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Abstract

Modern vehicles are equipped with multiple information-
collection devices, continuously generating a large volume
of raw data. Accurately predicting the trajectories of neigh-
boring vehicles is a vital component in understanding the
complex driving environment. Yet, training trajectory predic-
tion models is challenging in two ways. Processing the large-
scale data is computation-intensive. Moreover, easy-medium
driving scenarios often overwhelmingly dominate the dataset,
leaving challenging driving scenarios such as dense traffic
under-represented. In this paper, to mitigate data redundancy
in the over-represented driving scenarios and to reduce the
bias rooted in the data scarcity of complex ones, we propose
a novel data-efficient training method based on coreset selec-
tion. This method strategically selects a small but representa-
tive subset of data while balancing the proportions of different
scenario difficulties. To the best of our knowledge, we are the
first to introduce a method capable of effectively condensing
large-scale trajectory dataset, while achieving a state-of-the-
art compression ratio. Notably, even when using only 50%
of the Argoverse dataset, the model can be trained with little
to no decline in performance. Moreover, the selected coreset
maintains excellent generalization ability.

Introduction

Understanding the driving environment is crucial for the safe
navigation of autonomous vehicles. Modern vehicles use
sensors and cameras to generate vast amounts of data, en-
abling trajectory prediction models that capture both agent-
agent and agent-infrastructure interactions (Zhou et al. 2022;
Feng et al. 2023; Chai et al. 2019). The practice of train-
ing trajectory prediction models is challenging in two ways.
First, training complex deep neural networks requires vast
amounts of data, leading to extremely high computational
costs. For example, training a SceneTransformer (Ngiam
et al. 2021) model (15.3M parameters) on 0.2M trajectory
samples consumes thousands of GPU hours. This dilemma
raises the following pivotal question:

Q1: How can we identify and maintain the most critical
data without significant accuracy degradation?
The second challenge is that standard machine learning tasks
use the weighted average accuracy as the performance met-
ric (Johnson and Khoshgoftaar 2019), giving more weight to
scenarios with more samples. This biases the model towards

The number of
agents is 80

The number of
agents is 10

& s 9.94
[} (0]
on on
8 8
= =
§ 7.9 §
2 32314980 &

10 20 30 40 50 60 70+
the number of agents

10 20 30 40 50 60 70+
the number of agents

Figure 1: Top: Visualization of trajectory prediction scenarios
with different traffic densities (i.e., number of agents) in the Ar-
goversel.l (Chang et al. 2019). Bottom left: Scenario difficulty
distribution in the training set. Bottom right: Scenario difficulty
distribution in the 10% coreset selected by our balanced method.
Numbers above bars indicate the proportion of each difficulty level.

well-represented scenarios, putting the under-represented
scenarios at risk. We aim to address the following question:
Q2: How to mitigate the bias rooted in the unbalance of dif-
ferent driving scenarios?

In this paper, to address these two questions, we develop
a data-efficient and balanced training method. Specifically,
we focus on selecting a small coreset of trajectory data that
significantly contributes to the model, while balancing the
proportion of data across varying difficulty levels.

The concept of coreset was first introduced by approx-
imating the k-means clustering centers and constructing a
small weighted subset that maintains a clustering cost close
to that of the original data (Har-Peled and Mazumdar 2004).
They have since gained traction in NLP (Zhou et al. 2023a;
Huang et al. 2022) and computer vision (Killamsetty et al.
2021) Recently, inspired by knowledge distillation (Hinton
2015), dataset distillation (Wang et al. 2018; Zhao, Mopuri,
and Bilen 2020) compresses large datasets into smaller syn-
thetic sets, achieving similar performance to full-data train-
ing. Coreset selection and data distillation both aim for data
compression, but the latter is computationally expensive for
large datasets (Zhou et al. 2023a). Coreset selection over-



comes this by choosing a small, representative subset from
the original data, avoiding the cost of synthesizing new data.

Applying coreset selection methods to the field of trajec-
tory prediction presents considerable challenges. Unlike the
fixed dimensions of image data, the dimensions of trajec-
tory prediction data are heterogeneous across driving sce-
narios and dynamic over time. Specifically, the number of
vehicles in a scene directly affects the data’s dimensionality;
the more vehicles involved, the higher the data dimension.
This heterogeneity can be substantial; in the Argoverse mo-
tion prediction dataset 1.1 (Chang et al. 2019), the number
of vehicles in a scene can range from just a few to over 200.
What’s more, the mobility of vehicles results in varying data
dimensions in time.

