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ABSTRACT

Out-of-distribution generalization on graphs requires graph neural networks to iden-
tify the invariance among data from different environments. As the environment
partitions on graphs are usually expensive to obtain, augmenting the environment
information has become the de facto approach. However, the usefulness of the aug-
mented environment information has never been verified. In this work, we found
that it is fundamentally impossible to learn invariant graph representations by aug-
menting environment information without additional assumptions. Therefore, we
develop a set of minimal assumptions, including variation sufficiency and variation
consistency, for feasible invariant graph learning. Based on the assumptions, we
propose Graph invAriant Learning Assistant (GALA), which adopts an additional
assistant model that is prone to distribution shifts, to generate proxy predictions
about the environments. We show that maximizing intra-class information guided
by the proxy predictions provably identifies the graph invariance given the minimal
assumptions. We demonstrate the usefulness of GALA with extensive experiments
on 11 datasets containing various graph distribution shifts.

1 INTRODUCTION

Learning graph representations using graph neural networks (GNNs) has proven to be highly success-
ful in tasks involving relational information (Kipf & Welling, 2017; Hamilton et al., 2017; Veličković
et al., 2018; Xu et al., 2018; 2019). However, it assumes that the training and test graphs are drawn
from the same distribution, which is rarely the case in practice (Hu et al., 2020; Koh et al., 2021;
Huang et al., 2021). The performance of GNNs could be seriously degenerated by distribution shifts,
i.e., mismatches between the training and test distributions caused by underlying environmental
factors during the data collection process (Ding et al., 2021; Ji et al., 2022; Gui et al., 2022).

To overcome the Out-of-Distribution (OOD) generalization failure, recently there has been a growing
interest in incorporating the invariance principle from causality (Peters et al., 2016) into GNNs (Wu
et al., 2022a;b; Chen et al., 2022a; Miao et al., 2022; Yu et al., 2022; Liu et al., 2022; Li et al.,
2022; Fan et al., 2022; Yang et al., 2022; Gui et al., 2022). The rationale of these invariant graph
learning approaches is to identify an underlying invariant subgraph of an input graph (or ego-graph
of nodes (Wu et al., 2022a)), which shares an invariant correlation with the labels across multiple
graph distributions that come from different environments (Wu et al., 2022a; Chen et al., 2022a). The
predictions based on the invariant subgraphs thus generalize to OOD graphs (Peters et al., 2016).

As the environment labels or partitions that describe the sources of distribution shifts on graphs are
often expensive to obtain (Chen et al., 2022a), augmenting the environment information, such as
generating new environments (Wu et al., 2022a;b; Liu et al., 2022) and inferring the environment
labels (Li et al., 2022; Yang et al., 2022), has become the de facto approach for invariant graph learning.
However, little attention has been paid to verifying the fidelity, or faithfulness, 1 of augmented

1The fidelity or faithfulness refers to whether the augmented environment information can actually improve
the OOD generalization on graphs.
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Figure 1: (a). In the task of classifying graphs according to whether there exists a “House” or “Cycle”
motif, the left half and right half are predicted as “House” and “Cycle” by the environment assistant
that is prone to spurious correlations. The upper left (right) and the bottom right (left) are graphs that
are classified correctly (incorrectly), denoted as {Gp} ({Gn}) and colored in blue (green). GALA
pulls graphs with the same label but different predictions from {Gp} and {Gn} closer at the latent
representation space. (b)-(d). SCMs on graph distribution shifts (Chen et al., 2022a).

environment information. For example, if the generated environments or inferred environment labels
induce a higher bias or noises, it would make the learning of graph invariance even harder.

Although it looks appealing to learn both the environment information and the graph invariance, this
approach could easily run into the “no free lunch” dilemma (Wolpert & Macready, 1997). In fact,
Lin et al. (2022) found that there exist negative cases in the Euclidean regime where it is infeasible
to identify the invariant features without environment partitions. As for the graph regime where the
OOD generalization is more difficult (Chen et al., 2022a), it raises a challenging question:

When and how could one learn graph invariance without the environment labels?

In this work, we present a theoretical study of the problem and seek a set of minimal assumptions on
the underlying environments such that identifying the graph invariance is possible. Based on a family
of simple graph examples (Def. 3.1), we show that existing environment augmentation approaches
can fail to generate faithful environments (Prop. 3.2). In fact, when the underlying environments are
not sufficient to cover all the variations of the spurious subgraphs, identifying the invariant subgraph
is fundamentally impossible (Theorem 3.3). Sometimes, the augmented environments can even lead
to a worse OOD performance. The failure of faithful environment generation implies the necessity
of variation sufficiency (Assumption 3.4). Even with sufficient environments, inferring faithful
environment labels remains impossible (Prop. 3.5). Since invariant and spurious subgraphs can have
an arbitrary degree of correlation strengths with labels, for each training environment, one can always
find a corresponding environment with the same joint distribution of P (G, Y ) but a different invariant
subgraph. In order to avoid the unidentifiable cases, we need to ensure the variation consistency, i.e.,
the invariant and spurious correlation strengths should have a consistent relationship.

To resolve the OOD generalization challenge under the established assumptions, we propose Graph
invAriant Learning Assistant (GALA), which incorporates an additional assistant model that is prone
to distribution shifts, to generate proxy predictions of the environments. Different from previous
approaches (Yang et al., 2022; Li et al., 2022), GALA does not require explicit environment labels
but directly maximizes the intra-class mutual information among samples predicted correctly ({Gp})
and incorrectly ({Gp}) by the environment assistant model (as illustrated in Fig. 1(a)). As {Gp}
and {Gp} capture the variations of spurious correlations, we show that GALA is able to identify the
underlying invariant subgraph under the minimal assumptions (Theorem D.1). Extensive experiments
on 11 datasets with various graph distribution shifts validate the effectiveness of GALA.

2 BACKGROUND AND PRELIMINARIES

We introduce the key concepts and background in this section, and leave more details to Appendix A.

This work considers the same setting as Chen et al. (2022a) that covers broad graph distribution
shifts. The structural causal models (SCM) are given in Fig. 1(b) to Fig. 1(d). The generation of
graphs is controlled via two latent variables C and S, where C contains the invariant information
between G and Y , and S contains the varying information and can be affected by the environments
E. We leave detailed descriptions of the SCMs to Appendix A due to space constraints. Existing
invariant graph learning approaches generically aim to identify the underlying invariant subgraph
Gc to predict the label Y (Chen et al., 2022a). The goal is to learn an invariant GNN f := fc ◦ g,
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Figure 2: Failures of finding faithful environment information. Results are based on 3 class two-piece
graphs (Def. 3.1), where the invariant correlation strength is fixed as 0.7 while the spurious correlation
strength is varied from 0.5 to 0.7. Both environment augmentation and inferring approaches suffer
from severe performance decreases or even underperform ERM when the dominated correlation is
not suitable for the method, while GALA maintains strong OOD performance consistently.

containing two modules: a) a featurizer g : G → Gc that extracts the invariant subgraph Gc; b) a
classifier fc : Gc → Y that predicts label Y based on the extracted Gc, where Gc is the space of
subgraphs of G. The learning objective is as

maxfc, g I(Ĝc;Y ), s.t. Ĝc ⊥⊥ E, Ĝc = g(G). (1)

Since E is not observed, many strategies are proposed to impose the independence of Ĝc and E.
Existing approaches focus on augmenting the environment information.

3 PITFALLS OF ENVIRONMENT AUGMENTATION

In the discussion below, we will instantiate the problem with simple two-piece graphs (Kamath et al.,
2021), which follow the PIIF distribution shifts as in Fig. 1(d).
Definition 3.1 (Two-piece graphs). Each environment is defined via αe, βe ∈ [0, 1] where each
sample is generated as follows: (a) Sample ye ∈ {−1, 1} uniformly; (b) Generate Gc and Gs via :

Gc := fGc
gen (Y · Rad(αe)), Gs := fGs

gen (Y · Rad(βe)),

where fGc
gen , f

Gs
gen respectively map input {−1, 1} to a specific graph selected from a given set, and

Rad(α) is a random variable taking value −1 with probability α and +1 with probability 1− α; (c)
Synthesize G by randomly concatenating Gc and Gs: G := fG

gen(Gc, Gs).

We denote an environment e with (αe, βe). By default, βe varies across different environments, hence
P (Y |Gs) can change arbitrarily, while P (Y |Gc) remains invariant. We use Emix

tr to denote the mixed
training environments as the environment labels are not available.

Pitfalls of environment generation. We begin by discussing when there are few environments,
which are considered in environment generation approaches (Wu et al., 2022a;b; Liu et al., 2022).
They provide a set of “virtual” environments Dv = {Ev} such that we can identify the invariant
features by applying a OOD risk to the joint dataset with the augmented data Dv

tr = {Emix
tr } ∪ {Ev}.

The generation of the “virtual” environments is primarily based on the estimations of the invariant
and spurious subgraphs, denoted as Ĝc and Ĝs, respectively. Wu et al. (2022b); Liu et al. (2022)
proposed DIR and GREA to construct new graphs by assembling Ĝc and Ĝs from different graphs.
Specifically, given n samples {Gi, Y i}ni=1,2 the new graph samples in Ev is generated as follows:

Gi,j = fG
gen(Ĝ

i
c, Ĝ

j
s), ∀i, j ∈ {1...n}, Y i,j = Y i,

which generates a new Ev with n2 samples. Although both DIR and GREA gain some empirical
success, the faithfulness of Ev remains questionable, as the generation is merely based on inaccurate
estimations. Specifically, when Ĝc contains parts of Gs, assigning the same labels to the generated
graph tends to strengthen the spurious correlation between Gs and Y . Consider an extreme case
where the model yields a reversed estimation, i.e., Ĝc = Gs and Ĝs = Gc. It is possible since there
could be Emix

tr where the correlation between Gs and Y dominates the correlation between G and Y .
2We slightly abuse the superscript and subscript when denoting the ith sample to avoid confusion of double

superscripts or subscripts.
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Proposition 3.2. Given Etr = {(α, β1), (α, β2)} with α ≥ β1, β2 (e.g., Etr =
{(0.25, 0.1), (0.25, 0.2)}), and its corresponding mixed environment Emix

tr = {(α, (β1 + β2)/2)}
(e.g., Emix

tr = {(0.25, 0.15)}), we have Ev = {(0.5, (β1 + β2)/2)} (e.g., Ev = {(0.5, 0.15)}).

