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ABSTRACT

Formal languages are increasingly used to analyze limitations of language—-model
architectures, via properties of their defining automata (e.g., number of states,
transition weights, or out-degree at a state). Understanding why a neural lan-
guage model struggles to learn a given property requires separating two cases:
scarcity—the property is underrepresented in the data due to low likelihood—
versus complexity—the task being too sample-demanding for the chosen learner.
In the former case, increasing or resampling training data can help; in the latter,
changes to the architecture or training may be needed. Evaluating a property “on
its own” typically involves marginalizing over a family of languages that exhibit it,
which can introduce selection bias: some family members may be systematically
overrepresented among samples with the property, confounding correlational analy-
ses. Indeed, most existing investigations relate corpus statistics to performance, but
such correlations do not identify causal effects. We introduce a causal framework
for assessing learnability in probabilistic formal languages. Using an efficient,
controlled sampling procedure for regular languages (faster by a magnitude of
N? where N is the number of tracked event occurrences), we intervene on event
frequencies by replacing the unconstrained sampling policy with a controlled one,
leaving the automaton’s topology and weights unchanged, to test whether a prop-
erty looks difficult because it is rare or because it is genuinely demanding for
the learner. Our main contribution is theoretical: the framework and controlled
sampling procedures. We illustrate these in three example case studies with LSTM
and Transformer learners, where conclusions under correlational evaluation can
invert once causal frequency interventions are applied.

1 INTRODUCTION

When a neural language model (LM) fails to learn a pattern, it matters whether the difficulty stems
from scarcity—too little evidence for the relevant phenomenon—or from a task that is more sample-
demanding for the chosen learner under our settings. This distinction shapes how we interpret
empirical results: in the former case, increasing or resampling training data can help; in the latter,
changes to the architecture or training may be needed. We lack systematic methods to diagnose these
cases, and theoretical bounds for what Transformer LMs can learn remain limited—existing results
mostly concern recognizers rather than language models as generators (Yang et al., 2024). In practice,
studies typically sample tasks and relate task properties (e.g., number of states, entropy) to learner
performance across tasks.

Studying these questions directly in natural language is difficult because the data-generation process
is not controllable. Formal languages provide controlled testbeds: we can sample language models
induced by probabilistic finite-state automata (PFSAs) and vary their properties systematically. Prior
work benchmarks learners against structural, grammatical, and distributional complexity measures
(Michalenko et al., 2019; Valvoda et al., 2022; Van der Poel et al., 2025; Borenstein et al., 2024;
Svete et al., 2024a; Delétang et al., 2023; Someya et al., 2025). For illustration, reports under vanilla
training find that Transformers can lag LSTMs on parity-like signals (Hahn & Rofin, 2024) (see Fig. 1
for a concrete parity-augmented testbed). These studies are correlational: they draw many tasks
from a family and analyze post-hoc associations between task properties and performance. Such
associations can conflate rarity with difficulty. We use scarcity—complexity collision to describe the
entanglement of these two drivers of learnability.



Under review as a conference paper at ICLR 2026

Figure 1: A DFSA recognizing the language aa* U ba*(ba*ba*)*. The transitions left of g,
correspond to the star-free language aa* and the ones to the right to the more complex parity
language, requiring counting modulo two.
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Figure 2: Interventional and correlational estimates for the automaton in Fig. 1. Panels report state-
wise decomposed KL divergence (lower better) versus the training-set occurrence count, isolating
learnability of individual properties. Note the alignment for Odd, in contrast to Free and Even

To address the scarcity—complexity question, we adopt a causal study that controls both the amount
of data and its composition. Concretely, we intervene on specific dataset properties—such as the
frequency of particular symbols, states, or transitions—while holding other factors fixed. Executing
such interventions is infeasible in natural language, where the generating mechanism is unknown, but
formal languages offer precise control. We therefore work with language models induced by proba-
bilistic finite-state automata (PFSAs), following prior evaluation setups that use PFSA-induced tasks
to probe learners (Lake & Baroni, 2018; Ruis et al., 2020; Hupkes et al., 2020, infer alia). Prior studies
typically draw many tasks from a family and analyze post-hoc associations between task properties
and performance; this correlational protocol can suffer from selection bias, some PFSA instances are
more likely among samples that exhibit a given property, conflating rarity with difficulty. In contrast,
we replace the unconstrained sampling policy with a controlled one that targets event frequencies,
leaving PFSA topology and weights unchanged. This lets us vary complexity by sampling different
PFSA topologies, and vary scarcity by adjusting the data-sampling procedure for a fixed PFSA.

We develop a causal LM evaluation framework (Pearl et al., 2016) with two components: (i) a causal
graphical model relating a PFSA, properties of datasets sampled from it, and LM performance when
trained on those datasets; and (ii) an efficient (from O(|Q[>N*) to O(|Q|>* N?)) controlled sampler
that fixes how often specified properties (symbols, states, transitions) appear—e.g., exact counts or
at-least-once constraints. We illustrate the setup with three case studies using Transformer (Vaswani
et al., 2017) and LSTM (Hochreiter & Schmidhuber, 1997) learners, and evaluate learnability at the
level of states, symbols, and transitions. In these illustrations, increasing the frequency of rare features
can improve learnability, but not always; moreover, conclusions drawn from correlational evaluation
can invert under causal frequency interventions. This makes it possible to diagnose whether observed
difficulty reflects scarcity or sample demand in this setting.

2 LANGUAGE MODELS, SCARCITY AND COMPLEXITY

We now formalize what we have so far informally referred to as scarcity and complexity. An alphabet
Y is a finite non-empty set of symbols. The Kleene closure Y* is the set of all strings of symbols



Under review as a conference paper at ICLR 2026

from ¥. A language model p is a probability distribution over ¥*. The prefix probability! 7 (o)
of a string o € ¥* is the probability mass of strings starting with o under p; see Eq. (1). We also
define the conditional prefix probability in Eq. (2).

!
F)= > plod) O F(o|o)¥ TO9) i3 (o) > 0else 0. (2)

o/eT* p (0')
Many LMs define p (o) as p (o) £ 7 (E0S | o) HL:|1 7 (0t | o<t), where EOS ¢ X is a designated
end-of-string symbol. We denote neural LMs with pg, and define the conditional distributions with
some parameters 6. Suppose we estimate 8 on a dataset D sampled from a ground truth LM p. It
could be that the individual conditional prefix probabilities pg(- | o) of the LM pg are not learned
well for some prefixes, i.e., pg(- | o) may not be close to 7 (- | o). It is difficult to know why
P6(- | o) is poorly learned. This could be due to scarcity of the specific pattern in the training data
due to the low likelihood of observing it. However, it could also be that 7'(- | o) is something
inherently hard to learn—either because representing the distribution is a computationally hard
problem, because the chosen architecture cannot represent it well, or because the learning dynamics
prevent it from being learned. Both explanations are possible when estimating 6 from i.i.d.-sampled

data.

