
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MEASURING SCARCITY–COMPLEXITY COLLISION
IN LANGUAGE MODEL ESTIMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Formal languages are increasingly used to analyze limitations of language–model
architectures, via properties of their defining automata (e.g., number of states,
transition weights, or out-degree at a state). Understanding why a neural lan-
guage model struggles to learn a given property requires separating two cases:
scarcity—the property is underrepresented in the data due to low likelihood—
versus complexity—the task being too sample-demanding for the chosen learner.
In the former case, increasing or resampling training data can help; in the latter,
changes to the architecture or training may be needed. Evaluating a property “on
its own” typically involves marginalizing over a family of languages that exhibit it,
which can introduce selection bias: some family members may be systematically
overrepresented among samples with the property, confounding correlational analy-
ses. Indeed, most existing investigations relate corpus statistics to performance, but
such correlations do not identify causal effects. We introduce a causal framework
for assessing learnability in probabilistic formal languages. Using an efficient,
controlled sampling procedure for regular languages (faster by a magnitude of
N2 where N is the number of tracked event occurrences), we intervene on event
frequencies by replacing the unconstrained sampling policy with a controlled one,
leaving the automaton’s topology and weights unchanged, to test whether a prop-
erty looks difficult because it is rare or because it is genuinely demanding for
the learner. Our main contribution is theoretical: the framework and controlled
sampling procedures. We illustrate these in three example case studies with LSTM
and Transformer learners, where conclusions under correlational evaluation can
invert once causal frequency interventions are applied.

1 INTRODUCTION

When a neural language model (LM) fails to learn a pattern, it matters whether the difficulty stems
from scarcity—too little evidence for the relevant phenomenon—or from a task that is more sample-
demanding for the chosen learner under our settings. This distinction shapes how we interpret
empirical results: in the former case, increasing or resampling training data can help; in the latter,
changes to the architecture or training may be needed. We lack systematic methods to diagnose these
cases, and theoretical bounds for what Transformer LMs can learn remain limited—existing results
mostly concern recognizers rather than language models as generators (Yang et al., 2024). In practice,
studies typically sample tasks and relate task properties (e.g., number of states, entropy) to learner
performance across tasks.

Studying these questions directly in natural language is difficult because the data-generation process
is not controllable. Formal languages provide controlled testbeds: we can sample language models
induced by probabilistic finite-state automata (PFSAs) and vary their properties systematically. Prior
work benchmarks learners against structural, grammatical, and distributional complexity measures
(Michalenko et al., 2019; Valvoda et al., 2022; Van der Poel et al., 2025; Borenstein et al., 2024;
Svete et al., 2024a; Delétang et al., 2023; Someya et al., 2025). For illustration, reports under vanilla
training find that Transformers can lag LSTMs on parity-like signals (Hahn & Rofin, 2024) (see Fig. 1
for a concrete parity-augmented testbed). These studies are correlational: they draw many tasks
from a family and analyze post-hoc associations between task properties and performance. Such
associations can conflate rarity with difficulty. We use scarcity–complexity collision to describe the
entanglement of these two drivers of learnability.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

qι Even OddFree
b{p1 ´ ηq

b

b

a{η

a a a

Figure 1: A DFSA recognizing the language aa˚ Y ba˚pba˚ba˚q˚. The transitions left of qι
correspond to the star-free language aa˚ and the ones to the right to the more complex parity
language, requiring counting modulo two.

Figure 2: Interventional and correlational estimates for the automaton in Fig. 1. Panels report state-
wise decomposed KL divergence (lower better) versus the training-set occurrence count, isolating
learnability of individual properties. Note the alignment for Odd, in contrast to Free and Even

To address the scarcity–complexity question, we adopt a causal study that controls both the amount
of data and its composition. Concretely, we intervene on specific dataset properties—such as the
frequency of particular symbols, states, or transitions—while holding other factors fixed. Executing
such interventions is infeasible in natural language, where the generating mechanism is unknown, but
formal languages offer precise control. We therefore work with language models induced by proba-
bilistic finite-state automata (PFSAs), following prior evaluation setups that use PFSA-induced tasks
to probe learners (Lake & Baroni, 2018; Ruis et al., 2020; Hupkes et al., 2020, inter alia). Prior studies
typically draw many tasks from a family and analyze post-hoc associations between task properties
and performance; this correlational protocol can suffer from selection bias, some PFSA instances are
more likely among samples that exhibit a given property, conflating rarity with difficulty. In contrast,
we replace the unconstrained sampling policy with a controlled one that targets event frequencies,
leaving PFSA topology and weights unchanged. This lets us vary complexity by sampling different
PFSA topologies, and vary scarcity by adjusting the data-sampling procedure for a fixed PFSA.

We develop a causal LM evaluation framework (Pearl et al., 2016) with two components: (i) a causal
graphical model relating a PFSA, properties of datasets sampled from it, and LM performance when
trained on those datasets; and (ii) an efficient (from Op|Q|3N4q to Op|Q|3N2q) controlled sampler
that fixes how often specified properties (symbols, states, transitions) appear—e.g., exact counts or
at-least-once constraints. We illustrate the setup with three case studies using Transformer (Vaswani
et al., 2017) and LSTM (Hochreiter & Schmidhuber, 1997) learners, and evaluate learnability at the
level of states, symbols, and transitions. In these illustrations, increasing the frequency of rare features
can improve learnability, but not always; moreover, conclusions drawn from correlational evaluation
can invert under causal frequency interventions. This makes it possible to diagnose whether observed
difficulty reflects scarcity or sample demand in this setting.

2 LANGUAGE MODELS, SCARCITY AND COMPLEXITY

We now formalize what we have so far informally referred to as scarcity and complexity. An alphabet
Σ is a finite non-empty set of symbols. The Kleene closure Σ˚ is the set of all strings of symbols

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

from Σ. A language model p is a probability distribution over Σ˚. The prefix probability1 ÝÑp pσq

of a string σ P Σ˚ is the probability mass of strings starting with σ under p; see Eq. (1). We also
define the conditional prefix probability in Eq. (2).

ÝÑp pσq
def
“

ÿ

σ1PΣ˚

p
`

σσ1
˘

(1) ÝÑp
`

σ1 | σ
˘ def

“
ÝÑp pσσ1q
ÝÑp pσq

if ÝÑp pσq ą 0 else 0. (2)

Many LMs define p pσq as p pσq
def
“ ÝÑp pEOS | σq

ś|σ|

t“1
ÝÑp pσt | σătq, where EOS R Σ is a designated

end-of-string symbol. We denote neural LMs with pθ, and define the conditional distributions with
some parameters θ. Suppose we estimate θ on a dataset D sampled from a ground truth LM p. It
could be that the individual conditional prefix probabilities ÝÑpθp¨ | σq of the LM pθ are not learned
well for some prefixes, i.e., ÝÑpθp¨ | σq may not be close to ÝÑp p¨ | σq. It is difficult to know why
ÝÑpθp¨ | σq is poorly learned. This could be due to scarcity of the specific pattern in the training data
due to the low likelihood of observing it. However, it could also be that ÝÑp p¨ | σq is something
inherently hard to learn—either because representing the distribution is a computationally hard
problem, because the chosen architecture cannot represent it well, or because the learning dynamics
prevent it from being learned. Both explanations are possible when estimating θ from i.i.d.-sampled
data.

As a concrete example, consider string representations of graphs and the language consisting of
those that encode a path visiting each node exactly once. Training a model to recognize such
strings is tantamount to solving the NP-hard Hamiltonian path problem. While the amount and
composition of training data may affect performance in practice, we expect the task to require
exponential computation in the size of the graph (assuming P ‰ NP), regardless of how much data
is available. Compare this to learning the language defined by the PFSA in Fig. 1, which defines
an LM whose support is the union of aa˚ and ba˚pba˚ba˚q˚. The former should be easy to learn for
neural LMs, while the second, requiring counting modulo two, is known to be hard for Transformers
(Hahn & Rofin, 2024). A low value of the transition probability η would, however, result in few
aa˚-sequences, possibly leading to the false conclusion that this part of the language is hard to learn.
Similarly, if η is large, we might assume that the harder part of the language is difficult for the wrong
reason. Thus, distinguishing the rare-but-learnable events from hard to learn becomes difficult when
both are entangled in a single dataset.

We illustrate this with a simple setup by sampling training data from the machine in Fig. 2 and
plotting the learnability of each state as a function of how often the state is visited (note the log-scaled
y-axis). First, we see a clear difference under interventional and observational distributions for the
accepting states (Free and Even), showing that intervening, such as forcing otherwise high-frequency
events to occur rarely, leads to a significant increase in the KL divergence for accepting states. This
shows that the observed learnability of a language feature is not necessarily indicative of its inherent
learnability when controlling for confounding variables. Second, for the Even state, we see that
LSTMs trained on intervened data eventually catch up with the observational ones, but only after
a large number of samples. At the same time, the difference to the Transformer remains, even as
we increase the number of samples—reflecting the known fact that Transformers are not able to
learn the parity language (Hahn & Rofin, 2024). We see that the ’Odd’ state is easier to learn than
the others for the LSTM, while such a distinction can not be seen for the Transformer.

3 A CAUSAL MODEL FOR LEARNABILITY

Understanding whether poor model performance stems from task complexity or data scarcity due to
low probabilities requires moving beyond correlation to examine causal relationships. In this section,
we develop a causal framework based on Pearl’s do-calculus (Pearl et al., 2016) to isolate the effects
of data properties on language model performance.2

Standard correlational analysis examines how model performance varies with dataset properties,
but this approach suffers from a fundamental limitation: Datasets with certain properties might be
generated more frequently by certain types of language models. For example, a dataset with many

1We caution the reader that prefix probabilities do not define a distribution over Σ˚, as they do not sum to 1.
2In App. A, we provide the necessary background in formal language theory and graphical causal models.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

A

D L

M

PpM | D P P q “

ż

A

ż

L

ż

D
PpM | da,dlqPpdl | ddqPpdd | da,D P P qPpda | D P P q

PpM | dopD P P qq “

ż

A

ż

L

ż

D
PpM | da,dlqPpdl | ddqPpdd | daqPpdaq

Figure 3: Left: Graphical causal model for evaluating the effect of intervening on the dataset D
on model performance M, given a ground truth language model A and trained model L. Right:
Conditioning (top) induces Ppa | D P P q; intervening (bottom) restores the marginal Ppaq.

occurrences of a particular symbol is more likely to come from a language model that frequently
generates that symbol, regardless of the complexity of the language. Causal analysis addresses this
limitation by actively intervening on the data generation process. An intervention artificially modifies
the sampling process to ensure specific dataset properties, regardless of how likely these properties
would occur naturally.

