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Abstract

Question answering (QA) over tables and text001
has gained much popularity over the years.002
Multi-hop table-text QA requires multiple hops003
between the table and text, making it a chal-004
lenging QA task. Although several works have005
attempted to solve the table-text QA task, most006
involve training the models and requiring la-007
beled data. In this paper, we have proposed a008
model - “TTQA-RS: A break-down prompting009
approach for Multi-hop Table-Text Question010
Answering with Reasoning and Summariza-011
tion”1. Our model uses augmented knowledge012
including table-text summary with decomposed013
sub-question with answer for a reasoning-based014
table-text QA. Using open-source language015
models our model outperformed all existing016
prompting methods for table-text QA tasks on017
existing table-text QA datasets like HybridQA018
and OTT-QA’s development set. Our results019
are comparable with the training-based state-020
of-the-art models, demonstrating the potential021
of prompt-based approaches using open-source022
LLMs. Additionally, by using GPT-4 with023
LLaMA3-70B, our model achieved state-of-the-024
art performance for prompting-based methods025
on multi-hop table-text QA.026

1 Introduction027

Question Answering over tables involves extract-028

ing the table cell containing the answer to the ques-029

tion. The most popular approach of table QA is to030

generate SQL queries using the question, i.e. the031

table-QA task is converted into a text-to-SQL task032

(Pasupat and Liang, 2015; Yu et al., 2018; Zhong033

et al., 2017). The SQL queries are then used to034

retrieve the answer from the tables. Some other035

recent approaches use an intermediate pre-training036

method on the flattened tables for QA (Herzig et al.,037

2020; Yin et al., 2020). QA over table and text is038

more challenging. Datasets like HybridQA (Chen039

et al., 2020b) and OTT-QA (Chen et al., 2020a)040

1The code is available in the Supplementary section

are examples of multi-hop table-text QA datasets 041

where the answer to the question can exist in the 042

table or the text. These two datasets make use of 043

Wikitables along with text from Wikipedia to an- 044

swer the questions. The tables in the HybridQA 045

dataset contain hyperlinks linking the table cells 046

to Wikipedia’s text, making QA tasks more chal- 047

lenging. Additionally, HybridQA and OTT-QA are 048

both multi-hop table-text datasets, which means 049

that one or more hops between the table and text 050

are required to derive the answer. 051

Over the years, several works have attempted to 052

solve this task. But the majority of these works 053

have used supervised-training, requiring a large 054

amount of labeled data (Chen et al., 2020b; Sun 055

et al., 2021; Wang et al., 2022; Eisenschlos et al., 056

2021; Feng et al., 2022; Kumar et al., 2023; Chen 057

et al., 2020a; Li et al., 2021). In this paper, we 058

have proposed a prompting-based approach while 059

using open-source large language models (LLMs) 060

for multi-hop table-text QA. 061

With the emergence of new generative-based 062

LLM models, prompt-based methods using in- 063

context learning have started being explored (Chen, 064

2023). Training models from scratch or even fine- 065

tuning the models requires a large amount of la- 066

beled data. In-context learning is a cheaper alterna- 067

tive approach that does not need any fine-tuning but 068

instead uses pre-trained language models (LLMs) 069

to solve new tasks using a few examples as part 070

of the prompt. The release of the new openAI 071

models such as GPT 4 has opened new avenues of 072

research in natural language processing and has en- 073

couraged further research in prompt learning. (Wei 074

et al., 2022) has shown that reasoning with chain of 075

thought (CoT) can significantly improve the abil- 076

ity of large language models to perform complex 077

reasoning in tasks including QA. But small LLMs, 078

i.e. models with less than 100B parameters using 079

CoT prompting tend to hallucinate and produce 080

incorrect results, urging research communities to 081
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Figure 1: Comparison between Standard prompting, Chain of Thought prompting, and the TTQA-RS model.