The proof is given in Appendix C.1. It also extends to the adversarial augmentation (Wu et al., 2022a;
Yu et al., 2022), which will destroy the actual Gc. We verified the failures of DIR and GREA in
Fig. 2(a), where both DIR and GREA suffer from severe performance decrease when the spurious
correlation dominates. In fact, when Etr is insufficient to differentiate the variations of the spurious
features, it is fundamentally impossible to identify the underlying Gc from Gs.
Theorem 3.3. (Variation insufficiency) When there exists spurious subgraph Gs s.t. P e1(Y |Gs) =
P e2(Y |Gs) for any e1, e2 ∈ Etr, where P e(Y |Gs) is the conditional distribution P (Y |Gs) under
environment e ∈ Eall, it is impossible for any learning algorithm to identify Gc.

The proof is given in Appendix C.2. Theorem 3.3 implies a fundamental requirement on Etr that the
environments therein should cover the variations of each spurious feature.
Assumption 3.4. (Variation sufficiency) For any Gs, there exists two environments e1, e2 ∈ Etr, such
that P e1(Y |Gs) ̸= P e2(Y |Gs), and P e1(Y |Gc) = P e2(Y |Gc).

Assumption 3.4 aligns with the definition of invariance (Kamath et al., 2021; Chen et al., 2022a) that
Gc is expected to satisfy P e1(Y |Gc) = P e2(Y |Gc) for e1, e2 ∈ Eall. If there exists Gs also satisfies
the invariance condition, then it is impossible to tell Gc from Gs even with environment labels.

Pitfalls of environment inferring. Although Assumption 3.4 relieves the need for generating
new environments, is it possible to infer the underlying environment labels via approaches such as
MoleOOD (Yang et al., 2022) and GIL (Li et al., 2022), to facilitate invariant graph learning?

Considering the two-piece graph examples Etr = {(0.2, 0.1), (0.2, 0.3)}, when given the underlying
environment labels, it is easy to identify the invariant subgraphs from spurious subgraphs. However,
when there is no environment label, we have Emix

tr = {(0.2, 0.2)}, where P (Y |Gc) = P (Y |Gs). The
identifiability of Gs is ill-posed, as it does not affect the Emix

tr even if we switch Gc and Gs. More
formally, consider the environment mixed from two two-piece graph environments {(α, β1)} and
{(α, β2)}, then we have Emix

tr = {(α, (β1 + β2)/2}. For each Emix
tr , we can also find a corresponding

Emix
tr

′
= {((β′

1 + β′
1)/2, α

′)} with {(β′
1, α

′)} and {(β′
2, α

′)}. Then, let α = (β′
1 + β′

1)/2 = α′ =

(β1 + β2)/2. We now obtain Emix
tr and Emix

tr
′ which share the identical distribution P (Y,G) while the

underlying Gc can be different. More generally, we have the following proposition.
Proposition 3.5. There exists 2 two-piece graph dataset Etr and Etr

′, whose Emix
tr are the same, such

that any learning algorithm will fail to capture the invariance of at least one of the datasets.

The proof is given in Appendix C.3. Figure 2(b) shows that both MoleOOD and GIL fail to
infer faithful environment labels or even underperform ERM. The failure implies that, whenever it
allows the existence of identical Emix

tr s by mixing different environments, identifying Gc is impossible.
Therefore, we seek an additional assumption that excludes the unidentifiability case. More specifically,
we propose to constrain the relationship between α (i.e., H(Y |Gc) ) and βe (i.e., H(Y |Gs)).
Assumption 3.6. (Variation consistency) For all environments in Etr, either H(C|Y ) > H(S|Y )
holds or H(C|Y ) < H(S|Y ) holds.

Intuitively, Assumption 3.6 imposes the consistency requirement on the correlation strengths between
invariant and spurious subgraphs with labels. For two-piece graphs with consistent variations, mixing
up the environments will yield a new environment with the same variation strength relationships.
Thus, Assumption 3.6 gets rid of the previous unidentifiability cases, as which require the existence
of environments with different variation relationships. The requirement on variation consistency also
resembles the “no free lunch” theorem (Wolpert & Macready, 1997). Otherwise, we can always find
some environment that assembles the unidentifiability case and prevents OOD generalization.
Corollary 3.7. (No Free Lunch for Graph OOD) Without Assumption 3.6, there does not exist a
learning algorithm that captures the invariance of all of the two-piece graph environments.

The proof is given in Appendix C.4. Differently, Lin et al. (2022) adopt auxiliary information
satisfying certain conditions to mitigate the unidentifiability case. However, the auxiliary information
is often expensive to obtain on graphs. More crucially, the conditions are unverifiable without more
assumptions, which motivates us to consider the relaxed case implied by Assumption 3.6.
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4 INVARIANT GRAPH LEARNING WITH ENVIRONMENT ASSISTANT

Given Assumptions 3.4 and 3.6, the remaining challenge is how to identify Gc under H(S|Y ) <
H(C|Y ) and H(S|Y ) > H(C|Y ). As shown in Fig. 2(c), both DisC, that focuses on spuriousness
dominated case, and CIGA that focuses on invariance dominated case, fail to capture the invariance.

To remedy the issue, we propose to incorporate an additional module to improve CIGA to resolve
H(S|Y ) < H(C|Y ). The principle of CIGA lies in maximizing the mutual information of the
estimated invariant subgraphs from the same class, i.e.,

max
fc,g

I(Ĝc;Y ), s.t. Ĝc ∈ argmax
Ĝc=g(G),|Ĝc|≤sc

I(Ĝc; G̃c|Y ), (2)

where G̃c = g(G̃) and G̃ ∼ P(G|Y ), i.e., G̃ is sampled from training graphs that share the same
label Y as Ĝ. The solution to Eq. 12 is Gs when H(S|Y ) < H(C|Y ).

Nevertheless, Assumption 3.4 implies that there exists a subset of training data where P (Y |Gs)
varies, while P (Y |Gc) remains invariant. Therefore, the dominance of spurious correlations no
longer holds in samples from the subset. Incorporating the subset into Eq. 12 as G̃c can further
invalidate the dominance of Gs in Eq. 12. Denote subset as {Ĝn

c }, then

Gc ∈ argmaxĜp
c
I(Ĝp

c ; G̃
n
c |Y ), (3)

where Ĝp
c ∈ {Ĝp

c} is sampled from the subset {Ĝp
c} dominated by spurious correlations, while

G̃n
c ∈ {Ĝn

c } is sampled from the subset {Ĝn
c } where spurious correlation no long dominates, or

dominated by invariant correlations. More details about Eq. 15 are given in Appendix D.

Empirical verification. We conducted extensive experiments on both synthetic and realistic graphs
containing complicated graph distribution shifts to verify the effectiveness of GALA. Baselines
included state-of-the-art invariant learning methods from both Euclidean and graph regimes. We
leave more details in Appendix E due to space constraints.

The results in realistic datasets are reported in Table 4. Aligning with our previous discussion,
DisC and MoleOOD succeed in CMNIST-sp as the spurious correlations in node features are
much stronger than the graph digit shape. However, GALA achieves an even higher performance in
CMNIST-sp and improves CIGA by 36%. As for the other datasets, since there is no prior knowledge
about the dominance of invariant and spurious features, they are particularly challenging for OOD
generalization. The results show that all the previous methods can suffer performance degradation
in some datasets. In contrast, owning to the theoretical power of generalizing to both spurious and
invariant correlation dominated cases, GALA continues to succeed and achieves the state-of-the-art
performance under the challenging realistic graph distribution shifts.

Table 1: OOD generalization performance under realistic graph distribution shifts.
DATASETS EC50-ASSAY EC50-SCA EC50-SIZE CMNIST-SP GRAPH-SST2 GRAPH-SST5 TWITTER AVG (RANK)†

ERM 76.42 (1.59) 64.56 (1.25) 62.79 (1.15) 21.56 (5.38) 81.54 (1.13) 42.62 (2.54) 59.34 (1.13) 58.40 (7.14)
IRM 76.51 (1.89) 64.82 (0.55) 63.23 (0.56) 23.29 (7.82) 82.22 (0.88) 42.77 (1.26) 60.42 (1.06) 59.04 (5.29)
V-REX 76.73 (2.26) 62.83 (1.20) 59.27 (1.65) 24.62 (8.75) 79.27 (1.95) 42.48 (1.67) 60.50 (2.05) 57.96 (7.57)
EIIL 76.96 (0.25) 64.95 (1.12) 62.65 (1.88) 24.55 (13.3) 80.70 (1.21) 43.79 (1.19) 60.15 (1.44) 59.11 (5.00)
IB-IRM 76.72 (0.98) 64.43 (0.85) 64.10 (0.61) 13.06 (1.97) 82.12 (1.43) 43.02 (1.94) 60.80 (2.50) 57.75 (5.57)

GREA 73.47 (2.48) 62.00 (1.36) 61.88 (1.00) 18.64 (6.44) 80.20 (0.56) 43.29 (0.85) 59.92 (1.48) 57.06 (8.57)
GSAT 66.87 (8.70) 63.31 (1.17) 61.70 (1.48) 12.77 (2.00) 80.55 (2.18) 43.24 (0.61) 60.13 (1.51) 55.51 (8.57)
DISC 65.40 (5.34) 54.97 (3.86) 56.79 (2.56) 54.07 (15.3) 79.10 (2.09) 40.67 (1.19) 57.89 (2.02) 58.41 (10.1)
MOLEOOD 61.94 (1.90) 59.53 (3.47) 56.08 (1.45) 39.55 (4.35) 80.78 (1.13) 40.36 (1.85) 59.26 (1.67) 56.79 (9.71)
GIL 72.13 (4.70) 63.05 (1.04) 62.08 (1.60) 18.04 (4.39) 82.04 (0.97) 43.30 (1.24) 61.78 (1.66) 57.49 (6.29)
CIGAV1 78.46 (0.45) 66.05 (1.29) 65.35 (0.88) 23.66 (8.65) 81.97 (0.87) 44.05 (1.48) 61.15 (0.72) 60.10 (3.00)
GALA 79.24 (1.36) 66.00 (1.86) 66.01 (0.84) 59.16 (3.64) 82.50 (0.86) 44.88 (1.02) 62.45 (0.62) 65.75 (1.14)
ORACLE (IID) 85.18 (1.13) 83.02 (0.77) 86.07 (0.33) 67.25 (0.76) 91.40 (0.26) 47.96 (1.34) 63.66 (0.79)
†Averaged rank is also reported in the parentheses because of dataset heterogeneity. Lower rank is better.