Contributions. We develop a novel data-efficient training
method based on coreset selection. To the best of our knowl-
edge, this is the first work on coreset construction for trajec-
tory prediction. Our approach consists of multiple steps. We
preprocess the dataset to group the data according to their
difficulty levels (measured by the traffic density in a scene).
Then, we calculate the submodular gain for each sample and
select the most valuable data. To more effectively manage
the coreset budget, we design two different coreset selec-
tion methods: fixed selection and balanced selection. Exper-
imental results show that the fixed selection method achieves
similar performance to the full dataset with just 50% of the
data (minADE difference of 0.022, minFDE difference of
0.047). The balanced method excels in complex scenarios,
with lower data distribution variance. We tested these core-
sets on HPNet, the current state-of-the-art (SOTA) model,
and found that their performance across different difficulty
scenarios closely matches that of the backbone model.

Related Work

Trajectory Prediction. Early trajectory prediction methods
(Kaempchen et al. 2004; Ammoun and Nashashibi 2009;
Batz, Watson, and Beyerer 2009) focused on modeling a
single agent’s path without considering interactions. Re-
cent methods (Gao et al. 2020; Liang et al. 2020) shifted
to vectorization-based techniques to better capture road ge-
ometry and context. Transformer models (Wang et al. 2024;
Giuliari et al. 2021; Xu et al. 2020) emerged to model com-
plex multi-agent interactions (Liu et al. 2021; Ngiam et al.
2021; Zhou et al. 2022, 2023b; Tang et al. 2024).

Training Data Selecting. Training complex neural net-
works on large datasets requires high computation resources.
To address this, data-efficient approaches emerged, includ-
ing optimization algorithms and dataset distillation. Op-
timization methods (Robbins and Monro 1951; Sutskever
et al. 2013; Kingma 2014; Duchi, Hazan, and Singer 2011)
improve training efficiency by accelerating convergence and
using adaptive learning rates. Data distillation methods fo-
cused on directly reducing dataset size (Wang et al. 2018;
Zhao, Mopuri, and Bilen 2020; Cazenavette et al. 2022).
However, data distillation methods are computationally ex-
pensive, as they require synthesizing new data and repeat-
edly optimizing complex objectives (Zhao, Mopuri, and
Bilen 2020). In contrast, coreset selection has proven more

efficient by directly selecting a small representative subset
from the original data, avoiding the high computational costs
associated with generating synthetic datasets while retain-
ing critical information for effective model training (Wang
et al. 2022; Coleman et al. 2019; Paul, Ganguli, and Dziu-
gaite 2021; Zhou et al. 2023a). Applying coreset techniques
to our problem is challenging due to the high dimensionality
of the data, and the dynamic nature of each driving scene.

Problem Formulation

The training dataset 2 = {S/ }_y consists of n driving sce-
narios/scenes. Each driving scenario (i.e. each sample) is de-
scribed by a triple S = (X,Y,.#), where X and Y are the
collections of observed and future trajectories of neighbor-
ing agents (an agent can be a vehicle or a pedestrian), and
A is the map. Let m denote the number of agents in the
scenario, then X and Y can be expressed as X = {x1,...,x }
andY = {y1,...,ym}, where x; € R>*Tobs and y; € R?*Trre are
the two-dimensional observed and future trajectory coordi-
nates of agent i, with lengths T, and T}, respectively.

We quantify the difficulty of a scenario S/ by its traf-
fic density (i.e., the number of agents involved), denoted as
ml. Let m* = max jcy] m/. Let & = {l1,l5,- , lnax } denote
the user-specific difficulty fidelity. For example, one can set
L ={1,---,10}, I = {11,---,20}, -+, Imax = {m* — (m*
mod 10) 4 1,--- ;m*}. For ease of exposition, in this exam-
ple, we assume (m* mod 10) # 0. In this example, class /;
is the group of difficulties 1 ~ 10, and the same applies to
other classes. With a bit of abuse of notation, let

Li:={SC2:m/cl}fork=1,--- max,

be a partition of & for the given data difficulty fidelity ..
Our goal is to efficiently and meticulously pinpoint a subset
of data ¥ C & such that (1) a model trained on & performs
comparably to one trained on the entire dataset &, and (2)
the proportion of data in € across different difficulty levels
Z is as close to uniform as possible.

Method

Managing Heterogeneity in Data Dimensions. Unlike
fixed-dimension image data, trajectory prediction data di-
mensions vary with the number of agents in the scene. In
addition, a given agent may be present or absent at differ-
ent time frames. This is because trajectory prediction data
is temporally continuous, with agents moving at varying
speeds and limited sensor ranges. We address these chal-
lenges by preprocessing the trajectory data in two steps.
Filtering: For each scene, we determine its difficulty m by
ranking all involved agents in descending order based on
their frequency of appearance in the scene duration, and re-
moving agents that appear infrequently.