use bigger LLMs which are expensive and also not082

open-source.083

In this paper, we introduced a framework -084

TTQA-RS, a reasoning-based prompting approach085

for table-text QA that despite CoT’s shortcomings086

on small-parameter models, we were able to re-087

duce the hallucinations on open-source small mod-088

els (i.e. we obtained a 6% increase in exact match089

score compared to the baseline CoT model for the090

HybridQA’s test set). Furthermore, our proposed091

model was able to beat the state-of-the-art model -092

S3HQA’s CoT prompting with GPT 3.5 results (Lei 093

et al., 2023) on HybridQA dataset. By beating their 094

model’s performance, we have shown the potential 095

for smaller LLMs in multi-hop table-text QA. 096

For our experiments, we have used HybridQA 097

dataset and OTT-QA’s development set. OTT-QA 098

is an extension of the HybridQA dataset. Similar to 099

the HybridQA dataset, the OTT-QA dataset is also 100

constructed using questions based on Wikipedia 101

tables and text. But unlike the HybridQA dataset, 102

the test set of the OTT-QA dataset does not have 103
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hyperlinks in the table cells that can be linked to104

the Wikipedia text. Hence, the OTT-QA’s test set is105

more challenging. Existing models including ours106

use a retriever-reader framework for table-text QA.107

In this paper, we narrowed our focus to the reader108

of the table-text QA task. Our goal is to develop109

a prompting strategy for the table-text QA reader110

that can work even with smaller LLMs. The task of111

linking tables and text passages for open-domain112

QA is out of scope of this paper. The development113

set of OTT-QA, similar to the HybridQA dataset,114

already has hyperlinks in the table cells linking115

to the wiki text. In the future, we plan to extend116

our approach to linking the table and text for cases117

when hyperlinks are absent in the table cells.118

The TTQA-RS model breaks down the table-119

text QA problem into multiple steps. In the Hy-120

bridQA and the OTT-QA dataset, the questions121

require multiple steps of reasoning over table and122

text to answer. The TTQA-RS model generates the123

sub-questions that can help in answering the com-124

plex questions. It also generates the summary of125

the table and text, which is in turn used for the table-126

text QA of the original questions. Breaking down127

the complex multi-hop QA problem into simple,128

smaller steps can help boost the model’s overall129

performance. Furthermore, LLMs struggle with130

multi-level reasoning in a single step. So, break-131

ing down the multi-hop QA problem along with132

providing an augmented information including the133

table-text summary can improve the performance134

of multi-hop table-text QA tasks using small open-135

source LLMs. In Figure 1, we show an example of136

a question from multi-hop QA that uses standard137

prompting, CoT, and the TTQA-RS approach for138

multi-hop QA.139

2 Related Works140

Multi-hop table-text QA can be a complex task141

as it requires multiple hops between the table and142

text to answer the questions. S3HQA (Lei et al.,143

2023) and MFORT-QA (Guan et al., 2024) are the144

only two existing models as per our knowledge145

that use in-context learning for multi-hop table-text146

QA. The S3HQA model has demonstrated table-147

text QA task using the Hybrid-QA dataset, whereas148

MFORT-QA has used the OTT-QA dataset. The149

S3HQA model uses a three-step method - a re-150

triever with refinement training, a hybrid selector,151

and a generation-based reasoner with GPT 3.5 for152

the hybrid table-text QA task. MFORT-QA uses153

the Chain-of-thought (CoT) method to break down 154

complex questions into smaller sub-questions, and 155

uses Retrieval Augmented Generation to extract 156

more context. Similar to the MFORT-QA model, 157

we also break down complex questions into smaller 158

sub-questions. With the complexity of the multi- 159

hop QA task broken down into smaller questions, 160

LLMs are in turn working on a smaller problem 161

and perform better as single-step reasoners. Our 162

model - TTQA-RS, additionally generates a sum- 163

mary using the retrieved table rows and passages. 164

Then, for table-text question answering (QA), it 165

uses the generated summary, the predicted entity 166