5 CONCLUSIONS

We conducted a retrospective study on the faithfulness of the augmented environment information for
OOD generalization on graphs. By showing the impossiblility results of the problems considered in
existing approaches, we developed a set of minimal assumptions for feasible invariant graph learning.
Built upon the assumptions, we proposed GALA to learn the invariant graph representations guided by
an environment assistant. Extensive experiments with 11 datasets verified the superiority of GALA.
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A FULL DETAILS OF THE BACKGROUND

We give a more detailed background introduction about GNNs and Invariant Learning in this section.

Graph Neural Networks. Let G = (A,X) denote a graph with n nodes and m edges, where
A ∈ {0, 1}n×n is the adjacency matrix, and X ∈ Rn×d is the node feature matrix with a node feature
dimension of d. In graph classification, we are given a set of N graphs {Gi}Ni=1 ⊆ G and their labels
{Yi}Ni=1 ⊆ Y = Rc from c classes. Then, we train a GNN ρ ◦ h with an encoder h : G → Rh that
learns a meaningful representation hG for each graph G to help predict their labels yG = ρ(hG) with
a downstream classifier ρ : Rh → Y . The representation hG is typically obtained by performing
pooling with a READOUT function on the learned node representations:

hG = READOUT({h(K)
u |u ∈ V }), (4)
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where the READOUT is a permutation invariant function (e.g., SUM, MEAN) (Xu et al., 2019),
and h

(K)
u stands for the node representation of u ∈ V at K-th layer that is obtained by neighbor

aggregation:
h(K)
u = σ(WK · a({h(K−1)

v }|v ∈ N (u) ∪ {u})), (5)
where N (u) is the set of neighbors of node u, σ(·) is an activation function, e.g., ReLU, and a(·) is
an aggregation function over neighbors, e.g., MEAN.

SC
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Figure 3: Full SCMs on Graph Distribution Shifts (Chen et al., 2022a).

Graph generation process. This work focuses on graph classification, while the results generalize
to node classification as well using the same setting as in Wu et al. (2022a). Specifically, we are
given a set of graph datasets D = {De}e collected from multiple environments Eall. Samples
(Ge

i , Y
e
i ) ∈ De from the same environment are considered as drawn independently from an identical

distribution Pe. We consider the graph generation process proposed by Chen et al. (2022a) that covers
a broad case of graph distribution shifts. Fig. 3 shows the full graph generation process considered
in Chen et al. (2022a). The generation of the observed graph G and labels Y are controlled by a set
of latent causal variable C and spurious variable S, i.e.,

G := fgen(C, S).

C and S control the generation of G by controlling the underlying invariant subgraph Gc and spurious
subgraph Gs, respectively. Since S can be affected by the environment E, the correlation between
Y , S and Gs can change arbitrarily when the environment changes. C and S control the generation
of the underlying invariant subgraph Gc and spurious subgraph Gs, respectively. Since S can be
affected by the environment E, the correlation between Y , S and Gs can change arbitrarily when the
environment changes. Besides, the latent interaction among C, S and Y can be further categorized
into Full Informative Invariant Features (FIIF) when Y ⊥⊥ S|C and Partially Informative Invariant
Features (PIIF) when Y ̸⊥⊥ S|C. Furthermore, PIIF and FIIF shifts can be mixed together and yield
Mixed Informative Invariant Features (MIIF), as shown in Fig. 3. We refer interested readers to Chen
et al. (2022a) for a detailed introduction of the graph generation process.

Invariant graph representation learning. To tackle the OOD generalization challenge on graphs
from Fig. 3, the existing invariant graph learning approaches generically aim to identify the underlying
invariant subgraph Gc to predict the label Y (Wu et al., 2022a; Chen et al., 2022a). Specifically, the
goal of OOD generalization on graphs is to learn an invariant GNN f := fc ◦ g, which is composed
of two modules: a) a featurizer g : G → Gc that extracts the invariant subgraph Gc; b) a classifier
fc : Gc → Y that predicts the label Y based on the extracted Gc, where Gc refers to the space of
subgraphs of G. The learning objectives of fc and g are formulated as

maxfc, g I(Ĝc;Y ), s.t. Ĝc ⊥⊥ E, Ĝc = g(G). (6)

Since E is not observed, many strategies are proposed to impose the independence of Ĝc and E. A
common approach is to augment the environment information. For example, based on the estimated
invariant subgraphs Ĝc and spurious subgraphs Ĝs, Wu et al. (2022b); Liu et al. (2022); Wu et al.
(2022a) proposed to generate new environments, while Yang et al. (2022); Li et al. (2022) proposed
to infer the underlying environment labels. However, we show that it is fundamentally impossible to
augment faithful environment information in Sec. 3. Yu et al. (2021); Miao et al. (2022); Yu et al.
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(2022); Miao et al. (2023) adopt graph information bottleneck to tackle FIIF graph shifts, and they
cannot generalize to PIIF shifts. Our works focuses on PIIF shifts, as it is more challenging when
without environment labels (Lin et al., 2022). Fan et al. (2022) generalized (Lee et al., 2021) to tackle
severe graph biases, i.e., when H(S|Y ) < H(C|Y ). Chen et al. (2022a) proposed a contrastive
framework to tackle both FIIF and PIFF graph shifts, but limited to H(S|Y ) > H(C|Y ). However,
in practice it is usually unknown whether H(S|Y ) < H(C|Y ) or H(S|Y ) > H(C|Y ) without
environment information.

More OOD generalization on graphs. In addition to the aforementioned invariant learning ap-
proaches, Yehudai et al. (2021); Bevilacqua et al. (2021); Zhou et al. (2022) study the OOD gener-
alization as extrapolation from small graphs to larger graphs in the task of graph classification and
link prediction. In contrast, we study OOD generalization against various graph distribution shifts
formulated in Fig. 3. In addition to the standard OOD generalization tasks studied in this paper, Xu
et al. (2021); Mahdavi et al. (2022) study the OOD generalization in tasks of algorithmic reasoning
on graphs. Jin et al. (2022) study the test-time adaption in the graph regime. Kamhoua et al. (2022)
study the 3D shape matching under the presence of noises.

Invariant learning without environment labels. There are also plentiful studies in invariant
learning without environment labels. Creager et al. (2021a) proposed a minmax formulation to infer
the environment labels. Liu et al. (2021b) proposed a self-boosting framework based on the estimated
invariant and variant features. Liu et al. (2021a); Zhang et al. (2022) proposed to infer labels based the
predictions of an ERM trained model. However, Lin et al. (2022) found failure cases in Euclidean data
where it is impossible to identify the invariant features without given environment labels. Moreover,
as the OOD generalization on graphs is fundamentally more difficult than Euclidean data (Chen et al.,
2022a), the question about the feasibility of learning invariant subgraphs without environment labels
remains unanswered.

B MORE DETAILS ABOUT THE FAILURE CASES

We provide details about the failure case verification experiments in complementary to Sec. 3. The
failure cases are constructed according to the two-piece graph generation models. The specific
description is given as the following.
Definition B.1 (3-class two-piece graphs). Each environment is defined with two parameters, αe, βe ∈
[0, 1], and the dataset De is generated as follows:

(a) Sample ye ∈ {0, 1, 2} uniformly;

(b) Generate Gc and Gs via :

Gc := fGc
gen (Y · Rad(αe)), Gs := fGs

gen (Y · Rad(βe)),

where fGc
gen , f

Gs
gen respectively map input {0, 1, 2} to a specific graph selected from a given

set, and Rad(α) is a random variable with probability α taking a uniformly random value
from {0, 1, 2}, and a probability of 1− α taking the value of +1;

(c) Sythesize G by randomly concatenating Gc and Gs:

G := fG
gen(Gc, Gs).

In experiments, we implement the 3-class two-piece graphs with the BA-motifs (Luo et al., 2020)
model.

In experiments, we adopt a 3-layer GIN (Xu et al., 2019) with a hidden dimension of 32 and a
dropout rate of 0.0 as the GNN encoder. The optimization is proceeded with Adam (Kingma & Ba,
2015) using a learning rate of 1e− 3. All experiments are repeated with 5 different random seeds of
{1, 2, 3, 4, 5}. The mean and standard deviation are reported from the 5 runs.

We implement DIR (Wu et al., 2022b), GREA (Liu et al., 2022), MoleOOD (Yang et al., 2022),
GIL (Li et al., 2022), DisC (Fan et al., 2022), and CIGA (Chen et al., 2022a), according to the author
provided codes (if available). As for the hyperparameters in each method, we use a penalty weight
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of 1e− 2 for DIR following its original experiment in spurious motif datasets generated similarly
using BA-motifs (Wu et al., 2022b). We use a penalty weight of 1 for GREA as we empirically
it does not affect the performance by changing to different weights. For MoleOOD and GIL, we
set the number of environments as 3. We tune the penalty weights of MoleOOD with values from
{1e − 2, 1e − 1, 1, 10} but did not observe much performance differences. We tune the penalty
weights of GIL with values from {1e− 5, 1e− 3, 1e− 1} recommended by the authors. For DisC,
we tune only the q weight from {0.9, 0.7, 0.5} in the GCE loss as we did not observe performance
differences by changing the weight of the other term. We tune the penalty weight of CIGA with
values from {0.5, 1, 2, 4, 8, 16, 32} as recommended by the authors.

C PROOFS FOR THEOREMS AND PROPOSITIONS

C.1 PROOF OF PROPOSITION 3.2

Proposition C.1. (Formal statement of Proposition 3.2) Consider the two-piece graph dataset Etr =
{(α, β1), (α, β2)} with α ≥ β1, β2 (e.g., Etr = {(0.25, 0.1), (0.25, 0.2)}), and its corresponding
mixed environment Emix

tr = {(α, (β1 + β2)/2} (e.g., Emix
tr = {(0.25, 0.15)}). It holds that the

augmented environment Ev is also a two-piece graph dataset with

Ev = {(0.5, (β1 + β2)/2)} (e.g., Ev = {(0.5, 0.15)}).