As a concrete example, consider string representations of graphs and the language consisting of
those that encode a path visiting each node exactly once. Training a model to recognize such
strings is tantamount to solving the NP-hard Hamiltonian path problem. While the amount and
composition of training data may affect performance in practice, we expect the task to require
exponential computation in the size of the graph (assuming P # NP), regardless of how much data
is available. Compare this to learning the language defined by the PFSA in Fig. 1, which defines
an LM whose support is the union of aa* and ba* (ba*ba*)*. The former should be easy to learn for
neural LMs, while the second, requiring counting modulo two, is known to be hard for Transformers
(Hahn & Rofin, 2024). A low value of the transition probability n would, however, result in few
aa*-sequences, possibly leading to the false conclusion that this part of the language is hard to learn.
Similarly, if 7 is large, we might assume that the harder part of the language is difficult for the wrong
reason. Thus, distinguishing the rare-but-learnable events from hard to learn becomes difficult when
both are entangled in a single dataset.

We illustrate this with a simple setup by sampling training data from the machine in Fig. 2 and
plotting the learnability of each state as a function of how often the state is visited (note the log-scaled
y-axis). First, we see a clear difference under interventional and observational distributions for the
accepting states (Free and Even), showing that intervening, such as forcing otherwise high-frequency
events to occur rarely, leads to a significant increase in the KL divergence for accepting states. This
shows that the observed learnability of a language feature is not necessarily indicative of its inherent
learnability when controlling for confounding variables. Second, for the Even state, we see that
LSTMs trained on intervened data eventually catch up with the observational ones, but only after
a large number of samples. At the same time, the difference to the Transformer remains, even as
we increase the number of samples—reflecting the known fact that Transformers are not able to
learn the parity language (Hahn & Rofin, 2024). We see that the *Odd’ state is easier to learn than
the others for the LSTM, while such a distinction can not be seen for the Transformer.

3 A CAUSAL MODEL FOR LEARNABILITY

Understanding whether poor model performance stems from task complexity or data scarcity due to
low probabilities requires moving beyond correlation to examine causal relationships. In this section,
we develop a causal framework based on Pearl’s do-calculus (Pearl et al., 2016) to isolate the effects
of data properties on language model performance.”

Standard correlational analysis examines how model performance varies with dataset properties,
but this approach suffers from a fundamental limitation: Datasets with certain properties might be
generated more frequently by certain types of language models. For example, a dataset with many

'We caution the reader that prefix probabilities do not define a distribution over *, as they do not sum to 1.
’In App. A, we provide the necessary background in formal language theory and graphical causal models.
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®
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Figure 3: Left: Graphical causal model for evaluating the effect of intervening on the dataset D
on model performance M, given a ground truth language model A and trained model L. Right:
Conditioning (top) induces P(a | D € P); intervening (bottom) restores the marginal P(a).

(M|DeP) = L L L; P(M | da, d)P(dl | dd)P(dd | da,D € P)P(da | D € P)

occurrences of a particular symbol is more likely to come from a language model that frequently
generates that symbol, regardless of the complexity of the language. Causal analysis addresses this
limitation by actively intervening on the data generation process. An intervention artificially modifies
the sampling process to ensure specific dataset properties, regardless of how likely these properties
would occur naturally.

We formalize our approach using the causal graphical model shown in §3. This model represents
the process of: (i) sampling a ground-truth language model A, (ii) generating a dataset D from this
language model, (iii) training a neural LM L on this dataset, and (iv) evaluating the trained model’s
performance M. In our formal model, each of these components corresponds to a random variable in
a probability space.? In §4, we focus on a specific specification of this model.

Intervening vs. Conditioning We define a property P of a dataset as an event over D. For example,
the property “the dataset contains exactly N occurrences of symbol a.” The key to our causal analysis
is distinguishing:

(1) Conditioning. Evaluate P(M | D € P), which introduces dependence between A and D (the
term P(a | D € P) in §3). Models more likely to produce datasets with P may be overrepresented.

(2) Intervention. Evaluate P(M | do(D € P)) by modifying the data generation to satisfy P,
preserving the original distribution IP(a) of ground-truth models.

In practice, we implement interventions with a sampling method (§4) that generates datasets with
specified properties from any PFSA. We then estimate E[M | do(D € P)] via Monte Carlo sampling.

Causal estimands. For any dataset property P (e.g., “exactly N occurrences of a in a corpus of K
strings”), we define the interventional and observational performance, and their difference, as

pint(P) = E[M|do(D € P)],  pobs(P) =E[MD € P],  Acausal(P) = ptint(P) — NobS(Pzé

)
which isolates the effect of enforcing P on performance while preserving the original distribution of
A (cf. Fig. 3). Because do(D € P) is implemented exactly by our controlled sampler (§4), tint (P) is
identified from interventional data. We estimate both p;,¢ and pops by Monte Carlo over (i) datasets
from the respective distributions and (ii) independent training runs of L; we report means and standard
errors across seeds. In our experiments, M is instantiated as a decomposed divergence local to the
point of intervention (definition in App. D).

The next section details efficient controlled sampling from the intervened on distribution.

4 SAMPLING UNDER EVENT CONSTRAINTS

§3 discusses how to evaluate the effects of dataset properties on model performance. Here, we
develop efficient algorithms for sampling strings from deterministic formal automata (DPFSAs) under
interventions on the properties of the dataset, i.e., from P(d | A = A,do(D € P)).

3We include the randomness of the trained model ! given the dataset d (initialization, shuffling, etc.); we omit
o-algebras here and refer to App. A.
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Interventions of interest. To develop efficient algorithms, we focus on properties P of a particular
type: We require the strings in the dataset to traverse a set of transitions 7 in the PFSA exactly
N e N times. This formulation is natural as well as expressive: Besides controlling the appearance
of particular (sets of) transitions, it also allows controlling (i) the number of times a symbol a appears
in the dataset (by choosing 7 to be all a-labeled transitions), and (ii) the number of times a state ¢
appears in the dataset as a latent variable (by choosing 7 to be all transitions with ¢ as the source state).

To illustrate sampling from P(d | A = A, do(D € P)), suppose that P takes the form that a symbol
a has to occur N € N times. One can sample from the interventional distribution as follows. First,
determine the number of strings, K, in the dataset, and then sample the number of times a has to
appear in each of the K strings. This reduces the problem to the following: For ¢ € N, sample a string
from p(o | o has i symbols a), where p is a PESA-induced LM. Simple rejection sampling (sampling
a large dataset and only keeping the strings that satisfy the constraints) would be highly impractical.
Using standard algorithms from automata theory, a more efficient approach is as follows: (i) For
every i € {0,..., N}, construct an FSA A, ; that recognizes the language of all strings with exactly 4
a’s, (i) intersect A, ; with A to obtain the automaton A, ; N A that recognizes the language of all
strings with exactly ¢ a’s that are also accepted by \A, (iii) renormalize A, ; N A’s weights to obtain a
PFSA using the weight pushing algorithm (Mohri, 2009) to allow sampling. Here, intersection results
in a PFSA with O(|Q|¢) states, and weight pushing runs in cubic time with respect to the number of
states, so the overall runtime of this procedure for all i would be O(|Q|>?N3N) = O(|Q|> N*) since
intersection and weight pushing have to be done for each ¢ separately. In the following, we improve
on this by giving an algorithm that runs in O(|Q|>* N?) time.

4.1 THE BINNING SEMIRING

To efficiently encode string constraints for sampling, we introduce a new algebraic structure—the
binning semiring [K]. The elements of the semiring are formal polynomials of the form

N
Z a; " )
i=0

where a; € K for some base semiring K and z is a variable. The semiring addition (@) is defined

element-wise with the unit (0) < Zf\io 0z°. Multiplication is defined as

N N N [ N
(Z ““z> (Z biﬂ) = Z ( aj ®bi—j) zt + ( Z a; ®bj>:1fi (5)
i=0 0

=0 i=0 \j= i,j=0
it+j=

with the unit @ © 120 4+ Zf\il 0z*. The binning semiring is a monoid semialgebra over a cyclic
monoid. This gives it rich algebraic properties; we discuss the details in App. B.1.

