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ABSTRACT

Automating Register Transfer Level (RTL) code generation using Large Language
Models (LLMs) offers substantial promise for streamlining digital circuit design
and reducing human effort. However, current LLM-based approaches for RTL code
generation face significant challenges. Methods such as supervised fine-tuning
(SFT), in-context learning, and chain-of-thought (CoT) struggle with several critical
limitations in the RTL domain: the scarcity of high-quality training data, poor align-
ment between natural language specifications and generated code, lack of built-in
verification mechanisms, and difficulty balancing between model generalization and
domain specialization. Inspired by groundbreaking research such as DeepSeek-R1,
which combines reinforcement learning with reasoning capabilities, we introduce
VeriReason, a comprehensive framework that integrates supervised fine-tuning
with Group Relative Policy Optimization (GRPO) reinforcement learning specif-
ically tailored for RTL code generation. Using our curated high-quality training
examples alongside a feedback-driven reward model, VeriReason combines
testbench evaluations with structural heuristics to improve specification-code align-
ment and eliminate hallucinations. Iterative GRPO embeds intrinsic self-checking
and reasoning capabilities, enabling the model to autonomously detect and correct
functional errors. On the VerilogEval Benchmark, VeriReason delivers signif-
icant improvements: achieving 83.1% functional correctness on the VerilogEval
Machine benchmark, substantially outperforming both comparable-sized models
and much larger commercial systems like GPT-4 Turbo. Additionally, our approach
demonstrates up to a 2.8× increase in first-attempt functional correctness compared
to baseline methods and exhibits robust generalization to unseen designs. To our
knowledge, VeriReason represents the first system to successfully integrate
explicit reasoning capabilities with reinforcement learning for Verilog generation,
establishing a new state-of-the-art for automated RTL synthesis. The code is
available at: https://anonymous.4open.science/r/VeriReason-E625.

1 INTRODUCTION

Register Transfer Level (RTL) code generation is a critical yet labor-intensive task in digital circuit
design, directly impacting the efficiency, performance, and power consumption of hardware systems.
Traditionally, hardware engineers manually craft RTL code using hardware description languages
(HDLs) such as Verilog, which differs significantly from general-purpose programming languages
due to its concurrent and structural nature. Recent advancements in large language models (LLMs)
offer promising opportunities to automate RTL code generation, substantially reducing the manual
effort and domain expertise required. Leveraging LLMs for RTL generation can accelerate design
cycles, minimize human-induced errors, and allow engineers to focus on high-level architectural
decisions rather than intricate coding details.

Despite these advantages, LLM-based RTL synthesis encounters three core challenges. First, data
scarcity: high-quality Verilog examples—and especially paired testbenches or reasoning annota-
tions—are rare, limiting both pretraining and supervised fine-tuning (SFT) and hampering generaliza-
tion. Second, weak natural language–code alignment: LLMs often produce syntactically valid but
functionally incorrect Verilog, misinterpreting user specifications and hallucinating invalid structural
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heuristics (e.g., port matching, net connectivity). Third, low first-attempt accuracy without self-
checking: current models lack intrinsic mechanisms to detect or correct their own errors, relying
instead on external testbench or syntax feedback for iterative refinement. Lastly, lack of complex
logical capability: Traditional LLMs struggle to handle the intricate interdependencies between
components in hardware design, often failing to maintain consistency across module interfaces, state
machines, and timing constraints. Without systematic reasoning about component relationships, mod-
els produce circuits with logical inconsistencies or incomplete implementations that meet superficial
requirements but fail under comprehensive verification.

Recent advances in reasoning and reinforcement learning (RL) have introduced promising approaches
to overcome these challenges. Reasoning-augmented models, such as those leveraging chain-of-
thought prompting or iterative refinement, have demonstrated the ability to follow multi-step logical
patterns, making them particularly suitable for hardware description languages like Verilog that
require strict structural correctness and functional dependencies. These reasoning mechanisms help
LLMs better understand circuit intent and adhere to design constraints, and can better ensure the
alignment between natural language and result. Methods such as Group Relative Policy Optimization
(GRPO)Shao et al. (2024) combine the strengths of SFT with reward-driven RL, enabling models to
learn effectively even with minimal data and explicit feedback. By employing RL-based strategies,
LLMs are trained not merely on predicting the next token but on achieving specific, meaningful
outcomes, thus improving their logical reasoning, alignment, and self-checking capabilities.

Our Proposed Framework. To address the challenges in RTL generation with LLMs, we propose a
novel framework, VeriReason, combining supervised fine-tuning (SFT) and GRPO reinforcement
learning, specifically tailored for Verilog RTL generation with a specially designed dataset featuring
reasoning steps and testbenches. Our approach systematically tackles four critical limitations that
hinder existing LLM-based hardware design methods: data scarcity in domain-specific code, natural
language-code alignment issues, lack of self-checking behavior, and insufficient complex logical
capabilities. Each of these challenges requires specialized techniques that we incorporate into the
VeriReason framework, as detailed in the following sections.

Data Scarcity in Domain-Specific Code: We introduce a reasoning-distillation and testbench-
generation pipeline to augment existing prompt–code pairs with high-quality testbenches and human-
style reasoning steps, producing a high-quality dataset. Furthermore, we demonstrate that even
with as few as 20 annotated examples from the VeriReason dataset, GRPO yields substantial
performance gains, dramatically lowering the bar for required training data.

Natural Language-Code Alignment: VeriReason employ a reward model that evaluates generated
Verilog code against specifications using feedback from structural heuristics. Through GRPO
optimization, the model learns to internalize structural constraints, effectively reducing hallucinations
and ensuring structural correctness by penalizing invalid constructs across both interface definitions
and internal hierarchy of the circuit design.

Lack of Self-Checking Behavior: Our reinforcement learning framework inherently encourages
the model to develop self-checking capabilities by iteratively refining outputs based on testbench
feedback-driven rewards. Over training iterations, the model learns to anticipate and rectify errors
internally, significantly enhancing first-attempt functional correctness.