Proof. From Definition 3.1, we known that for each graph Gi ∼ Emix
tr = {(α, (β1 + β2)/2)}, Gi is

the concatenation of the Gi
c and Gi

s defined as

Gi
c := fGc

gen (Yi · Rad(α)i), Gi
s := fGs

gen (Yi · Rad((β1 + β2)/2)i),

where Rad(·)i denotes the ith sample of the random variable Rad(·).
Denote

GA = fGc
gen (+1), GB = fGc

gen (−1),

and
GC = fGs

gen (+1), GD = fGs
gen (−1),

Considering applying the augmentation to 2n samples randomly sampled from Emix
tr , since the

featurizer g separates each G ∈ Emix
tr into Ĝc = Gs and Ĝs = Gc, and the augmented graph Gi is

obtained by
Gi,j = fG

gen(Ĝ
i
c, Ĝ

j
s),∀i, j ∈ {1...n}.

Then, the new αv, βv in Ev can be obtained by summing up the overall numbers of GA, GB , GC , GD

concatenated into 2n2 samples in Ev .

Specifically, we can inspect the changes of the distributions of motifs and labels. Let β̄ = (β1+β2)/2,
without loss of generality, we focus on inspecting the changes given Y = +1, since the changes
given Y = −1 is symmetric as Y = +1. The original distribution is shown as follows:

Y = +1 GA GB

GC (1− α)(1− β̄)n α(1− β̄)n
GD (1− α)β̄n αβ̄n

Then, new distributions of the motifs and labels are determined by the number of original motifs
identified as Ĝc and Ĝs, respectively. When Ĝc = Gs and Ĝs = Gc, in the new environment
Ev, given Y = +1, GC contributes (1 − β̄)n ∗ 2n samples as the “invariant” subgraph. More
specifically, GC will be concatenated with GA and GB by n times, respectively. Then we have the
new distribution tables shown as follows:

Y = +1 GA GB

GC (1− β̄)n2 (1− β̄)n2

GD β̄n2 β̄n2
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Since given the same Y , the spurious subgraph GC and GD will still have the same chance being
flipped, we have βv = β̄. While as GA and GB appear the same times given the same Y , it suffices
to know that αv = 0.5.

C.2 PROOF OF THEOREM 3.3

Theorem C.2. (Formal statement of Theorem 3.3) Given the same graph generation process as
in Fig. 3, when there exists spurious subgraph Gs such that P e1(Y |Gs) = P e2(Y |Gs) for any
two environments e1, e2 ∈ Etr, where P e(Y |Gs) is the conditional distribution P (Y |Gs) under
environment e ∈ Eall, it is impossible for any learning algorithm applied to fc ◦ g to differentiate Gc

from Gs.

Proof. Let G∗
s be the spurious subgraph such that P e1(Y |Gs) = P e2(Y |Gs) for any two environ-

ments e1, e2 ∈ Etr, and Gc be the invariant subgraph which P e1(Y |Gc) = P e2(Y |Gc), ∀e1, e2 ∈ Etr
by definition. Consider a learning algorithm applied to fc ◦ g that accepts the input of Emix

tr , and
extracts a subgraph Ĝc = g(Y ) as an estimation of the invariant subgraph for any G to predict Y
via fc(Ĝc) in a deterministic manner. If the algorithm succeed to extract Gc from Emix

tr , then there
always exists a Emix

tr
′ with the desired spurious subgraph G′

s and a underlying invariant subgraph G′
c,

such that G′
s = Gc and G′

c = G∗
s . Due to the deterministic nature, the algorithm fails to identify G′

c

in Emix
tr

′.

C.3 PROOF OF PROPOSITION 3.5

Proposition C.3. (Formal statement of Proposition 3.5) There exist 2 two-piece graph training
environments Etr and Etr

′, whose mixed training environments are the same, such that any learning
algorithm will fail to capture the invariance of at least one of the training environments.

Proof. Let the mixed training environment of Etr and Etr
′ be Emix

tr = {(α, β)}. Based on the definition
of two-piece graphs (Definition 3.1), the joint distribution of the mixed training dataset (G =
Concat[Gc, Gs], Y ) can be computed as

Y = +1, with probability 0.5,

Y = −1, with probability 0.5,

BitGc(Gc) = BitGs(Gs) = Y, with probability (1− α)(1− β),

BitGc(Gc) ̸= BitGs(Gs) = Y, with probability α(1− β),

BitGs(Gs) ̸= BitGc(Gc) = Y, with probability (1− α)β,

BitGc(Gc) = BitGs(Gs) ̸= Y, with probability αβ.

Here we use BitGc(Gc) to obtain the input bit of a subgraph Gc (or (fGc
gen )

−1), and BitGs(Gs) for Gs,
respectively.

Any learning algorithm that tries to identify the invariant subgraph from this training dataset will
compute a model that uses subgraph Gc, or subgraph Gs, or both Gc and Gs to predict Y determin-
istically. Thus, as long as the joint distribution does not change, the resulting model will always
identify the same invariant subgraph. Without loss of generality, let us assume that the model correctly
identifies Gc as the invariant subgraph for Etr = {(α, β1), (α, β2)} with β = (β1 + β2)/2.

Now let the other training environment be Etr
′ = {(α1, β), (α2, β)} with α = (α1 + α2)/2. It is

clear that since the mixed training environment of Etr
′ is still {(α, β)}, the model keeps regarding Gc

as the invariant subgraph. However, for Etr
′, the model fails to identify the invariance since now the

invariant subgraph is Gs.

C.4 PROOF OF COROLLARY 3.7

Corollary C.4. (Formal statement of Corollary 3.7) Without Assumption 3.6, then there does not
exist a learning algorithm that captures the invariance of all of the two-piece graph environments.
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Proof. Consider a learning algorithm applied to fc ◦ g that accepts the input of Emix
tr , and extracts a

subgraph Ĝc = g(Y ) as an estimation of the invariant subgraph for any G to predict Y via fc(Ĝc)
in a deterministic manner. Without the holding of Assumption 3.6, due to Proposistion 3.5, there
exists Emix

tr
′ for each Emix

tr that have the identical joint distribution but different underlying invariant
subgraph. Thus, any learning algorithm that succeeds in either Emix

tr or Emix
tr

′ will fail in the other.

C.5 PROOF OF THEOREM D.1

Theorem C.5. (Formal statement of Theorem D.1) Given, i) the same data generation process
as in Fig. 3; ii) Dtr that satisfies variation sufficiency (Assumption 3.4) and variation consis-
tency (Assumption 3.6); iii) {Gp} and {Gn} are distinct subsets of Dtr such that I(Gn

s ;G
p
s |Y ) =

0, ∀Gp
s argmaxĜp

s
I(Ĝp

s ;Y ) under {Gp}, and ∀Gn
s argmaxG̃n

s
I(G̃n

s ;Y ) under {Gn}; suppose
|Gc| = sc, ∀Gc, resolving the following GALA objective elicits an invariant GNN defined via Eq. 6,

max
fc,g

I(Ĝc;Y ), s.t. g ∈ argmax
ĝ,|Ĝp

c |≤sc

I(Ĝp
c ; G̃

n
c |Y ), (7)

where G̃p
c ∈ {Ĝp

c = g(Gp)} and G̃n
c ∈ {G̃n

c = g(Gn)} are the estimated invariant subgraphs via g
from {Gp} and {Gn}, respectively.

Proof. Without loss of generality, we assume that {Gp} has the same spurious dominance situation
as Etr. In other words, when H(S|Y ) < H(C|Y ), the data distribution in {Gp} also follows
H(S|Y ) < H(C|Y ), while H(S|Y ) > H(C|Y ) in {Gn}. To proceed, we will use the language
of Chen et al. (2022a).

We begin by discussing the case of H(S|Y ) < H(C|Y ). Given H(S|Y ) < H(C|Y ), we have
H(S|Y ) < H(C|Y ) in {Gp} and H(S|Y ) > H(C|Y ) in {Gn}. Then, we claim that

Gc ∈ argmax
Ĝp

c ,|Ĝp
c |≤sc

I(Ĝp
c ; G̃

n
c |Y ). (8)

Otherwise, consider there exists a subgraph of the spurious subgraph Gp
s ⊆ Gs in Ĝp

c , which takes
up the space of Ĝl

c ⊆ Gc from Ĝp
c . Then, we can inspect the changes to I(Ĝp

c ; G̃
n
c |Y ) led by Gp

s :

△I(Ĝp
c ; G̃

n
c |Y ) = △H(Ĝp

c |Y )−△H(Ĝp
c |Ĝp

c , G̃
n
c , Y )

=
[
H(Ĝl

c, Ĝ
p
s |Y )−H(Ĝl

c, Ĝ
p
c |Y )

]
−
[
H(Ĝl

c, Ĝ
p
s |G̃n

c , Y )−H(Ĝl
c, Ĝ

p
c |G̃n

c , Y )
]

=
[
H(Ĝp

s |Ĝl
c, Y )−H(Ĝp

c |Ĝl
c, Y )

]
−
[
H(Ĝp

s |Ĝl
c, G̃

n
c , Y )−H(Ĝp

c |Ĝl
c, G̃

n
c , Y )

]
,

(9)
where the last equality is obtained via expanding the conditional entropy. Then, considering the
contents in G̃n

c , without loss of generality, we can divide all of the possible cases into two:

(i) G̃n
c contains only the corresponding invariant subgraph Gn

c ;

(ii) G̃n
c contains from the corresponding spurious subgraph Gn

s , denoted as G̃n
s ⊆ Gn

s ;

For case (i), it easy to write Eq. 9 as:

△I(Ĝp
c ; G̃

n
c |Y ) =

[
H(Ĝp

s |Ĝl
c, Y )−H(Ĝp

c |Ĝl
c, Y )

]
−
[
H(Ĝp

s |Ĝl
c, G̃

n
c , Y )−H(Ĝp

c |Ĝl
c, G̃

n
c , Y )

]
,

= −H(Ĝp
c |Ĝl

c, Y ) +H(Ĝp
c |Ĝl

c, G̃
n
c , Y ),

(10)
since H(Ĝp

s |Ĝl
c, Y ) = H(Ĝp

s |G̃n
c , Ĝ

l
c, Y ) = H(Ĝp

s |Y ) given C ⊥⊥ S|Y for PIIF shifts. Then, it
suffices to know that △I(Ĝp

c ; G̃
n
c |Y ) ≤ 0 as conditioning on new variables will not increase the

entropy (Yeung, 2008).
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Table 2: Assumption 3.6 raises new challenges for environment augmentation, where no existing
works could handle both cases.