type of the answer, and the generated sub-questions 167

along with the answer. 168

3 Our Model 169

3.1 System Overview 170

The TTQA-RS model uses a retriever-reader model. 171

Our reader breaks down the table-text QA prob- 172

lem into five steps - (1) Summary generation using 173

retrieved tables rows and passages, (2) Question 174

decomposition, (3) Entity type prediction of the 175

expected answer, (4) Table-text QA of independent 176

sub-question, and (5) Table-text QA of the origi- 177

nal question. Figure 2 shows an overview of the 178

TTRS-QA framework. The following subsections 179

describe the TTQA-RS framework’s retriever and 180

reader in detail. 181

3.2 Retriever 182

The function of the retriever is to extract relevant 183

rows and passages from the text linked to the table 184

cells using hyperlinks. For the HybridQA dataset, 185

we have used S3HQA model’s (Lei et al., 2023) ta- 186

ble retriever to extract the relevant row(s) from the 187

table, and HYBRIDER’s (Chen et al., 2020b) text- 188

retriever to extract the relevant information from 189

the linked passages. S3HQA’s row retriever uses re- 190

finement training to train the retriever model. The 191

tables contain hyperlinks to Wikipedia text. So, the 192

passages linked to the retrieved rows are collected 193

to form a pool. The passage retriever contains an 194

ensemble retriever of TF-IDF retriever with longest- 195

substring retriever and selects passages with cosine 196

distance less than a certain threshold. 197

For experiments on OTT-QA’s development set, 198

we don’t use any table retriever, i.e. we only use 199

HYBRIDER’s text retriever. The text linked to 200

the table rows is extracted and then filtered using 201

HYBRIDER’s text retriever. 202
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Figure 2: An overview of TTQA-RS framework. The dashed lines represent the reader for the table-text QA model.

3.3 Reader203

3.3.1 Table-text Summarization204

This is the first step of the reader model. The re-205

trieved table rows are flattened with a delimiter206

separating the rows and columns of the table. The207

retrieved rows and passages are used to generate208

summaries of the table and text. We used zero-shot209

learning with LLaMA 3-70B model to generate210

the summaries. In Appendix B we have shown an211

example of a table-text summarization prompt.212

3.3.2 Question decomposition213

In the next step, we break down the questions and214

identify the sub-questions, such that the answer of215

one sub-question can aid in answering the original216

complex question. From here onwards, we will217

refer to the sub-question that can be answered first218

as the “independent sub-question”. Let’s take the219

first example of Figure 3. The complex question220

- "What was the release date of the game which221

Andrew Voss provided commentary on ?" can be222

broken down into sub-questions. The independent223

sub-question for this question is - "Which game224

has Andrew Voss provided commentary on?". The225

answer to this sub-question is "Rugby League 3".226

This can be used to simplify the original complex227

question to the following - " What was the release 228

date of Rugby League 3?". Thus, including the 229

information about the independent sub-question 230

and the sub-answer helps to reduce the complexity 231

of the multi-hop task. Identifying the independent 232

sub-question and breaking down the complex multi- 233

hop QA problem helps to reduce the complexity 234

of the problem, and in turn, boosts the accuracy 235

of the model. We use in-context learning with 236

LLaMA3-70B model to generate the independent 237

sub-questions for the given complex queries. 238

3.3.3 Entity type prediction of the expected 239

answer 240

We identify the entity type of the expected answer 241

for both the independent sub-question and also for 242

the original question. For the following question 243

- "What was the release date of the game which 244

Andrew Voss provided commentary on?", the entity 245

type of the expected answer is "date". Knowing that 246

the expected answer is of type - "date", makes the 247

LLM’s task of generating the answer considerably 248

easier. We have used Spacy, an open-source Python 249

library to obtain the entity type. 250
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Figure 3: Example of our approach using TTQA-RS model