Notation. Formalization of the binning semiring as a formal power series is convenient due to the
connection to monoid semialgebras. However, it makes some of the notation slightly cumbersome.
In the following, we therefore think of the elements in the binning semiring as vectors of the form

v=(ap a1 -+ a N)T where a; are the coefficients of the polynomial in Eq. (4). We thus access
the coefficients of the polynomial as v; fori € {0,..., N}.

Time complexity. The time complexities of the operations in the binning semiring depend on the
order N. Assuming @ and & run in constant time, runs in time O(N). The operation (a

convolution) runs in time O(N?). In the special case of real-weighed WFSAs, however, we can
implement (®) using the fast Fourier transform (FFT) in time O(N log N).*

4.2 BINNING AUTOMATA

We now describe how to lift a PFSA A to a WFSA over the binning semiring.

“Despite the faster implementation of (®) with FFT, we do not adopt it due to numerical instability (underflow
for large values of V). Instead, we use the log semiring for numerical stability.
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Definition 4.1 (Event and Lifting Functions). Let A = (Q, X, J, A, p) be a WFSA and N € N. An
event function is a tuple ¢ = (¢, s, @), Where ¢5: Q@ x X x Q — {0,..., N} and ¢x,¢,: Q —
{0,...,N}.For ¢y and i € {0,..., N}, we define the lifting function £;: X — [K]:

¢ 0 otherwise

Informally, the lifting function takes a (transition, initial, or final) weight in the original WFSA and
inserts it into the ¢ ()™ position of the otherwise 0-valued lifted weight € [K].

Definition 4.2 (Binning Automaton). Let A = (Q, %, d, A, p) be a WFSA. The binning automaton
of Ais the WFSA Ay = (Q, %, 84, Ay, py), where fy(z) = L, () for f € {0, A, p}.

. ai/wy Am/Wm
We can count the number of times an event ¢ occurs on a path ™ = qg e Qm as

7lg = a(q0) + Z ®5(qi—1, i, @) + ¢p(qm)- @)
i=1

Similarly, for K < N and a multiset of paths P = {7 }exc, we write |P|, & D ke |Tk|g. For path

weights in A, we will subscript the path weight function: wy(7) € [R] for 7w € IT (Ay).

4.2.1 CONSTRAINED SAMPLING

We use the binning semiring to implement a faster constrained sampling algorithm by sharing
computations among different values of i. When the original WFSA is a PFSA, the i coefficient of a
transition weight in the binning automaton holds the probability of ¢ occurrences of ¢ occurring on that
transition. This gives the interpretation that the probabilities of the original PESA are binned by the
number of events. Running weight pushing on the new automaton gives us probability distributions
specific to each ¢ that tell us, from any given state, the probability that each action generates exactly ¢
events in the future, leading to a straightforward sampling algorithm. We formalize this in intuition
below. In the following, A is always a DPFSA, ¢ an event function, and .44 .A’s binning automaton.
We first formalize the intuition that w (7r) is a one-hot encoding whose non-zero coefficient encodes
the number of occurrences of an event ¢. Proofs of all theorems in this section are included in App. C.

Theorem 4.1 (Path Weight Interpretation). For w € I (Ay) and i € {0,..., N — 1}, we have:
w(w) ifi<Nand|w|y =iori=Nand|w|y =N

Wy(m); = {0

where W(7) is the inner path weight in A.

®)

otherwise

Next, we formalize the intuition that summing path weights results in a vector that encodes the
probabilities of sampling specific numbers of occurrences. To formalize this, we introduce the
random variable II(q) distributed as

a1 /wy Qo [ W,

P(Il(q) = ¢ G) E w1 ® - @ Wi @ p(g,n)- ©)

Theorem 4.2 (Backward Weight Interpretation). For q € Q, we have:

- [P(TI(q)|p = i) i< N
Bola)i = {P(Iﬂ(q)l¢ > N) otherwise (10)

In words, Thm. 4.2 tells us that the probability of seeing exactly (or at least) ¢ occurrences of ¢ in
a random path starting in ¢ € @ is the value of the i element of ¢’s backward weight. Computing
backward weights in a general PESA with cycles requires summation over infinitely many paths.
This can be done efficiently with asteration—taking the Kleene closure of the set of paths. We derive
the closed-form solution for asteration in the binning semiring applied to PESAs in App. B.2.

We use the binning automaton to sample from DPFSAs under event-counting interventions of the
form |P| = K and [P|, = N for P = {my}rex, K © N, and N € N. We sample P in two steps:
First, knowing |KC|, we sample the number of events | ;|4 for all 7w; € P. Then, we sample the paths
7y, for k € K under the determined string-level event constraints.
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. . . . def
Theorem 4.3 (Counting in a Set). Denoting with Z = 3,(q.) = Z?TEH(Aq;) wy(7) the sum of all
path weights in the binning automaton Ags, we have:

P(Pls=i) ifi<N
@Ky _
(Z575): {]P’(|”P|¢>N) otherwise (n

Theorem 4.4 (Sampling Path Event Counts (1)). We have that

(Z@K_k_l)N—m—i )
(ZK?k)N—m ZZ (]2)

P(|milg =i | [Plg = N, {m;}j<kle =m) =

We derive the expression for P(|my|g > i | [P|s = N, |[{m;}j<k|¢ = m) in Thm. C.1. Moreover,

to be able to control how many individual strings contain at least one occurrence of ¢, we develop
def

a method to sample from P(|TIx(q,)|¢ = i | |[Pliggy = M, {7 }j<k|1{g) = m) where [P|1(4y =
Dkexc H|mk|p = i} in Thm. C.2.

Thm. 4.4 tells us how many events we should ask for in each path when sampling under intervention.
To sample strings with the determined number of occurrences of ¢, i.e., from P(II(q,) = = |
ITX(g,)|¢ = n), we define another, larger, PFSA A" = (2,Q",8", X', p') as

(i) Q =Qx{0,...,N—1},

(ii) &' (4.2, (¢ 1) =z (Los(@ > @) @ Bs(d)) x_y
(iii) X': (q,1) = 1{g = g, = N =1};°
(iv) p': (q,7) — mﬁp(Q)Nﬂﬂ'-

Here, Z(q) &£ B,(q). Intuitively, A’ being in state (¢, 7) means that N — 1 — i occurrences of ¢
are still required for the string generation to be complete. We will denote with IT'(g,) the random
variable distributed analogously to TI(g, ), but in the new PFSA A’

Theorem 4.5 (Constrained String Sampling (1)). We have that
P(II(q,) = m | T(q)]s = N — 1) = P(IT(q,) = ). (13)

We consider the analogous case of sampling from P(II(g,) = 7 | [II(g,)|4 = n) in Thm. C.3. To
summarize, Thms. 4.4 and 4.5 describe sampling from 4 to get a specific number of events in a
dataset. Thm. 4.4 tells us how many occurrences of ¢ each string should contain and Thm. 4.5 tell us
how to sample said strings. We analyze the runtime of Thm. 4.5 in App. C.1.

