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Abstract

This paper introduces Bayesian Hierarchical Low-
Rank Adaptation (BoRA), a novel method for fine-
tuning multi-task Large Language Models (LLMs).
Current fine-tuning approaches, such as Low-Rank
Adaptation (LoRA), perform exceptionally well in
reducing training parameters and memory usage
but face limitations when applied to multiple similar
tasks. Practitioners usually have to choose between
training separate models for each task or a single
model for all tasks, both of which come with trade-
offs in specialization and data utilization.

BoRA addresses these trade-offs by leveraging a
Bayesian hierarchical model that allows tasks to
share information through global hierarchical pri-
ors. This enables tasks with limited data to benefit
from the overall structure derived from related tasks
while allowing tasks with more data to specialize.
Our experimental results show that BoRA outper-
forms both individual and unified model approaches,
achieving lower perplexity and better generalization
across tasks. This method provides a scalable and
efficient solution for multi-task LLM fine-tuning,
with significant practical implications for diverse
applications.

1 Introduction

Large Language Models (LLMs) have become popu-
lar models for solving a wide range of generative text
problems. LLMs are typically pretrained on large
and diverse datasets of texts, and then fine-tuned on
new datasets dedicated to specific tasks. The fine-
tuning process is often done by maximizing the next
token log likelihood of the task-specific dataset, and
the resulting model is then used to make predictions
and generations for new data. A popular fine-tuning
method is Low-Rank Adaptation (LoRA), which
reduces the number of trainable parameters by a
factor of up to 10,000 and the GPU memory re-
quirement by a factor of 3, while still outperforming
other fine-tuning techniques ([1]). When performing
fine-tuning of LLMs, the practitioner often wants to
solve multiple similar tasks at the same time. For
example: A media organization might want to use
an LLM to generate various textual elements like

headlines, keywords, and summaries for a given news
article. A website might have multiple chatbot tasks
answering user inquiries across various topics. And
finally, a scriptwriting AI might want to generate
dialogues for different characters in a movie, each
with its unique style and vocabulary.

In these multi-task cases, the practitioner can
either (1) train one model for each task and dataset
separately, or (2) train one model for all tasks and
condition the specific output wanted (e.g. [2]). There
is a trade-off between these two approaches: Train
each task separately and the model will be able
to specialize on each task, but it may suffer when
limited data are available for some tasks. Train one
model for all tasks, and the model will be able to
share information between tasks, but it may not be
able to specialize on each task due to limited model
capacity.

In this paper, we suggest a way to circumvent
these trade-offs and present a generalization of
the two LoRA fine-tuning methods for multi-task
problems, which we call the Bayesian Hierarchical
Low-Rank Adaptation method (BoRA). The BoRA
method allows tasks to share information between
each other through a set of global hierarchical prior
parameters, in a Bayesian hierarchical setting. This
means that tasks with little data can benefit from
the global structure across related tasks, while tasks
with more data can specialize on their specific tasks.
We show in Section 3.4 that BoRA can be seen as a
generalization of the two approaches above.

To test our method, we evaluate BoRA on the next
token generation problem of parliamentary speeches,
letting each parliamentary representative be a task.
In our setting, BoRA is superior to both conventional
approaches described above and suggests a way to
mitigate the trade-off between the two. The paper
is organized as follows: Section 2 presents related
works. Section 3 presents BoRA, the Hierarchical
LoRA method; Section 4 describes the experimental
setup, Section 5 presents the results, and Section 6
discusses the results and the implications of the new
method. Finally, we make the code openly available
at https://github.com/simeneide/bora.
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2 Related Works

We group related work into two areas: multi-task
learning and fine-tuning methods of large language
models. Autoregressive LLMs and Bayesian model-
ing are described in Section 3.

2.1 Multi-task Learning

Multi-task Learning [3] is a popular machine learn-
ing approach for training one model on multiple
tasks. A common approach is to share the lower
layers of a neural network between tasks and have
separate parameters for the last (or last few) layers
for each task. Our paper suggests a different ap-
proach, where we share information between tasks
through a hierarchical prior over the task-specific
parameters.