H(S|Y ) < H(C|Y ) H(S|Y ) > H(C|Y )
DisC ✓ ✗
CIGA ✗ ✓

GALA (Ours) ✓ ✓

For case (ii), we have :

△I(Ĝp
c ; G̃

n
c |Y ) =

[
H(Ĝp

s |Ĝl
c, Y )−H(Ĝp

c |Ĝl
c, Y )

]
−
[
H(Ĝp

s |Ĝl
c, G̃

n
c , Y )−H(Ĝp

c |Ĝl
c, G̃

n
c , Y )

]
,

=
[
−H(Ĝp

c |Ĝl
c, Y ) +H(Ĝp

c |Ĝl
c, G̃

n
c , Y )

]
+

[
H(Ĝp

s |Ĝl
c, Y )−H(Ĝp

s |Ĝl
c, G̃

n
c , Y )

]
,

(11)
where we claim that H(Ĝp

s |Ĝl
c, Y ) − H(Ĝp

s |Ĝl
c, G̃

n
c , Y ) = 0, and similarly conclude that

△I(Ĝp
c ; G̃

n
c |Y ) ≤ 0. More specifically, we can rewrite the first term in Eq. 11 as

H(Ĝp
s |Ĝl

c, Y )−H(Ĝp
s |Ĝl

c, G̃
n
c , Y ) = H(Ĝp

s |Y )−H(Ĝp
s |Ĝn

s , Y )

= I(Ĝp
s ; Ĝ

n
s |Y ) = 0,

using the variation condition for Ĝp
s under {Gp}, and G̃n

s under {Gn}.

After showing the success of GALA in tackling H(S|Y ) < H(C|Y ), it is also suffices to know that
the aforementioned discussion also generalizes to the other case, i.e., when H(S|Y ) > H(C|Y ) in
{Gp} and H(S|Y ) < H(C|Y ) in {Gn}.

D INVARIANT GRAPH LEARNING WITH ENVIRONMENT ASSISTANT

D.1 CHALLENGES OF ENVIRONMENT AUGMENTATION

Assumption 3.4 and Assumption 3.6 establish the minimal conditions for identifying the underlying
invariant subgraphs. However, it also raises new challenges, as shown in Table. 2. Chen et al. (2022a)
proposed CIGA to maximize the intra-class mutual information of the estimated invariant subgraphs
to tackle the case when H(C|Y ) < H(S|Y ). While for the case when H(S|Y ) < H(C|Y ), Fan
et al. (2022) proposed DisC that adopts GCE loss (Lee et al., 2021) to extract the spurious subgraph
with a larger learning step size such that the left subgraph is invariant. However, both CIGA and
DisC can fail when there is no prior knowledge about the relations between H(C|Y ) and H(S|Y ).
We verify the failures of DisC and CIGA in Fig. 2(c). The failure thus raises a challenging question:

Given the established minimal assumptions, is there a unified framework that tackles both cases
when H(C|Y ) < H(S|Y ) and H(C|Y ) > H(S|Y )?

D.2 LEARNING WITH AN ENVIRONMENT ASSISTANT

We provide affirmative answers to the previous question by proposing a new framework, GALA:
Graph invAriant Learning Assistant, which adopts an assistant model to provide faithful information
about the underlying environments.

Intuitively, a straightforward approach to tackle the aforementioned challenge is to extend the
framework of either DisC (Fan et al., 2022) or CIGA (Chen et al., 2022a) to resolve the other case.
As DisC always destroys the first learned features which tends to be more difficult to extend, we are
thus motivated to extend the framework of CIGA to resolve the case when H(S|Y ) < H(C|Y ).

Understanding the success and failure of CIGA. The principle of CIGA lies in maximizing the
mutual information of the estimated invariant subgraphs from the same class, i.e.,

max
fc,g

I(Ĝc;Y ), s.t. Ĝc ∈ argmax
Ĝc=g(G),|Ĝc|≤sc

I(Ĝc; G̃c|Y ), (12)
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where G̃c = g(G̃) and G̃ ∼ P(G|Y ), i.e., G̃ is sampled from training graphs that share the same
label Y as Ĝ. The key reason for the success of Eq. 12 is that, given the data generation process as in
Fig. ?? and the same C, the underlying invariant subgraph Gc maximizes the mutual information of
subgraphs from the two environments, i.e., ∀e1, e2 ∈ Eall,

Ge1
c ∈ argmaxĜe1

c
I(Ĝe1

c ; Ĝe2
c |C), (13)

where Ĝe1
c and Ĝe2

c are the estimated invariant subgraphs corresponding to the same latent causal
variable C = c under the two environments e1, e2, respectively. Since C is not directly observable,
CIGA adopts Y as a proxy for C, as when H(S|Y ) > H(C|Y ), Gc maximizes I(Ĝe1

c ; Ĝe2
c |Y ) and

thus I(Ĝc; G̃c|Y ). However, when H(S|Y ) < H(C|Y ), the proxy no longer holds. Given the
absence of E, simply maximizing intra-class mutual information favors the spurious subgraph Gs

instead, i.e.,

Gs ∈ argmaxĜc
I(Ĝc; G̃c|Y ). (14)

Invalidating spuriousness dominance. To mitigate the issue, we are motivated to find a new proxy
that samples G̃c for Eq. 14, while preserving only the Gc as the solution.

To begin with, we first consider resolving the failure case of CIGA. When H(S|Y ) < H(C|Y ),
although the correlation between Gs and Y dominates the intra-class mutual information, Assump-
tion 3.4 implies that there exists a subset of training data where P (Y |Gs) varies, while P (Y |Gc)
remains invariant. Therefore, the dominance of spurious correlations no longer holds in samples from
the subset. Incorporating the subset into Eq. 12 as G̃c can further invalidate the dominance of Gs in
Eq. 12. Denote subset as {Ĝn

c }, then

Gc ∈ argmaxĜp
c
I(Ĝp

c ; G̃
n
c |Y ), (15)

where Ĝp
c ∈ {Ĝp

c} is sampled from the subset {Ĝp
c} dominated by spurious correlations, while

G̃n
c ∈ {Ĝn

c } is sampled from the subset {Ĝn
c } where spurious correlation no long dominates, or

dominated by invariant correlations. We prove the effectiveness of Eq. 15 in Theorem D.1.

Environment assistant model A. The remaining challenge is to find the desired subsets {Ĝp
c} and

{G̃n
c }. Motivated by the success in tackling spuriousness dominated OOD generalization via learning

from a biased predictors (Nam et al., 2020; Lee et al., 2021; Liu et al., 2021a; Zhang et al., 2022),
we propose to incorporate an assistant model A that is prone to spurious correlations. Training A
with ERM using the spuriousness dominated data enables A learns spurious correlations, and hence
we can identify the subsets where the spurious correlations hold or shifts, according to whether the
predictions of A are accurate or not. More formally, we have

{Ĝp
c} = {g(Gp

i )|A(Gp
i ) = Yi}, {G̃n

c } = {g(Gn
i )|A(Gn

i ) ̸= Yi}, (16)

where A = argmaxÂ I(Â(G);Y ).

Reducing to invariance dominance case. Although Eq. 15 resolves the spuriousness dominance
case, can it still preserves Gc as the only solution when H(S|Y ) > H(C|Y )?

Fortunately, we find positive answers. Considering training A with ERM using the invariance
dominated data, A will learn both invariant correlations and spurious correlations. Therefore, {G̃n

c }
switches to the subset that is dominated by spurious correlations, while {Ĝp

c} switches to the subset
dominated by invariant correlations. Then, Eq. 15 establishes a lower bound for the intra-class mutual
information, i.e.,

I(Ĝp
c ; G̃

n
c |Y ) ≤ I(Ĝc; G̃c|Y ), (17)

where Ĝp
c ∈ {Ĝp

c}, G̃n
c ∈ {G̃n

c }, and Ĝc, G̃c are the estimated subgraphs for two random samples
with the same label. The equality is achieved by taking Gc as the solution for the featurizer g.

18



Published at ICLR 2023 Workshop on Domain Generalization

Algorithm 1 GALA: Graph invAriant Learning Assistant
1: Input: Training data Dtr; environment assistant A; featurizer g; classifier fc; length of maximum

training epochs e; batch size b;
2: Initialize environment assistant A;
3: for p ∈ [1, . . . , e] do
4: Sample a batch of data {Gi, Yi}bi=1 from Dtr;
5: Obtain Environment Assistant predictions {ŷei }bi=1;
6: for each sample Gi, yi ∈ {Gi, Yi}bi=1 do
7: Find postive graphs with same yi and different ŷei ;
8: Find negative graphs with different yi but same environment assistant prediction ŷei ;
9: Calculate GALA risk via Eq. 19;

10: Update fc, g via gradients from GALA risk;
11: end for
12: end for
13: return final model fc ◦ g;

D.3 THEORETICAL ANALYSIS

In the following theorem, we show that the derived objective from Sec. D.2 can identify the underlying
invariant subgraph and yields an invariant GNN defined in Sec. 2.

Theorem D.1. Given i) the same data generation process as in Fig. ??; ii) Dtr that satisfies variation
sufficiency (Assumption 3.4) and variation consistency (Assumption 3.6); iii) {Gp} and {Gn} are
distinct subsets of Dtr such that I(Gn

s ;G
p
s |Y ) = 0, ∀Gp

s = argmaxĜp
s
I(Ĝp

s ;Y ) under {Gp}, and

∀Gn
s = argmaxG̃n

s
I(G̃n

s ;Y ) under {Gn}; suppose |Gc| = sc, ∀Gc, resolving the following GALA
objective elicits an invariant GNN defined via Eq. 6,

max
fc,g

I(Ĝc;Y ), s.t. g ∈ argmax
ĝ,|Ĝp

c |≤sc

I(Ĝp
c ; G̃

n
c |Y ), (18)

where G̃p
c ∈ {Ĝp

c = g(Gp)} and G̃n
c ∈ {G̃n

c = g(Gn)} are the estimated invariant subgraphs via g
from {Gp} and {Gn}, respectively.