We formalize our approach using the causal graphical model shown in §3. This model represents
the process of: (i) sampling a ground-truth language model A, (ii) generating a dataset D from this
language model, (iii) training a neural LM L on this dataset, and (iv) evaluating the trained model’s
performance M. In our formal model, each of these components corresponds to a random variable in
a probability space.3 In §4, we focus on a specific specification of this model.

Intervening vs. Conditioning We define a property P of a dataset as an event over D. For example,
the property “the dataset contains exactly N occurrences of symbol a.” The key to our causal analysis
is distinguishing:

(1) Conditioning. Evaluate PpM | D P P q, which introduces dependence between A and D (the
term Ppa | D P P q in §3). Models more likely to produce datasets with P may be overrepresented.

(2) Intervention. Evaluate PpM | dopD P P qq by modifying the data generation to satisfy P ,
preserving the original distribution Ppaq of ground-truth models.

In practice, we implement interventions with a sampling method (§4) that generates datasets with
specified properties from any PFSA. We then estimate ErM | dopD P P qs via Monte Carlo sampling.

Causal estimands. For any dataset property P (e.g., “exactly N occurrences of a in a corpus of K
strings”), we define the interventional and observational performance, and their difference, as

µintpP q “ E rM|dopD P P qs , µobspP q “ E rM|D P P s , ∆causalpP q “ µintpP q ´ µobspP q,
(3)

which isolates the effect of enforcing P on performance while preserving the original distribution of
A (cf. Fig. 3). Because dopD P P q is implemented exactly by our controlled sampler (§4), µintpP q is
identified from interventional data. We estimate both µint and µobs by Monte Carlo over (i) datasets
from the respective distributions and (ii) independent training runs of L; we report means and standard
errors across seeds. In our experiments, M is instantiated as a decomposed divergence local to the
point of intervention (definition in App. D).

The next section details efficient controlled sampling from the intervened on distribution.

4 SAMPLING UNDER EVENT CONSTRAINTS

§3 discusses how to evaluate the effects of dataset properties on model performance. Here, we
develop efficient algorithms for sampling strings from deterministic formal automata (DPFSAs) under
interventions on the properties of the dataset, i.e., from Ppd | A “ A,dopD P P qq.

3We include the randomness of the trained model l given the dataset d (initialization, shuffling, etc.); we omit
σ-algebras here and refer to App. A.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Interventions of interest. To develop efficient algorithms, we focus on properties P of a particular
type: We require the strings in the dataset to traverse a set of transitions T in the PFSA exactly
N P N times. This formulation is natural as well as expressive: Besides controlling the appearance
of particular (sets of) transitions, it also allows controlling (i) the number of times a symbol a appears
in the dataset (by choosing T to be all a-labeled transitions), and (ii) the number of times a state q
appears in the dataset as a latent variable (by choosing T to be all transitions with q as the source state).

To illustrate sampling from Ppd | A “ A,dopD P P qq, suppose that P takes the form that a symbol
a has to occur N P N times. One can sample from the interventional distribution as follows. First,
determine the number of strings, K, in the dataset, and then sample the number of times a has to
appear in each of the K strings. This reduces the problem to the following: For i P N, sample a string
from ppσ | σ has i symbols aq, where p is a PFSA-induced LM. Simple rejection sampling (sampling
a large dataset and only keeping the strings that satisfy the constraints) would be highly impractical.
Using standard algorithms from automata theory, a more efficient approach is as follows: (i) For
every i P t0, . . . , Nu, construct an FSA Aa,i that recognizes the language of all strings with exactly i
a’s, (ii) intersect Aa,i with A to obtain the automaton Aa,i X A that recognizes the language of all
strings with exactly i a’s that are also accepted by A, (iii) renormalize Aa,i X A’s weights to obtain a
PFSA using the weight pushing algorithm (Mohri, 2009) to allow sampling. Here, intersection results
in a PFSA with Op|Q|iq states, and weight pushing runs in cubic time with respect to the number of
states, so the overall runtime of this procedure for all i would be Op|Q|3N3Nq “ Op|Q|3N4q since
intersection and weight pushing have to be done for each i separately. In the following, we improve
on this by giving an algorithm that runs in Op|Q|3N2q time.

4.1 THE BINNING SEMIRING

To efficiently encode string constraints for sampling, we introduce a new algebraic structure—the
binning semiring rKs. The elements of the semiring are formal polynomials of the form

N
ÿ

i“0

aix
i (4)

where ai P K for some base semiring K and x is a variable. The semiring addition ‘ is defined

element-wise with the unit 0
def
“

řN
i“0 0x

i. Multiplication is defined as
˜

N
ÿ

i“0

aix
i

¸

b

˜

N
ÿ

i“0

bix
i

¸

def
“

N
ÿ

i“0

˜

i
ÿ

j“0

aj b bi´j

¸

xi `

˜

N
ÿ

i,j“0
i`jěN

ai b bj

¸

xi (5)

with the unit 1
def
“ 1x0 `

řN
i“1 0x

i. The binning semiring is a monoid semialgebra over a cyclic
monoid. This gives it rich algebraic properties; we discuss the details in App. B.1.

Notation. Formalization of the binning semiring as a formal power series is convenient due to the
connection to monoid semialgebras. However, it makes some of the notation slightly cumbersome.
In the following, we therefore think of the elements in the binning semiring as vectors of the form
v “ pa0 a1 ¨ ¨ ¨ aN q

J where ai are the coefficients of the polynomial in Eq. (4). We thus access
the coefficients of the polynomial as vi for i P t0, . . . , Nu.

Time complexity. The time complexities of the operations in the binning semiring depend on the
order N . Assuming ‘ and b run in constant time, ‘ runs in time OpNq. The b operation (a
convolution) runs in time OpN2q. In the special case of real-weighed WFSAs, however, we can
implement b using the fast Fourier transform (FFT) in time OpN logNq.4

4.2 BINNING AUTOMATA

We now describe how to lift a PFSA A to a WFSA over the binning semiring.

4Despite the faster implementation of b with FFT, we do not adopt it due to numerical instability (underflow
for large values of N). Instead, we use the log semiring for numerical stability.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Definition 4.1 (Event and Lifting Functions). Let A “ pQ,Σ, δ, λ, ρq be a WFSA and N P N. An
event function is a tuple ϕ “ pϕλ, ϕδ, ϕρq, where ϕδ : Q ˆ Σ ˆ Q Ñ t0, . . . , Nu and ϕλ, ϕρ : Q Ñ

t0, . . . , Nu. For ϕf and i P t0, . . . , Nu, we define the lifting function Lf : X Ñ rKs:

Lf pxqi
def
“

"

fpxq if i “ ϕf pxq

0 otherwise
(6)

Informally, the lifting function takes a (transition, initial, or final) weight in the original WFSA and
inserts it into the ϕf pxqth position of the otherwise 0-valued lifted weight P rKs.
Definition 4.2 (Binning Automaton). Let A “ pQ,Σ, δ, λ, ρq be a WFSA. The binning automaton
of A is the WFSA Aϕ “ pQ,Σ, δϕ, λϕ, ρϕq, where fϕpxq “ Lϕf

pxq for f P tδ, λ, ρu.

We can count the number of times an event ϕ occurs on a path π “ q0
a1{w1

ÝÝÝÝÑ ¨ ¨ ¨
am{wm

ÝÝÝÝÝÑ qm as

|π|ϕ
def
“ ϕλpq0q `

m
ÿ

i“1

ϕδpqi´1, ai, qiq ` ϕρpqmq. (7)

Similarly, for K Ă N and a multiset of paths P “ tπkukPK, we write |P|ϕ
def
“

ř

kPK |πk|ϕ. For path
weights in Aϕ, we will subscript the path weight function: wϕpπq P rRs for π P Π pAϕq.

4.2.1 CONSTRAINED SAMPLING

We use the binning semiring to implement a faster constrained sampling algorithm by sharing
computations among different values of i. When the original WFSA is a PFSA, the ith coefficient of a
transition weight in the binning automaton holds the probability of i occurrences of ϕ occurring on that
transition. This gives the interpretation that the probabilities of the original PFSA are binned by the
number of events. Running weight pushing on the new automaton gives us probability distributions
specific to each i that tell us, from any given state, the probability that each action generates exactly i
events in the future, leading to a straightforward sampling algorithm. We formalize this in intuition
below. In the following, A is always a DPFSA, ϕ an event function, and Aϕ A’s binning automaton.
We first formalize the intuition that wϕpπq is a one-hot encoding whose non-zero coefficient encodes
the number of occurrences of an event ϕ. Proofs of all theorems in this section are included in App. C.

Theorem 4.1 (Path Weight Interpretation). For π P Π pAϕq and i P t0, . . . , N ´ 1u, we have:

wϕpπqi “

"

wpπq if i ă N and |π|ϕ “ i or i “ N and |π|ϕ ě N

0 otherwise
(8)

where wpπq is the inner path weight in A.

Next, we formalize the intuition that summing path weights results in a vector that encodes the
probabilities of sampling specific numbers of occurrences. To formalize this, we introduce the
random variable Πpqq distributed as

PpΠpqq “ q
a1{w1

ÝÝÝÝÑ ¨ ¨ ¨
am{wm

ÝÝÝÝÝÑ qmq
def
“ w1 b ¨ ¨ ¨ b wm b ρpqmq. (9)

Theorem 4.2 (Backward Weight Interpretation). For q P Q, we have:

βϕpqqi “

"

Pp|Πpqq|ϕ “ iq if i ă N

Pp|Πpqq|ϕ ě Nq otherwise
(10)

In words, Thm. 4.2 tells us that the probability of seeing exactly (or at least) i occurrences of ϕ in
a random path starting in q P Q is the value of the ith element of q’s backward weight. Computing
backward weights in a general PFSA with cycles requires summation over infinitely many paths.
This can be done efficiently with asteration—taking the Kleene closure of the set of paths. We derive
the closed-form solution for asteration in the binning semiring applied to PFSAs in App. B.2.