Lack of complex logical capabilities: VeriReason incorporates explicit reasoning steps throughout
the design process, requiring the model to articulate its design decisions and verify logical consistency
before implementation. By decomposing complex circuit specifications into manageable conceptual
components and reasoning about their interactions, the model develops more coherent and complete
implementations that maintain logical integrity across the entire design.

Our key contributions are summarized as follows:

• We design a novel framework VeriReason, which integrates supervised fine-tuning with
GRPO-based reinforcement learning and reasoning-augmented design processes for Verilog
RTL code generation.

• Our approach addresses critical shortcomings in RTL generation through a reasoning-
distillation pipeline for data scarcity, reward-driven structural evaluation for NL-code align-
ment, testbench feedback mechanisms for self-checking behavior, and explicit reasoning
steps for handling complex logical dependencies. These techniques can also generalize be-
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yond RTL to other structured generation domains requiring multi-level correctness validation
and logical reasoning.

• We create a high quality dataset with reasoning and testbench that would be open-sourced to
the benefit community.

• The framework achieves state-of-the-art performance in RTL generation tasks, demonstrating
substantial improvements in first-attempt functional correctness, structural validity, and
generalization capabilities with minimal training data. It delivers up to a 2.8× increase in first-
attempt functional correctness compared to baseline models while outperforming existing
state-of-the-art methods across multiple benchmarks. This improvement is particularly
notable in smaller parameter models. Remarkably, the framework achieves 83.1% pass@5
on VerilogEval-Machine, even surpassing much larger models including GPT-4 Turbo.

2 BACKGROUND

Recent years have seen a surge of interest in applying large language models (LLMs) to hardware
design, particularly for generating Register-Transfer Level (RTL) code in Verilog.Liu et al. (2023a;
2024b); Chang et al. (2023); Blocklove et al. (2023); Wang et al. (2025b); Thakur et al. (2024);
Zhong et al. (2023); Lu et al. (2024); Liu et al. (2024a); Tsai et al. (2024); Pearce et al. (2020); Fu
et al. (2023). Previous reseach have shown significant potential for LLM-based RTL generation
in automating parts of the hardware design process using finetuning, or using differnt prompting
techniques. However, it has also revealed several key challenges of produce correct and efficient
hardware designs reliably.

Challenges in LLM-based RTL generation tasks Researchers investigated fine-tuning LLMs
using domain-specific data and techniques to improve their performance Liu et al. (2024b); Pei
et al. (2024). For example, Liu et.al introduced ChipNeMo Liu et al. (2023a), which fine-tunes a
general-purpose LLM on internal NVIDIA datasets for various chip design tasks. Similarly, Thankur
et.al developed VeriGen Thakur et al. (2024) to improve Verilog generation capabilities. Subsequent
works, such as RTLCoder Liu et al. (2024b) is trained based on automatically generated datasets.
BetterV Pei et al. (2024), finetunes LLM by converting Verilog code to the C language. While
effective, these methods face challenges of scalability and generalizability due to their high demand
for high quality instruction-code pairs. The inherent limitation of lack of human-written RTL code
and the low quality of generated code make it hard to make further improvement.

Moreover, LLM generated Verilog code often face the issue of hallucination. Prompt-based methods
Blocklove et al. (2023); Chang et al. (2023) rely heavily on the quality and clarity of the input
prompts, facing difficulties in consistently aligning complex, multi-step circuit specifications with
the generated code. These methods often suffer from hallucinations or syntactically correct yet
functionally incorrect outputs due to inadequate contextual understanding. Moreover, they inherently
lack iterative refinement capabilities, making them incapable of progressively improving RTL code
quality. Chain of Thought (CoT) methods Yang et al. (2025), which encourage models to generate
step-by-step reasoning sequences, typically excel in structured reasoning tasks but face challenges
in RTL contexts due to the strict requirement for functional correctness and structural precision.
Although CoT enhances reasoning, its effectiveness heavily depends on the clarity and correctness of
intermediate reasoning steps, which can still suffer from errors in the absence of explicit correctness
feedback mechanisms. Furthermore, the CoT has made the process of generation very ineffective due
to long inference time.

2.1 REINFORCEMENT LEARNING FOR LLM REASONING

Recent research has demonstrated the potential of reinforcement learning (RL) techniques to signifi-
cantly enhance the reasoning capabilities of large language models (LLMs) Ouyang et al. (2022);
Shao et al. (2024); Guo et al. (2025). By providing explicit rewards for logical correctness and step-
wise reasoning, RL enables models to autonomously discover effective problem-solving strategies,
often mirroring structured human reasoning Wei et al. (2022); Xie et al. (2025). Applications span
mathematical problem solving (where RL fine-tuning on step-by-step correctness or final answer
accuracy yields substantial improvements Shao et al. (2024); Guo et al. (2025)) and code generation,
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Figure 1: Workflow of VeriReason. The framework combines supervised fine-tuning with GRPO
reinforcement learning. A base model is fine-tuned and then improved through the GRPO trainer,
which leverages multiple reward signals (syntax, functional, and structural correctness) derived from
testbench execution and code analysis. The model incorporates explicit reasoning (<think> blocks) to
break down complex hardware design tasks.

where preference optimization and RL from feedback have led to greater code validity and efficiency
Chen et al. (2021).

Most successful approaches build upon policy gradient algorithms such as Proximal Policy Opti-
mization (PPO) Schulman et al. (2017) or, more recently, GRPO Shao et al. (2024); Lambert et al.
(2024). GRPO, in particular, compares groups of generated responses rather than evaluating them
in isolation, enabling the model to build a deeper understanding of what constitutes high-quality
reasoning through relative comparisons. The effectiveness of these frameworks depends on carefully
designed reward functions that accurately reflect the target domain. For hardware description tasks
like Verilog generation, structural similarity as provides a clear, unambiguous reward signal Wang
et al. (2025a), encouraging models to internalize domain-specific constraints and develop robust
reasoning capabilities that translate natural language specifications into golden-code similarity.