The proof is given in Appendix C.5. Essentially, assumption iii) in Theorem D.1 is an implication of
the variation sufficiency (Assumption 3.4). When given the distinct subsets {Gp} and {Gn} with
different relations of H(C|Y ) and H(S|Y ), since H(C|Y ) remains invariant across different subsets,
the variation happens to be the spurious correlations between S and Y . By differentiating spurious
correlations into distinct subsets, maximizing the intra-class mutual information helps identify the true
invariance. The fundamental rationale of GALA relies on the commutative law of mutual information.

D.4 PRACTICAL IMPLEMENTATION

Environment assistant implementation. Theorem D.1 shows the effectiveness of GALA when
given proper subsets of {Gp} and {Gn}. In practice, we can implement the environment assistant in
multiple forms. As discussed in Sec. D.2, ERM trained model can serve as a reliable proxy. Since
ERM tends to learn the first dominant features, when H(S|Y ) < H(C|Y ), ERM will first learn
to extract spurious subgraphs Gs to make predictions. Therefore, we can obtain {Gp} by finding
samples where ERM correctly predicts the labels, and we obtain {Gn} for samples where ERM
predicts incorrect labels. In addition to direct label predictions, the clustering predictions of the
hidden representations yielded by environment assistant models can also be used for sampling {Gp}
and {Gn} (Zhang et al., 2022). Besides, we can also incorporate models that are easier to overfit to
the first dominant features to better differentiate {Gp} from {Gn}. We provide more discussions
about the implementations of environment assistant in Appendix D.5.

Objective implemention. As the estimation of mutual information could be highly expen-
sive (van den Oord et al., 2018; Belghazi et al., 2018), inspired by Chen et al. (2022a), we adopt the
contrastive learning to approximates the mutual information between subgraphs in Eq. 18 (Khosla
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et al., 2020; Chopra et al., 2005; Salakhutdinov & Hinton, 2007; van den Oord et al., 2018; Belghazi
et al., 2018):

I(Ĝp
c ; G̃

n
c |Y ) ≈E{Ĝp

c ,G̃
n
c }∼Pg(G|Y=Y )

{Gi
c}

M
i=1∼Pg(G|Y≠Y )

log
e
ϕ(hĜ

p
c
,hG̃n

c
)

e
ϕ(hĜ

p
c
,hG̃n

c
)
+

∑M
i=1 e

ϕ(hĜc
,hGi

c
)
,

(19)

where (Ĝp
c , G̃

n
c ) are subgraphs extracted by g from {Gp}, {Gn} that share the same label, {Gi

c}Mi=1
are subgraphs extracted by g from G that has a different label. Pg(G|Y = Y ) is the push-forward
distribution of P(G|Y = Y ) by featurizer g, P(G|Y = Y ) refers to the distribution of G given
the label Y , P(G|Y ̸= Y ) refers to the distribution of G given the label that is different from Y ,
Ĝc = g(Ĝ), Ĝc = g(G̃), Gi

c = g(Gi) are the estimated subgraphs, hĜp
c
, hG̃n

c
, hGi

c
are the graph

presentations of the extracted subgraphs, and ϕ measures the similarity between graph representations.
As M → ∞, Eq. 19 approximates I(Ĝp

c ; G̃
n
c |Y ) (Ahmad & Lin, 1976; Kandasamy et al., 2015;

Wang & Isola, 2020).

For each Gp, in addition to sampling only positive samples from {Gn}, we can also find hard negative
samples based on environment assistant predictions, which have a different ground truth labels Y but
being predicted as the same as Gp (Zhang et al., 2022). The detailed algorithm description of GALA
is shown as in Algorithm 1.

D.5 MORE DISCUSSIONS ON PRACTICAL IMPLEMENTATIONS OF GALA

In this section, we provide more implementation discussions about GALA in complementary to
Sec. D.4.

Environment assistant implementation. Theorem D.1 shows the effectiveness of GALA when
given proper subsets of {Gp} and {Gn}. In practice, we can implement the environment assistant
into multiple forms. As discussed in Sec. D.2, ERM trained model can serve as a reliable proxy. Since
ERM tends to learn the first dominant features, when H(S|Y ) < H(C|Y ), ERM will firstly learn
to extract spurious subgraphs Gs to make predictions. Therefore, we can obtain {Gp} by finding
samples where ERM correctly predicts the labels, while {Gn} for samples that ERM predicts an
incorrect label. In addition to direct label predictions, we can also adopt clustering (Zhang et al.,
2022) to yield environment assistant predictions for better contrastive sampling. We provide the
detailed description of the clustering based variant of GALA in Algorithm 2.

Algorithm 2 GALA: Clustering based Graph invAriant Learning Assistant
1: Input: Training data Dtr; environment assistant A; featurizer g; classifier fc; length of maximum

training epochs e; batch size b;
2: Initialize environment assistant A;
3: for p ∈ [1, . . . , e] do
4: Sample a batch of data {Gi, Yi}bi=1 from Dtr;
5: Obtain Environment Assistant predictions {ĉei}bi=1 using k-means clustering on the graph

representations yielded by A;
6: for each sample Gi, yi ∈ {Gi, Yi}bi=1 do
7: Find postive graphs with same yi and different ĉei ;
8: Find negative graphs with different yi but same environment assistant prediction ĉei ;
9: Calculate GALA risk via Eq. 19;

10: Update fc, g via gradients from GALA risk;
11: end for
12: end for
13: return final model fc ◦ g;

Empirically, we find clustering based variant can provide better performance when the spurious
correlations are well learned by the environment assistant model. More concretely, we plot the umap
visualizations (McInnes et al., 2018) of ERM trained environment assistant model as in Fig. 4, where
we can find that clustering predictions provide a better approximations to the underlying group labels.
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Besides, we can also incorporate models that are easier to overfit to the first dominant features
to better differentiate {Gp} from {Gn}. To demonstrate the difference of environment assistant
implementations, we conduct more studies with interpretable GNNs with a interpretable ratio of 30%
trained with ERM and also with a CIGAv1 penalty of 4.
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Figure 4: Umap visualizations of learned graph representations in ERM trained environment assistant
model based on the 3-class two-piece graph {0.7, 0.9}.
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Figure 5: Umap visualizations of learned graph representations in an interpretable GNN model
(ratio=30%) trained with ERM based on the 3-class two-piece graph {0.7, 0.9}.
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Figure 6: Umap visualizations of learned graph representations in an interpretable GNN model
(ratio=30%) trained with ERM based on the 3-class two-piece graph {0.7, 0.9}.
In Fig. 5 and Fig. 6, it can be found that the interpretable GNN learns hidden representations that are
better clustered with group labels. The clustering based predictions yields a better approximation
of the underlying environment labels. Furthermore, when implementing the environment assistant
model using a interpretable GNN as well as a CIGAv1 penalty, which facilitates the overfitting to the
spurious correlations, then the vanilla label predictions can also yield a good approximation of the
underlying environment labels.

Although using the clustering predictions seem to be promising, we also find negative cases. For
example, in DrugOOD datasets, the number of curated environment labels are much larger that
learning a well clusterd hidden representations for the environment labels appears to be difficult.
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Figure 7: Umap visualizations of learned graph representations of a interpretable GNN trained by
ERM on EC50-Assay.

20 10 0 10 20 30

10

5

0

5

10

15

20

25

colored by group labels

(a) Colored by environment labels.

20 10 0 10 20 30

10

5

0

5

10

15

20

25

colored by prediction

(b) Colored by label predictions.

20 10 0 10 20 30

10

5

0

5

10

15

20

25

colored by cluster prediction

(c) Colored by clustering predic-
tions.

Figure 8: Umap visualizations of learned graph representations of a interpretable GNN trained by
ERM on EC50-Scaffold.

Shown as in Fig. 7 to Fig. 9, the learned representations have poor quality for approximating the
underlying environment labels. Empirically, we also find that direct using label predictions in
DrugOOD datasets generically yield better performance.

One-side contrastive sampling. The original supervised contrastive implementation (Khosla et al.,
2020) takes positive and negative samples within the batch using two-side contrastive sampling. That
is, all the samples will be considered as anchor points. However, when it is used to contrast samples
from Ĝp

c and G̃n
c , there could be undesired behaviors. First, it can often happen that there are few

to no negative cases when the spurious correlations are too strong. The samples from {Gp} in a
batch may pull the representations of samples from {Gn} to even closer, which makes the model
further overfitted to the spurious correlations. Second, the sampling over Ĝp

c and G̃n
c , can be seen as

hard positive and negative samples, that may impose a too strong regularizations that preventing the
learning of any correlations. Therefore, we propose to use one-side sampling. That is, only using
the incorrectly predicted samples as anchor points. We empirically observe one-side sampling could
yield better performance in two-piece graphs.

E EXPERIMENTAL EVALUATION

We evaluated GALA with both synthetic and realistic graph distribution shifts. Specifically, we are
interested in the following two questions: (a) Can GALA improve over the state-of-the-art invariant
graph learning methods when the spurious subgraph has a stronger correlation with the labels? (b)
Will GALA affect the performance when the invariant correlations are stronger?

E.1 DATASETS

We prepared both synthetic and realistic graph datasets containing various distribution shifts. We will
briefly introduce each dataset. More details are given in Appendix F.1.
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Figure 9: Umap visualizations of learned graph representations of a interpretable GNN trained by
ERM on EC50-Size.

Table 3: OOD generalization performance under various invariant and spurious correlation degrees in
the two-piece motif datasets. Each dataset is generated from a variation of two-piece graph model,
denoted as {a, b}, where a refers to the invariant correlation strength and b refers to the spurious
correlation strength.