5 CASE STUDIES IN THREE SETTINGS

We now compute the two quantities from §3, the post-hoc conditioning estimate and the interventional
‘do’-estimate, in three case studies. We conduct two types of interventions using the binning semiring
(§4.1). First, using at-least-once interventions, where we sample corpora such that the property
occurs at least once in [V strings in the corpus of size K. This corresponds to having two bins with
all probability mass in the second bin. We also consider a more general binning setting, where
we see exactly K occurrences in all strings; here we track occurrences in N + 1 bins. In general,
we train more models on the non-intervened data to compare against, as the chances of seeing a low
number of occurrences are generally low for large corpora and machines. Details on the sampling of
machines are given App. E. Details on the training configurations are given in App. F. All errors are
standard errors. Since we wish to know how the frequency of a targeted feature impacts learnability,
we derive a decomposed KL divergence (see App. D for details) between the trained model pg
and the PFSA, this serves as the M in the causal diagram given in §3.

Decomposed KL example for states. We give an example of the decomposed KL here, that for
state interventions, transition and symbol interventions are given in App. D. Let p 4 be the LM defined

5This corresponds to the case when N occurrences are required. If some other number of occurrences 7 is
required, A’ can simply be modified such that (q,, n) is the initial state.
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Figure 4: Monte Carlo estimates of the relation between learnability and the number of symbol
occurrences over machines with 50 states and 10 symbols, for both states and symbols.

by a DPFSA A over states () and symbols X, and let py be the trained LM. For a dataset property P,

let 7(q) £ Pro,., [6(c) = q], and 7(q, a) 7 (q)pala | q). Then the state-wise decomposition is

Dict(pa llpo) = Yl 7(a) Y] p;((g)DKL(pAc|q>\|p9<-|o>), (14)
= 5c(r§)2jq

unweighted per—;ale contribution
We calculate the divergence in Eq. (14) under intervention and observation to get the estimands in §3.

Parity + Free Machine. We sample weights over the topology shown in Fig. 1. We sample
200 different configurations of the machine, under intervention from 80 of those, and use all for
observational data. For each machine and training configuration, we sample 500 samples, and train
ten models. Results for the general binning case are shown in Fig. 2 and the at-least-once case
in Fig. 6. As described in §3 we see a clear separation of trends when sampling causally for the
accepting states. They appear more sample-demanding for the LSTM in this setup than the *Odd’
state, while the "Free’ state appears more complex for the Transformer.

Aggregating Over Topologies. We sample 1000 machines over the space of machines with 50 states,
and 10 symbols. For 100 of those, we conduct interventions, and sample 10 weight settings for each
machine. Here, we sample 2000 examples and train a single model per configuration. Results for
symbol and state interventions are shown in Fig. 4. In both cases, there is a clear distinction between
the learnability of the languages sampled on intervened on vs. observed data. In the former, we see
an interesting phenomenon: not only is there a clear difference in the decomposed KL, but for lower
occurrence counts, there is an inverse trend indicating complex structural confounders for machines
that naturally produce a low number of occurrences.

Varying Only Weights. Finally, we sample a machine with 40 states and 10 symbols and a constant
unweighted transition configuration. We sample 400 weight configurations for the observed data,
and 10 configurations for the interventions using the at-least-once approach. We train 5 machines for
each configuration using the LSTM and Transformer architectures. We visualize 8 random states in
Fig. 5. We see, again, that there is a distinction between observation and correlation at all states (note
the log-scale), although with some states less separated (9 and 1) than others. Notably, some states
are more sample-demanding (complex) to learn than others, state 3 for both architectures and state 4
for the transformer. And some states are more so than others, such as state 3 and 6.

6 RELATED WORK

Much work has used formal languages to probe neural networks (Cleeremans et al., 1989; Jacobsson,
2005; Valvoda et al., 2022; Svete et al., 2024b; Borenstein et al., 2024, inter alia). A central empirical
tool is synthetic data: SCAN-style setups examine compositional generalization (Lake & Baroni,
2018; Bastings et al., 2018; Ruis et al., 2020), and k-Dyck languages probe nested structure (Weiss
et al., 2018; Suzgun et al., 2019; Bhattamishra et al., 2020; Hewitt et al., 2020). Recent work also
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Figure 5: MCE of the Decomposed KL at randomly chosen states in a sampled automaton, with
varying weight configurations. We see how observational results can lead to misleading assumptions.

analyzes inductive biases relative to the Chomsky hierarchy (Delétang et al., 2023; Butoi et al., 2024)
and studies whole classes of languages rather than single datasets (Valvoda et al., 2022; Borenstein
et al., 2024), continuing a line of grammatical inference research (Jacobsson, 2005). Complementing
these empirical traditions, theory investigates the representational capacity and internal mechanisms
of neural LMs and architectures, especially Transformers (Merrill, 2023; Strobl et al., 2023; Merrill,
2019; Merrill et al., 2020; Liu et al., 2023). While insightful, such analyses often rely on idealized
assumptions and yield bounds that do not directly characterize practical learning behavior.

By contrast, there has been relatively little emphasis on causal approaches to LM behavior. Causal
investigation with natural language is difficult—requiring complex taxonomies (Chen et al., 2024) or
targeted neuron-level interventions (Vig et al., 2020; Finlayson et al., 2021). Our focus is learnability
under standard, fixed-size training regimes and natural data, not strict expressivity. We use parity
as a compact case study to illustrate our decomposition, controlled sampling, and causal approach;
it also serves as a touchstone to situate prior art—from fixed-size impossibility (Hahn, 2020), through
engineered solutions (Chiang & Cholak, 2022), and protocol changes such as chain-of-thought
that add compute (Kim & Suzuki, 2025; Wen et al., 2024). Our work is orthogonal to these, and
complements broader accounts of, e.g., Transformer capability (Allen-Zhu & Li, 2025).

7 CONCLUSION

We present a causal framework for assessing learnability in PFSA-induced language models. By
replacing unconstrained sampling with controlled frequency interventions, we separate two drivers of
observed difficulty—frequency scarcity and the learner’s sample complexity. Across three case studies,
interventional estimates often differ from correlational ones, illustrating the scarcity—complexity
collision. The framework offers a way to diagnose whether difficulty reflects rarity in data or the
learner—task pair complexity, and can inform dataset design and failure analysis in controlled settings.

Limitiations We focus on PFSA-induced settings where properties are exactly countable; applying
the framework to natural language would require approximate labels for target phenomena. The
sampler’s cost grows with automaton size. We evaluate fixed-size learners under vanilla training.
Our results concern the causal evaluation procedure as such, controlled sampling and evaluation,
not a particular architecture; LSTM/Transformer are illustrative choices of L, and the framework
extends to alternative learners (e.g., Mamba Gu & Dao (2024), CoT-augmented decoding Wei et al.
(2022)) without modification.
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A PRELIMINARIES

This section introduces the technical background introduced in the main paper.

A.1 FORMAL LANGUAGE THEORY

Let K be a set, ® a binary operation, and 1 € K. We say (K,®, 1) is a monoid if

(i) Kis closed under (©,
(ii) @ is associative, and
(iii) 1istheunitof ®:Vae K:1®Qa=a®1=a;

We say that a monoid is commutative if Va,be K: a©b=bOa.
A semiring is a tuple (K, ®, ®, 0,1) where
(i) (K,®,0) is a commutative monoid,
(ii) (K,®,1) is a monoid,
(iii) multiplication left- and right-distributes over addition: a ® (b® ¢) = (a ® b) @ (a ® ¢) and
bPc)®a=(b®a)® (c®a), and

(iv) multiplication with 0 annihilates K: 0 ® a = a ® 0 = 0.
A semiring admitting well-behaved infinite sums is called complete. In a complete semiring, we
can define a* £ D7 a' = DY, &);_; a. The real semiring is (R, +, x, 0, 1) with the standard
addition and multiplication. Adjoining o0 to positive reals in the natural way gives a complete
semiring with a* = ﬁ for a < 1 and a* = oo otherwise.