3 METHODOLOGY

We present VeriReason, a comprehensive framework that combines supervised fine-tuning with
reinforcement learning specifically tailored for Verilog RTL generation. Our approach addresses four
critical challenges in automated hardware design: (1) data scarcity of high-quality RTL examples,
(2) weak alignment between natural language specifications and generated code, (3) lack of self-
checking mechanisms in current models, and (4) insufficient complex logical reasoning capabilities
for hardware design.

As shown in Figure 1, VeriReason employs a multi-stage approach to generate high-quality Verilog
code. First, a base model is fine-tuned on a curated dataset consisting of high-quality prompt-code
pairs enhanced with explicit reasoning steps and testbenches. This fine-tuned model produces initial
code implementations that are then evaluated through our reward system, which combines three
key components: syntax correctness, functional validation via testbench execution, and structural
analysis. The GRPO trainer leverages these rewards to iteratively improve the model’s ability to
generate correct code while maintaining alignment with the original specification. Through this
process, the model learns to incorporate reasoning steps (shown as <think> blocks) that decompose
complex hardware design problems into manageable components, resulting in a policy model capable
of generating functionally correct and structurally sound Verilog implementations on the first attempt.

3.1 REINFORCEMENT LEARNING FRAMEWORK

Our approach adapts GRPO specifically for RTL code generation. Unlike traditional RL methods,
our framework incorporates domain-specific constraints and verification mechanisms directly into
the learning process, providing immediate feedback on functional correctness, syntax, and specifi-
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cation adherence. This targeted optimization enables the model to efficiently learn correct Verilog
implementation patterns while minimizing hallucinations and specification misalignments.

3.1.1 GROUP RELATIVE POLICY OPTIMIZATION (GRPO)

We adopt GRPO as our core reinforcement learning algorithm due to its efficiency and demonstrated
effectiveness in tasks requiring complex reasoning. GRPO provides several advantages over tradi-
tional reinforcement learning methods like Proximal Policy Optimization (PPO), including lower
memory requirements and more stable training dynamics.

In GRPO, the language model serves as the policy network, taking a natural language specification
q as input and producing a sequence of tokens representing Verilog code as actions. The policy
distribution factors across tokens: πθ(a|q) =

∏N
t=1 πθ(at|q, a<t), where πθ represents the policy

parameterized by θ, a is the complete sequence of tokens (the Verilog code), and at is the token at
position t.

Unlike PPO, which requires a separate value function, GRPO estimates advantages using group-based
sampling. For each natural language specification q, we generate a group of G candidate Verilog
implementations {o1, o2, . . . , oG} from the current policy and compute rewards for each. The GRPO
objective function is defined as:

LGRPO(θ) = Eq∼D,{oi}G
i=1∼πθold (·|q)

[
1

G

G∑
i=1

min (ri · ρi, clip(ρi, 1− ϵ, 1 + ϵ) · ri)

]
−β·DKL(πθ(·|q)∥πref(·|q))

(1)

where: where ρi = πθ(oi|q)
πθold (oi|q)

is the importance sampling ratio, ri is the normalized reward for
candidate oi, ϵ is a hyperparameter controlling the clipping range, β is a coefficient balancing the KL
divergence penalty, πref is a reference policy (typically the supervised fine-tuned model), and DKL is
the Kullback-Leibler divergence.

The advantage estimation in GRPO is simplified by normalizing rewards within each group, where
ri =

R(oi)−µR

σR+δ , with R(oi) being the raw reward for output oi, µR and σR are the mean and standard
deviation of rewards within the group, and δ is a small constant for numerical stability.

This group-based normalization provides several benefits: it eliminates the need for a separate value
network, reduces variance in advantage estimation, and naturally compares alternative implementa-
tions of the same specification, which aligns well with the goal of generating functionally correct
Verilog code. See Appendix B for theoretical analysis of GRPO’s effectiveness with multi-level
rewards compared to binary reward methods.

3.2 REWARD MODEL

Our reward function combines both structural correctness and functional validation to provide
comprehensive feedback during training. The reward R for a generated Verilog implementation is
computed as:

R(o) =


2.0, if functionally correct
0.1 + 1.0 · ASTscore(o), if syntactically correct
0, otherwise

(2)

where: Functional correctness is determined by running the generated code through testbenches
and comparing outputs with the expected behavior. Syntactic correctness is verified by successful
parsing of the Verilog code. The ASTscore(o) measures structural similarity between the generated
code’s Abstract Syntax Tree (AST) and reference implementations, with values ranging from 0 to
1. The reward values establish a clear hierarchy: 0.1 for syntax-only correctness prevents gradient
vanishing, the AST score (0.1-1.1) provides fine-grained structural feedback, and 2.0 for functional
correctness creates a strong convergence signal approximately 2× the maximum partial reward. This
ratio empirically balanced exploration with exploitation during GRPO training.
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The AST score provides a fine-grained measure of structural correctness even when the code is not
functionally perfect. VeriReason employs a hierarchical AST comparison algorithm specifically
tailored for Verilog code structures, where ASTscore(o) =

∑
c∈C wc·(0.6·simc+0.5·covc−0.3·redc)

calculates weighted structural similarity across categories C = {module, port, always, ...} with
respective importance weights wc. For each category c, we compute sequence similarity simc

using Levenshtein distance, coverage covc = |Gc ∩Dc|/|Gc| between generated elements Dc and
golden elements Gc, and redundancy redc = |Dc − Gc|/|Dc| to penalize hallucinated structures.
This domain-specific structural analysis enables our model to maintain correct interface definitions,
signal declarations, and control logic while internalizing hardware design patterns during GRPO
optimization. This domain-specific structural analysis enables our model to maintain correct interface
definitions, signal declarations, and control logic while internalizing hardware design patterns during
GRPO optimization. The detailed AST extraction and scoring algorithms are provided in Appendix C.
For functional verification, we use testbenches to evaluate the generated Verilog against reference
implementations. A generated design is considered functionally correct only when it passes all test
cases in the testbench, providing identical output signals to those of the golden reference for all test
vectors.