3.3.4 Table-text QA of independent251

sub-questions252

In this step, we use few-shot learning with CoT253

to generate the answers of the independent sub-254

questions. The input prompt contains the retrieved255

table rows, retrieved passages, the table-text sum-256

mary, and also the predicted entity type of the ex-257

pected answer. This is used to generate the answer258

for the independent sub-question.259

3.3.5 Table-text QA of the original questions260

This is the final step of the table-text QA frame-261

work. To generate the answers of the original ques-262

tions, we use CoT-based in-context learning similar263

to the previous step. But in addition to the prompt264

containing the retrieved rows, retrieved passages,265

table-text summary, and the expected entity type266

of the predicted answer of the original question,267

it also includes the independent sub-question with268

its generated sub-answer obtained in the previous269

step. Figure 3 shows an example of our reader’s270

approach. For simplicity, we have excluded men-271

tioning about the few-shot examples in Figure 3.272

4 Experimental Setup 273

4.1 Datasets 274

HybridQA HybridQA (Chen et al., 2020b) is a 275

large QA dataset that requires multi-hop reasoning 276

over tables and text for QA. The questions in the 277

HybridQA dataset are based on Wikipedia tables 278

and corpora that are linked to the Wikipedia tables 279

through hyperlinks. 280

OTT-QA (Chen et al., 2020a) is an open-domain 281

multi-hop table-text QA dataset. For our experi- 282

ments, we only use the development set of the OTT- 283

QA dataset which contains the hyperlinks linking 284

the table and the text (unlike OTTQA’s test set). 285

4.2 Implementation details 286

The implementation details are shown in Ap- 287

pendix A. 288

4.3 Baseline Models 289

Standard prompting - For the baseline standard 290

prompting model, we used the same retriever as in 291

TTQA-RS model, (i.e. HYBRIDER’s (Chen et al., 292

2020b) passage retriever with S3HQA’s (Lei et al., 293

2023) table retriever for the HybridQA dataset). 294

For experiments on OTT-QA’s dev set, we don’t 295

use any table-retriever, i.e. we only use the HY- 296

5



BRIDER’s passage retriever. For the reader, we per-297

formed in-context learning with standard prompt-298

ing (Brown et al., 2020) for the QA task.299

Chain of Thought Prompting (CoT) - Simi-300

lar to the standard prompting baseline model, the301

CoT baseline model uses the same retriever as the302

TTQA-RS model. The reader uses in-context learn-303

ing with CoT prompting (Wei et al., 2022).304

5 Results and Discussion305

5.1 Main Results306

In this section, we discuss all our major findings.307

Table 1 displays the performance of our model with308

other existing models on the HybridQA dataset. We309

used exact match (EM) and F1 score to evaluate310

the performance the table-text QA models. From311

Table 1, we can observe that most existing mod-312

els train their models for table-text QA. S3HQA313

(Lei et al., 2023) is the only model among the ex-314

isting works that uses in-context learning for the315

HybridQA dataset. Please note that "S3HQA GPT-316

3.5 direct" refers to S3HQA model with standard317

prompting using GPT-3.5. Our TTQA-RS model318

with LLaMA 3-70B on the HybridQA’s develop-319

ment set was able to beat S3HQA’s CoT with GPT320

3.5 by 3% exact match. Our 2-shot model with321

LLaMA-4 also beats the baseline standard and CoT322

prompting models by a huge margin (i.e. by 9%323

exact match when compared with standard prompt-324

ing and by 6% exact match when compared with325

CoT in the test set). Furthermore, in Figure 4 and326

in Figure 5, we have shown the performance of our327

TTQA-RS model on different parameter models of328

LLaMA 2 and LLaMA 3 models on HybridQA test329

set and the OTT-QA development set respectively.330

For all the different parameter models of LLaMA-2331

and LLaMA-3, our framework performed better332

than the baseline prompting models (i.e. standard333

prompting and CoT prompting). Our experiments334

show that our breakdown prompting approach with335