A weighted finite-state automaton (WFSA) A over a semiring (K,®,®,0,1) is a tuple
(Q,X%,0, )\, p) where @ is a finite set of states; ¥ is an alphabet; 6: @ x ¥ x Q — K is a transi-

tion function, where we say that .4 has transition p afv, q with weight w if §(p, a,q) = w; and
A: @ — Kand p: Q — K are the initial and final weight functions, respectively.
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A path 7 in A is a finite sequence of consecutive transitions gg M q1- - gN-1 M qn. We

write || = N for 7’s length. The inner weight of 7 is wW(7) £ w; ® - - @ wy, its weight is
def

w(m) = Aqo) ®W(m) ® p(gn), and its yield is a; - - - an. II(A) denotes the set of all paths in A
We say that A = (Q, X, d, \, p) is deterministic (a DPFSA) if, for every p € Q, 0 € X, there is at

a/w

most one ¢ € @ such that p —— ¢ € § with w # 0, and there is a single state g, with A (¢,) # 0. In
this case, we refer to g, as the initial state. Naturally, a deterministic WFSA can have at most one
path with non-0 path weight yielding a string o € ©* from the initial state g, .

We say that a real-weighted WFSA with non-negative weights is probabilistic (a PESA) if, for all
states ¢ € @, 6, A and p satisfy >} .o A(¢) = Land p(q) + X o/ w = 1. APFSA induces a
q—)

q'ed
probability distribution over ¥*, where the probability of a string o is the sum of the weights of all
paths yielding o from the initial state g, .

The backward weight 3 ,(¢) of a state ¢ € Q is the sum of the weights of all paths starting at
¢ Bulg) £ D rerr(a),i(z)=q W(T) @ p(¢()), where ¢() and ¢ () denote the origin and the

destination states of 7r, respectively. Finally, the allsum of A is Z £ imeri(a) W(m) = Balq)

A.2 MARKOV KERNELS AND GRAPHICAL CAUSAL MODELS

Notation. We denote sets with uppercase caligraphic font, e.g., X and ), and o-algebras in
uppercase Fraktur e.g., X and ). We write (X, X) for measurable spaces. We denote an element of a
set X’ as a lowercase letter . Random variables over & are typeset as uppercase, unitalicized X.

We model targeted data modifications as interventions in the graphical model in §3. In particular, §3
describes the process of training and evaluating an LM L from data D sampled from the ground-truth
LM A with the following components: (i) (A, 2l) is a probability space over some ground truth LM.
We use A to denote a random variable over this space and a for an element in the space. (ii) (D, D) is
a probability space over a corpus of size K € N. D is a random variable and d a specific instantiation.
(iii) (L, £) is a probability space of all configurations of a given neural LM, where £ is a given
o-algebra. A random variable from the space is given by L and an element in £ with [. (iv) (M, IN)
is a probability space over the values that a comparison (measure of fit) between a and [ can take. In
§4, we focus on a specific specification of this model.

We want to define a causal model that captures the effect of intervening on the training data when
training a neural LM. For the formal treatment of causal relationships in continuous spaces, we build
on the framework of graphical causal models as presented in Peters et al. (2017).

Notation. We adopt the following notation: sets are denoted with uppercase caligraphic font, e.g.,
X and ), and elements of a set X" as a lowercase letter x. Random variables over X are typeset as
uppercase, unitalicized X.

Following Peters et al. (2017), we define a graphical causal model (GCM) as a triplet G = (V, E, K)
where V' = {Vy,...,V} is afinite set of random variables over domains V1, ..., Vy, Ec V xV
is a set of edges forming a directed acyclic graph (DAG), and K = {x1,..., Ky} is a set of Markov
kernels.

For each random variable V; € V, the set PA; — V denotes the parent variables of V; according
to the DAG. The probabilistic behavior of the GCM is specified via a collection of Markov kernels,
where each «; describes the relation between a variable and all of its parents, including cases with
multiple parents. The joint distribution over all variables is then induced by the factorization:

N
p(a?1,...,331v) = Hp(‘r] |xPAj) (15)
j=1

Here, each conditional distribution p(z; | 2pa ;) corresponds to the Markov kernel ;, which takes
all parent variables as inputs.

This formulation allows us to handle intervention distributions in continuous spaces through covariate
adjustment formulas as described in Peters et al. (2017, Section 6.6). In our work, we apply this
framework specifically to model interventions on neural LM training data.
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B THE BINNING SEMIRING

B.1 MONOID SEMIALGEBRAS

Definition B.1. A cyclic monoid is a monoid with a single generator ¢ and an identity element. We

denote by Cy 1 the monoid Cy 1 & {2, ¢!, ..., eN} where ¢ is the identity. The multiplication is
defined for 0 < 4,7 < N as

N (16)

i cj def C‘j = Ci+‘j ifl +] < N
C . = .
c otherwise .

In particular, eNoelt =N,

Definition B.2. Given a finite monoid M and a (semi)ring (K, ®, ®, 0, 1), the monoid semialgebra
K[M] consists of all formal finite sums

=2 amm (17)

where only finitely many a,,, € K are non-zero, with point-wise addition. The product in K[M] is

given by a convolution:
( 2 amm) - ( Z byn) = Z ( Z A by )m’ (18)

meM neM m’eM m,neM

mn:7n/

Applying Definition B.2 to Definition B.1, we can see that element of [K] can be written uniquely as
Zf;o a;c* where a; € K and the convolution product is given by

N ] N , N—-1 ¢ )
(Z aicl) . (Z biCl) = Z (Z ajbi_j)c’ + ( Z aibj)cN (19)
=0 =0 1=0 j=0 3,7=0

i+j=N
B.2 A CLOSED-FORM SOLUTION FOR THE KLEENE STAR

Computing backward weights in a general PFSA with cycles requires summation over infinitely many
paths. This can be done efficiently with asteration—taking the Kleene closure of the set of paths.
This section develops the Kleene star operator for binning automata over PFSAs and records when
the resulting solution is unique.

Lemma B.3 (Arden’s rule in complete semirings). Let (K,®,®,0, 1) be a complete semiring. For
all a,b € K, the equation
r=(a®z)®b (20)

has x = a* ® b as a solution.