3.3 DATA PREPROCESSING

We address the critical issue of data scarcity in RTL generation, and the challenge of low dataset
quality through a data augmentation pipelines, and a data filtration pipeline.

3.3.1 DATA FILTRATION

We implement a two-stage adaptive filtration process to optimize the dataset for GRPO training
effectiveness. For each sample s in our initial dataset D, we generate a set of k = 8 candidate
implementations {o1, o2, . . . , ok} using our base model and compute their corresponding rewards
{r1, r2, . . . , rk} based on our reward function R defined in Equation 2. The filtration process
is formalized as follows: Dfiltered = {s ∈ D | µr(s) ∈ [αmin, αmax] and σr(s) > β}, where:

µr(s) = 1
k

∑k
i=1 ri is the mean reward for sample s, σr(s) =

√
1
k

∑k
i=1(ri − µr(s))2 is the

standard deviation of rewards, αmin = 0.3 is the minimum acceptable mean reward, αmax = 1.8 is
the maximum acceptable mean reward, β = 0.1 is the minimum acceptable reward variance. This
filtration strategy excludes samples that are either too difficult (consistently low rewards) or too trivial
(consistently high rewards), retaining only those samples that provide meaningful learning signals for
the GRPO algorithm. Specifically, we filter out data where all rewards are zero or the average reward
is below αmin, as well as samples where all generations achieve near-perfect scores.

Additionally, we compute a difficulty score δ(s) for each remaining sample:

δ(s) = 1− µr(s)− αmin

αmax − αmin
(3)

Samples are then categorized into “simple” and “hard” portions based on this difficulty score, with
samples where δ(s) > 0.5 classified as “hard” and the remainder as “simple.” This stratification
enables targeted training strategies that progressively build model competence. The final dataset
comprises 1149 samples in the hard level and 743 samples in the easy level, example in Appendix E.

3.3.2 REASONING GENERATION WITH OPTIMIZATION

To enhance the model’s reasoning capabilities, we augment the training data with explicit reason-
ing steps that decompose complex hardware design problems into manageable components. Our
reasoning generation pipeline extracts natural language specifications and corresponding Verilog
implementations from the original dataset and uses chain-of-thought prompting with domain-specific
guidance to generate detailed reasoning steps that explain the design choices, module interfaces, and
implementation details. We apply an optimization process where the model is encouraged to critique
its own reasoning and suggest improvements. When the model identifies a better alternative solution,
we generate an improved implementation and incorporate it into the dataset. This self-improvement
mechanism enables the model to iteratively refine both its reasoning process and the quality of
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generated code. The resulting dataset contains not only input-output pairs but also explicit reasoning
traces that guide the model to develop stronger internal reasoning capabilities.

3.3.3 TESTBENCH GENERATION

To provide reliable functional correctness signals during training, we develop an automated testbench
generation pipeline that analyzes specifications to identify signal characteristics, boundary conditions,
and expected behaviors. The pipeline generates comprehensive testbenches with at least 100 test
vectors per specification, combining directed testing for explicit requirements with constrained
random testing for broader coverage. These testbenches serve dual purposes: computing rewards
during GRPO training and validating final outputs, ensuring the model produces functionally correct
Verilog implementations. See Appendix D for the complete testbench generation algorithm.

By combining these data preprocessing techniques—reasoning distillation, adaptive filtration, and
testbench generation—with GRPO-based reinforcement learning, VeriReason addresses the core
challenges of RTL generation: data scarcity, specification-code misalignment, and lack of self-
verification. The framework enables models to internalize hardware design constraints through
multi-level rewards and develop robust reasoning capabilities for RTL synthesis.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Our primary dataset is derived from the RTLCoder Liu et al. (2024b) dataset of 26500 samples. We
apply a thorough filtration technique on the dataset. First, we apply a simple syntax check to ensure
we keep only the syntactically valid code. Then we use ChatGPT-4.1 to check whether the code
matches the input prompt correctly, and generate reasoning steps for the code. For code that does not
fully match the input prompt, it is re-generated and checked for syntax. We then generate a testbench
for each entry with at least 100 test cases for best coverage.

The testbench output is also saved to the dataset; in this way, during the GRPO, the testbench will
only run once on the generated code, and the outcome will be directly compared to the golden code’s
output. Next, we run the dataset on the Qwen2.5B model to generate the code and its corresponding
rewards. Based on the reward, we split the dataset into simple and hard portions for the next training
steps. We end up with 1149 samples in the hard level and 743 samples in the easy level.

Our evaluation focuses on the primary benchmarks for Verilog code generation, VerilogEval Liu
et al. (2023b). The comprehensive benchmark containing both machine-generated and human-crafted
Verilog specifications. VerilogEval-Machine contains 143 samples with algorithmically generated
specifications, while VerilogEval-Human includes 156 samples with human-written specifications.

We evaluate VeriReason across multiple model scales to assess parameter efficiency, including
Qwen2.5-1.5B, Qwen2.5-3B, Qwen2.5-7B, and CodeLlama3-7B architectures. GRPO is used as our
default RL algorithm. RL-specific settings include a generation temperature of 0.5, a total batch size
of 16 (8 rollouts each), an update batch size of 2 per GRPO step with a gradient accumulation of 8, a
lowered learning rate of 1.0e-6 with constant scheduler type, and repetition penalty of 1.3. The reward
model follows the design in Equation 2, with execution correctness verified using industry-standard
Verilog simulators, Iverilog Williams (2023).

4.2 MAIN RESULTS

Table 1 compares VeriReason against state-of-the-art Verilog generation models. Our approach
achieves superior performance across all model sizes, with VeriReason-Qwen2.5-7B demonstrating
remarkable gains over base models: +17.1 and +24.0 percentage points on pass@1 for VerilogEval-
Machine and VerilogEval-Human, respectively.