We use the binning automaton to sample from DPFSAs under event-counting interventions of the
form |P| “ K and |P|ϕ “ N for P “ tπkukPK, K Ă N, and N P N. We sample P in two steps:
First, knowing |K|, we sample the number of events |πi|ϕ for all πi P P . Then, we sample the paths
πk for k P K under the determined string-level event constraints.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Theorem 4.3 (Counting in a Set). Denoting with Z
def
“ βϕpqιq “

ř

πPΠpAϕq wϕpπq the sum of all
path weights in the binning automaton Aϕ, we have:

pZ b Kqi “

"

Pp|P|ϕ “ iq if i ă N

Pp|P|ϕ ě Nq otherwise
(11)

Theorem 4.4 (Sampling Path Event Counts (1)). We have that

Pp|πk|ϕ “ i | |P|ϕ “ N, |tπjujăk|ϕ “ mq “
pZ b K´k´1qN´m´i

pZ b K´kqN´m

Zi (12)

We derive the expression for Pp|πk|ϕ ě i | |P|ϕ ě N, |tπjujăk|ϕ “ mq in Thm. C.1. Moreover,
to be able to control how many individual strings contain at least one occurrence of ϕ, we develop
a method to sample from Pp|Πkpqιq|ϕ ě i | |P|1tϕu “ M, |tπjujăk|1tϕu “ mq where |P|1tϕu

def
“

ř

kPK 1t|πk|ϕ ě iu in Thm. C.2.

Thm. 4.4 tells us how many events we should ask for in each path when sampling under intervention.
To sample strings with the determined number of occurrences of ϕ, i.e., from PpΠpqιq “ π |

|Πpqιq|ϕ “ nq, we define another, larger, PFSA A1
“

`

Σ, Q1, δ1, λ1, ρ1
˘

as

(i) Q1
“ Q ˆ t0, . . . , N ´ 1u,

(ii) δ1 : ppq, iq, a, pq1, iqq ÞÑ 1
ZpqqN´1´i

`

Lϕδ
pq

a{w
ÝÝÑ q1q b βϕpq1q

˘

N´1´i
,

(iii) λ1 : pq, iq ÞÑ 1tq “ qι, i “ N ´ 1u,5
(iv) ρ1 : pq, iq ÞÑ 1

ZpqqN´1´i
LρpqqN´1´i.

Here, Zpqq
def
“ βϕpqq. Intuitively, A1 being in state pq, iq means that N ´ 1 ´ i occurrences of ϕ

are still required for the string generation to be complete. We will denote with Π1pqιq the random
variable distributed analogously to Πpqιq, but in the new PFSA A1.

Theorem 4.5 (Constrained String Sampling (1)). We have that

PpΠpqιq “ π | |Πpqιq|ϕ “ N ´ 1q “ PpΠ1pqιq “ πq. (13)

We consider the analogous case of sampling from PpΠpqιq “ π | |Πpqιq|ϕ ě nq in Thm. C.3. To
summarize, Thms. 4.4 and 4.5 describe sampling from A to get a specific number of events in a
dataset. Thm. 4.4 tells us how many occurrences of ϕ each string should contain and Thm. 4.5 tell us
how to sample said strings. We analyze the runtime of Thm. 4.5 in App. C.1.

5 CASE STUDIES IN THREE SETTINGS

We now compute the two quantities from §3, the post-hoc conditioning estimate and the interventional
‘do’-estimate, in three case studies. We conduct two types of interventions using the binning semiring
(§4.1). First, using at-least-once interventions, where we sample corpora such that the property
occurs at least once in N strings in the corpus of size K. This corresponds to having two bins with
all probability mass in the second bin. We also consider a more general binning setting, where
we see exactly K occurrences in all strings; here we track occurrences in N ` 1 bins. In general,
we train more models on the non-intervened data to compare against, as the chances of seeing a low
number of occurrences are generally low for large corpora and machines. Details on the sampling of
machines are given App. E. Details on the training configurations are given in App. F. All errors are
standard errors. Since we wish to know how the frequency of a targeted feature impacts learnability,
we derive a decomposed KL divergence (see App. D for details) between the trained model pθ
and the PFSA, this serves as the M in the causal diagram given in §3.

Decomposed KL example for states. We give an example of the decomposed KL here, that for
state interventions, transition and symbol interventions are given in App. D. Let pA be the LM defined

5This corresponds to the case when N occurrences are required. If some other number of occurrences n is
required, A1 can simply be modified such that pqι, nq is the initial state.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 4: Monte Carlo estimates of the relation between learnability and the number of symbol
occurrences over machines with 50 states and 10 symbols, for both states and symbols.

by a DPFSA A over states Q and symbols Σ, and let pθ be the trained LM. For a dataset property P ,
let πpqq

def
“ Prσ„pA

“

δpσq “ q
‰

, and πpq, aq
def
“ πpqqpApa | qq. Then the state-wise decomposition is

DKLppA || pθq “
ÿ

qPQ

πpqq
ÿ

σPΣ˚

δpσq“q

pApσq

πpqq
DKL

`

pAp¨ | qq
›

›pθp¨ | σq
˘

loooooooooooooooooooooooomoooooooooooooooooooooooon

unweighted per-state contribution

, (14)

We calculate the divergence in Eq. (14) under intervention and observation to get the estimands in §3.

Parity + Free Machine. We sample weights over the topology shown in Fig. 1. We sample
200 different configurations of the machine, under intervention from 80 of those, and use all for
observational data. For each machine and training configuration, we sample 500 samples, and train
ten models. Results for the general binning case are shown in Fig. 2 and the at-least-once case
in Fig. 6. As described in §3 we see a clear separation of trends when sampling causally for the
accepting states. They appear more sample-demanding for the LSTM in this setup than the ’Odd’
state, while the ’Free’ state appears more complex for the Transformer.

Aggregating Over Topologies. We sample 1000 machines over the space of machines with 50 states,
and 10 symbols. For 100 of those, we conduct interventions, and sample 10 weight settings for each
machine. Here, we sample 2000 examples and train a single model per configuration. Results for
symbol and state interventions are shown in Fig. 4. In both cases, there is a clear distinction between
the learnability of the languages sampled on intervened on vs. observed data. In the former, we see
an interesting phenomenon: not only is there a clear difference in the decomposed KL, but for lower
occurrence counts, there is an inverse trend indicating complex structural confounders for machines
that naturally produce a low number of occurrences.

Varying Only Weights. Finally, we sample a machine with 40 states and 10 symbols and a constant
unweighted transition configuration. We sample 400 weight configurations for the observed data,
and 10 configurations for the interventions using the at-least-once approach. We train 5 machines for
each configuration using the LSTM and Transformer architectures. We visualize 8 random states in
Fig. 5. We see, again, that there is a distinction between observation and correlation at all states (note
the log-scale), although with some states less separated (9 and 1) than others. Notably, some states
are more sample-demanding (complex) to learn than others, state 3 for both architectures and state 4
for the transformer. And some states are more so than others, such as state 3 and 6.

6 RELATED WORK

Much work has used formal languages to probe neural networks (Cleeremans et al., 1989; Jacobsson,
2005; Valvoda et al., 2022; Svete et al., 2024b; Borenstein et al., 2024, inter alia). A central empirical
tool is synthetic data: SCAN-style setups examine compositional generalization (Lake & Baroni,
2018; Bastings et al., 2018; Ruis et al., 2020), and k-Dyck languages probe nested structure (Weiss
et al., 2018; Suzgun et al., 2019; Bhattamishra et al., 2020; Hewitt et al., 2020). Recent work also

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 5: MCE of the Decomposed KL at randomly chosen states in a sampled automaton, with
varying weight configurations. We see how observational results can lead to misleading assumptions.

analyzes inductive biases relative to the Chomsky hierarchy (Delétang et al., 2023; Butoi et al., 2024)
and studies whole classes of languages rather than single datasets (Valvoda et al., 2022; Borenstein
et al., 2024), continuing a line of grammatical inference research (Jacobsson, 2005). Complementing
these empirical traditions, theory investigates the representational capacity and internal mechanisms
of neural LMs and architectures, especially Transformers (Merrill, 2023; Strobl et al., 2023; Merrill,
2019; Merrill et al., 2020; Liu et al., 2023). While insightful, such analyses often rely on idealized
assumptions and yield bounds that do not directly characterize practical learning behavior.

By contrast, there has been relatively little emphasis on causal approaches to LM behavior. Causal
investigation with natural language is difficult—requiring complex taxonomies (Chen et al., 2024) or
targeted neuron-level interventions (Vig et al., 2020; Finlayson et al., 2021). Our focus is learnability
under standard, fixed-size training regimes and natural data, not strict expressivity. We use parity
as a compact case study to illustrate our decomposition, controlled sampling, and causal approach;
it also serves as a touchstone to situate prior art–from fixed-size impossibility (Hahn, 2020), through
engineered solutions (Chiang & Cholak, 2022), and protocol changes such as chain-of-thought
that add compute (Kim & Suzuki, 2025; Wen et al., 2024). Our work is orthogonal to these, and
complements broader accounts of, e.g., Transformer capability (Allen-Zhu & Li, 2025).

7 CONCLUSION

We present a causal framework for assessing learnability in PFSA-induced language models. By
replacing unconstrained sampling with controlled frequency interventions, we separate two drivers of
observed difficulty—frequency scarcity and the learner’s sample complexity. Across three case studies,
interventional estimates often differ from correlational ones, illustrating the scarcity—complexity
collision. The framework offers a way to diagnose whether difficulty reflects rarity in data or the
learner–task pair complexity, and can inform dataset design and failure analysis in controlled settings.

Limitiations We focus on PFSA-induced settings where properties are exactly countable; applying
the framework to natural language would require approximate labels for target phenomena. The
sampler’s cost grows with automaton size. We evaluate fixed-size learners under vanilla training.
Our results concern the causal evaluation procedure as such, controlled sampling and evaluation,
not a particular architecture; LSTM/Transformer are illustrative choices of L, and the framework
extends to alternative learners (e.g., Mamba Gu & Dao (2024), CoT-augmented decoding Wei et al.
(2022)) without modification.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 1, learning hierarchical language
structures. arXiv preprint arXiv:2305.13673, 2025. URL https://arxiv.org/abs/2305.13673.
v4 (May 2025).

Jasmijn Bastings, Marco Baroni, Jason Weston, Kyunghyun Cho, and Douwe Kiela. Jump to
better conclusions: SCAN both left and right. Proceedings of the 2018 EMNLP Workshop
BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pp. 47–55, 2018. doi:
10.18653/v1/W18-5407. URL https://www.aclweb.org/anthology/W18-5407.

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal. On the Practical Ability of Recurrent Neural
Networks to Recognize Hierarchical Languages. In Donia Scott, Nuria Bel, and Chengqing Zong
(eds.), Proceedings of the 28th International Conference on Computational Linguistics, Barcelona,
Spain (Online), 2020. doi: 10.18653/v1/2020.coling-main.129. URL https://aclanthology.
org/2020.coling-main.129.

