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I. INTRODUCTION

DEFORMABLE linear objects (DLOs) are commonly
handled in tasks such as cable installation in smart

construction [1] and hose routing in the manufacturing in-
dustry [2]. Similar to humans, robots are capable of following
the contour of the in-hand DLO guided by high-resolution
tactile perception [3] [4]. Such a contour following motion
ensures the installation tension, thereby facilitating cables or
hoses routing. Reliable robotic manipulation of DLO requires
accurate modeling of how the robot’s movements influence
the DLO’s in-hand pose. Obtaining a precise interaction model
between the DLO and the moving gripper remains challenging
for several reasons: 1) The contour following involves durable,
nonlinear, and complex interaction dynamics. 2) The high
dimensionality of the tactile feedback further complicates
the task of accurately identifying the interaction model and
achieving precise motion control.

The main contributions of this work are as follows:
1) A Dynamic Contrastive Koopman Operator (DCKO) is

proposed to model the nonlinear, high-dimensional deformable
interaction dynamics. By incorporating a task-oriented dis-
tance metric and a dynamic negative sampling-based con-
trastive learning strategy, the Koopman operator can extract
task-relevant representations and equivalent distance metrics,
thereby enhancing modeling interpretability.

2) A DCKO-based MPC controller (DCKMPC) is devel-
oped based on the embedded linear model, presenting im-
proved tracking accuracy and computational efficiency.

3) The framework is validated on an in-hand DLO contour-
following task and a high-level routing task, demonstrating en-
hanced prediction and control capabilities in high-dimensional
servoing, along with its adaptability to more complex appli-
cation scenarios.

II. DYNAMIC CONTRASTIVE KOOPMAN OPERATOR

A. Architecture of the DCKO model

The compliant interaction dynamics model between the
manipulator’s end-effector motion ut and the in-hand DLO
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tactile state ot is defined as the discrete-time nonlinear system:

ot+1 = g(ot,ut), t ∈ N (1)

The Koopman theory [5] is well-known for its ability to
linearly model nonlinear systems in an embedded space, fa-
cilitating the design of optimal controllers. The structure of the
proposed DCKO is illustrated in Fig. 1. The encoder projects
the tactile state ot into the embedded space as zt = ψ(ot).
The auxiliary network then generates the equivalent embedded
control input ct = h(zt) ⊙ ut, capturing the nonlinear
components of the control input related to the state variables.
The future state ẑt+1 is then predicted by the linear time-
invariant model in the embedded space:

ẑt+1 = Azt +Bct (2)

Here, The Koopman operator K = [A,B] is composed of
two learnable constant matrices.

B. Dynamic contrastive learning strategy for DCKO

In the embedded space, contrastive learning optimizes ψ(·),
h(·), and K by aligning positive samples and separating
negative ones. As illustrated in Fig. 1, the predicted ẑt+p

serves as the anchor, while its ground-truth counterpart zt+p =
ψ(ot+p) is regarded as the positive sample. To enhance the
interpretability of the model and achieve better performance
in downstream control tasks, we introduce a task-oriented
distance metric for tactile states and employ it to allocate
negative samples for each anchor.

1) Definition of Task-oriented Distance Metric: Since
lighting, color, and noise in tactile images are irrelevant to
deformable interaction dynamics, we employ a 2D parameteri-
zation technique to assess the observation equivalence between
the tactile states oi and oj , i.e.,

∥R(oi)−R(oj)∥ := β ·|ri−rj |+|bi−bj |, β ∈ (0, 1) (3)

Here, R(oi) := [bi, ri], where bi and ri denote, respectively,
the position and the orientation of the contact area of oi with
respect to the tactile sensor’s axis x⃗. Furthermore, to guide
the model’s focus on factors sensitive to dynamic behavior,
a behavioral difference metric that quantifies the disparity in
state responses under identical control inputs is defined as:

B(oi,oj) := max
u∈U

∥D(oi,u)−D(oj ,u)∥ (4)

where U is the constraint set of feasible actions, and
D(oi,u) = Aψ(oi) + B h(ψ(oi)) ⊙ u represents the
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Fig. 1. Overview of the proposed DCKO model pipeline.