Proof. By Kuich (1997, Thm. 2.2(ii)), ¢* = 1 ® (a ® a*). Therefore
(a®(a*®b)®b=(a®a*)@bDb
=((a®a*)@®1)®b 21
=a*®0.
[ |

Proposition B.4 (Coefficientwise Kleene equations in the binning semiring). Let [K] be the Nth-
order binning semiring and v € [K]. Write v* £ @, v®. For0<i<N,

(v*)i =15 ® (@Z @ @;:1 v; ® (U*)¢7j> . (22)
For the overflow bin,
*
() = (@) ® @Y =0 v:i®@*); . (23)
Jj#N
i+tj=N
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Proof. ForO0 <1 < N,
(v")i = (Brzo v™); = @i @ (v @ ™)
= @i@@;—=0 v; ® (v*)ij (24)
=000 (") @ (D @ D), v; ® (v¥)iy)
Apply Lemma B.3 with a = vg to obtain (22). For ¢ = N,
(v )y =D @ (v@v*)N
=Or @D j=0 v:® (v¥);

i+j=N (25)
= (@i]\io 'Ui) ® (v*)N D (—BN ij=0 ;i ® (v*)j,
JENi+j=N
and Lemma B.3 with a = @510 v; yields (23). |

Lemma B.5 (Uniqueness in the binning semiring). Let (R>, +, -, 0,1) be the non-negative real
semiring, and let [K] be the binning semiring of order N over Rxqo. For any v,w € [K] with v
arising from a PFSA binning automaton and vg < 1, the equation

r=(v®z)Dw (26)
has a unique solution.
Proof. ForO0<i < N,
T =00 ® 7 ® D), vj ® Ti—j O w;. (27)
Working in R~ and using vy < 1,
1 .
Ti= 11— ' (®;:1 Uj @ Tij ®wi) ’ (28)

which uniquely determines x; by strong induction and preserves non-negativity. For ¢ = N, collect
overflow terms to get

(1 —-w) -zn = (—ijzl Vi QIN_j D Pirj=Nnv; QT; Dwy, (29)
4,7>0
and the same argument applies. ]
Corollary B.6 (Uniqueness of the closed form in the PFSA/binning setting). Under the conditions of
Proposition B.4 and Lemma B.5, the solution given by (22)—(23) is unique.

C PROOFS

Theorem 4.1 (Path Weight Interpretation). For w € I (Ay) andi € {0,..., N — 1}, we have:

_ w(w) ifi<Nand|w|y =iori=Nand|w|y = N
= . 8
Wo(m) {0 otherwise ®
where W () is the inner path weight in A.
Proof. 'We proceed by induction on | |.
If || = 1, then Wy (m) = Ly, (g0 o, q1), so the claim follows from the definition of £,.
Suppose now that Eq. (8) holds for all paths 7 with || < m. Let = ¢q A/ qi- - B/, Gm

a1/wi Am—1/Wm—1

be a path of length m, and ' = ¢qg — ¢1 -+ ——————> @1 be the sub-path of the first
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m — 1 transitions. We compute fori € {0,..., N — 1}
w(m); = (W(n') @ wm)i (30a)
i
=D, W(m"); ® (win)i—; (30b)
j=0
=w 7r')|ﬂ./|¢ ® (Wim)i—|n|, (Inductive hypothesis, 30c)

A [ Wi,

W(r') Quy, =w(mw) ifi=|m|y+ ds(qm_1
0 otherwise

Im) (30d)

—

This completes the proof for coefficients ¢+ < N. For the remaining case, we derive:

w(m)y = (W(r') @ wm)y (la)
N
= > W) @ (wn); (31b)
i,j=0
i+j=N
— . / A /Wiy
w(ﬂ- )‘ﬂ"(p ® (wm) am/wm lf |7T |¢ + ¢5(qm71 - QWL) 2 N
¢5 (qrnfl—)qrn
0 otherwise
(Inductive hypothesis, 31c)
_ _ . m/Wm
_ () @up =w(mw) if 7| + ¢s(dp 1 S 4) = N . (31d)
0 otherwise
|

Theorem 4.2 (Backward Weight Interpretation). For q € Q), we have:

P(I(q)ls =4) #Fi<N
- 10
Bsla)i {]P’(|H(q)|¢ > N) otherwise (19)
Proof. Forany i€ {0,...,N — 1}, we have:
p(M(g)ly =)= 3, p(m) (322)
well(A)
[7]p=1
= > w(m (Ais a PFSA. 32b)
well(A)
7] =1
= Z w¢>(7")\7r\¢ (Thm. 4.1, 32c)
7\'€H(A¢)
|]p=3
= Z wy(7); (Thm. 4.1, 32d)
7\'EH(A¢)
= ,@¢(q)i. (Definition of B 4. 32e)
Derivation for coefficients ¢ = N is analogous. ]

def

Theorem 4.3 (Counting in a Set). Denoting with Z = 3,(q.) = Zﬂen(/%) wy(7) the sum of all
path weights in the binning automaton Ay, we have:

P(|Ply=i) ifi<N
@Ky _ ¢
(Z55)s {]P(|77|¢ > N) otherwise (1)

Proof. Follows immediately from Thm. 4.2 and the definition of Z. |
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Theorem 4.4 (Sampling Path Event Counts (1)). We have that

(Zka*l)N,mﬂ'
(ZOKF)y

P(lmilg =i [ [Plg = N, {m;}j<klp =m) = Z; (12)

—m

Proof. To derive Eq. (12), we have that

P(|my|g =14,|Plg = N, {7 } <kl = m)'

P(|lmkle =2 | |[Ple = N, {m;}i<k|le =m) = (33)
(| ‘¢ | | |¢ |{ J}]< ‘45 ) ]P}("P|¢ _ N7 ‘{Wj}j<k|d> _ m)
With this, we derive
P(lmels =4, [Pl = N, {m;}i<kle = m) (34a)
=P(|mrlp =i, [{m;}jsnr1le = N —m — i, [{m;}j<kle = m) (34b)

=P(mile = OP({mj}imkt1le = N —m = )P({m;}j<kls = m)
(Indepencence of samples, 34¢)

=ZJ(Z5 " Yy pi(ZF Y, (Thm. 4.3, 34d)

and
P(|Ply = N, [{m;}j<kls =m) (35a)
=P({m;}jzkle = N —m, [{m;}j<kle =m) (35b)
=P(|{m;}jzkle = N —m)P(|{m;}<kle = m) (Indepencence of samples, 35¢)
= (ZE M\N_p(ZF Y (Thm. 4.3, 35d)
|

We now consider sampling under the constraint [TI(g,)|s = n. For that, define Z'(¢q) £ M Z(q),
where M is the upper-triangular matrix of ones. The interpretation of Z(q) is as follows: Whereas
Z(q), contains the mass of strings length i (or at least N for i = N), Z’(¢); adds up the mass of all
strings of length at least 4 or longer (including those summarized in the last entry). Thus, Z’(q); is
the probability of seeing at least ¢ occurrences of ¢ in a random path starting in g. Further, define

Z' % 7' (q,).
Theorem C.1 (Sampling Path Event Counts (2)). We have that
P(lmels =i | [Pl = N, [{m;}j<kls =m) (36)
N—m k—
_ (Z;(ZIK ke 1)N—m +Zj:1 (Z/)H-j(ZK g 1)N—m—j)
(Z/ka)me

Proof. To derive Eq. (36), we have that
P(lmrlg = 1,|Ply = N, [{m;}j<kle = m)

P(|my i|[Plg = N, [{m;}j<k m) = (37)
[milo 2 8] |Plo 2 N, |t }i<klo = (\7’|¢ N, {7} j<kle = m)
With this, we derive
P(|mylp =i |7’|¢ > N, |[{m;}j<kle =m) (38a)
=P(lmgle =i, [{m;}izkle = N —m, [{m;}i<kls = m) (38b)
:P(|Wk|¢> JMHmitiskle = N —m, {7} <kle = m)
+ Z P(lmrle =i+ 5, {miYiskle = N —m —j, {7} j<kle = m) (38c)
Jj=1
:Z;;(Z/K_k_l) Zk 1 + Z Z1+7 ZK—k—l)N_m_j(Zk—l)m (38d)
= (ZUZ"E )y + Z Z, A Z5 T N e (25 (38¢)
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and
P(IPly = N, {m;}j<kle = m) (39a)
=P({m;}izkle = N —m)P({m;}i<kls = m) (39b)
= (ZK_k)N,m(Zk_l)m (Thm. 4.3, 39¢)
|

Theorem C.2 (Sampling Path Event Counts (3)). Let Z be the binning pathsum of order N = 1.