Nadav Borenstein, Anej Svete, Robin Chan, Josef Valvoda, Franz Nowak, Isabelle Augenstein,
Eleanor Chodroff, and Ryan Cotterell. What Languages are Easy to Language-Model? A Perspec-
tive from Learning Probabilistic Regular Languages. In Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), Bangkok, Thailand, 2024.
doi: 10.18653/v1/2024.acl-long.807. URL https://aclanthology.org/2024.acl-long.807.

Alexandra Butoi, Ghazal Khalighinejad, Anej Svete, Josef Valvoda, Ryan Cotterell, and Brian DuSell.
Training Neural Networks as Recognizers of Formal Languages. arXiv preprint arXiv:2411.07107,
2024. URL https://arxiv.org/abs/2411.07107.

Sirui Chen, Bo Peng, Meiqi Chen, Ruiqi Wang, Mengying Xu, Xingyu Zeng, Rui Zhao, Shengjie
Zhao, Yu Qiao, and Chaochao Lu. Causal Evaluation of Language Models. arXiv preprint
arXiv:2405.00622, 2024. URL https://arxiv.org/abs/2405.00622.

David Chiang and Peter Cholak. Overcoming a theoretical limitation of self-attention. In Proceedings
of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 7654–7664, Dublin, Ireland, 2022. Association for Computational Linguistics. doi:
10.18653/v1/2022.acl-long.527. URL https://aclanthology.org/2022.acl-long.527.

Axel Cleeremans, David Servan-Schreiber, and James L. McClelland. Finite state automata and
simple recurrent networks. Neural Computation, 1(3):372–381, 1989. URL https://axc.ulb.
be/uploads/2015/11/89-nc.pdf.

Gregoire Delétang, Anian Ruoss, Jordi Grau-Moya, Tim Genewein, Li Kevin Wenliang, Elliot Catt,
Chris Cundy, Marcus Hutter, Shane Legg, Joel Veness, and Pedro A. Ortega. Neural Networks and
the Chomsky Hierarchy. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=WbxHAzkeQcn.

Matthew Finlayson, Aaron Mueller, Sebastian Gehrmann, Stuart Shieber, Tal Linzen, and Yonatan
Belinkov. Causal Analysis of Syntactic Agreement Mechanisms in Neural Language Models.
In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), pp. 1828–1843, Online,
2021. doi: 10.18653/v1/2021.acl-long.144. URL https://aclanthology.org/2021.acl-long.
144.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. In The
Twelfth International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=AL1fq05o7H. ICLR.

Michael Hahn. Theoretical limitations of self-attention in neural sequence models. Transactions
of the Association for Computational Linguistics, 8:156–171, 2020. doi: 10.1162/tacl_a_00306.
URL https://aclanthology.org/2020.tacl-1.11.

10

https://arxiv.org/abs/2305.13673
https://www.aclweb.org/anthology/W18-5407
https://aclanthology.org/2020.coling-main.129
https://aclanthology.org/2020.coling-main.129
https://aclanthology.org/2024.acl-long.807
https://arxiv.org/abs/2411.07107
https://arxiv.org/abs/2405.00622
https://aclanthology.org/2022.acl-long.527
https://axc.ulb.be/uploads/2015/11/89-nc.pdf
https://axc.ulb.be/uploads/2015/11/89-nc.pdf
https://openreview.net/forum?id=WbxHAzkeQcn
https://aclanthology.org/2021.acl-long.144
https://aclanthology.org/2021.acl-long.144
https://openreview.net/forum?id=AL1fq05o7H
https://openreview.net/forum?id=AL1fq05o7H
https://aclanthology.org/2020.tacl-1.11

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Michael Hahn and Mark Rofin. Why are Sensitive Functions Hard for Transformers? In Lun-Wei
Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 14973–15008, Bangkok,
Thailand, 2024. doi: 10.18653/v1/2024.acl-long.800. URL https://aclanthology.org/2024.
acl-long.800/.

John Hewitt, Michael Hahn, Surya Ganguli, Percy Liang, and Christopher D. Manning. RNNs can
generate bounded hierarchical languages with optimal memory. In Bonnie Webber, Trevor Cohn,
Yulan He, and Yang Liu (eds.), Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 1978–2010, Online, 2020. doi: 10.18653/v1/2020.
emnlp-main.156. URL https://aclanthology.org/2020.emnlp-main.156.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997. URL https://dl.acm.org/doi/10.1162/neco.1997.9.8.1735.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni. Compositionality Decomposed:
How do Neural Networks Generalise? (Extended Abstract). In Proceedings of the Twenty-Ninth
International Joint Conference on Artificial Intelligence, IJCAI-20, 7 2020. doi: 10.24963/ijcai.
2020/708. URL https://doi.org/10.24963/ijcai.2020/708.

Henrik Jacobsson. Rule Extraction from recurrent neural networks: A taxonomy and review.
Neural Computation, 17(6):1223–1263, 2005. URL https://dl.acm.org/doi/10.1162/
0899766053630350.

Juno Kim and Taiji Suzuki. Transformers provably solve parity efficiently with chain
of thought. In The Thirteenth International Conference on Learning Representations
(ICLR 2025), 2025. URL https://proceedings.iclr.cc/paper_files/paper/2025/file/
6e2986deda273d8fb903342841fcc4dc-Paper-Conference.pdf.

Werner Kuich. Semirings and Formal Power Series: Their Relevance to Formal Languages and
Automata. In Grzegorz Rozenberg and Arto Salomaa (eds.), Handbook of Formal Languages:
Volume 1 Word, Language, Grammar, pp. 609–677. Springer Berlin Heidelberg, Berlin, Heidelberg,
1997. ISBN 978-3-642-59136-5. doi: 10.1007/978-3-642-59136-5_9. URL https://doi.org/
10.1007/978-3-642-59136-5_9.

Brenden Lake and Marco Baroni. Generalization without Systematicity: On the Compositional
Skills of Sequence-to-Sequence Recurrent Networks. In Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research,
10–15 Jul 2018. URL https://proceedings.mlr.press/v80/lake18a.html.

Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transform-
ers Learn Shortcuts to Automata. The International Conference on Learning Representations
(ICLR), 2023. doi: 10.48550/arXiv.2210.10749. URL https://openreview.net/forum?id=
De4FYqjFueZ.

William Merrill. Sequential Neural Networks as Automata. In Jason Eisner, Matthias Gallé,
Jeffrey Heinz, Ariadna Quattoni, and Guillaume Rabusseau (eds.), Proceedings of the Workshop
on Deep Learning and Formal Languages: Building Bridges, pp. 1–13, Florence, 2019. doi:
10.18653/v1/W19-3901. URL https://aclanthology.org/W19-3901.

William Merrill. Formal Languages and the NLP Black Box. In Frank Drewes and Mikhail Volkov
(eds.), Developments in Language Theory, pp. 1–8, Cham, 2023. ISBN 978-3-031-33264-7.

William Merrill, Gail Weiss, Yoav Goldberg, Roy Schwartz, Noah A. Smith, and Eran Yahav. A
Formal Hierarchy of RNN Architectures. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel
Tetreault (eds.), Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, pp. 443–459, Online, 2020. doi: 10.18653/v1/2020.acl-main.43. URL https:
//aclanthology.org/2020.acl-main.43.

Joshua J. Michalenko, Ameesh Shah, Abhinav Verma, Swarat Chaudhuri, and Ankit B. Patel.
Finite Automata Can be Linearly Decoded from Language-Recognizing RNNs. In International
Conference on Learning Representations, 2019. URL https://openreview.net/forum?id=
H1zeHnA9KX.

11

https://aclanthology.org/2024.acl-long.800/
https://aclanthology.org/2024.acl-long.800/
https://aclanthology.org/2020.emnlp-main.156
https://dl.acm.org/doi/10.1162/neco.1997.9.8.1735
https://doi.org/10.24963/ijcai.2020/708
https://dl.acm.org/doi/10.1162/0899766053630350
https://dl.acm.org/doi/10.1162/0899766053630350
https://proceedings.iclr.cc/paper_files/paper/2025/file/6e2986deda273d8fb903342841fcc4dc-Paper-Conference.pdf
https://proceedings.iclr.cc/paper_files/paper/2025/file/6e2986deda273d8fb903342841fcc4dc-Paper-Conference.pdf
https://doi.org/10.1007/978-3-642-59136-5_9
https://doi.org/10.1007/978-3-642-59136-5_9
https://proceedings.mlr.press/v80/lake18a.html
https://openreview.net/forum?id=De4FYqjFueZ
https://openreview.net/forum?id=De4FYqjFueZ
https://aclanthology.org/W19-3901
https://aclanthology.org/2020.acl-main.43
https://aclanthology.org/2020.acl-main.43
https://openreview.net/forum?id=H1zeHnA9KX
https://openreview.net/forum?id=H1zeHnA9KX

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Mehryar Mohri. Weighted Automata Algorithms, pp. 213–254. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2009. ISBN 978-3-642-01492-5. doi: 10.1007/978-3-642-01492-5_6. URL https:
//doi.org/10.1007/978-3-642-01492-5_6.

J. Pearl, M. Glymour, and N.P. Jewell. Causal Inference in Statistics: A Primer. Wiley, 2016. ISBN
9781119186847. URL https://books.google.ch/books?id=L3G-CgAAQBAJ.

Jonas Peters, Dominik Janzing, and Bernhard Schlkopf. Elements of Causal Inference: Foundations
and Learning Algorithms. The MIT Press, 2017. ISBN 0262037319. URL https://dl.acm.
org/doi/book/10.5555/3202377.

Laura Ruis, Jacob Andreas, Marco Baroni, Diane Bouchacourt, and Brenden M Lake. A Benchmark
for Systematic Generalization in Grounded Language Understanding. In Advances in Neural
Information Processing Systems, volume 33, 2020. URL https://proceedings.neurips.cc/
paper/2020/hash/e5a90182cc81e12ab5e72d66e0b46fe3-Abstract.html.

Taiga Someya, Anej Svete, Brian DuSell, Timothy J. O’Donnell, Mario Giulianelli, and Ryan Cotterell.
Information Locality as an Inductive Bias for Neural Language Models. In Wanxiang Che, Joyce
Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), Proceedings of the 63rd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 27995–
28013, Vienna, Austria, 2025. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.1357.
URL https://aclanthology.org/2025.acl-long.1357/.

Lena Strobl, William Merrill, Gail Weiss, David Chiang, and Dana Angluin. Transformers as
Recognizers of Formal Languages: A Survey on Expressivity. arXiv preprint arXiv:2311.00208,
2023. URL https://arxiv.org/abs/2311.00208.