Categorization: We partition the dataset into subsets
based on user-specified difficulty fidelity .#, and obtain
Ly, Ly, Limax-

Coreset Selection. We use HiVT-64 as the backbone for
coreset construction, applying a submodular function P to
evaluate the contribution of each sample. We propose two
coreset constructions, which we refer to as fixed selection



and balanced selection, respectively. Since they share a
common structure, we describe them together in Algorithm
1. In Algorithm 1, A(S/ | €) := P(€ U{S'}) — P(%) is the
submodular gain of adding S/ to the current coreset . No-
tably, the identified coreset is not limited to the HiVT-64
model but can be effectively used to train other trajectory
prediction models, as demonstrated in our experiments.
Fixed Selection. This method uses a fixed sample ratio of
data to include in the coreset. Let o represent the fixed
ratio (e.g., & = 0.1 for 10%). The number of samples se-
lected from each difficulty level [; € .Z is determined by
ng = a X |Ly|, where |L;| is the total number of samples in
L. To select the most important samples to iteratively build
%, we utilize the following submodular function

P = Y S = D= X 1) =fSHE )
Sie? SieP\€

where f(-) represents the objective function of HiVT-64,
composed of Laplace Negative Log-Likelihood Loss and
Soft Target Cross-Entropy Loss, % is the set of already se-
lected samples, S is the sample currently being considered
for inclusion in the coreset, and S’ represents the samples al-
ready in the coreset. The first term, ¥ gicqpr | £(S7) — £(S7)[2,
measures the similarity between the candidate sample S/ and
the samples §' in 4. This term assesses how well S/ aligns
with the samples already selected in % . The second term,
Ysicone [F(S) — f(S/ )|?, measures the similarity between
S/ and the samples in the remainder of the dataset 7\ %.
This term evaluates how distinct S/ is from the samples that
have not yet been selected. By maximizing P(S”), we select
samples that are highly representative of the current subset
% while being sufficiently distinct from 2\ %'

Balanced Selection This method is designed to miti-
gate biases stemming from the distribution imbalance in
scenes with heterogeneous difficulties. It focuses on se-
lecting more challenging but less frequent samples to en-
sure a relatively balanced representation of difficulty lev-
els in the final coreset. The selection budget is dynami-
cally allocated between different difficulty levels to reduce
bias towards over-represented, easier scenarios. We use the
DynamicBudget function as shown in Algorithm 1 to de-
termine ny. That is, n is determined starting from k = max
so that greater complexity are prioritized. The balanced se-
lection method dynamically adjusts the budget based on the
remaining coreset size and the number of difficulty levels.

Within each difficulty level /i, similar to fixed selection,
the balanced selection method also uses the given submodu-
lar optimization to select the most representative samples, as
shown in Eq. (1). By focusing on more challenging but less
frequent samples, the balanced selection method achieves a
relatively balanced proportion of different difficulty levels in
the selected coreset. The results are shown in Table 1.

Experiments and Evaluations

Dataset, Metrics and Implementation Details. We use
the Argoverse Motion Forecasting Dataset 1.1 (Chang
et al. 2019) and evaluate performance with minADE,

Algorithm 1: Coreset Selection

Input: Entire dataset &, ratio ¢, submodular function P(-),
selection method (Fixed or Balanced)
Output: Selected coreset €
Initialize: € <« 0;
for difficulty level [y € £ (k= max,---,1) do
%7/{ «— 0
Nrest < |2;
if selection method is Fixed then
| g ox | Lyl
else
| i < DynamicBudget(rest, o, k);

for j < 1 ton; do
S/ —arg max A(S/ |6,
g max (87| 6k)
Cr < 6. V{8 };
C <+ CUC
| D @\%k;
return ¢’;
Function DynamicBudget (s, &, k) ¢
budget < & X nregt;
lrest < k;
if |Ly| < budget then
| = |Ls
else
L g budgel;