DATASETS {0.8, 0.6} {0.8, 0.7} {0.8, 0.9} {0.7, 0.9}

ERM 66.91 (2.55) 62.55 (2.38) 41.90 (1.74) 36.02 (1.55)
IRM 70.06 (1.22) 61.78 (1.05) 42.63 (2.22) 35.85 (0.84)
V-REX 69.32 (1.88) 65.10 (2.46) 43.42 (1.90) 35.17 (1.85)
EIIL 66.10 (3.47) 61.40 (1.71) 40.47 (2.15) 36.48 (0.90)
IB-IRM 64.89 (2.23) 61.76 (1.81) 42.25 (2.13) 37.31 (1.73)

GREA 79.39 (1.25) 75.88 (0.83) 54.19 (4.06) 42.59 (2.27)
GSAT 79.87 (1.05) 76.68 (1.65) 53.14 (1.80) 40.99 (0.92)
MOLEOOD 66.61 (1.72) 52.75 (4.73) 41.73 (0.81) 34.25 (2.45)
GIL 80.72 (0.75) 77.87 (0.75) 54.48 (2.09) 42.18 (2.09)
DISC 63.49 (9.56) 59.64 (4.96) 49.25 (15.7) 38.90 (9.67)
CIGAV1 80.39 (0.80) 78.11 (0.89) 54.52 (1.54) 44.34 (6.03)
GALA 82.21 (1.00) 80.99 (0.76) 57.00 (1.57) 45.05 (2.78)
ORACLE (IID) 82.37 (0.77) 83.25 (0.86) 82.61 (0.48) 76.47 (0.66)

Two-Piece Motif. We adopted BA-2motifs (Luo et al., 2020) to implement 4 variants of 3-class
two-piece graph (Def. 3.1) datasets. The datasets contain different relationships of H(C|Y ) and
H(S|Y ) by controlling the α and β in the mixed environment. We consider 4 cases of α−β, ranging
from {+0.2,+0.1,−0.1,−0.2}.

Realistic datasets. We also adopted datasets containing various realistic graph distribution shifts to
comprehensively evaluate the OOD performance of GALA. We adopted 3 dataset from DrugOOD
benchmark (Ji et al., 2022), including splits using Assay, Scaffold, and Size splits from the EC50
category (denoted as EC50-*). We also adopted graphs converted from the ColoredMNIST dataset of
IRM (Arjovsky et al., 2019) using the algorithm from Knyazev et al. (2019) that contains distribution
shifts in node attributes (denoted as CMNIST-sp). In addition, we adopted Graph-SST2, Graph-
SST5 and Twitter (Yuan et al., 2020) and inject degree biases. The training set in Graph-SST2 and
Graph-SST5 contain graphs with smaller average degrees than the test set, while the training set in
Twitter contains a larger average degree.

E.2 BASELINES AND EXPERIMENT SETUP

We adopted the state-of-the-art OOD methods from the Euclidean regime, including IRMv1 (Arjovsky
et al., 2019), VREx (Krueger et al., 2021), EIIL (Creager et al., 2021b) and IB-IRM (Ahuja et al.,
2021), as well as from the graph regime, including GREA (Liu et al., 2022), GSAT (Miao et al., 2022),
MoleOOD (Yang et al., 2022), GIL (Li et al., 2022), DisC (Fan et al., 2022) and CIGAv1 (Chen et al.,
2022a). We excluded DIR (Wu et al., 2022b) and GIB (Yu et al., 2021) as GREA and GSAT are their
sophisticated variants. We also excluded CIGAv2 (Chen et al., 2022a) as GALA focuses on improving
the contrastive sampling via environment assistant for the objective in CIGAv1.

All methods adopted the same GIN backbone (Xu et al., 2019) as the graph encoder, as well as an
identical optimization protocol for fair comparisons. We tuned the hyperparmeters following the
recommended settings in previous works. More details are given in Appendix F.2.
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Table 4: OOD generalization performance under realistic graph distribution shifts.
DATASETS EC50-ASSAY EC50-SCA EC50-SIZE CMNIST-SP GRAPH-SST2 GRAPH-SST5 TWITTER AVG (RANK)†

ERM 76.42 (1.59) 64.56 (1.25) 62.79 (1.15) 21.56 (5.38) 81.54 (1.13) 42.62 (2.54) 59.34 (1.13) 58.40 (7.14)
IRM 76.51 (1.89) 64.82 (0.55) 63.23 (0.56) 23.29 (7.82) 82.22 (0.88) 42.77 (1.26) 60.42 (1.06) 59.04 (5.29)
V-REX 76.73 (2.26) 62.83 (1.20) 59.27 (1.65) 24.62 (8.75) 79.27 (1.95) 42.48 (1.67) 60.50 (2.05) 57.96 (7.57)
EIIL 76.96 (0.25) 64.95 (1.12) 62.65 (1.88) 24.55 (13.3) 80.70 (1.21) 43.79 (1.19) 60.15 (1.44) 59.11 (5.00)
IB-IRM 76.72 (0.98) 64.43 (0.85) 64.10 (0.61) 13.06 (1.97) 82.12 (1.43) 43.02 (1.94) 60.80 (2.50) 57.75 (5.57)

GREA 73.47 (2.48) 62.00 (1.36) 61.88 (1.00) 18.64 (6.44) 80.20 (0.56) 43.29 (0.85) 59.92 (1.48) 57.06 (8.57)
GSAT 66.87 (8.70) 63.31 (1.17) 61.70 (1.48) 12.77 (2.00) 80.55 (2.18) 43.24 (0.61) 60.13 (1.51) 55.51 (8.57)
DISC 65.40 (5.34) 54.97 (3.86) 56.79 (2.56) 54.07 (15.3) 79.10 (2.09) 40.67 (1.19) 57.89 (2.02) 58.41 (10.1)
MOLEOOD 61.94 (1.90) 59.53 (3.47) 56.08 (1.45) 39.55 (4.35) 80.78 (1.13) 40.36 (1.85) 59.26 (1.67) 56.79 (9.71)
GIL 72.13 (4.70) 63.05 (1.04) 62.08 (1.60) 18.04 (4.39) 82.04 (0.97) 43.30 (1.24) 61.78 (1.66) 57.49 (6.29)
CIGAV1 78.46 (0.45) 66.05 (1.29) 65.35 (0.88) 23.66 (8.65) 81.97 (0.87) 44.05 (1.48) 61.15 (0.72) 60.10 (3.00)
GALA 79.24 (1.36) 66.00 (1.86) 66.01 (0.84) 59.16 (3.64) 82.50 (0.86) 44.88 (1.02) 62.45 (0.62) 65.75 (1.14)
ORACLE (IID) 85.18 (1.13) 83.02 (0.77) 86.07 (0.33) 67.25 (0.76) 91.40 (0.26) 47.96 (1.34) 63.66 (0.79)
†Averaged rank is also reported in the parentheses because of dataset heterogeneity. Lower rank is better.

E.3 EXPERIMENTAL RESULTS AND ANALYSIS

Controlled study with two-piece motif. The results in Two-Piece Motif datasets are reported in
Table 3. All the previous environment augmentation approaches fail either in datasets where the
invariant correlations dominate or where the spurious correlations dominate, which is consistent
with our discussions in Sec. 3. In particular, GREA, CIGA and GIL achieve high performance
when invariant correlation strength is stronger, but suffer great performance decrease when the
spurious correlations are stronger. Although DisC is expected to succeed when spurious correlations
dominate, DisC fails to outperform others because its excessive destruction of the learned information.
MoleOOD could also yield degraded performance, which is likely caused by the failures of inferring
reliable environment labels. In contrast, GALA achieves consistently high performance under both
cases and improves CIGAv1 up to 3%, which validates our theoretical results in Sec. D.3.

OOD generalization performance in realistic graphs. The results in realistic datasets are reported
in Table 4. Aligning with our previous discussion, DisC and MoleOOD succeed in CMNIST-sp as
the spurious correlations in node features are much stronger than the graph digit shape. However,
GALA achieves an even higher performance in CMNIST-sp and improves CIGA by 36%. As for
the other datasets, since there is no prior knowledge about the dominance of invariant and spurious
features, they are particularly challenging for OOD generalization. The results show that all the
previous methods can suffer performance degradation in some datasets. In contrast, owning to the
theoretical power of generalizing to both spurious and invariant correlation dominated cases, GALA
continues to succeed and achieves the state-of-the-art performance under the challenging realistic
graph distribution shifts.

F MORE DETAILS ABOUT THE EXPERIMENTS

In this section, we provide more details about the experiments, including the dataset preparation,
baseline implementations, models and hyperparameters selection as well as the evaluation protocols.

Table 5: Information about the datasets used in experiments. The number of nodes and edges are
respectively taking average among all graphs.

DATASETS # TRAINING # VALIDATION # TESTING # CLASSES # NODES # EDGES METRICS

TWO-PIECE GRAPHS {0.8, 0.6} 9, 000 3, 000 3, 000 3 26.14 36.21 ACC
TWO-PIECE GRAPHS {0.8, 0.7} 9, 000 3, 000 3, 000 3 26.18 36.27 ACC
TWO-PIECE GRAPHS {0.8, 0.9} 9, 000 3, 000 3, 000 3 26.13 36.22 ACC
TWO-PIECE GRAPHS {0.7, 0.9} 9, 000 3, 000 3, 000 3 26.13 36.22 ACC
CMNIST-SP 40, 000 5, 000 15, 000 2 56.90 373.85 ACC
GRAPH-SST2 24, 881 7, 004 12, 893 2 10.20 18.40 ACC
GRAPH-SST5 6, 090 1, 186 2, 240 5 19.85 37.70 ACC
TWITTER 3, 238 694 1, 509 3 21.10 40.20 ACC
EC50-ASSAY 4, 978 2, 761 2, 725 2 40.89 87.18 ROC-AUC
EC50-SCAFFOLD 2, 743 2, 723 2, 762 2 35.54 75.56 ROC-AUC
EC50-SIZE 5, 189 2, 495 2, 505 2 35.12 75.30 ROC-AUC

F.1 DATASETS

We provide more details about the motivation and construction method of the datasets that are used in
our experiments. Statistics of the datasets are presented in Table 5.
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Two-piece graph datasets. We construct 3-class synthetic datasets based on BAMotif (Luo et al.,
2020) following Def. B.1, where the model needs to tell which one of three motifs (House, Cycle,
Crane) the graph contains. For each dataset, we generate 3000 graphs for each class at the training set,
1000 graphs for each class at the validation set and testing set, respectively. Each dataset is defined
with two variables {a, b} referring to the strength of invariant and spurious correlations. Given {a, b},
we generate the training data following the percise generation process as Def. B.1. While for the
generation of validation sets, we use a bv = max(1/3, b− 0.2) that facilitates the model selection
for OOD generalization (Gulrajani & Lopez-Paz, 2021; Chen et al., 2022b). While for the generation
of test datasets, we merely use a b = 0.33 that contains no distribution shifts, to fully examine to
what extent the model learns the invariant correlations. During the construction, we merely inject the
distribution shifts in the training data while keeping the testing data and validation data without the
biases.