predicted dynamic response in the embedded space under u.
Finally, the Task-oriented Distance Metric is defined as:

d(oi,oj) := γ · B(oi,oj) + ∥R(oi)−R(oj)∥ (5)

2) Dynamic Negative Sampling based Prediction Con-
trastive Loss: Using the Task-oriented Distance Metric, the
k farthest samples from each anchor form the negative set
D−

k . The DCKO is trained with the following contrastive loss:

LDCKO(θe, θh,A,B) =
1

J(T − 1)

J−1∑
j=0

T−2∑
t=0

1

P (t)

P (t)∑
p=1

− log
S(ẑjt+p, z

j
t+p)

S(ẑjt+p, z
j
t+p) +

∑k
i=1

di

d̄
S(ẑjt+p,ψ(oi)))

(6)

where oi ∈ D−
k ; J is the batch size; P (t) = min(P, T −1−t)

is the valid prediction horizon for a trajectory of length T ; and
S(zi, zj) = exp

(
− ∥zi − zj∥2

)
is a similarity function.

III. DCKO-BASED MODEL PREDICTIVE CONTROL

To overcome the inevitable modeling errors of the
Koopman-based dynamic model caused by the limited embed-
ding dimension and external disturbances, the proposed robust
controller ct consists of two components:

ct = c
KMPC
t +K(zt − z̄t) (7)

Here, cKMPC
t is acquired by solving the following receding

optimization problem to reduce the tracking error ēt between
the nominal state z̄t and the desired state zdt :

min
c̄t:t+H−1, z̄t+1:t+H

H−1∑
i=0

(
∥ēt+i+1∥Q2+∥c̄t+i∥R2

)
+ ∥ēt+H∥Π2

s.t. zt = ψ(ot),

ēt+i+1 = z̄t+i+1 − zdt+i+1,

z̄t+i+1 = Az̄t+i +Bc̄t+i,

c̄t+i ∈ C̄t+i, i ∈ [0, . . . ,H − 1] (8)

The mismatch between the nominal state z̄t and the actual
encoded state zt is ultimately uniformly bounded when the
feedback gain K satisfies the following Riccati equation:

2A⊤FA+ 2K⊤B⊤FBK+A⊤FBK

+K⊤B⊤FA+ σI− F = −G. (9)

where σ > 0, and F and G are positive definite matrices.

IV. RESULTS AND CONCLUSION

The performance of our framework is evaluated against
the state-of-the-art Koopman operator BKDDNN [5], with the
experiment video available at https://youtu.be/DCKO.

1) Model Identification Evaluation: The modeling per-
formance, measured by the Pearson correlation coefficient
r(d′e, d

′) between the original and embedded spaces, reaches
0.94 for ours versus 0.87 for BKDDNN, indicating superior
modeling interpretability and prediction accuracy.

2) DLO Contour Tracking Experiment: We repeated the
task ten times and evaluated performance with three indicators:
the per-step runtime (17 ms vs. 37 ms), the average tracking
error of the desired tactile state (0.01 vs. 0.10), and the
average follow rate (100% vs. 95%), for our framework and
BKDDNN, respectively. The proposed method outperforms
the existing Koopman-based approach by aligning the distance
metrics between the embedded and original spaces.

3) Hose Routing Performance: The routing task involves
the challenges of approaching the designated fixed clips while
preventing the hose from falling off midway. We repeated the
task ten times and achieved a 90% success rate, demonstrating
the effectiveness of our framework in handling complex tasks
without retraining.

Conclusion: In this article, we proposed a concise and
effective Koopman-based framework for the tactile servo con-
trol of the DLO. Through the application to the tactile servo
task of the DLO in-hand contour following, the proposed
approach demonstrates superior performance in both modeling
and control compared to representative baselines. Furthermore,
this algorithm can be directly compatible with more complex
hose routing scenarios without any need for retraining.
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