summarization and reasoning can improve the per-336

formance of all open-source models for table-text337

QA tasks. To show that our TTQA-RS approach338

can improve table-text QA on also GPT model, we339

have experimented with GPT-4 in the last stage340

of our model, i.e. table-text QA on the original341

question. For the remaining stages of the reader,342

we have used LLaMA 3- 70b. By adding GPT-343

4 in the last step, we were able to show the best344

performance with an exact match of 65.49 and F1345

score of 76.43 in the development set, and an exact346

match of 63.69 and F1 score of 71.83 on the test set. 347

With 2-shot learning using TTQA-RS LLaMA 3 348

70B + GPT-4 model, we were able to reach a model 349

performance very close to the best existing training- 350

based model (S3HQA with supervised learning) on 351

the HybridQA dataset. For cost limitations, we 352

have limited experiments with GPT-4 to only the 353

last stage of our model. 354

Table 2 shows the performance of our model - 355

TTQA-RS on the OTT-QA development set. To the 356

best of our knowledge, MFORT-QA (Guan et al., 357

2024) is the only model that has used in-context 358

learning for the OTT-QA dataset, but since they 359

have not reported their performance on the devel- 360

opment set, we therefore compare our model’s per- 361

formance with other existing works that trained 362

the models. Our TTQA-RS model with LLaMA 3- 363

70B + GPT-4 model achieved the best performance 364

(exact match of 67.27 and F1 score of 79.55) on 365

the development set and has achieved new state-of- 366

the-art performance of the OTT-QA’s development 367

set. 368

With the evaluation of our model - TTQA-RS on 369

the HybridQA and OTT-QA development set, we 370

have shown the potential of prompting approaches 371

with small language models (like LLaMA) and also 372

using GPT-4. 373

5.2 Analysis and Ablation Studies 374

This section describes all the analysis and ablation 375

studies performed on our model. Table 3 shows 376

the ablation studies of our model using HybridQA 377

dataset and OTT-QA’s development set. We can 378

observe that baseline CoT model outperforms the 379

baseline standard prompting model. This shows the 380

importance of reasoning in the multi-hop table-text 381

QA task. Then, we test the model by adding the 382

entity type prediction of the expected answer in the 383

CoT prompt. We notice a significant increase in the 384

performance of the model for all the datasets. In 385

the 4th row of Table 3 we have added all the com- 386

ponents of our final model except the table-text 387

summary and we can see a further increase in per- 388

formance in the HybridQA and OTT-QA datasets. 389

Finally, we show the performance of our model 390

TTQA-RS (i.e. last row) by including the generated 391

table-text summary, and we can observe that our 392

model performs the best with all the steps included 393

(including summarization). Adding the table-text 394

summary in the QA input prompt, helps the LLM 395

model to recognize relevant information related to 396

the table or text passages that might have otherwise 397
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Table 1: Performance of our model-TTQA-RS and other related works on the HybridQA dataset

Type Model Dev Test
EM / F1 EM / F1

Train HYBRIDER (Chen et al., 2020b) 44.0 / 50.7 43.8 / 50.6
Train DocHopper (Sun et al., 2021) 47.7 / 55.0 46.3 / 53.3
Train MuGER2 (Wang et al., 2022) 571.1 / 67.3 56.3 / 66.2
Train POINTR + MATE (Eisenschlos et al., 2021) 63.4 / 71.0 62.8 / 70.2
Train DEHG (Feng et al., 2022) 65.2 / 76.3 63.9 / 75.5
Train MITQA (Kumar et al., 2023) 65.5 / 72.7 64.3 / 71.9
Train MAFiD (Lee et al., 2023) 66.2 / 74.1 65.4 / 73.6
Train S3HQA (supervised learning) (Lei et al., 2023) 68.4 / 75.3 67.9 / 75.5
2-shot S3HQA GPT 3.5 direct (Lei et al., 2023) 57.1 / 68.8 -
2-shot S3HQA GPT 3.5 CoT (Lei et al., 2023) 60.3 / 72.1 -
2-shot Baseline Standard prompting LLaMA 3-70B 48.97 / 60.18 52.88 / 61.42
2-shot Baseline CoT LLaMA 3-70B 54.22 / 64.98 55.71 / 62.24
2-shot TTQA-RS LLaMA 3 - 70B 63.12 / 73.61 61.97 / 67.56
2-shot TTQA-RS LLaMA 3 - 70B + GPT-4 65.49 / 76.43 63.69 / 71.83