CMNIST-sp. To study the effects of PIIF shifts, we select the ColoredMNIST dataset created in
IRM (Arjovsky et al., 2019). We convert the ColoredMnist into graphs using super pixel algorithm
introduced by Knyazev et al. (2019). Specifically, the original Mnist dataset are assigned to binary
labels where images with digits 0− 4 are assigned to y = 0 and those with digits 5− 9 are assigned
to y = 1. Then, y will be flipped with a probability of 0.25. Thirdly, green and red colors will be
respectively assigned to images with labels 0 and 1 an averaged probability of 0.15 (since we do not
have environment splits) for the training data. While for the validation and testing data the probability
is flipped to 0.9.

Graph-SST datasets. Inspired by the data splits generation for studying distribution shifts on graph
sizes, we split the data curated from sentiment graph data (Yuan et al., 2020), that converts sentiment
sentence classification datasets Graph-SST2, Graph-SST5 and SST-Twitter (Socher et al., 2013;
Dong et al., 2014) into graphs, where node features are generated using BERT (Devlin et al., 2019)
and the edges are parsed by a Biaffine parser (Gardner et al., 2018). Our splits are created according
to the averaged degrees of each graph. Specifically, we assign the graphs as follows: Those that
have smaller or equal than 50-th percentile averaged degree are assigned into training, those that
have averaged degree large than 50-th percentile while smaller than 80-th percentile are assigned to
validation set, and the left are assigned to test set. For Graph-SST2 and Graph-SST5 we follow the
above process while for Twitter we conduct the above split in an inversed order to study the OOD
generalization ability of GNNs trained on large degree graphs to small degree graphs.

DrugOOD datasets. To evaluate the OOD performance in realistic scenarios with realistic distri-
bution shifts, we also include three datasets from DrugOOD benchmark (Ji et al., 2022). Dru-
gOOD is a systematic OOD benchmark for AI-aided drug discovery, focusing on the task of
drug target binding affinity prediction for both macromolecule (protein target) and small-molecule
(drug compound). The molecule data and the notations are curated from realistic ChEMBL
database (Mendez et al., 2019). Complicated distribution shifts can happen on different assays,
scaffolds and molecule sizes. In particular, we select DrugOOD-lbap-core-ec50-assay,
DrugOOD-lbap-core-ec50-scaffold, and DrugOOD-lbap-core-ec50-size, from
the task of Ligand Based Affinity Prediction which uses ic50 measurement type and contains core
level annotation noises. We directly use the data files provided by the authors. 3 For more details, we
refer interested readers to Ji et al. (2022).

F.2 BASELINES AND EVALUATION SETUP

During the experiments, we do not tune the hyperparameters exhaustively while following the
common recipes for optimizing GNNs. Details are as follows.

GNN encoder. For fair comparison, we use the same GNN architecture as graph encoders for all
methods. By default, we use 3-layer GIN (Xu et al., 2019) with Batch Normalization (Ioffe &
Szegedy, 2015) between layers and JK residual connections at the last layer (Xu et al., 2018). The
hidden dimension is set to 32 for Two-piece graphs, CMNIST-sp, and 128 for SST5, Twitter, and
DrugOOD datasets. The pooling is by default a mean function over all nodes. The only exception is
DrugOOD, where we follow the backbone used in the paper (Ji et al., 2022), i.e., 4-layer GIN with
sum readout.

3https://drugood.github.io/
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Interpretable GNN backbone. As mentioned in Sec. 2 that most of the existing invariant graph
learning approaches adopt the interpretable GNN as the basic backbone model for the whole predictor
f = fc ◦ g, where g : G → Gc is a featurizer GNN and fc : Gc → Y is a classifier GNN. g first
calculates the sampling weights as in Ĝc for each edge. More formally, given a graph G containing n
nodes, a soft mask is predicted through the following equation:

Z = GNN(G) ∈ Rn×h, M = a(Z,A) ∈ Rn×n,

where a calculates the sampling weights for each edge using a MLP: Mij = MLP([Zi, Zj ]). Based
on the continuous sampling score M , g could sample discrete edges according to the predicted scores.
For two-piece graph datasets and EC50-Assay, EC50-Scaffold, EC50-Size,, we will directly use the
score to reweight the messaging passing process along the edge, as we empirically find it yields
more stable performance. While for CMNIST-sp, Graph-SST2, Graph-SST5, Twitter, we will sample
a ratio r% of all edges for each graph. The ratios adopted are 80%, 60%, 50%, 60%, respectively,
following previous works (Chen et al., 2022a; Ji et al., 2022).

Besides, we also have various implementation options for obtaining the features in Ĝc, for further
obtaining hĜc

, as well as for obtaining predictions based on Ĝs. By default, we feed the graph
representations of featurizer GNN to the classifier GNN, as well as to the contrastive loss. For
classifying G based on Ĝs, we use a separate MLP downstream classifier in the classifier GNN fc.

Optimization and model selection. By default, we use Adam optimizer (Kingma & Ba, 2015) with
a learning rate of 1e− 3 and a batch size of 128 for all models at all datasets. Except for CMNIST-sp,
we use a batch size of 256 to facilitate the evaluation following previous works (Miao et al., 2022). To
avoid underfitting, we pre-train models for 20 epochs for all datasets by default. While in two-piece
graphs, we find pre-training by 100 epochs yields more stable performance. To avoid overfitting,
we also employ an early stopping of 5 epochs according to the validation performance. Meanwhile,
dropout is also adopted for some datasets. Specifically, we use a dropout rate of 0.5 for CMNIST,
Graph-SST2, Graph-SST5, Twitter, EC50-Assay and EC50-Scaffold, 0.1 for EC50-Size according to
the validation performance, following previous works (Chen et al., 2022a).

The final model is selected according to the performance at the validation set. All experiments
are repeated with 5 different random seeds of {1, 2, 3, 4, 5}. The mean and standard deviation are
reported from the 5 runs.

Implementations of Euclidean OOD methods. When implementing IRM (Arjovsky et al., 2019),
V-Rex (Krueger et al., 2021) and IB-IRM (Ahuja et al., 2021), we refer the implementations from
DomainBed (Gulrajani & Lopez-Paz, 2021). Since the environment information is not available,
we perform random partitions on the training data to obtain two equally large environments for
these objectives following previous works (Creager et al., 2021a; Chen et al., 2022a). Moreover,
we select the weights for the corresponding regularization from {0.01, 0.1, 1, 10, 100} for these
objectives according to the validation performances of IRM and stick to it for others, since we
empirically observe that they perform similarly with respect to the regularization weight choice. For
EIIL (Creager et al., 2021b), we use the author released implementations about assigning different
samples the weights for being put in each environment and calculating the IRM loss.

Implementations of invariant graph learning methods. We implement GSAT (Miao et al., 2022),
GREA (Liu et al., 2022), MoleOOD (Yang et al., 2022), GIL (Li et al., 2022), DisC (Fan et al.,
2022), and CIGA (Chen et al., 2022a), according to the author provided codes (if available). As
for the hyperparameters in each method, we use a penalty weight of 1 and a ratio of 0.7 for GSAT
following the author-recommended implementations. We use a penalty weight of 1 for GREA as we
empirically it does not affect the performance by changing to different weights. We tune the penalty
weights of MoleOOD with values from {1e− 2, 1e− 1, 1, 10} but did not observe much performance
differences. Hence we stick the penalty weight as 1 for all datasets. We tune the penalty weights of
GIL with values from {1e − 5, 1e − 3, 1e − 1} recommended by the authors. For DisC, we tune
only the q weight from {0.9, 0.7, 0.5} in the GCE loss as we did not observe performance differences
by changing the weight of the other term. We tune the penalty weight of CIGA with values from
{0.5, 1, 2, 4, 8, 16, 32} as recommended by the authors.

All of the graph learning methods adopt a interpretable GNN as the backbone by default. The only
exception is MoleOOD, we follow the original implementation while using a shared GNN encoder
for the variational losses to ensure the fairness of comparison. Besides, for DisC, we find the soft
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masking implementation in two-piece graphs will incur a sever performance degeneration hence we
use a ratio of 25% for the interpretable GNN backbone.

For environment inferring methods, we fix the number of environments in two-piece graphs as 3
(since there are 3 spurious graphs), while search the number of inferred environments according to the
validation performance. Specifically, in CMNIST, Graph-SST2, Graph-SST5, we search the number
of environments from {2, 3, 4} following previous practice (Li et al., 2022). In DrugOOD datasets,
we search the number of environments from {2, 5, 10, 20, 100} following previous practice (Yang
et al., 2022).

Implementations of GALA. For a fair comparison, GALA uses the same GNN architecture for GNN
encoders as the baseline methods. By default, we fix the temperature to be 1 in the contrastive loss,
and merely search the penalty weight of the contrastive loss from {0.5, 1, 2, 4, 8, 16, 32} according to
the validation performances, following the CIGA implementations (Chen et al., 2022a). By default,
we implement the environment assistant as a ERM model, and adopt directly the environment assistant
predictions to sample possible and negative graph pairs. Nevertheless, as discussed in Sec. D that there
could be multiple implementation choices for the environment assistant and the use of its predictions.
In experiments, we find that using specific implementations could improve the OOD performance.
For two-piece graphs, we implement the environment assistant model as an interpretable GNN with
a ratio of 30% and adopt the cluster predictions of the graph representations of the environment
assistant model to sample positive and negative pairs. Since GALA imposes a strong regularization
to the data that may hinder the learning of graph representations, we pre-train the model by 10
epochs using ERM and then impose the GALA penalty implemented as one-side contrastive loss as
discussed in Sec. D.5. For CMNIST-sp, we find implementing the environment assistant model as
an interpretable GNN trained with ERM yields better performance. For Graph-SST2, Graph-SST5,
Twitter, and DrugOOD datasets, we implement the environment assistant as a ERM model while
clustering the learned graph representations of the model to sample postive and negative pairs.

F.3 SOFTWARE AND HARDWARE

We implement our methods with PyTorch (Paszke et al., 2019) and PyTorch Geometric (Fey &
Lenssen, 2019). We ran our experiments on Linux Servers installed with V100 graphics cards and
CUDA 10.2.
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