Mirac Suzgun, Yonatan Belinkov, Stuart Shieber, and Sebastian Gehrmann. LSTM Networks Can
Perform Dynamic Counting. In Jason Eisner, Matthias Gallé, Jeffrey Heinz, Ariadna Quattoni,
and Guillaume Rabusseau (eds.), Proceedings of the Workshop on Deep Learning and Formal
Languages: Building Bridges, pp. 44–54, Florence, 2019. doi: 10.18653/v1/W19-3905. URL
https://aclanthology.org/W19-3905.

Anej Svete, Nadav Borenstein, Mike Zhou, Isabelle Augenstein, and Ryan Cotterell. Can Trans-
formers Learn n-gram Language Models? In Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing, Miami, Florida, USA, 2024a. doi: 10.18653/v1/2024.
emnlp-main.550. URL https://aclanthology.org/2024.emnlp-main.550/.

Anej Svete, Franz Nowak, Anisha Mohamed Sahabdeen, and Ryan Cotterell. Lower Bounds on the
Expressivity of Recurrent Neural Language Models. Proceedings of the 2024 Conference of the
North American Chapter of the Association for Computational Linguistics, pp. 6820–6844, 2024b.
doi: 10.18653/v1/2024.naacl-long.380. URL https://aclanthology.org/2024.naacl-long.
380/.

Josef Valvoda, Naomi Saphra, Jonathan Rawski, Adina Williams, and Ryan Cotterell. Benchmarking
Compositionality with formal Languages. In Proceedings of the 29th International Conference on
Computational Linguistics, Gyeongju, Republic of Korea, 2022. URL https://aclanthology.
org/2022.coling-1.525/.

Sam Van der Poel, Dakotah Lambert, Kalina Kostyszyn, Tiantian Gao, Rahul Verma, Derek Andersen,
Joanne Chau, Emily Peterson, Cody St. Clair, Paul Fodor, Chihiro Shibata, and Jeffrey Heinz.
MLRegTest: A Benchmark for the Machine Learning of Regular Languages. J. Mach. Learn. Res.,
25(1), 2025. ISSN 1532-4435. URL https://www.jmlr.org/papers/v25/23-0518.html.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, NIPS’17, pp. 6000–6010, Red Hook,
NY, USA, 2017. ISBN 9781510860964. URL https://dl.acm.org/doi/10.5555/3295222.
3295349.

12

https://doi.org/10.1007/978-3-642-01492-5_6
https://doi.org/10.1007/978-3-642-01492-5_6
https://books.google.ch/books?id=L3G-CgAAQBAJ
https://dl.acm.org/doi/book/10.5555/3202377
https://dl.acm.org/doi/book/10.5555/3202377
https://proceedings.neurips.cc/paper/2020/hash/e5a90182cc81e12ab5e72d66e0b46fe3-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e5a90182cc81e12ab5e72d66e0b46fe3-Abstract.html
https://aclanthology.org/2025.acl-long.1357/
https://arxiv.org/abs/2311.00208
https://aclanthology.org/W19-3905
https://aclanthology.org/2024.emnlp-main.550/
https://aclanthology.org/2024.naacl-long.380/
https://aclanthology.org/2024.naacl-long.380/
https://aclanthology.org/2022.coling-1.525/
https://aclanthology.org/2022.coling-1.525/
https://www.jmlr.org/papers/v25/23-0518.html
https://dl.acm.org/doi/10.5555/3295222.3295349
https://dl.acm.org/doi/10.5555/3295222.3295349

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, Sharon Qian, Daniel Nevo, Yaron
Singer, and Stuart Shieber. Investigating Gender Bias in Language Models Us-
ing Causal Mediation Analysis. In Advances in Neural Information Processing Sys-
tems, volume 33, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
92650b2e92217715fe312e6fa7b90d82-Abstract.html.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Advances in Neural Information Processing Systems, volume 35, pp. 24824–24837.
Curran Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf.

Gail Weiss, Yoav Goldberg, and Eran Yahav. On the Practical Computational Power of Finite Precision
RNNs for Language Recognition. In Iryna Gurevych and Yusuke Miyao (eds.), Proceedings of
the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short
Papers), pp. 740–745, Melbourne, Australia, 2018. doi: 10.18653/v1/P18-2117. URL https:
//aclanthology.org/P18-2117.

Kaiyue Wen, Huaqing Zhang, Hongzhou Lin, and Jingzhao Zhang. From sparse dependence to sparse
attention: Unveiling how chain-of-thought enhances transformer sample efficiency, 2024. URL
https://arxiv.org/abs/2410.05459.

Andy Yang, David Chiang, and Dana Angluin. Masked Hard-Attention Transformers Recognize
Exactly the Star-Free Languages. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet,
J. Tomczak, and C. Zhang (eds.), Advances in Neural Information Processing Systems, volume 37,
pp. 10202–10235, 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/
file/13d7f172259b11b230cc5da8768abc5f-Paper-Conference.pdf.

A PRELIMINARIES

This section introduces the technical background introduced in the main paper.

A.1 FORMAL LANGUAGE THEORY

Let K be a set, d a binary operation, and 1 P K. We say pK,d,1q is a monoid if

(i) K is closed under d,
(ii) d is associative, and

(iii) 1 is the unit of d: @a P K : 1 d a “ a d 1 “ a;

We say that a monoid is commutative if @a, b P K : a d b “ b d a.

A semiring is a tuple pK,‘,b,0,1q where

(i) pK,‘,0q is a commutative monoid,
(ii) pK,b,1q is a monoid,

(iii) multiplication left- and right-distributes over addition: a b pb ‘ cq “ pa b bq ‘ pa b cq and
pb ‘ cq b a “ pb b aq ‘ pc b aq, and

(iv) multiplication with 0 annihilates K: 0 b a “ a b 0 “ 0.

A semiring admitting well-behaved infinite sums is called complete. In a complete semiring, we
can define a˚ def

“
À8

i“0 a
i “

À8

i“0

Âi
j“1 a. The real semiring is pR,`,ˆ, 0, 1q with the standard

addition and multiplication. Adjoining 8 to positive reals in the natural way gives a complete
semiring with a˚ “ 1

1´a for a ă 1 and a˚ “ 8 otherwise.

A weighted finite-state automaton (WFSA) A over a semiring pK,‘,b,0,1q is a tuple
pQ,Σ, δ, λ, ρq where Q is a finite set of states; Σ is an alphabet; δ : Q ˆ Σ ˆ Q Ñ K is a transi-

tion function, where we say that A has transition p
a{w

ÝÝÑ q with weight w if δpp, a, qq “ w; and
λ : Q Ñ K and ρ : Q Ñ K are the initial and final weight functions, respectively.

13

https://proceedings.neurips.cc/paper/2020/hash/92650b2e92217715fe312e6fa7b90d82-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/92650b2e92217715fe312e6fa7b90d82-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://aclanthology.org/P18-2117
https://aclanthology.org/P18-2117
https://arxiv.org/abs/2410.05459
https://proceedings.neurips.cc/paper_files/paper/2024/file/13d7f172259b11b230cc5da8768abc5f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/13d7f172259b11b230cc5da8768abc5f-Paper-Conference.pdf

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A path π in A is a finite sequence of consecutive transitions q0
a1{w1

ÝÝÝÝÑ q1 ¨ ¨ ¨ qN´1
aN {wN

ÝÝÝÝÝÑ qN . We
write |π| “ N for π’s length. The inner weight of π is wpπq

def
“ w1 b ¨ ¨ ¨ b wN , its weight is

wpπq
def
“ λpq0q b wpπq b ρpqN q, and its yield is a1 ¨ ¨ ¨ aN . ΠpAq denotes the set of all paths in A

We say that A “ pQ,Σ, δ, λ, ρq is deterministic (a DPFSA) if, for every p P Q, σ P Σ, there is at

most one q P Q such that p
a{w

ÝÝÑ q P δ with w ‰ 0, and there is a single state qι with λ pqιq ‰ 0. In
this case, we refer to qι as the initial state. Naturally, a deterministic WFSA can have at most one
path with non-0 path weight yielding a string σ P Σ˚ from the initial state qι.

We say that a real-weighted WFSA with non-negative weights is probabilistic (a PFSA) if, for all
states q P Q, δ, λ and ρ satisfy

ř

qPQ λ pqq “ 1, and ρ pqq `
ř

q
σ{w

ÝÝÑq1Pδ
w “ 1. A PFSA induces a

probability distribution over Σ˚, where the probability of a string σ is the sum of the weights of all
paths yielding σ from the initial state qι.

The backward weight βApqq of a state q P Q is the sum of the weights of all paths starting at
q: βApqq

def
“

À

πPΠpAq,ιpπq“q wpπq b ρpφpπqq, where ιpπq and φpπq denote the origin and the

destination states of π, respectively. Finally, the allsum of A is Z def
“

ř

πPΠpAq wpπq “ βApqιq.

A.2 MARKOV KERNELS AND GRAPHICAL CAUSAL MODELS

Notation. We denote sets with uppercase caligraphic font, e.g., X and Y , and σ-algebras in
uppercase Fraktur e.g., X and Y. We write pX ,Xq for measurable spaces. We denote an element of a
set X as a lowercase letter x. Random variables over X are typeset as uppercase, unitalicized X.

We model targeted data modifications as interventions in the graphical model in §3. In particular, §3
describes the process of training and evaluating an LM L from data D sampled from the ground-truth
LM A with the following components: (i) pA,Aq is a probability space over some ground truth LM.
We use A to denote a random variable over this space and a for an element in the space. (ii) pD,Dq is
a probability space over a corpus of size K P N. D is a random variable and d a specific instantiation.
(iii) pL,Lq is a probability space of all configurations of a given neural LM, where L is a given
σ-algebra. A random variable from the space is given by L and an element in L with l. (iv) pM,Mq

is a probability space over the values that a comparison (measure of fit) between a and l can take. In
§4, we focus on a specific specification of this model.

We want to define a causal model that captures the effect of intervening on the training data when
training a neural LM. For the formal treatment of causal relationships in continuous spaces, we build
on the framework of graphical causal models as presented in Peters et al. (2017).

Notation. We adopt the following notation: sets are denoted with uppercase caligraphic font, e.g.,
X and Y , and elements of a set X as a lowercase letter x. Random variables over X are typeset as
uppercase, unitalicized X.

Following Peters et al. (2017), we define a graphical causal model (GCM) as a triplet G “ pV ,E,Kq

where V “ tV1, . . . ,VNu is a finite set of random variables over domains V1, . . . ,VN , E Ă V ˆV
is a set of edges forming a directed acyclic graph (DAG), and K “ tκ1, . . . , κNu is a set of Markov
kernels.