Lrest

return ny;

minFDE, and MR. MinADE measures average trajectory er-
ror, minFDE captures endpoint deviation, and MR is the per-
centage of endpoints with over 2 meters error. Using HiVT-
64 (Zhou et al. 2022), we identified the best coreset by pre-
training for 10 epochs and iteratively adding top samples
based on submodular scores. We trained HiVT-64, HiVT-
128 (Zhou et al. 2022), and HPNet (Tang et al. 2024) for 64
epochs on an RTX 2080 Ti using AdamW with a batch size
of 32, learning rate 3 X 1074, weight decay 1 x 1074, and
0.1 dropout, applying cosine annealing for learning rate de-
cay. HiVT-64 and HiVT-128 only differ in hidden units. No
additional techniques like ensembles were used.
Experiment Results We use randomly sampled subsets as
benchmarks to compare against our selected coresets (results
in Figure 2). HiVT-64 trained on the full dataset achieves a
minADE of 0.692 and minFDE of 1.047. Using 50% of the
data, the fixed and balanced coresets achieve minADEs of
0.714 and 0.711, closely matching full dataset performance.
HiVT-128 shows similar trends with these reduced coresets.
Generalization Performance Analysis. To assess the gener-
alization capability of the selected coresets, we further tested
them on HPNet(Tang et al. 2024), the current SOTA model.
The models trained on half of the coreset data exhibited only
marginal increases in minADE, with differences of 0.051
and 0.042, and minFDE differences of 0.132 and 0.089 for
the fixed and balanced methods, respectively, compared to
models trained on the full dataset. This indicates that our
coreset selection methods can effectively reduce the training
data while maintaining competitive performance.
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Figure 2: The coresets were tested on three models: (top) HiVT-64 (Zhou et al. 2022), (middle) HiVT-128 (Zhou et al. 2022), and (bottom)
HPNet (Tang et al. 2024). The results are organized from left to right according to different validation set difficulties: (left) full set, (left2)
> 40 agents, (right2) > 60 agents, and (right) > 80 agents. The x-axis shows data keep ratios, and the y-axis shows minADE. Each figure
includes a star for the minADE on the full Argoverse 1.1 dataset (Chang et al. 2019). Additionally, the embedded table presents the minADE,
minFDE, and MR results for the models trained on the complete Argoverse dataset, alongside the results for coresets with a 50% data keep

ratio selected using the fixed (F.) and balanced (B.) methods.

Analysis of Diverse Difficult Scenarios. We evaluated our
methods in complex real-world scenarios, focusing on envi-
ronments with many agents, like dense urban settings where
autonomous systems may encounter interference from mul-
tiple vehicles. We partitioned the validation set based on
the number of agents present in each scenario, creating new
validation subsets with more than 40 agents, more than 60
agents, and more than 80 agents, respectively. Models were
trained on the full dataset and the selected coresets, and
tested on these subsets. The results are presented in Figure 2.

Across all validation subsets, the coresets selected by our
balanced method consistently demonstrated excellent per-
formance, particularly excelling in more complex scenarios.
For in the validation set with over 60 agents, the balanced
method achieved a minADE of 1.216 at a 40% keep ratio,
compared to 1.292 for the random method. Additionally, the
fixed method exhibited strong performance at higher data
keep ratios, outperforming the random selection approach.
When operating under low data keep ratios, the balanced
method showed a more significant advantage over the other
methods. Notably, the performance of the random method
deteriorated considerably at low data keep ratios, underscor-
ing the superiority of our fixed and balanced selection strate-
gies in maintaining model accuracy with reduced data.

Insight into Data Distribution. The performance of trajec-
tory prediction models is significantly influenced by the dis-

o (%) 10 20 30 40 50 60+ | o2

| All 3226 2832 17.98 7.90 3.23 2.31 |140.12

random | 50 |33.98 31.44 20.05 8.53 3.57 2.85|162.60

50 |23.45 23.45 23.45 1741 7.12 5.11 |101.53
40 (21.18 21.18 21.18 21.18 8.90 6.40 | 89.12
balanced| 30 |19.90 19.90 19.90 19.90 11.87 8.53 | 75.71
20 |17.44 17.44 17.44 17.44 17.44 12.78| 59.36
10 |15.01 15.01 15.01 15.01 15.01 24.95| 39.62

Table 1: Distribution of scenario difficulty levels across differ-
ent training sets and selection methods, along with correspond-
ing mean variance (62%). The top row shows the full Argoverse
1(Chang et al. 2019) training set, the second row a random 50%
subset, and the following rows coresets selected by our balanced
method at various keep ratios. The last column shows mean vari-
ance, indicating deviation from the standard 10% proportion.

tribution of data within the training dataset. To quantify the
data distribution in the Argoverse 1(Chang et al. 2019) train-
ing dataset, we calculated the proportion of samples for each
scene category and the mean variance of the dataset, as
shown in Table 1. Variance 62 is a measure of data spread,
reflecting how evenly the data is distributed within a dataset.
We categorized the dataset into 10 difficulty levels based on
the number of agents per scene, from 10 to 90, grouping
samples with over 100 agents into one level.
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