Modern training of language models can itself be
considered a form of multi-task learning where the
model is trained on a diverse set of tasks and datasets
[4, 5]. However, with the trend of even bigger models,
pretraining of LLMs is only available to a few large
organizations due to both computational and data
requirements. Therefore, there is a need for methods
that can leverage the pretraining of these models
for smaller tasks and datasets such as the one we
present in this paper.

Model merging of LLMs [6–8] is another popular
approach, often showing promising performance. It
takes multiple task-specific models and merges them
into one model. The standard way is by doing a
weighted average of the model parameters ([6]), but
more sophisticated methods exist ([7, 8]). Model
merging differs from our approach in that it merges
the models after training, while the BoRA method
shares information between tasks during training
through a Bayesian hierarchical model.”

2.2 Fine-tuning Methods

A popular approach to fine-tuning neural networks
involves adjusting only the top layer (or the n top lay-
ers) of a pre-trained neural network (e.g., [9]). These
techniques exploit the fact that features learned in
the lower layers of the network are general and trans-
ferable, while the top layers are more task-specific.
This approach has been widely adopted in neural
networks. However, in this paper, we focus on the
LoRA method, which instead allows us to train a
low-rank decomposition of the entire network.

There are several variations of the LoRA algo-
rithm. The Sparse Mixture of Low Rank Adapters
(SIRA) [10], for instance, creates a Mixture of Expert
on the low-rank parameters. Another variation, the
Weight Decomposed Low-Rank Adaptation (DoRA)
[11], decomposes the low-rank parameters into scale
and unit norm direction parameters. There is also
the Efficient Low Rank Adaptation (LoRA+) [11],

which improves the existing LoRA optimization al-
gorithm by adjusting the learning rate of the low-
rank parameters. Lastly, MoRA [12] decomposes
the low-rank parameters using learnable square ma-
trices with non-parameter based compressions and
decompressions. All these methods are designed to
improve the performance of language models similar
to LoRA, and they can be used in conjunction with
the proposed Bayesian Hierarchical LoRA method.

3 Method: Hierarchical LLM

This section describes the Hierarchical LoRA
method for multi-task problems. We begin by defin-
ing the task and data structure, followed by an
introduction to pretrained autoregressive language
models. Next, we describe the LoRA method, and fi-
nally, we present the proposed Bayesian Hierarchical
LoRA model.

3.1 Task and Data Structure

We define our study across D distinct tasks, denoted
by d = 1, 2, ..., D. For each task d, we have a dataset
Dd containing Nd documents, with each document
n = 1, ..., Nd consisting of a sequence of Wn tokens.
This dataset structure can be formally represented
as:

D = {Dd}Dd=1 = {{wd,n,1:Wn
}Nd
n=1}Dd=1 (1)

In this notation, wd,n,1:Wn represents the token se-
quence in the nth document of the dth task. For
simplification in subsequent discussions, we will omit
the indices d and n (and write wi) when their refer-
ence is evident from the context.

3.2 Pretrained Autoregressive Lan-
guage Model

Our foundational model is a pretrained autoregres-
sive language model, characterized by its parame-
ters θfull and its architecture, referred to as a Large
Language Model (LLM). The parameters θfull were
acquired through pretraining on a large and diverse
dataset, distinct from our current dataset D. The
model’s probability distribution is expressed as:

P (w1:W |θfull) =

W−1∏
i=1

LLM(wi+1|w1:i) (2)

where LLM(wi+1|w1:i) denotes the probability of
the next token wi+1 given the preceding tokens w1:i

in the document. For simplicity, we omit θfull explic-
itly in the LLM, since the autoregressive language
model inherently depends on these parameters.
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3.3 Low-Rank Adaptation (LoRA)

A Large Language Model consists of numerous linear
layers. The LoRA method reduces the number of
trainable parameters by reparameterizing the weight
parameters (W ∈ Rn1×n2 , W ⊂ θ) of these layers
into the original pretrained weights Wfull and a
low-rank decomposition A and B ([11]):

W = Wfull +
α

r
BA (3)

where Wfull ∈ Rn1×n2 is the original pretrained
weight, B ∈ Rn1×r and A ∈ Rr×n2 are the low-
rank factors, n1 and n2 are the input and output
dimensions of the original weight matrix in the linear
layer, r � min(n1, n2) is the low-rank dimension,
and α is a scaling hyperparameter.

During LoRA fine-tuning, the low-rank factors A
and B are learned (estimated) from the data, while
the original pretrained weights Wfull remain fixed
to their pretrained values.