Human - 88.2 / 93.5

(a) EM score (b) F1 score

Figure 4: Performance of HybridQA test set on different LLaMA models

(a) EM score (b) F1 score

Figure 5: Performance of OTT-QA dev set on different LLaMA models

gone unnoticed. This shows the importance of ev-398

ery component of our model and the need for our399

break-down prompting approach for table-text QA.400

In Appendix C, we evaluated the impact of the401

number of shots on the model’s performance.402

5.3 Human Evaluation Results 403

We have manually evaluated the first 100 samples 404

of the table-text summaries generated by LLaMA3- 405

70B, and also the independent sub-questions gener- 406

ated using LLM prompting. We obtained an accu- 407
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Table 2: Performance of our model - TTQA-RS and other related works on OTT-QA development set.

Type Model Dev
EM F1

Train HYBRIDER (Top-1) (Chen et al., 2020b) (Chen et al., 2020b) 8.9 11.3
Train HYBRIDER (best Top-K) 10.3 13.0
Train Iterative-Retrieval + Single-Block Reader (Chen et al., 2020a) 7.9 11.1
Train Fusion-Retrieval + Single-Block Reader (Chen et al., 2020a) 13.8 17.2
Train Iterative-Retrieval + Cross-Block Reader (Chen et al., 2020a) 14.4 18.5
Train Fusion-Retrieval + Cross-Block Reader (Chen et al., 2020a) 28.1 32.5
Train CARP (Zhong et al., 2022) 33.2 38.6
Train MITQA (Kumar et al., 2023) 40.0 45.1
2-shot Baseline Standard prompting LLaMA3-70B 53.28 59.65
2-shot Baseline CoT LLaMA3-70B 55.74 63.50
2-shot TTQA-RS LLaMA 3 - 70B 63.15 70.84
2-shot TTQA-RS LLaMA 3 - 70B + GPT-4 67.27 79.55

Table 3: Ablation studies of TTQA-RS on HybridQA and OTT-QA dataset using LLaMA 3-70B

Model HybridQA OTT-QA
Dev Test Dev

Baseline Standard prompting 48.97 / 60.18 52.88 / 61.24 53.28 / 59.65
Baseline CoT 54.22 / 64.98 55.71 / 62.24 55.74/63.50

CoT + entity-type prediction of expected answer 59.68 / 67.47 57.75 / 64.65 57.53 / 66.24
Question decomposition and including sub-question

with generated sub-answer + entity-type prediction of
expected answer with COT (no summarization)

61.14 / 70.45 58.72 / 66.40 61.23 / 69.14

Our model - Question decomposition and including
sub-question with generated sub-answer + entity-type
prediction of expected answer + summarization with

CoT

63.12 / 73.61 61.97 / 67.56 63.15 / 70.84

Table 4: Human evaluation of generated summaries for
a sampled test set of HybridQA