For each random variable Vj P V , the set PAj Ă V denotes the parent variables of Vj according
to the DAG. The probabilistic behavior of the GCM is specified via a collection of Markov kernels,
where each κj describes the relation between a variable and all of its parents, including cases with
multiple parents. The joint distribution over all variables is then induced by the factorization:

ppx1, . . . , xN q “

N
ź

j“1

ppxj | xPAj q (15)

Here, each conditional distribution ppxj | xPAj q corresponds to the Markov kernel κj , which takes
all parent variables as inputs.

This formulation allows us to handle intervention distributions in continuous spaces through covariate
adjustment formulas as described in Peters et al. (2017, Section 6.6). In our work, we apply this
framework specifically to model interventions on neural LM training data.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B THE BINNING SEMIRING

B.1 MONOID SEMIALGEBRAS

Definition B.1. A cyclic monoid is a monoid with a single generator c and an identity element. We
denote by CN,1 the monoid CN,1

def
“ tc0, c1, . . . , cNu where c0 is the identity. The multiplication is

defined for 0 ď i, j ď N as

ci ¨ cj
def
“

"

cj “ ci`j if i ` j ă N

cN otherwise .
(16)

In particular, cN ¨ c1 “ cN .
Definition B.2. Given a finite monoid M and a (semi)ring pK,‘,b,0,1q, the monoid semialgebra
KrM s consists of all formal finite sums

f “
ÿ

mPM

amm (17)

where only finitely many am P K are non-zero, with point-wise addition. The product in KrM s is
given by a convolution:

p
ÿ

mPM

ammq ¨ p
ÿ

nPM

bnnq “
ÿ

m1PM

p
ÿ

m,nPM
mn“m1

ambnqm1 (18)

Applying Definition B.2 to Definition B.1, we can see that element of rKs can be written uniquely as
řN

i“0 aic
i where ai P K and the convolution product is given by

p

N
ÿ

i“0

aic
iq ¨ p

N
ÿ

i“0

bic
iq “

N´1
ÿ

i“0

p

i
ÿ

j“0

ajbi´jqci ` p
ÿ

i,j“0
i`jěN

aibjqcN (19)

B.2 A CLOSED-FORM SOLUTION FOR THE KLEENE STAR

Computing backward weights in a general PFSA with cycles requires summation over infinitely many
paths. This can be done efficiently with asteration—taking the Kleene closure of the set of paths.
This section develops the Kleene star operator for binning automata over PFSAs and records when
the resulting solution is unique.
Lemma B.3 (Arden’s rule in complete semirings). Let pK,‘,b,0,1q be a complete semiring. For
all a, b P K, the equation

x “ pa b xq ‘ b (20)
has x “ a˚ b b as a solution.

Proof. By Kuich (1997, Thm. 2.2(ii)), a˚ “ 1 ‘ pa b a˚q. Therefore

pa b pa˚ b bqq ‘ b “ pa b a˚q b b ‘ b

“ ppa b a˚q ‘ 1q b b

“ a˚ b b.

(21)

■

Proposition B.4 (Coefficientwise Kleene equations in the binning semiring). Let rKs be the N th-
order binning semiring and v P rKs. Write v˚ def

“
À8

i“0 v
bi. For 0 ď i ă N ,

pv˚qi “ v˚
0 b

´

1 i ‘
Ài

j“1 vj b pv˚qi´j

¯

. (22)

For the overflow bin,

pv˚qN “

´

ÀN
i“0 vi

¯˚

b

¨

˝

ÀN
i,j“0
j‰N

i`jěN

vi b pv˚qj

˛

‚. (23)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Proof. For 0 ď i ă N ,

pv˚qi “
`
À8

k“0 v
bk

˘

i
“ 1 i ‘ pv b v˚qi

“ 1 i ‘
Ài

j“0 vj b pv˚qi´j

“ v0 b pv˚qi ‘

´

1 i ‘
Ài

j“1 vj b pv˚qi´j

¯

.

(24)

Apply Lemma B.3 with a “ v0 to obtain (22). For i “ N ,

pv˚qN “ 1 N ‘ pv b v˚qN

“ 1 N ‘
ÀN

i,j“0
i`jěN

vi b pv˚qj

“

´

ÀN
i“0 vi

¯

b pv˚qN ‘
ÀN

i,j“0
j‰N,i`jěN

vi b pv˚qj ,

(25)

and Lemma B.3 with a “
ÀN

i“0 vi yields (23). ■

Lemma B.5 (Uniqueness in the binning semiring). Let pRě0,`, ¨, 0, 1q be the non-negative real
semiring, and let rKs be the binning semiring of order N over Rě0. For any v, w P rKs with v
arising from a PFSA binning automaton and v0 ă 1, the equation

x “ pv b xq ‘ w (26)

has a unique solution.

Proof. For 0 ď i ă N ,
xi “ v0 b xi ‘

Ài
j“1 vj b xi´j ‘ wi. (27)

Working in Rą0 and using v0 ă 1,

xi “
1

1 ´ v0
¨

´

Ài
j“1 vj b xi´j ‘ wi

¯

, (28)

which uniquely determines xi by strong induction and preserves non-negativity. For i “ N , collect
overflow terms to get

p1 ´ v0q ¨ xN “
ÀN

j“1 vj b xN´j ‘
À

i`jěN
i,ją0

vi b xj ‘ wN , (29)

and the same argument applies. ■

Corollary B.6 (Uniqueness of the closed form in the PFSA/binning setting). Under the conditions of
Proposition B.4 and Lemma B.5, the solution given by (22)–(23) is unique.

C PROOFS

Theorem 4.1 (Path Weight Interpretation). For π P Π pAϕq and i P t0, . . . , N ´ 1u, we have:

wϕpπqi “

"

wpπq if i ă N and |π|ϕ “ i or i “ N and |π|ϕ ě N

0 otherwise
(8)

where wpπq is the inner path weight in A.

Proof. We proceed by induction on |π|.

If |π| “ 1, then wϕpπq “ Lϕδ
pq0

a1{w1
ÝÝÝÝÑ q1q, so the claim follows from the definition of Lϕδ

.

Suppose now that Eq. (8) holds for all paths π with |π| ă m. Let π “ q0
a1{w1

ÝÝÝÝÑ q1 ¨ ¨ ¨
am{wm

ÝÝÝÝÝÑ qm

be a path of length m, and π1 “ q0
a1{w1

ÝÝÝÝÑ q1 ¨ ¨ ¨
am´1{wm´1

ÝÝÝÝÝÝÝÝÑ qm´1 be the sub-path of the first

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

m ´ 1 transitions. We compute for i P t0, . . . , N ´ 1u

wpπqi “ pwpπ1q b wmqi (30a)

“

i
ÿ

j“0

wpπ1qj b pwmqi´j (30b)

“ wpπ1q|π1|ϕ b pwmqi´|π1|ϕ (Inductive hypothesis, 30c)

“

#

wpπ1q b wm “ wpπq if i “ |π|ϕ ` ϕδpqm´1

am{wm
ÝÝÝÝÝÑ qmq

0 otherwise
. (30d)

This completes the proof for coefficients i ă N . For the remaining case, we derive:

wpπqN “ pwpπ1q b wmqN (31a)

“

N
ÿ

i,j“0
i`jěN

wpπ1qi b pwmqj (31b)

“

$

&

%

wpπ1q|π1|ϕ b pwmq
ϕδpqm´1

am{wm
ÝÝÝÝÝÑqmq

if |π1|ϕ ` ϕδpqm´1

am{wm
ÝÝÝÝÝÑ qmq ě N

0 otherwise
(Inductive hypothesis, 31c)

“

#

wpπ1q b wm “ wpπq if |π1|ϕ ` ϕδpqm´1

am{wm
ÝÝÝÝÝÑ qmq ě N

0 otherwise
. (31d)

■

Theorem 4.2 (Backward Weight Interpretation). For q P Q, we have:

βϕpqqi “

"

Pp|Πpqq|ϕ “ iq if i ă N

Pp|Πpqq|ϕ ě Nq otherwise
(10)

Proof. For any i P t0, . . . , N ´ 1u, we have:

pp|Πpqq|ϕ “ iq “
ÿ

πPΠpAq

|π|ϕ“i

ppπq (32a)

“
ÿ

πPΠpAq

|π|ϕ“i

wpπq (A is a PFSA, 32b)

“
ÿ

πPΠpAϕq

|π|ϕ“i

wϕpπq|π|ϕ (Thm. 4.1 , 32c)

“
ÿ

πPΠpAϕq

wϕpπqi (Thm. 4.1 , 32d)

“ βϕpqqi. (Definition of βϕ, 32e)

Derivation for coefficients i “ N is analogous. ■

Theorem 4.3 (Counting in a Set). Denoting with Z
def
“ βϕpqιq “

ř

πPΠpAϕq wϕpπq the sum of all
path weights in the binning automaton Aϕ, we have:

pZ b Kqi “

"

Pp|P|ϕ “ iq if i ă N

Pp|P|ϕ ě Nq otherwise
(11)

Proof. Follows immediately from Thm. 4.2 and the definition of Z. ■

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Theorem 4.4 (Sampling Path Event Counts (1)). We have that

Pp|πk|ϕ “ i | |P|ϕ “ N, |tπjujăk|ϕ “ mq “
pZ b K´k´1qN´m´i

pZ b K´kqN´m

Zi (12)

Proof. To derive Eq. (12), we have that

Pp|πk|ϕ “ i | |P|ϕ “ N, |tπjujăk|ϕ “ mq “
Pp|πk|ϕ “ i, |P|ϕ “ N, |tπjujăk|ϕ “ mq

Pp|P|ϕ “ N, |tπjujăk|ϕ “ mq
. (33)

With this, we derive

Pp|πk|ϕ “ i, |P|ϕ “ N, |tπjujăk|ϕ “ mq (34a)
“ Pp|πk|ϕ “ i, |tπjująk`1|ϕ “ N ´ m ´ i, |tπjujăk|ϕ “ mq (34b)
“ Pp|πk|ϕ “ iqPp|tπjująk`1|ϕ “ N ´ m ´ iqPp|tπjujăk|ϕ “ mq

(Indepencence of samples, 34c)

“ ZipZ
K´k´1qN´m´ipZ

k´1qm (Thm. 4.3, 34d)

and

Pp|P|ϕ “ N, |tπjujăk|ϕ “ mq (35a)
“ Pp|tπjujěk|ϕ “ N ´ m, |tπjujăk|ϕ “ mq (35b)
“ Pp|tπjujěk|ϕ “ N ´ mqPp|tπjujăk|ϕ “ mq (Indepencence of samples, 35c)

“ pZK´kqN´mpZk´1qm (Thm. 4.3, 35d)