Even our smallest model, VeriReason-Qwen2.5-1.5B, outperforms many larger models after applying
our reinforcement learning framework. The performance gains are particularly notable for smaller
models, demonstrating the effectiveness of our approach in optimizing parameter efficiency. We
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Table 1: Comparative analysis of Verilog code generation performance. Gray highlighting denotes
the overall state-of-the-art results. (bold) indicates the best results in the model size category. Color-
coded numbers show performance deltas relative to base models (green: improvement).

Category Method Params. Open Source VerilogEval-Machine VerilogEval-Human
pass@1 pass@5 pass@1 pass@5

Base Model

GPT-3.5-Turbo N/A ✗ 63.5 78.0 31.2 47.0
GPT-4o-mini N/A ✗ 66.0 72.4 54.2 62.0
GPT-4-Turbo N/A ✗ 72.5 83.0 64.3 76.1
Qwen-2.5-Coder 1.5B ✓ 25.6 40.8 8.3 17.9
Qwen2.5-Coder 3B ✓ 48.4 58.9 21.3 32.7
Qwen2.5-Coder 7B ✓ 52.7 69.7 23.9 41.1
CodeLlama 7B ✓ 26.1 49.1 18.8 28.6
CodeQwen1.5-7B-Chat 7B ✓ 29.1 61.9 14.8 36.8
DeepSeek-Coder 6.7B ✓ 8.8 34.3 4.9 19.3
DeepSeek-V3 671B ✓ 79.2 80.7 66.1 72.1

Fine-tuned Generation

ChipNeMo† 70B ✗ 53.8 N/A 27.6 N/A
BetterV-CodeQwen† 7B ✗ 68.1 79.4 46.1 53.7
RTLLLM† 13B ✗ 65.3 77.2 43.7 51.8
VerilogEval† 16B ✗ 46.2 67.3 28.8 45.9

VeriGen† 16B ✓ 44.0 52.6 30.3 43.9
RTLCoder-DeepSeek-Coder 6.7B ✓ 37.2+28.4 64.9+30.6 16.9+12.0 35.7+16.4

VeriReason (Ours)

VeriReason-Qwen2.5-1.5B 1.5B ✓ 44.7+19.1 49.1+8.3 23.5+15.2 26.7+8.8
VeriReason-Qwen2.5-3B 3B ✓ 55.9+7.5 72.8+13.9 33.2+11.9 47.4+14.7
VeriReason-Qwen2.5-7B 7B ✓ 69.8+17.1 83.1+13.4 47.9+24.0 58.4+17.3
VeriReason-codeLlama-7B 7B ✓ 51.3+25.2 64.0+14.9 27.5+8.7 39.9+11.3

†: Reported Results.

observe that VeriReason-Qwen2.5-7B achieves state-of-the-art performance on Machine pass@5
(83.1%), outperforming even GPT-4-Turbo on this metric, despite having significantly less parameters.

Furthermore, all VeriReason models establish themselves as the best performers in their respective
parameter size categories (1.5B, 3B, and 7B), highlighting the robustness of our approach across
model scales. The substantial improvements observed in VeriReason-codeLlama-7B (+25.2 percent-
age points in Machine pass@1) further demonstrates that our method generalizes effectively across
different model architectures.

4.3 TRAINING DYNAMICS ANALYSIS

Figure 2 illustrates the training dynamics of our VeriReason models across three different parameter
scales (1.5B, 3B, and 7B). We track both the mean reward values (top row) and their standard
deviations (bottom row) throughout the reinforcement learning process.

4.3.1 REWARD PROGRESSION

The reward curves reveal distinct learning patterns across model sizes. The 1.5B model demonstrates
steady, monotonic improvement in reward values from approximately 0.5 to 0.8 over 800 training
steps, suggesting a consistent optimization path. In contrast, the 3B model exhibits higher variance
in its learning trajectory, with reward values fluctuating between 0.6 and 0.8, before ultimately
converging to above 0.8 by step 400. The 7B model shows the most pronounced oscillatory behavior,
with rewards ranging between 0.50 and 0.65, reflecting the increased complexity of optimizing larger
parameter spaces.

4.3.2 REWARD STABILITY

The standard deviation plots (bottom row) provide critical insights into training stability. The
1.5B model demonstrates exceptional convergence properties, with reward variability consistently
decreasing from 0.3 to below 0.1 throughout training. This smooth reduction in standard deviation
correlates with the steady increase in mean rewards, indicating robust learning. The 3B model presents
a more complex pattern, with initial rapid variability reduction followed by fluctuations between 0.7
and 0.8, suggesting periodic exploration-exploitation transitions. The 7B model’s standard deviation

8
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Figure 2: Reward line and std line of VeriReason

exhibits the most dynamic behavior, oscillating between 0.09 and 0.14, which aligns with its more
variable reward progression.

Interestingly, despite having fewer parameters, the 1.5B model achieves the most stable convergence
pattern, with monotonically decreasing standard deviation. This suggests that smaller models may
benefit more consistently from our reinforcement learning framework, while larger models engage in
more extensive exploration of the parameter space before convergence. The final standard deviation
values (approximately 0.05 for 1.5B, 0.8 for 3B, and 0.1 for 7B) indicate that all models eventually
reach stable policy configurations, though with different convergence trajectories.

This analysis provides empirical evidence that our reinforcement learning approach effectively
optimizes models across different parameter scales, with larger models requiring more complex
optimization paths but ultimately achieving higher reward values, consistent with their superior
performance on the VerilogEval benchmarks shown in Table 1.