Then
(s1—m-1)
P(|Tx(q.)]e = 1] |Pliggy = M, {7} j<klifpy = m) = ﬁ (40)
M—m
Proof. We have
P(Tk(q)lg = 1 [ IPlaggy = M, {75} j<klagey = m) (41a)
_ P(Mk(g)le = 1, [Pluggy = M, [{m;}j<kligey = m) “1b)
P(|Pliggy = M, [{m;}i<klrigy = m)
Since the sampling is conditionally independent given the constraint, we have
P(Tk(q.)|¢ = 1,|Pligy = M, [{m;}j<kliey = m) (42a)
=P(i(q)le = 1, {m;}jsklagey = M —m — 1, {m;}j<kliqgy = m) (42b)
=27 P(|{Hj}j>k|]1{¢} =M-m— 1) 'P(|{7’l’j}j<k‘1{¢} = m) (Thm. 4.2, 42¢)
K—-k—-1 S bl (M—m—
=20 (b ) @) ) K R g =) @20
K—-k—-1 —m k(M —m
= (31 )@@ ()l = ). @2e)
We also have
P(IPluey = M, [{m;}j<kliiey = m) (43a)
=P({m;}jzkli{ey = M —m, [{7;}j<ilaqsy = m) (43b)
= P(|{Hj}j>k|]l{¢} =M — m) . P(|{7Tj}j<k|1{¢} = m) (Thm. 4.2, 43c¢)
K —k - k(M-
= (31 i )@ (Z ) Bl = ). )
Thus
P(Tk(q)le = 1| [Pliggy = M, {7} j<klagey = m) (44a)
_ P(Mk(g)le = 1, Plyggy = M, [{m;}i<kligey = m) (44b)
P(IPlaggy = M, [{m;}j<klagsy = m)
_ Qi) (22 (Z) A @0
(]5:7’;)(ZI)JW—m(ZO)K—k—(M—m)
(1—m1)
= = (FR (44d)
(I\/Ifm)
|
Theorem 4.5 (Constrained String Sampling (1)). We have that
P(I(q,) = = | [TL(q)|¢ = N — 1) = P(IT'(q,) = ). (13)
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Proof. We first show that the weights sum to 1 forany g € Q and i € {0, ..., N — 1}. Note that by

definition, we have the following equalities

(002,60 E G (L0 ™ ) @B))
1 /
=5¢(Q)N—z Y (,3¢(q ))N*i*%(qﬂw’)
/ def 1
p'(q,17) BN Lo(@)n—i
- e T i = lbela)

From the equality

in a general WFSA, we have that®

(ﬁ¢(q))i = @ (wﬁ¢(q/))i + (pA¢(q))i
ajw
= D (Losa L )@ Bo(d)), + (0, (0)),
ajw
= S—? /w : ﬁ¢(q/)i,¢5(q“/—’”>q/) + (PAJQ))i

= @ w- ﬂ¢(q/)i_¢§(qﬂ)q,) + 1{i = ¢,(0)}p(q)

qg—q¢

For conciseness, we assume v,, = 0 form < 0and m > N.

20
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(49)

(50)
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We then have for w = (q,, N) a/wi | Gm/Wm (¢,,, N') that

P(IT(q,) = ) = ( Hwt 0 (@, N (51a)

5 1 at/wt
- (Los (@1 = 0) @ Bo(9) y_1_im
t=1 ﬁ¢ qt—l))N—lflﬂ-a\qs ( e ! ot )N I=fm<ile

1
(,@¢ )N - | <£¢5 (qm))N_1_|7r<m|¢ (5lb)
T<ml¢
5 1
t1:[1 ﬂ¢ qi— 1))N el Swy (/8¢(qt))N_l_“"'<t‘—¢5(qt71 afve,
1
(,8¢ )N 1— ‘ ‘ (»C(f?é (qm))N_1_|7"<m|d) (510)
T<ml¢
5 1
t1:[1 ﬂ¢> qp— 1))N et Wy - (ﬁ(b(Qt))N_l_‘ﬂ.gt‘
1
| (£ 51d
(5¢(Qm))N el ( o5 (qm))N_l_lﬂ-<m|¢) (51d)
1
- W Hwt E‘% (qm))N 1= emls (Telescoping product, 51¢€)
1 m
B W'H we H{N =1 =7l = 6,(a)} - p(9) (51)
YJIN t=1
1 m
B W'ﬂwt.p(q).nw—lf |7 <mls = ¢p()} (51)
YJIN t=1
1
- e P(II(q) = 7) - I{N — 1 — |7l = ¢,(q)} (51h)
LN
1
=y Pg) =m |7l =N sii
Boa)), @) =mlmls = N) (s1i)
1 .
- WM .P(H(QL) =T, |7T‘¢ =N) (51])
=P(II(q,) == | |TI(g,)|s = N). 510
|

Let M be the upper-triangular matrix of ones and Z'(¢q) & M Z(q) as in Thm. C.1. We define the
automaton A" = (,Q", 6", )", p") analogously to A":

(i) Q' =Qx{0,...,N},

(ii) 6" ((.). 2. () = e (M(Lo,(a > ) @ By(a)
(i) \": (q,i) — ]l{qlz q.,i= N},
(iv) p": (q,i) — 7w Lol@)N—i.

Theorem C.3 (Constrained String Sampling (2)). We have that

P(TI(q.) = = | [TI(q)] = N) = P(IT"(q,) = ) (52)

"As in A’, one can start in (g,,n) to sample from P(II(q,) = 7 | [TI(q.)|¢ = n).
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Proof. By definition, we have the following equalities

. . ef 1 a/w
0"((0,1).3,(03)) = o (Los(a > ) @ Bu(@)) ., (53)
Z'(q)N—i
1 /
= w ajw 53b
Z'(q)n—i (Bola >)N—i—¢5(q;’Q') 43b)
1
" .\ def
)= =~ (L , 53¢
p"(q,1) Z s (£,(0) 5, (53¢)
1
= “I{N —i < . (53d)
This allows us to show that the next-state probabilities again sum to 1 as in Thm. 4.5. Further, to
compute the probabilty of the path w = ¢, mjwr, | Gmfem q,,,» We again use the same telescoping
product as in Thm. 4.5. |

C.1 RUNTIME OF CONSTRAINED SAMPLING

We analyze the runtime of constrained string sampling based on Thms. 4.4, 4.5 and C.3 as follows.
Suppose we want to sample K strings from a WFSA A. We first determine the distribution of
occurrences in each string using Thm. 4.4 or Thm. C.1 and then sample each string under said
constraint with Thm. 4.5 or Thm. C.3.

(1) Computing Z. Z can be computed with Lehmann’s algorithm in O(|Q|3C) time for
any WFSA over a compatible (complete) semiring, where C' depends on the complexity
of the semiring operations—in our case, O(N + N?) in a general base semiring and
O(N + Nlog N) using FFT over the reals.