■

We now consider sampling under the constraint |Πpqιq|ϕ ě n. For that, define Z 1pqq
def
“ MZpqq,

where M is the upper-triangular matrix of ones. The interpretation of Zpqq is as follows: Whereas
Zpqqi contains the mass of strings length i (or at least N for i “ N), Z 1pqqi adds up the mass of all
strings of length at least i or longer (including those summarized in the last entry). Thus, Z 1pqqi is
the probability of seeing at least i occurrences of ϕ in a random path starting in q. Further, define
Z 1 def

“ Z 1pqιq.
Theorem C.1 (Sampling Path Event Counts (2)). We have that

Pp|πk|ϕ ě i | |P|ϕ ě N, |tπjujăk|ϕ “ mq (36)

“

`

Z 1
ipZ

1K´k´1qN´m `
řN´m

j“1 pZ 1qi`jpZK´k´1qN´m´j

˘

pZ 1K´kqN´m

Proof. To derive Eq. (36), we have that

Pp|πk|ϕ ě i | |P|ϕ ě N, |tπjujăk|ϕ “ mq “
Pp|πk|ϕ ě i, |P|ϕ ě N, |tπjujăk|ϕ “ mq

Pp|P|ϕ ě N, |tπjujăk|ϕ “ mq
. (37)

With this, we derive

Pp|πk|ϕ ě i, |P|ϕ ě N, |tπjujăk|ϕ “ mq (38a)
“ Pp|πk|ϕ ě i, |tπjujěk|ϕ ě N ´ m, |tπjujăk|ϕ “ mq (38b)
“ Pp|πk|ϕ ě i, |tπjująk|ϕ ě N ´ m, |tπjujăk|ϕ “ mq

`

i
ÿ

j“1

Pp|πk|ϕ ě i ` j, |tπjująk|ϕ “ N ´ m ´ j, |tπjujăk|ϕ “ mq (38c)

“ Z 1
ipZ

1K´k´1qN´mpZk´1qm `

N´m
ÿ

j“1

Z 1
i`jpZK´k´1qN´m´jpZk´1qm (38d)

“
`

Z 1
ipZ

1K´k´1qN´m `

N´m
ÿ

j“1

Z 1
i`jpZK´k´1qN´m´j

˘

pZk´1qm (38e)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

and

Pp|P|ϕ ě N, |tπjujăk|ϕ “ mq (39a)
“ Pp|tπjujěk|ϕ ě N ´ mqPp|tπjujăk|ϕ “ mq (39b)

“ pZK´kqN´mpZk´1qm (Thm. 4.3, 39c)

■

Theorem C.2 (Sampling Path Event Counts (3)). Let Z be the binning pathsum of order N “ 1.
Then

Pp|Πkpqιq|ϕ ě 1 | |P|1tϕu “ M, |tπjujăk|1tϕu “ mq “

`

K´k´1
M´m´1

˘

`

K´k
M´m

˘ . (40)

Proof. We have

Pp|Πkpqιq|ϕ ě 1 | |P|1tϕu “ M, |tπjujăk|1tϕu “ mq (41a)

“
Pp|Πkpqιq|ϕ ě 1, |P|1tϕu “ M, |tπjujăk|1tϕu “ mq

Pp|P|1tϕu “ M, |tπjujăk|1tϕu “ mq
. (41b)

Since the sampling is conditionally independent given the constraint, we have

Pp|Πkpqιq|ϕ ě 1, |P|1tϕu “ M, |tπjujăk|1tϕu “ mq (42a)

“ Pp|Πkpqιq|ϕ ě 1, |tπjująk|1tϕu “ M ´ m ´ 1, |tπjujăk|1tϕu “ mq (42b)

“ Z1 ¨ Pp|tΠjująk|1tϕu “ M ´ m ´ 1q ¨ Pp|tπjujăk|1tϕu “ mq (Thm. 4.2, 42c)

“ Z1 ¨

ˆ

K ´ k ´ 1

M ´ m ´ 1

˙

pZ1qM´m´1pZ0qK´k´1´pM´m´1q ¨ Pp|tπjujăk|1tϕu “ mq (42d)

“

ˆ

K ´ k ´ 1

M ´ m ´ 1

˙

pZ1qM´mpZ0qK´k´pM´mq ¨ Pp|tπjujăk|1tϕu “ mq. (42e)

We also have

Pp|P|1tϕu “ M, |tπjujăk|1tϕu “ mq (43a)

“ Pp|tπjujěk|1tϕu “ M ´ m, |tπjujăk|1tϕu “ mq (43b)

“ Pp|tΠjujěk|1tϕu “ M ´ mq ¨ Pp|tπjujăk|1tϕu “ mq (Thm. 4.2, 43c)

“

ˆ

K ´ k

M ´ m

˙

pZ1qM´mpZ0qK´k´pM´mq ¨ Pp|tπjujăk|1tϕu “ mq. (43d)

Thus

Pp|Πkpqιq|ϕ ě 1 | |P|1tϕu “ M, |tπjujăk|1tϕu “ mq (44a)

“
Pp|Πkpqιq|ϕ ě 1, |P|1tϕu “ M, |tπjujăk|1tϕu “ mq

Pp|P|1tϕu “ M, |tπjujăk|1tϕu “ mq
(44b)

“

`

K´k´1
M´m´1

˘

pZ1qM´mpZ0qK´k´pM´mq

`

K´k
M´m

˘

pZ1qM´mpZ0qK´k´pM´mq
(44c)

“

`

K´k´1
M´m´1

˘

`

K´k
M´m

˘ . (44d)

■

Theorem 4.5 (Constrained String Sampling (1)). We have that

PpΠpqιq “ π | |Πpqιq|ϕ “ N ´ 1q “ PpΠ1pqιq “ πq. (13)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Proof. We first show that the weights sum to 1 for any q P Q and i P t0, . . . , N ´ 1u. Note that by
definition, we have the following equalities

δ1
ppq, iq, a, pq1, iqq

def
“

1

βϕpqqN´i
¨
`

Lϕδ
pq

a{w
ÝÝÑ q1q b βϕpq1q

˘

N´i
(45a)

“
1

βϕpqqN´i
¨ w ¨

`

βϕpq1q
˘

N´i´ϕδpq
a{w

ÝÝÑq1q
(45b)

ρ1pq, iq
def
“

1

βϕpqqN´i
¨ LρpqqN´i (45c)

“
1

βϕpqqN´i
¨ 1tN ´ i “ ϕρpqquρpqq (45d)

From the equality

βpqq “
à

q
a{w

ÝÝÑq1

w b βpq1q ` ρpqq (46)

in a general WFSA, we have that6

`

βϕpqq
˘

i
“

à

q
a{w

ÝÝÑq1

`

w b βϕpq1q
˘

i
`

`

ρAϕ
pqq

˘

i
(47)

“
à

q
a{w

ÝÝÑq1

`

Lϕδ
pq

a{w
ÝÝÑ q1q b βϕpq1q

˘

i
`

`

ρAϕ
pqq

˘

i
(48)

“
à

q
a{w

ÝÝÑq1

w ¨ βϕpq1q
i´ϕδpq

a{w
ÝÝÑq1q

`
`

ρAϕ
pqq

˘

i
(49)

“
à

q
a{w

ÝÝÑq1

w ¨ βϕpq1q
i´ϕδpq

a{w
ÝÝÑq1q

` 1ti “ ϕρpqquρpqq (50)

6For conciseness, we assume vm “ 0 for m ă 0 and m ą N .

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

We then have for π “ pqι, Nq
a1{w1

ÝÝÝÝÑ ¨ ¨ ¨
am{wm

ÝÝÝÝÝÑ pqm, N 1q that

PpΠ1pqιq “ πq “
`

m
ź

t“1

wt

˘

ρ1pqm, N 1q (51a)

“

m
ź

t“1

1
`

βϕpqt´1q
˘

N´1´|πăt|ϕ

¨
`

Lϕδ
pqt´1

at{wt
ÝÝÝÑ qtq b βϕpqtq

˘

N´1´|πăt|ϕ

¨
1

`

βϕpqmq
˘

N´1´|πăm|ϕ

¨
`

Lϕδ
pqmq

˘

N´1´|πăm|ϕ
(51b)

“

m
ź

t“1

1
`

βϕpqt´1q
˘

N´1´|πăt|ϕ

¨ wt ¨
`

βϕpqtq
˘

N´1´|πăt|´ϕδpqt´1

at{wt
ÝÝÝÑqtq

¨
1

`

βϕpqmq
˘

N´1´|πăm|ϕ

¨
`

Lϕδ
pqmq

˘

N´1´|πăm|ϕ
(51c)

“

m
ź

t“1

1
`

βϕpqt´1q
˘

N´1´|πăt|ϕ

¨ wt ¨
`

βϕpqtq
˘

N´1´|πďt|

¨
1

`

βϕpqmq
˘

N´1´|πăm|ϕ

¨
`

Lϕδ
pqmq

˘

N´1´|πăm|ϕ
(51d)

“
1

`

βϕpqιq
˘

N

¨

m
ź

t“1

wt ¨
`

Lϕδ
pqmq

˘

N´1´|πăm|ϕ
(Telescoping product, 51e)

“
1

`

βϕpqιq
˘

N

¨

m
ź

t“1

wt ¨ 1tN ´ 1 ´ |πăm|ϕ “ ϕρpqqu ¨ ρpqq (51f)

“
1

`

βϕpqιq
˘

N

¨

m
ź

t“1

wt ¨ ρpqq ¨ 1tN ´ 1 ´ |πăm|ϕ “ ϕρpqqu (51g)

“
1

`

βϕpqιq
˘

N

¨ PpΠpqιq “ πq ¨ 1tN ´ 1 ´ |πăm|ϕ “ ϕρpqqu (51h)

“
1

`

βϕpqιq
˘

N

¨ PpΠpqιq “ π, |π|ϕ “ Nq (51i)

“
1

Pp|Πpqιq|ϕ “ Nq
¨ PpΠpqιq “ π, |π|ϕ “ Nq (51j)

“ PpΠpqιq “ π | |Πpqιq|ϕ “ Nq. (51k)

■

Let M be the upper-triangular matrix of ones and Z 1pqq
def
“ MZpqq as in Thm. C.1. We define the

automaton A2
“

`

Σ, Q2, δ2, λ2, ρ2
˘

analogously to A1:

(i) Q1
“ Q ˆ t0, . . . , Nu,

(ii) δ2 : ppq, iq, a, pq1, iqq ÞÑ 1
Z1pqqN´i

¨
`

MpLϕδ
pq

a{w
ÝÝÑ q1q b βϕpq1qq

˘

N´i
,

(iii) λ2 : pq, iq ÞÑ 1tq “ qι, i “ Nu,7
(iv) ρ2 : pq, iq ÞÑ 1

Z1pqqN´i
LρpqqN´i.