3.4 The Bayesian Hierarchical LoRA
Model

In the hierarchical LoRA model, we introduce a
LoRA parameter set for each task d, noted as θd,
which contains all the low-rank decomposition ma-
trices Ad and Bd from each decomposed layer in
the Large Language Model. The likelihood of the
dataset D given the task parameters θ1:D is then
formulated by combining equations 1 and 2:

L(D|θ1, θ2, . . . , θD) =

D∏
d=1

L(Dd|θd)

=

D∏
d=1

Nd∏
n=1

Wn−1∏
i=1

LLM(wd,n,i+1|wd,n,1:i; θd). (4)

Tasks share some common knowledge, modeled by
introducing a Gaussian hierarchical prior over the
task parameters θ1:D, described by:

P (θ1:D|Θ, τ) =

D∏
d=1

N(θd; Θ,
1

τ
I) (5)

where Θ is a set of hierarchical mean parameters,
I is a unit diagonal matrix, and τ ≥ 0 is a scalar
precision hyperparameter controlling how similar
the task parameters θd should be to the hierarchical
mean parameters Θ. We let Θ have an improper
uniform hyperprior (i.e. P (Θ) = 1 for all values of
Θ). The prior assumes that the task parameters
share a common origin because the tasks are related:
input data come from similar distributions and the
output tasks share similarities. The precision hyper-
parameter τ dictates how much the task parameters
θd are a priori expected to deviate from the hierar-
chical mean parameters Θ. It indicates how much

structure and information is shared among tasks
and should be set by the practitioner based on prior
knowledge. The posterior distribution of the hier-
archical model, obtained by combining equations 4
and 5, is:

P (θ1:D|D, τ) ∝
D∏

d=1

L(Dd|θd) · P (θd|Θ, τ) (6)

The resulting BoRA model utilizes each task based
on its dataset size and similarity to other tasks: If a
task has few data points, the posterior in equation
6 will be dominated by the prior term, and the task
parameters will remain near the global hierarchi-
cal parameters, borrowing information from these.
Conversely, if a task has many data points, the like-
lihood will dominate the posterior, allowing the task
parameters to focus more on the individual task.

The hierarchical LoRA model can be seen as a
generalization of the two conventional approaches
for multi-task problems: If we let τ approach zero,
the probability distribution of the prior (eq. 5) will
become a flat uniform prior and the situation will
be equivalent to training each task independently.
On the other hand, if we let τ approach infinity,
the prior will become a strong constraint on the
task parameters, preventing them from deviating
from the global parameters, and the situation will
be equivalent to training one model for all tasks.

3.5 Optimization

Given the precision hyperparameter τ , we seek the
maximum a posteriori (MAP) estimate of the hi-
erarchical model. We achieve this using AdamW
([13]), a gradient-based optimization algorithm, by
optimizing over the task parameters θ1:D and the
hierarchical mean parameters Θ using the posterior
in equation 6. This implies that the task param-
eters will have gradients both towards minimizing
the conventional LLM loss (represented by the like-
lihood term) and the hierarchical mean parameters
(originating from the prior). The hierarchical mean
parameters Θ will have gradients towards the aver-
age of the task parameters, learning to represent the
global structure of the tasks.

An important observation is that the gradient of
the prior term in equation 6 is proportional to the
precision hyperparameter τ . This means that the
optimization will require more steps to converge for
larger values of τ , as the task parameters will be
more constrained towards the hierarchical mean pa-
rameters and a posteriori dependent on each other.
Therefore, we adjust the learning rate of the AdamW
optimizer to be proportional to the precision hyper-
parameter τ , and we find in our experiments that
this causes the optimizations to converge at a similar
rate for different values of τ .
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Figure 1. Number of training examples for each task.

4 Experimental setup

To test our method, we optimize the model with a
range of different precision hyperparameters τ , and
evaluate the perplexity on the test set for each task.
Perplexity is defined as the exponentiated average
negative log-likelihood per token, and is a common
metric for evaluating language models. A lower per-
plexity indicates a higher likelihood and a better
model. We use the Talk of Norway Dataset [14],
which consists of speeches by Norwegian parliament
politicians. Speakers come from different political
parties and geographical areas, but the tasks will
still share a common domain represented by parlia-
mentary speeches in Norway over a short period of
time. Therefore, we can consider different speakers
of this dataset as different tasks. Specifically, we
select the first 25 speakers chronologically who have
more than 100 speeches in the dataset. This results
in 25 tasks with samples ranging from 110 to 477
documents, and an average of 202 documents per
task. For some speakers, we have significantly less
data compared to others. The distribution of sam-
ples per task can be seen in Figure 1. We reserve
33% of the data for the test set.