4.3.3 THE EFFECT OF SFT AND GRPO

Table 2: Ablation studies results.
Model Training Stage VerilogEval-Machine VerilogEval-Human

pass@1 pass@5 pass@1 pass@5

Qwen2.5-1.5B
Base 25.6 40.8 8.2 17.9
+ SFT 38.6 46.3 17.8 23.9
+ GRPO 44.7 49.1 23.5 26.7

Qwen2.5-3B
Base 48.4 58.9 21.3 32.7
+ SFT 51.9 69.9 31.3 45.1
+ GRPO 55.9 72.8 33.2 47.4

Qwen2.5-7B
Base 52.7 69.7 23.9 41.1
+ SFT 63.4 79.9 43.4 56.2
+ GRPO 69.8 83.1 47.9 58.4

CodeLlama-7B
Base 26.1 49.1 18.8 28.6
+ SFT 41.1 58.3 23.2 31.5
+ GRPO 51.3 64.0 27.5 39.9

Table 2 shows how SFT and GRPO contribute
to VeriReason’s performance. SFT provides
substantial initial gains across all models, with
smaller models benefiting most, by supplying
high-quality training examples with reasoning
steps. GRPO further improves performance
through testbench-driven reinforcement learn-
ing. While SFT establishes syntactic and seman-
tic understanding, GRPO enables functional cor-
rectness by internalizing structural constraints
and self-checking capabilities, demonstrating
their complementary roles.

5 CONCLUSION

This paper presents VeriReason, a framework that integrates supervised fine-tuning with GRPO-
based reinforcement learning for Verilog RTL generation. By combining explicit reasoning
with testbench-driven feedback, we address key challenges in LLM-based hardware design: data
scarcity, specification-code misalignment, lack of self-checking, and insufficient logical reasoning.
VeriReason achieves state-of-the-art performance across model scales, though with computational
overhead during training and 2.5-3× slower inference. Our multi-level reward model—combining
functional, structural, and syntactic validation—enables models to develop intrinsic self-checking
capabilities crucial for autonomous hardware design. The consistent improvements across different
architectures demonstrate the robustness of our approach. By open-sourcing our models and datasets,
we aim to accelerate progress in automated RTL generation and contribute to the community.

9
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6 ETHICS STATEMENT

The primary goal of this research is to advance automated hardware design through improved RTL
code generation techniques, potentially reducing development time and human error in digital circuit
design. Our work introduces VeriReason, a framework that combines reinforcement learning with
reasoning capabilities to generate functionally correct Verilog code. We emphasize that our research
is conducted purely for academic and technological advancement, with no intent to replace human
hardware engineers but rather to augment their capabilities and productivity.

The automated generation of hardware descriptions raises no immediate ethical concerns beyond
standard considerations for AI-assisted design tools. Our framework generates code that must still
undergo standard verification and testing procedures before deployment in any real-world system. We
do not target safety-critical systems or applications where hardware failures could endanger human
life without appropriate human oversight and validation.

All datasets used in this work are derived from publicly available sources or generated synthetically,
with no proprietary or confidential design information involved. We believe this research contributes
positively to the hardware design community by democratizing access to advanced RTL generation
capabilities and reducing the barrier to entry for hardware development.

7 REPRODUCIBILITY STATEMENT

To ensure full reproducibility of our research, we release our code, datasets, and trained models upon
acceptance. The implementation details necessary for reproduction include:

Dataset: The methodology for creating our training dataset from the RTLCoder dataset is detailed
in Section 3.3. We provide the complete data filtering pipeline, reasoning generation prompts, and
testbench generation scripts. Our filtered dataset consists of 1,892 high-quality samples (1,149 hard,
743 simple) with reasoning steps and testbenches.

Training Configuration: All hyperparameters are specified in Section 4.1, including: learning rate
(1.0e-6), batch size (16), temperature (0.5), GRPO rollouts (8), and reward weights (functional: 2.0,
AST: 1.0, syntax: 0.1). Model architectures tested include Qwen2.5 (1.5B, 3B, 7B) and CodeLlama-
7B.

Evaluation: We use the standard VerilogEval benchmark (Machine: 143 samples, Human: 156
samples) with pass@1 and pass@5 metrics. Evaluation scripts using Iverilog for syntax checking
and functional verification will be provided.

All experiments were conducted on NVIDIA RTX 6000 Ada GPUs. The complete code-
base, including data preprocessing, model training, and evaluation scripts, is available at
https://anonymous.4open.science/r/VeriReason-E625. We estimate the total computational cost
for reproducing our main results at approximately 200 GPU hours.
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A LLM USAGE STATEMENT

In the development of this work, we employed several LLMs at different stages to enhance research
efficiency and quality. The specific applications are as follows:

Dataset Curation and Quality Control. After establishing the initial VeriReason framework, we
used GPT-4 to verify the correctness of code-specification alignments in our dataset and to generate
initial reasoning steps for each sample. These outputs were thoroughly reviewed and refined by
the authors to ensure accuracy. The LLM-generated reasoning served as a starting point that was
iteratively improved through our reasoning-distillation pipeline described in Section 3.3.2.

Experimental Analysis. During the evaluation phase, we used LLMs to help identify potential failure
modes in generated Verilog code and to suggest additional test cases for our testbench generation
pipeline. This process helped improve the robustness of our evaluation methodology, though all final
decisions and implementations were made by the authors.

Manuscript Polishing. We used LLMs as writing assistants to improve sentence structure, check
technical terminology consistency, and enhance manuscript clarity. All LLM-generated content was
critically reviewed and verified by the authors.

In line with ICLR 2026 policy on LLM usage, we note that all analyses, design choices, and
interpretations of results was thoroughly reviewed, validated, and often substantially modified by
the authors, who take full responsibility for the scientific integrity and accuracy of this paper. LLMs
served purely as tools to enhance productivity and are not authors of this work.

B GRPO ADVANTAGE ESTIMATION FOR MULTI-LEVEL REWARDS

For group size G with rewards distributed across syntax errors (n0), partial correctness (np), and full
correctness (nf ), the variance comparison shows:

Varmulti =
1

G

[
n0(0− µ)2 + npVar[AST] + nf (2− µ)2

]

< Varbinary =
1

G

[
(n0 + np)(0− µb)

2 + nf (2− µb)
2
]

where µb = 2nf/G for binary rewards and µ includes AST contributions. Since Var[AST] <
(0− µb)

2, multi-level rewards reduce gradient variance.

Gradient preservation: Binary rewards give∇θJ = 0 for syntactically correct but functionally incor-
rect samples, while multi-level rewards provide ∇θJ ∝ ASTscore(o)− ¯AST, ensuring continuous
learning signals.