Theorem C.3 (Constrained String Sampling (2)). We have that

PpΠpqιq “ π | |Πpqιq|ϕ ě Nq “ PpΠ2pqιq “ πq (52)

7As in A1, one can start in pqι, nq to sample from PpΠpqιq “ π | |Πpqιq|ϕ ě nq.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Proof. By definition, we have the following equalities

δ2
ppq, iq, a, pq1, iqq

def
“

1

Z 1pqqN´i
¨
`

Lϕδ
pq

a{w
ÝÝÑ q1q b βϕpq1q

˘

N´i
(53a)

“
1

Z 1pqqN´i
¨ w ¨

`

βϕpq1q
˘

N´i´ϕδpq
a{w

ÝÝÑq1q
(53b)

ρ2pq, iq
def
“

1

Z 1pqqN´i
¨
`

Lρpqq
˘

N´i
(53c)

“
1

Z 1pqqN´i
¨ 1tN ´ i ď ϕρpqquρpqq. (53d)

This allows us to show that the next-state probabilities again sum to 1 as in Thm. 4.5. Further, to

compute the probabilty of the path π “ qι
a1{w1

ÝÝÝÝÑ ¨ ¨ ¨
am{wm

ÝÝÝÝÝÑ qm, we again use the same telescoping
product as in Thm. 4.5. ■

C.1 RUNTIME OF CONSTRAINED SAMPLING

We analyze the runtime of constrained string sampling based on Thms. 4.4, 4.5 and C.3 as follows.
Suppose we want to sample K strings from a WFSA A. We first determine the distribution of
occurrences in each string using Thm. 4.4 or Thm. C.1 and then sample each string under said
constraint with Thm. 4.5 or Thm. C.3.

(1) Computing Z. Z can be computed with Lehmann’s algorithm in Op|Q|
3
Cq time for

any WFSA over a compatible (complete) semiring, where C depends on the complexity
of the semiring operations—in our case, OpN ` N2q in a general base semiring and
OpN ` N logNq using FFT over the reals.

(2) Occurrence sampling: We need to compute Z b k for k P t0, . . . ,Ku. This can be done in
OpKN2q or OpKN logNq time depending on the semiring.

(3) Event occurrence sampling: This corresponds to constructing the WFSA A1 and sampling
from it. Since A1 is a WFSA with Opp|Q|Nqq states and Op|Σ|p|Q|Nq2q transitions, we
can construct it in Op|Σ|p|Q|Nq2q time.

Taken together, the constrained sampling is dominated by the runtime of the first two steps, which is
OpmaxpK, |Q|

3
qN2q or OpmaxpK, |Q|

3
qN logNq depending on the semiring. In practice, we find

this approach to be two orders of magnitude faster than rejection sampling.

D TARGETED KL DIVERGENCE VIA DECOMPOSITION

We are interested in measuring the impact of learnability on targeted features. To this end, we derive a
decomposed KL divergence that works on the transition, symbol, or state level between an automaton
and a trained LM.

Let pA be an LM defined by a DPFSA A over states Q and symbols Σ. Any string x sampled from pA
decomposes into transitions consisting of states q, symbols σ, and weights w. Given another LM pθ
and a set of transitions of interest T def

“ tδ | ϕδpδq ‰ 0u, for some event function ϕ, we decompose the
KL divergence to analyze how well pθ captures these properties. At each step, pA takes transition δ
with probability w, while pθ predicts the next symbol given the history σăi of all symbols preceding
position i.

Throughout, let

πpqq
def
“ Pr

x„pA
rδpxq “ q

‰

, πpq, aq
def
“ πpqqpApa | qq, πpaq

def
“

ÿ

qPQ

πpq, aq. (54)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

We have that

DKLppA || pθq “ Eσ„pA

“

log
pApσq

pθpσq

‰

(55a)

“
ÿ

σPΣ˚

pApσqDKL

`

pAp¨ | σq}pθp¨ | σqq (chain rule on prefixes, 55b)

State-wise decomposition. Group every history by the state it reaches, q “ δpσq:

DKLppA || pθq “
ÿ

qPQ

ÿ

σPΣ˚

δpσq“q

πpσ, qqDKL

`

pAp¨ | qq
›

›pθp¨ | σq
˘

(insert 1rδpσq “ qs, 56a)

“
ÿ

qPQ

πpqq
ÿ

σPΣ˚

δpσq“q

πpσ, qq

πpqq
DKLppAp¨ | qq || pθp¨ || σqq

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

Unweighted per-state contribution

(56b)

Transition-wise decomposition. Insert the next symbol a and write πpq, aq “ πpqqpApa | qq:

DKLppA || pθq “
ÿ

qPQ

πpqq
ÿ

aPΣ

pApa | qq log
pApa | qq

pθpa | σq
(57a)

“
ÿ

pq,aqP∆

πpq, aq log
pApa | qq

pθpa | σq
loooooomoooooon

Unweighted per-transition contribution

(57b)

(57c)

Symbol-wise decomposition. Marginalise over states to obtain the symbol prior πpaq “
ř

qPQ πpq, aq:

DKLppA || pθq “
ÿ

aPΣ

πpaqEσ„pA

”

log
pApa | δpσqq

pθpa | σq

ı

(58a)

“
ÿ

aPΣ

πpaq
ÿ

σPΣ˚

pApσqpApa | δpσqq

πpaq
log

pApa | δpσqq

pθpa | σq
looooooooooooooooooooooooooomooooooooooooooooooooooooooon

Unweighted per-symbol contribution

. (58b)

E EXPERIMENTAL SETUP DETAILS

Sampling PFSAs. We begin all our experiments by sampling PFSAs. The sampling procedure of a
single automaton A is as follows: For each source state q P Q, we sample a set of symbols, σ P Σ,
where each symbol has 0.5 chance of being included. We then randomly sample a target state q1 P Q
for each symbol. This gives us a set of unweighted transitions between states and associated symbols.
With probability 0.3, we set each state to have a nonzero final weight, where we sample the state’s
outgoing and final weights from the Dirichlet distribution.

Intervention Sampling. We can conduct three types of causal interventions: on the number of
times a certain symbol, or state, is seen during training. These interventions are best described
with do-notation introduced in §3. Each of these is captured by some property P , by intervening
on it we sample according to D „ Pp¨ | dopP “ pqq. For symbol intervention on some symbol
aI , this corresponds to the even function ϕaI

pq, a, rq
def
“ 1ta “ aIu. For transition interventions

on transition δI , ϕδI pq, a, rq
def
“ 1tpq, a, rq “ δIu. For state interventions on state qI , we use the

function ϕqI pq, a, rq
def
“ 1tq “ qIu.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Ancestral Sampling. For ancestral sampling, we start the process from the initial state qι. We then
sample the next symbol by recursively selecting the transitions according to the PFSA’s probability

distribution. For example, given a state q and the transition q
a{w

ÝÝÑ r, the conditional probability of
sampling a, i.e. probability Ppa | qq, is w.

Neural Language Models. We conduct experiments using both LSTM and Transformer-based
LMs. The configuration of the neural LMs, including specific hyperparameters is given in App. F.

Error bars All error bars are the closed-form standard error as reported over the relevant grouped
population in each experiment. The error is reported over the bin for the binned experiments, i.e., not
averaged.

F MODEL AND TRAINING DETAILS

We now detail the hyperparameters used for training both the RNN and Transformer models. While
they share common settings such as batch size and optimizer, they differ in architectural design and
training specifics. The loss we use is over the full KL divergence at each symbol position in the
training data against the corresponding automaton, this can be seen as a sample-efficient distillation
of the sampled automata.

We use a parameter budget of 128k for both LSTM and Transformers and train all models on CPU.
For layer norm, we initialize weights to 1 and biases to 0. When dropout is applicable, we use a value
of 0.1. Parameters are uniformly initialized from r´0.1, 0.1s. We shuffle data at training, with a max
batch size of 128 tokens, and a learning rate of 0.01. We use the Adam optimizer, and clip gradients
with a threshold of 5 using L2 norm scaling. The learning rate is multiplied by 0.5 after 5 checkpoints
with no decrease in the loss. Training is halted after 10 checkpoints if no improvement is observed.

Sampling of an individual dataset typically takes within minutes on a V100 32 GB GPU, as we make
use of a GPU for the allsum calculations. The training of an individual dataset typically runs in
minutes on a single modern CPU core using the LSTM architecture, while the Transformer models
can run longer. Our large-scale experiments were run on a cluster with 76 nodes, making use of 16
CPU cores on each node, and occasionally on a single machine with 2 x AMD EPYC 9354 32-Core
Processor and two NVIDIA H100. The parity+free experiment and the varying topology experiment
run in under 12 hours, making use of the full CPU/GPU resources for both sampling and training.
While, the larger-scale run took a few days to sample and train in parallel.

G ADDITIONAL NOTES ON THE SCOPE OF THIS WORK

The goal of this paper is not to evaluate architectures nor do an exhaustive comparison of architectures,
such as Mamba Gu & Dao (2024) or CoT Wei et al. (2022). The choice of LSTMs and Transformers
is arbitrary. These are simply existence witnesses, toy use cases to demonstrate the main theoretical
contribution. The key contributions are the causal framework and the sampling procedures. As
such, this is not an empirical work, but a theoretical work. Furthermore, the choice of deriving
and focusing only on the decomposed KL App. D as a measure of learnability is principled and
exactly meets the needs of supporting the framework and justifying it through the use cases. Finally,
the choice of focusing on DPFSAs is typical of this line of work; it encompasses all of the regular
languages—languages that can encode a wide range of phenomena that are of value to the theoretical
and empirical study of what neural language models can learn.

H ADDITIONAL FIGURES

An additional figure for the at-least-once sampling variant of the machine in Fig. 1 is given in Fig. 6.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 6: Monte Carlo estimates of the state-wise learnability for the automaton given in Fig. 1 using
the at-least-once intervention.

25

	Introduction
	Language Models, Scarcity and Complexity
	A Causal Model For Learnability
	Sampling Under Event Constraints
	The Binning Semiring
	Binning Automata
	Constrained Sampling

	Case Studies in Three Settings
	Related work
	Conclusion
	Preliminaries
	Formal Language Theory
	Markov Kernels and Graphical Causal Models

	The Binning Semiring
	Monoid Semialgebras
	A Closed-form Solution for the Kleene Star

	Proofs
	Runtime of Constrained Sampling

	Targeted KL Divergence via Decomposition
	Experimental Setup Details
	Model and Training Details
	Additional Notes on the Scope of This Work
	Additional Figures