We select a model that has been pretrained on
a large and diverse dataset, but has not seen the
specific tasks that we want to evaluate it on. We use
the ‘opt-350m’ model [15], which is predominantly
trained on English, and has only seen a small amount
of Norwegian data from the CommonCrawls dataset.

5 Results

The overall results of the hierarchical LoRA model
on the Talk of Norway Dataset are shown in Table
1 and Figure 2. We see that the model achieves the
best test perplexity of 12.82 when using a precision
parameter of 100. The improvement is largest com-
pared to training the models independently (τ = 0),
and smaller when comparing to the limiting case

where all task-specific model parameters are con-
strained to be equal (τ = 10000).

Learning Rate Precision (τ) Test Perplexity

10−4 0 16.80
10−5 100 16.59
10−4 101 12.85
10−3 102 12.82
10−2 103 13.26
10−1 104 13.91

Table 1. Empirical results of the hierarchical LoRA fine-
tuned on the three tasks. The perplexity is calculated
on the test set.

Figure 2. Plot of Precision vs Perplexity. The thick
black line is the overall test perplexity across all tasks,
and the thinner grey lines represent the test perplexity
for each individual task. The leftmost point corresponds
to training each task independently (τ = 0), and the
rightmost point corresponds to the limiting case when
all task-specific model parameters are constrained to be
equal (τ → ∞).

When considering each task separately (Table
A.1), we see that all tasks benefit from a hierarchical
model compared to both the case when all models
are trained independently (τ = 0) and the limiting
case where all task-specific model parameters are
constrained to be equal (τ = 10000). Figure 3 shows
the relative improvement of each task when using
the hierarchical model compared to the two cases
versus their dataset sizes. There is an indication that
the improvement from training separately is larger
for tasks with less data, while this is not observed
for the ”one model” case. A precision parameter of
100 gives the best perplexity for all our tasks.

6 Discussion

Our results in Figure 2 demonstrate that the hier-
archical LoRA model can improve test perplexity
for all tasks compared to both training the models
independently and training one model for all tasks.
This confirms our hypothesis that BoRA can be a
useful method for multi-task problems, mitigating
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Figure 3. Task dataset size versus the relative improve-
ment in perplexity of the best performing hierarchical
model (τ = 100) compared to the case when all models
are trained independently (τ = 0) in blue, and com-
pared to the limiting case when all task-specific model
parameters are constrained to be equal (τ = 10000) in
red. The figure shows that all tasks benefit from sharing
parameters with the global model, and indicates that
tasks with less data benefit more than those with more
data.

the trade-off between training each task separately
and training one model for all tasks. Notably, BoRA
also benefits tasks with relatively more data. We
observe in Figure 4 that the distance between the
task parameters and the global prior increases with
increasing task dataset size. This is expected in a
hierarchical model, as tasks with more data will have
a larger likelihood term in the posterior, allowing
them to specialize more on their specific task during
training.

We observe no consistent relationship between
dataset size and the final perplexity (Figure 5).
Although one might expect that tasks with more
data would learn more about their specific task and
achieve lower perplexity, this pattern is not evident
in our experiments. Other task-specific factors, such
as under-represented dialects and political views,
might influence the final perplexity. Controlling for
these factors is complex and beyond the scope of
this paper, but they are likely contributors to this
outcome. However, when considering the relative im-
provement of our best-performing model, the results
in Figure 3 indicate that tasks with less data may
benefit more than those with more data. Although
the signal is subtle, this is an expected result, as the
hierarchical model allows tasks with limited data to
leverage information and structure from the global
model, while tasks with more data can specialize in
their specific task.

In principle, one could adopt a fully Bayesian ap-
proach, instead of Maximum a Posteriori (MAP)
maximization, to assess the reliability of the hierar-
chical model. Such an approach would necessitate
the use of Markov Chain Monte Carlo (MCMC),
Variational Inference, or other methods.