Human Evaluation Metrics Performance
Correctness 0.94
Inclusivity 0.98

Completeness 0.71

racy of 91% for question decomposition.408

Table 4 tabulated the human evaluation results409

of the generated summaries for the sampled Hy-410

bridQA test set. For evaluating the generated sum-411

maries using retrieved table rows and passages, we412

have used three evaluation metrics - correctness,413

inclusivity, and completeness. For correctness, we414

checked if the summary generated is overall correct415

and if the model generates any hallucination. For416

inclusivity, we checked if the generated summaries417

included information about both the retrieved rows418

and passages. Completeness was used to check if419

the generated summaries had complete sentences.420

We have included all our human evaluation results 421

in the Supplementary section. 422

6 Conclusion 423

This paper proposes a prompting strategy of multi- 424

hop table-text QA by generating table-text sum- 425

maries and answers of sub-questions. We show 426

that including summaries of retrieved table rows 427

and passages in the prompt with our breakdown ap- 428

proach can substantially increase the performance 429

of CoT prompting in table-text QA. The proposed 430

method achieves new state-of-the-art performance 431

among the prompting approaches for multi-hop 432

table-text QA tasks using both open-source (i.e. 433

LLaMA3-70B) and GPT-4 models. Our experi- 434

ments specifically focussed on improving prompt- 435

ing strategies in the table-text QA readers. In the 436

future, we plan to extend our work on the table-text 437

QA retrievers which can further improve the QA 438

performance. 439
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Limitations440

Our work has several limitations. Firstly, we are441

breaking down our problem into individual steps.442

Even though breaking down the problem into sub-443

problems helps to reduce hallucination while rea-444

soning with open-source LLMs, it also causes error445

propagation. Errors made in the initial steps can446

result in wrong answers. Furthermore, in the ex-447

periment of using GPT-4 on our model, we have448

limited its usage only to the last step of the reader449

model as GPT-4 is expensive. Using GPT-4 in the450

remaining steps of the reader could have further451

improved the performance of our model.452

Secondly, the performance of our prompting-453

based approach, even though is on par with the454

fine-tuned state-of-the-art models (or has outper-455

formed the training-based state-of-the-model for456

OTT-QA development set), it’s performance is still457

not close to the human performance. Also, we are458

using an existing retriever and the focus of this459

paper has only been to improve the reader’s perfor-460

mance for multi-hop table-text QA. There is still461

potential to improve the overall performance of the462

model by using a better table and text retriever for463

this problem. Also, currently, we have only experi-464

mented with multi-hop table-text datasets in which465

the questions are already linked to the tables. The466

test set of the OTT-QA dataset does not have links467

between the tables with texts. This is out of scope468

of this current work, but in the future, we plan to469

explore more in this area.470
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Appendix592

A Implementation Details593

For all our experiments we have made use of Nvidia594

Geforce GTX 1660 Ti. We have set the tempera-595

ture to 0.5 for all experiments that uses zero-shot596

or few-shot learning. The table-text summary was597

generated using zero-shot learning with LLaMA598

3-70B and for the question decomposition step,599

we used two-shot learning with LLAMA3B-70B.600

This was consistent for all our experiments. In601

the last two stages of our TTQA-RS framework,602

i.e. for steps involving table-text QA of indepen-603

dent sub-questions and for table-text QA of origi-604

nal questions, we have used few-shot learning with605

CoT, and we have experimented with different lan-606

guage models such as LLaMA 2-7b, LLaMA2-13b,607

LLaMA2-70b, LLaMA3-8b, and LLaMA3-70b.608

B Table-text summarization prompt609

Figure 6 shows an example of a table-text sum-610

marization prompt. The LLM output shows the611

generated summary.612

Figure 6: Prompt for zero-shot table-text summarization

C Impact of number of shots 613

In this section, we have performed an ablation study 614

by increasing the number of shots while evaluat- 615

ing our model on the test set of the HybridQA 616

dataset. This is shown in Figure 7. We have evalu- 617

ated the impact of increasing k in k-shot learning 618

on the baseline standard prompting model, baseline 619

CoT model, and and the TTQA-RS model using 620

LLaMA3 -70B. For standard prompting and CoT, 621

we observe that with an increase in k from 0 to 3, 622

there is an increase in the exact match score. After 623

3 shots, increasing the number of shots does not im- 624

prove the performance. For the TTQA-RS model, 625

there is an improvement in EM score from 0-shot 626

to 2-shot, after which increasing the k value does 627

not improve the exact match score of the model. 628

Figure 7: k-shot ablation study over Hybrid-QA test set
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