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑
Eq. 2 8.05 0.8638 0.516 0.1031 0.0282 0.6513 0.904 0.1286 0.5621 0.7756
Eq. 1+ 2 7.75 0.8891 0.4974 0.1107 0.1043 0.5186 0.894 0.2286 0.528 0.7584

Loss MT-Bench TruthfulQA Object Counting Professional Knowledge

ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑
Eq. 2 8.05 0.4426 0.5303 0.4431 0.4839 0.5178 0.503 0.3949 0.4902 0.502
Eq. 1+ 2 7.75 0.5006 0.564 0.4565 0.518 0.5 0.482 0.4786 0.4964 0.5061

Table 14: PPO-M with the reward model trained using two losses on Llama3-8B. Prompts: DA

E.9 COMPARING THRESHOLD-BASED VS. REWARD-AVERAGE DIFFERENCE APPROACHES

While PPO-C has demonstrated effectiveness, as shown in Table 1, it is important to explore alternative
methods for adjusting reward scores to provide a broader perspective and facilitate comparisons. In
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this section, we introduce a threshold-based variant of PPO-C for comparison. Specifically, we use
the reward running average as a threshold and employ the absolute value of the reward as a scaling
factor for adjustment. The final reward in this approach is calculated as:

ri =

{
r̂i + γ if r̂i ≥ ∆rt
r̂i − γ if r̂i < ∆rt

(5)

where γ = w ∗ |r̂i| ∗ (si − 0.5) As shown in Table 15, we refer to this new threshold-based PPO-C
variant as Threshold and the original PPO-C as Difference in the table. The threshold-based PPO-C
demonstrates promising results across six datasets. It also exhibits a similar trade-off trand between
calibration and model instruction-following capabilities as w increases. These results suggest that
threshold-based approach may serve as a viable alternative for calibrating reward scores in PPO.

Method w MT GSM8K SciQ CommonsenseQA

ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑
Threshold 0.5 8.05 0.8638 0.516 0.1031 0.0282 0.6513 0.904 0.1286 0.5621 0.7756
Threshold 1.0 7.76 0.8261 0.501 0.1092 0.0075 0.5641 0.903 0.1025 0.5076 0.7805

Difference 0.5 8.03 0.8792 0.521 0.1099 0.0703 0.6031 0.896 0.1552 0.5678 0.7674
Difference 1.0 7.91 0.8238 0.4937 0.119 0.0087 0.578 0.898 0.1153 0.585 0.7625

Method w MT TruthfulQA Object Counting Professional Knowledge

ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑
Threshold 0.5 8.05 0.4426 0.5303 0.4431 0.4839 0.5178 0.503 0.3949 0.4902 0.502
Threshold 1.0 7.76 0.4271 0.5207 0.4345 0.4709 0.5318 0.505 0.388 0.5069 0.4883

Difference 0.5 8.03 0.4428 0.5549 0.4553 0.4856 0.5036 0.512 0.4286 0.5027 0.4906
Difference 1.0 7.91 0.4104 0.515 0.4492 0.4774 0.5118 0.496 0.383 0.509 0.4902

Table 15: Comparison of Threshold-Based and Diff-Based PPO-C on Llama3-8B. Prompts: DA

E.10 CAN PPO-M AND PPO-C BE COMBINED?

MT-Bench Arena-Hard GSM8K SciQ CommonsenseQA

ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑
DA 7.82 14.7 0.8774 0.6199 0.0538 0.104 0.5834 0.879 0.1774 0.5837 0.7617

CoT 7.82 14.7 0.2123 0.5317 0.7794 0.0909 0.6641 0.884 0.1957 0.6335 0.7297

MT-Bench Arena-Hard TruthfulQA Object Counting Professional Knowledge

ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑
DA 7.82 14.7 0.4654 0.5178 0.4345 0.4927 0.5 0.507 0.5005 0.5287 0.4216

CoT 7.82 14.7 0.4561 0.5656 0.4419 0.2843 0.5 0.715 0.4525 0.5793 0.4439

Table 16: Performance of PPO-Combine on Llama3-8B across six datasets.