Convergence rate: ∥θk+1 − θ∗∥ ≤ ρk∥θ0 − θ∗∥ where ρmulti < ρbinary due to continuous AST
guidance.

C AST-BASED STRUCTURAL SIMILARITY CALCULATION

C.1 AST EXTRACTION ALGORITHM

The AST-based structural similarity score is computed by extracting and comparing key structural
elements from both generated and golden Verilog code. The extraction process identifies the following
components:
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Algorithm 1 Extract AST Statements from Verilog Code
1: Input: Verilog code string code
2: Output: List of AST statements statements
3: Remove all comments from code
4: Initialize statements← []
5: Extract Module Declaration:
6: Find module name and port list
7: statements.append("module {name}")
8: For each port: statements.append("port {port}")
9: Extract I/O Declarations:

10: For each type ∈ {input, output, inout}:
11: Find all declarations of type
12: statements.append("type [width] {name}")
13: Extract Variable Declarations:
14: For each type ∈ {wire, reg}:
15: Extract width and name
16: statements.append("type [width] {name}")
17: Extract Assign Statements:
18: For each assign statement:
19: statements.append("assign {lhs} = {rhs}")
20: Extract Always Blocks:
21: For each always block:
22: Extract sensitivity list
23: statements.append("always@({sensitivity})")
24: Extract control flow (if/else/case) within block
25: Extract Module Instantiations:
26: For each instance:
27: statements.append("instance {type} {name}")
28: Return statements

C.2 SIMILARITY SCORE CALCULATION

Given the extracted statements from generated code (Sg) and golden code (Sgold), the final AST
score is computed as:

Algorithm 2 Compute AST Similarity Score
1: Input: Generated statements Sg , Golden statements Sgold

2: Output: AST similarity score score ∈ [0, 1]
3: Compute sequence similarity: sim← SequenceMatcher(Sg , Sgold).ratio()
4: Convert to sets: Setg ← set(Sg), Setgold ← set(Sgold)
5: Compute coverage: cov ← |Setg∩Setgold|

|Setgold|

6: Compute redundancy: red← |Setg−Setgold|
|Setg|

7: Calculate weighted score: score← 0.7 · sim+ 0.3 · cov − 0.2 · red
8: Clamp to valid range: score← max(0,min(1, score))
9: Return score

C.3 SCORE COMPUTATION

Given generated statements set Sg and golden statements set Sgold:
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sim = LevenshteinRatio(Sg, Sgold) (4)

cov =
|Sg ∩ Sgold|
|Sgold|

(5)

red =
|Sg \ Sgold|
|Sg|

(6)

ASTscore = min (1,max (0, 0.7 · sim+ 0.3 · cov − 0.2 · red)) (7)

where Sg \ Sgold denotes set difference (elements in Sg but not in Sgold).

D AUTOMATED TESTBENCH GENERATION

D.1 TESTBENCH GENERATION PIPELINE

Our automated testbench generation creates comprehensive test suites for Verilog modules by analyz-
ing specifications and generating diverse test vectors.

Algorithm 3 Generate Testbench for Verilog Module
1: Input: Module specification S, Module interface I
2: Output: Testbench code TB, Expected outputs E
3: Parse Module Interface:
4: Extract input ports: inputs← ParseInputs(I)
5: Extract output ports: outputs← ParseOutputs(I)
6: Identify signal widths and types
7: Identify Test Requirements:
8: Extract functional requirements from S
9: Determine boundary conditions

10: Identify edge cases from specification
11: Generate Test Vectors:
12: vectors← []
13: // Directed Testing
14: For each explicit requirement in S:
15: Generate specific test cases
16: vectors.append(directed_tests)
17: // Boundary Testing
18: For each input signal:
19: Add min/max values: {0, 2width − 1}
20: Add boundary transitions
21: // Constrained Random Testing
22: While |vectors| < 100:
23: Generate random inputs respecting constraints
24: Ensure coverage of untested combinations
25: vectors.append(random_test)
26: Generate Testbench Structure:
27: Create module instantiation
28: Initialize test vector application loop
29: Add output monitoring and logging
30: Write results to "test_vectors.txt"
31: Validate Testbench:
32: Run against golden implementation
33: Verify coverage ≥ threshold
34: Confirm detection of known-bad implementations
35: Return TB, E
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D.2 TEST VECTOR GENERATION STRATEGIES

The testbench employs three complementary strategies to ensure comprehensive coverage:

Algorithm 4 Multi-Strategy Test Vector Generation
1: function GenerateTestVectors(inputs, spec, min_count = 100)
2: test_vectors← []
3: // Strategy 1: Directed Tests (30% of vectors)
4: For each functional requirement req in spec:
5: test_vectors.append(CreateDirectedTest(req))
6: // Strategy 2: Edge Cases (20% of vectors)
7: For each input in in inputs:
8: test_vectors.append({in 7→ 0, others 7→ random})
9: test_vectors.append({in 7→ 2width(in) − 1})

10: If in is clock/control signal:
11: Add transition tests
12: // Strategy 3: Random Coverage (50% of vectors)
13: coverage_map← InitializeCoverageGrid(inputs)
14: While |test_vectors| < min_count:
15: vector ← GenerateConstrainedRandom(inputs, spec)
16: If vector improves coverage_map:
17: test_vectors.append(vector)
18: UpdateCoverage(coverage_map, vector)
19: Return test_vectors

D.3 COVERAGE METRICS

Test vector coverage is validated using:

Functional Coverage =
|Tested Requirements|
|Total Requirements|

(8)

Input Coverage =
|Unique Input Combinations|
|Possible Combinations|

(9)

Boundary Coverage =
|Tested Boundaries|
2 · |Input Signals|

(10)
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E SAMPLE TRAINING DATASET

The following section demonstrates a sample entry from the training dataset used to train the
hardware optimization models. Each dataset entry contains a problem specification, implementation
requirements, and comprehensive test vectors for validation.