This approach would involve sampling from the
posterior distribution of the hierarchical model, al-

lowing for the estimation of uncertainty in the task
parameters. However, MCMC methods are compu-
tationally intensive, and it remains unclear to us
how to efficiently and scalably sample from the pos-
terior distribution of the language model. A middle
ground between a full Bayesian approach and the
MAP estimate could involve being Bayesian for se-
lect parameters. For example, instead of our current
approach where we maximize the likelihood of the
validation set concerning the precision parameter
τ , one could be Bayesian and integrate over its em-
pirical posterior distribution obtained from MCMC.
This would provide insights into how well tasks share
information in a specific problem context. We leave
these explorations for future research.

Figure 4. The figure shows the L2-distance between
each task’s adapter weights and the global prior on the
y-axis, and the number of training examples on the x-
axis. As expected, tasks with more training data have a
larger distance to the global prior.

Figure 5. Training size vs. perplexity of the best-
performing hierarchical model (τ = 100). The fig-
ure shows that there is no strong relationship between
dataset size and final perplexity.
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7 Conclusion

This paper presents a novel generalization of the
LoRA fine-tuning method for multi-task problems,
which we call BoRA, Bayesian Hierarchical Low-
Rank Adaptation for Multi-task Large Language
Models. The hierarchical model allows tasks to
share information between each other through a
set of global hierarchical prior parameters and can
be seen as a generalization of the two conventional
approaches for multi-task problems. We demon-
strate that BoRA can improve test perplexity for all
tasks compared to both training the models inde-
pendently and training a single model for all tasks,
effectively mitigating the trade-off between these
two approaches. We propose adjusting the learning
rate according to the design parameter that controls
the trade-off between likelihood and prior. Future
work includes investigating the effect of BoRA on
more tasks and datasets, examining how the relative
capacity of the global model affects performance,
and exploring the full posterior distribution of the
model.
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A Task-Specific Test Perplexi-
ties

Table A.1 shows the test perplexities for each task
when using BoRA with different precision hyperpa-
rameters τ .

Table A.1. Test perplexity for each task and precision
hyperparameter τ

tau 0 1 10 100 1000 10000
Task

abid q raja 15.56 15.20 12.57 11.60 11.91 12.41
akhtar chaudhry 14.78 14.37 12.01 11.43 11.66 12.06
aksel hagen 15.88 15.30 12.68 11.84 12.26 12.61
alf egil holmelid 16.96 16.86 13.97 12.66 13.35 14.51
anders b werp 16.86 16.35 13.04 11.87 12.54 13.00
andré n skjelstad 15.53 15.23 12.59 11.58 11.98 12.41
andré oktay dahl 16.01 15.85 13.50 12.55 12.88 13.48
anette trettebergstuen 15.98 15.73 13.43 12.57 12.90 13.28
anita apelthun sæle 25.44 25.42 21.04 19.21 20.16 21.37
anne tingelstad wøien 16.41 16.23 13.60 12.43 12.90 13.54
anniken huitfeldt 14.44 14.39 12.33 11.66 12.05 12.53
ansgar gabrielsen 16.10 16.16 14.07 13.23 13.68 14.19
arild grande 16.65 16.29 13.31 12.21 12.56 13.08
arne lyngstad 15.57 15.28 12.12 11.25 11.66 12.08
arve kambe 17.78 17.40 14.24 13.11 13.43 13.79
asmund kristoffersen 17.15 16.75 13.63 12.61 13.03 13.61
audun lysbakken 15.21 15.25 13.22 12.48 12.67 13.13
bendiks h arnesen 14.34 14.23 12.04 11.11 11.42 11.97
bente thorsen 16.35 15.88 12.87 11.60 12.28 13.06
bjørg tørresdal 16.02 15.65 12.78 11.58 11.92 12.46
bjørn hernæs 16.33 15.94 13.68 12.76 13.08 13.58
bjørn jacobsen 22.28 22.87 19.54 18.52 19.05 20.53
bjørn lødemel 22.91 24.09 19.65 18.08 19.39 21.08
bjørn tore godal 16.57 16.30 14.55 14.02 14.22 14.48
borghild tenden 14.42 14.84 12.12 11.10 11.68 12.41
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