Since PPO-M and PPO-C operate independently, this section examines the potential of combining
these methods. Specifically, the calibrated reward models using Eq 2 are employed in conjunction
with the calibrated reward calculation from PPO-C to generate reward scores. The results, presented
in Table 16, indicate that the combined approach does not outperform the individual methods and,
in some cases, leads to a decline in performance. We hypothesize that this outcome arises because
the calibrated reward model is trained specifically on responses incorporating confidence scores,
which are optimized to produce unbiased rewards. Consequently, removing these confidence scores
to estimate rewards based on their difference from running average dynamic may be inappropriate.

E.11 EXTENSION TO DPO
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Methods GSM8K SciQ CommonsenseQA

ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑

DA

SFT 0.8783 0.5292 0.0773 0.1681 0.5253 0.801 0.3913 0.5294 0.5528
DPO 0.904 0.5381 0.0834 0.1085 0.561 0.886 0.3011 0.535 0.6871

DPO† 0.8861 0.5203 0.097 0.1103 0.5626 0.881 0.3004 0.5409 0.683
CDPO 0.5664 0.5389 0.1024 0.0143 0.6497 0.877 0.1697 0.5815 0.6912

CoT

SFT 0.6473 0.5508 0.326 0.1699 0.5816 0.803 0.3293 0.588 0.579
DPO 0.4159 0.5452 0.577 0.113 0.6376 0.858 0.2621 0.6295 0.6593

DPO† 0.452 0.5456 0.539 0.0964 0.6614 0.876 0.235 0.5973 0.6749
CDPO 0.3313 0.6054 0.5277 0.0386 0.7036 0.86 0.1269 0.6685 0.6798

Methods TruthfulQA Object Counting Professional Knowledge

ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑

DA

SFT 0.592 0.5388 0.3256 0.5964 0.4938 0.395 0.5109 0.5189 0.4127
DPO 0.6126 0.5581 0.3525 0.5848 0.4996 0.415 0.4764 0.4992 0.495

DPO† 0.5647 0.5886 0.3856 0.5999 0.5008 0.4 0.467 0.5153 0.4939
CDPO 0.4022 0.6194 0.3929 0.4662 0.5262 0.422 0.3525 0.5581 0.4898

CoT

SFT 0.5259 0.5698 0.3782 0.5388 0.5126 0.45 0.5091 0.5457 0.4068
DPO 0.5188 0.5822 0.4088 0.3520 0.5000 0.6480 0.4289 0.5700 0.4831

DPO† 0.4931 0.6111 0.4113 0.3783 0.5018 0.621 0.4312 0.562 0.4694
CDPO 0.3651 0.634 0.4345 0.3488 0.5286 0.567 0.3349 0.6303 0.4609

Table 18: Performance comparison of SFT, DPO, DPO†, and CDPO across six datasets using
Llama3-8B. SFT and DPO denote the reference and trained DPO models, respectively. DPO† and
CDPO initiate from the trained DPO checkpoint; DPO† applies standard DPO on the calibration
dataset, focusing on chosen and rejected pairs to assess the impact of training with additional data.

Model Method MT-Bench ↑ Arena-Hard ↑

Llama3-8B

SFT 6.44 (6.6) 3.1 (3.3)
DPO 7.67 (7.7) 15.9 (15.9)

DPO† 7.52 15.2
CDPO 7.68 14.7

Table 17: Comparison of DPO and CDPO on MT-
Bench And Arena-Hard scores for Llama3-8B.
Numbers in parenthesis are sourced from Meng
et al. (2024).

In Section 5.2, we present the results of extend-
ing PPO-M to DPO training on Mistral-7B,
we include results for Llama3-8B here. As
shown in Table 18 and 17, CDPO effectively
reduces the ECE and increases AUC, follow-
ing a similar trend observed in Mistral-7B,
and maintain performance on MT-Bench as
well. However, we observe a slight performance
degradation on Arena-Hard using either DPO†
or CDPO. This may stem from inadequate hy-
perparameter tuning or inherent limitations in
the structure of calibration dataset, which we
leave for future research.
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