(2) Occurrence sampling: We need to compute Z@F for k e {0, ..., K}. This can be done in
O(KN?) or O(K N log N) time depending on the semiring.

(3) Event occurrence sampling: This corresponds to constructing the WFSA A’ and sampling
from it. Since A’ is a WFSA with O((|Q|N)) states and O(|X|(|Q|N)?) transitions, we
can construct it in O(||(|Q|N)?) time.

Taken together, the constrained sampling is dominated by the runtime of the first two steps, which is
O(max(K, |Q[*)N?) or O(max(K, |Q|*)N log N) depending on the semiring. In practice, we find
this approach to be two orders of magnitude faster than rejection sampling.

D TARGETED KL DIVERGENCE VIA DECOMPOSITION

We are interested in measuring the impact of learnability on targeted features. To this end, we derive a
decomposed KL divergence that works on the transition, symbol, or state level between an automaton
and a trained LM.

Let p 4 be an LM defined by a DPFSA A over states () and symbols 3. Any string x sampled from p 4
decomposes into transitions consisting of states ¢, symbols o, and weights w. Given another LM pyg

and a set of transitions of interest 7 < {0 | #5(6) # 0}, for some event function ¢, we decompose the
KL divergence to analyze how well py captures these properties. At each step, p 4 takes transition ¢
with probability w, while py predicts the next symbol given the history o ; of all symbols preceding
position .

Throughout, let

w(q) < Pr [5(z) =q], 7(ga)Ex(gpalalq), wa)= ) w(ga). (54

T~pA
qEQ
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We have that
pa(o)
D =Esp.|lo (55a)
kL(pa || po) o pA[ ) pe(U)]
= Z pa(o)DkL (pA(‘ | o)|pe(:- | o)) (chain rule on prefixes, 55b)
oex*
State-wise decomposition. Group every history by the state it reaches, ¢ = (o ):
Dkr(pallpe) = >, . w(o.q)Dkr(pal- | 9)|pe(- | o)) (insert 1[6(o) = q|. 56a)
q€Q gex*
5(o)=q
(o, q
- Ym0 X "ol 0 |l [ ) (56b)
qeQ oex*® 4
6(o)=q

~~
Unweighted per-state contribution

Transition-wise decomposition. Insert the next symbol a and write w(q,a) = 7(q)pa(a | q):

Dir(pa || po) = Y, 7(q) Y pala|q)log p<(|q) (57a)
qeQ a€Xx a | 0>

= > 7(g.a) log 2421 9) (57b)
(ga)eA _pelelo)

Unweighted per-transition contribution

(57c)

Symbol-wise decomposition. Marginalise over states to obtain the symbol prior 7(a) =

quQ W(Qa Cl):

Dxr(pa || po) = GEZEW(a)EUWA [1og W] (58a)
I D pa(@)pala|d(9)) | pala]d(a))
s )Z m(a) O o) - O

Unweighted per-symbol contribution

E EXPERIMENTAL SETUP DETAILS

Sampling PFSAs. We begin all our experiments by sampling PESAs. The sampling procedure of a
single automaton A is as follows: For each source state ¢ € (), we sample a set of symbols, o € X,
where each symbol has 0.5 chance of being included. We then randomly sample a target state ¢’ € @
for each symbol. This gives us a set of unweighted transitions between states and associated symbols.
With probability 0.3, we set each state to have a nonzero final weight, where we sample the state’s
outgoing and final weights from the Dirichlet distribution.

Intervention Sampling. We can conduct three types of causal interventions: on the number of
times a certain symbol, or state, is seen during training. These interventions are best described
with do-notation introduced in §3. Each of these is captured by some property P, by intervening

on it we sample according to D ~ P(- | do(P = p)). For symbol intervention on some symbol
ar, this corresponds to the even function ¢, (q7 a,r) £ 1{a = a;}. For transition interventions
on transition &1, ¢5,(¢, a,7) = 1{(¢,a,r) = d;}. For state interventions on state ¢;, we use the

function ¢4, (¢, a,r) “1{g=q;}.
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Ancestral Sampling. For ancestral sampling, we start the process from the initial state g,. We then
sample the next symbol by recursively selecting the transitions according to the PFSA’s probability

distribution. For example, given a state q and the transition ¢ afw, r, the conditional probability of
sampling a, i.e. probability P(a | q), is w.

Neural Language Models. We conduct experiments using both LSTM and Transformer-based
LMs. The configuration of the neural LMs, including specific hyperparameters is given in App. F.

Error bars All error bars are the closed-form standard error as reported over the relevant grouped
population in each experiment. The error is reported over the bin for the binned experiments, i.e., not
averaged.

F MODEL AND TRAINING DETAILS

We now detail the hyperparameters used for training both the RNN and Transformer models. While
they share common settings such as batch size and optimizer, they differ in architectural design and
training specifics. The loss we use is over the full KL divergence at each symbol position in the
training data against the corresponding automaton, this can be seen as a sample-efficient distillation
of the sampled automata.

We use a parameter budget of 128k for both LSTM and Transformers and train all models on CPU.
For layer norm, we initialize weights to 1 and biases to 0. When dropout is applicable, we use a value
of 0.1. Parameters are uniformly initialized from [—0.1, 0.1]. We shuffle data at training, with a max
batch size of 128 tokens, and a learning rate of 0.01. We use the Adam optimizer, and clip gradients
with a threshold of 5 using L? norm scaling. The learning rate is multiplied by 0.5 after 5 checkpoints
with no decrease in the loss. Training is halted after 10 checkpoints if no improvement is observed.

Sampling of an individual dataset typically takes within minutes on a V100 32 GB GPU, as we make
use of a GPU for the allsum calculations. The training of an individual dataset typically runs in
minutes on a single modern CPU core using the LSTM architecture, while the Transformer models
can run longer. Our large-scale experiments were run on a cluster with 76 nodes, making use of 16
CPU cores on each node, and occasionally on a single machine with 2 x AMD EPYC 9354 32-Core
Processor and two NVIDIA H100. The parity+free experiment and the varying topology experiment
run in under 12 hours, making use of the full CPU/GPU resources for both sampling and training.
While, the larger-scale run took a few days to sample and train in parallel.

G ADDITIONAL NOTES ON THE SCOPE OF THIS WORK

The goal of this paper is not to evaluate architectures nor do an exhaustive comparison of architectures,
such as Mamba Gu & Dao (2024) or CoT Wei et al. (2022). The choice of LSTMs and Transformers
is arbitrary. These are simply existence witnesses, toy use cases to demonstrate the main theoretical
contribution. The key contributions are the causal framework and the sampling procedures. As
such, this is not an empirical work, but a theoretical work. Furthermore, the choice of deriving
and focusing only on the decomposed KL App. D as a measure of learnability is principled and
exactly meets the needs of supporting the framework and justifying it through the use cases. Finally,
the choice of focusing on DPFSAs is typical of this line of work; it encompasses all of the regular
languages—Ilanguages that can encode a wide range of phenomena that are of value to the theoretical
and empirical study of what neural language models can learn.

H ADDITIONAL FIGURES

An additional figure for the at-least-once sampling variant of the machine in Fig. 1 is given in Fig. 6.
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Figure 6: Monte Carlo estimates of the state-wise learnability for the automaton given in Fig. 1 using
the at-least-once intervention.
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