Problem Specification
You are tasked with creating a module that takes in two 16-bit unsigned numbers, a and b, and
outputs their sum. The sum output should be a 17-bit unsigned number to prevent overflow. You
are not allowed to use any built-in arithmetic operators or functions.
Create a module named adder that has the following inputs and outputs:

• Input a: a 16-bit unsigned number, Input b: a 16-bit unsigned number
• Output sum: a 17-bit unsigned number representing the sum of a and b

You may use any other verilog constructs to solve this problem.

Figure 3: Training Dataset Entry: Problem Specification

1. Requirement Analysis:
The module must compute the sum of two 16-bit unsigned inputs (a, b) and output a 17-bit
unsigned sum. No built-in adders/operators may be used.
2. Logical Design Decisions:
Manual bit-wise addition is necessary. For each bit, XOR forms the sum (with the carry-in),
while carry-out is calculated using bit-wise AND and carried forward. This ensures proper binary
addition and propagation of carries without +. The final carry becomes the most significant bit.
3. Implementation Choices:
Combinational logic is appropriate because the output should update immediately as inputs
change. Direct assignment with ‘assign‘ since this is best for power gating and quick changes.
This approach respects all constraints (no arithmetic ops), handles all bits and carry correctly,
and produces the required output in a clear hardware manner.

Figure 4: Training Dataset Entry: Design Reasoning

1module adder(
2input [15:0] a,
3input [15:0] b,
4output reg [16:0] sum
5);
6
7integer i;
8reg carry;
9always @(*) begin

10carry = 1'b0;
11// Loop through each bit
12for (i = 0; i < 16; i = i + 1) begin
13sum[i] = a[i] ^ b[i] ^ carry;
14carry = (a[i] & b[i]) | (a[i] & carry) | (b[i] & carry);
15end
16sum[16] = carry;
17end
18
19endmodule

Listing 1: Training Dataset Entry: Reference Implementation.
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1module adder_tb;
2
3// Inputs
4reg [15:0] a;
5reg [15:0] b;
6
7// Outputs
8wire [16:0] sum;
9

10// DUT instantiation
11adder uut (
12.a(a),
13.b(b),
14.sum(sum)
15);
16
17// File descriptor
18integer fd;
19integer i;
20integer error_count;
21reg [16:0] expected_sum;
22
23// Task to check result and report errors
24task check_result;
25input [15:0] a_in;
26input [15:0] b_in;
27input [16:0] sum_out;
28input [16:0] expected;
29begin
30if (sum_out !== expected) begin
31$display("ERROR: a=%h b=%h sum=%h expected=%h at time %0t",
32 a_in, b_in, sum_out, expected, $time);
33error_count = error_count + 1;
34end
35end
36endtask
37
38// Main stimulus with corner cases and randomized tests
39initial begin
40error_count = 0;
41fd = $fopen("test_vectors.txt", "w");
42
43// Corner case tests
44a = 16'h0000; b = 16'h0000; #1; // All zeros
45expected_sum = a + b;
46$fdisplay(fd, "%h %h %h", a, b, sum);
47check_result(a, b, sum, expected_sum);
48
49a = 16'hFFFF; b = 16'hFFFF; #1; // Maximum overflow
50expected_sum = a + b;
51$fdisplay(fd, "%h %h %h", a, b, sum);
52check_result(a, b, sum, expected_sum);
53
54// Randomized comprehensive testing
55for (i = 0; i < 90; i = i + 1) begin
56a = $random;
57b = $random;
58#1;
59expected_sum = a + b;
60$fdisplay(fd, "%h %h %h", a, b, sum);
61check_result(a, b, sum, expected_sum);
62end
63
64$display("Testing complete. Total errors: %0d", error_count);
65$fclose(fd);
66$finish;
67end
68
69endmodule

Listing 2: Training Dataset Entry: Comprehensive Testbench.
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1 A B Sum
2---------------
30000 0000 00000
4ffff ffff 1fffe
50000 ffff 0ffff
6ffff 0000 0ffff
78000 8000 10000
87fff 0001 08000
91234 4321 05555

10aaaa 5555 0ffff
110001 0001 00002
128000 7fff 0ffff
133524 5e81 093a5
14d609 5663 12c6c
157b0d 998d 1149a
168465 5212 0d677
17e301 cd0d 1b00e
18f176 cd3d 1beb3
1957ed f78c 14f79
20e9f9 24c6 10ebf
2184c5 d2aa 1576f
22f7e5 7277 16a5c
23d612 db8f 1b1a1
2469f2 96ce 100c0
257ae8 4ec5 0c9ad
26495c 28bd 07219
27582d 2665 07e92
286263 870a 0e96d
292280 2120 043a0
3045aa cc9d 11247
313e96 b813 0f6a9
32380d d653 10e60
33dd6b 2ad5 10840
344a02 3eae 088b0
35e91d 72cf 15bec
364923 650a 0ae2d
370aca 4c3c 05706
38bdf2 618a 11f7c
39b341 34d8 0e819
40f378 1289 10601
410deb 65b6 073a1
42f9c6 13ae 10d74
4302bc dd2a 0dfe6
449a0b be71 1587c
454185 554f 096d4
46603b 333a 09375
47327e 4b15 07d93
489bf1 4bd9 0e7ca
490762 fb4c 102ae
50559f a18f 0f72e
51a9f8 60b7 10aaf
52569f 945c 0eafb
53c05b 3789 0f7e4
543249 3ed0 07119
55c0d7 fc51 1bd28
562f96 7f0c 0aea2
57cec2 edc8 1bc8a
585a77 ed3d 147b4
59db12 007e 0db90
60816d e739 168a6
618f1f f6d3 185f2
622f85 8878 0b7fd
63595b 4b49 0a4a4
64ae3f af2a 15d69
656358 3886 09bde
660c8e f29c 0ff2a
6799fa bc26 15620
681773 b4a3 0cc16

Listing 3: Training Dataset Entry: Generated Test Vectors (Format: Input_A Input_B
Expected_Sum).
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