
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

VERIREASON: REINFORCEMENT LEARNING WITH
TESTBENCH FEEDBACK
FOR REASONING-ENHANCED VERILOG GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Automating Register Transfer Level (RTL) code generation using Large Language
Models (LLMs) offers substantial promise for streamlining digital circuit design
and reducing human effort. However, current LLM-based approaches for RTL code
generation face significant challenges. Methods such as supervised fine-tuning
(SFT), in-context learning, and chain-of-thought (CoT) struggle with several critical
limitations in the RTL domain: the scarcity of high-quality training data, poor align-
ment between natural language specifications and generated code, lack of built-in
verification mechanisms, and difficulty balancing between model generalization and
domain specialization. Inspired by groundbreaking research such as DeepSeek-R1,
which combines reinforcement learning with reasoning capabilities, we introduce
VeriReason, a comprehensive framework that integrates supervised fine-tuning
with Group Relative Policy Optimization (GRPO) reinforcement learning specif-
ically tailored for RTL code generation. Using our curated high-quality training
examples alongside a feedback-driven reward model, VeriReason combines
testbench evaluations with structural heuristics to improve specification-code align-
ment and eliminate hallucinations. Iterative GRPO embeds intrinsic self-checking
and reasoning capabilities, enabling the model to autonomously detect and correct
functional errors. On the VerilogEval Benchmark, VeriReason delivers signif-
icant improvements: achieving 83.1% functional correctness on the VerilogEval
Machine benchmark, substantially outperforming both comparable-sized models
and much larger commercial systems like GPT-4 Turbo. Additionally, our approach
demonstrates up to a 2.8× increase in first-attempt functional correctness compared
to baseline methods and exhibits robust generalization to unseen designs. To our
knowledge, VeriReason represents the first system to successfully integrate
explicit reasoning capabilities with reinforcement learning for Verilog generation,
establishing a new state-of-the-art for automated RTL synthesis. The code is
available at: https://anonymous.4open.science/r/VeriReason-E625.

1 INTRODUCTION

Register Transfer Level (RTL) code generation is a critical yet labor-intensive task in digital circuit
design, directly impacting the efficiency, performance, and power consumption of hardware systems.
Traditionally, hardware engineers manually craft RTL code using hardware description languages
(HDLs) such as Verilog, which differs significantly from general-purpose programming languages
due to its concurrent and structural nature. Recent advancements in large language models (LLMs)
offer promising opportunities to automate RTL code generation, substantially reducing the manual
effort and domain expertise required. Leveraging LLMs for RTL generation can accelerate design
cycles, minimize human-induced errors, and allow engineers to focus on high-level architectural
decisions rather than intricate coding details.

Despite these advantages, LLM-based RTL synthesis encounters three core challenges. First, data
scarcity: high-quality Verilog examples—and especially paired testbenches or reasoning annota-
tions—are rare, limiting both pretraining and supervised fine-tuning (SFT) and hampering generaliza-
tion. Second, weak natural language–code alignment: LLMs often produce syntactically valid but
functionally incorrect Verilog, misinterpreting user specifications and hallucinating invalid structural

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

heuristics (e.g., port matching, net connectivity). Third, low first-attempt accuracy without self-
checking: current models lack intrinsic mechanisms to detect or correct their own errors, relying
instead on external testbench or syntax feedback for iterative refinement. Lastly, lack of complex
logical capability: Traditional LLMs struggle to handle the intricate interdependencies between
components in hardware design, often failing to maintain consistency across module interfaces, state
machines, and timing constraints. Without systematic reasoning about component relationships, mod-
els produce circuits with logical inconsistencies or incomplete implementations that meet superficial
requirements but fail under comprehensive verification.

Recent advances in reasoning and reinforcement learning (RL) have introduced promising approaches
to overcome these challenges. Reasoning-augmented models, such as those leveraging chain-of-
thought prompting or iterative refinement, have demonstrated the ability to follow multi-step logical
patterns, making them particularly suitable for hardware description languages like Verilog that
require strict structural correctness and functional dependencies. These reasoning mechanisms help
LLMs better understand circuit intent and adhere to design constraints, and can better ensure the
alignment between natural language and result. Methods such as Group Relative Policy Optimization
(GRPO)Shao et al. (2024) combine the strengths of SFT with reward-driven RL, enabling models to
learn effectively even with minimal data and explicit feedback. By employing RL-based strategies,
LLMs are trained not merely on predicting the next token but on achieving specific, meaningful
outcomes, thus improving their logical reasoning, alignment, and self-checking capabilities.

Our Proposed Framework. To address the challenges in RTL generation with LLMs, we propose a
novel framework, VeriReason, combining supervised fine-tuning (SFT) and GRPO reinforcement
learning, specifically tailored for Verilog RTL generation with a specially designed dataset featuring
reasoning steps and testbenches. Our approach systematically tackles four critical limitations that
hinder existing LLM-based hardware design methods: data scarcity in domain-specific code, natural
language-code alignment issues, lack of self-checking behavior, and insufficient complex logical
capabilities. Each of these challenges requires specialized techniques that we incorporate into the
VeriReason framework, as detailed in the following sections.

Data Scarcity in Domain-Specific Code: We introduce a reasoning-distillation and testbench-
generation pipeline to augment existing prompt–code pairs with high-quality testbenches and human-
style reasoning steps, producing a high-quality dataset. Furthermore, we demonstrate that even
with as few as 20 annotated examples from the VeriReason dataset, GRPO yields substantial
performance gains, dramatically lowering the bar for required training data.

Natural Language-Code Alignment: VeriReason employ a reward model that evaluates generated
Verilog code against specifications using feedback from structural heuristics. Through GRPO
optimization, the model learns to internalize structural constraints, effectively reducing hallucinations
and ensuring structural correctness by penalizing invalid constructs across both interface definitions
and internal hierarchy of the circuit design.

Lack of Self-Checking Behavior: Our reinforcement learning framework inherently encourages
the model to develop self-checking capabilities by iteratively refining outputs based on testbench
feedback-driven rewards. Over training iterations, the model learns to anticipate and rectify errors
internally, significantly enhancing first-attempt functional correctness.

Lack of complex logical capabilities: VeriReason incorporates explicit reasoning steps throughout
the design process, requiring the model to articulate its design decisions and verify logical consistency
before implementation. By decomposing complex circuit specifications into manageable conceptual
components and reasoning about their interactions, the model develops more coherent and complete
implementations that maintain logical integrity across the entire design.

Our key contributions are summarized as follows:

• We design a novel framework VeriReason, which integrates supervised fine-tuning with
GRPO-based reinforcement learning and reasoning-augmented design processes for Verilog
RTL code generation.

• Our approach addresses critical shortcomings in RTL generation through a reasoning-
distillation pipeline for data scarcity, reward-driven structural evaluation for NL-code align-
ment, testbench feedback mechanisms for self-checking behavior, and explicit reasoning
steps for handling complex logical dependencies. These techniques can also generalize be-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

yond RTL to other structured generation domains requiring multi-level correctness validation
and logical reasoning.

• We create a high quality dataset with reasoning and testbench that would be open-sourced to
the benefit community.

• The framework achieves state-of-the-art performance in RTL generation tasks, demonstrating
substantial improvements in first-attempt functional correctness, structural validity, and
generalization capabilities with minimal training data. It delivers up to a 2.8× increase in first-
attempt functional correctness compared to baseline models while outperforming existing
state-of-the-art methods across multiple benchmarks. This improvement is particularly
notable in smaller parameter models. Remarkably, the framework achieves 83.1% pass@5
on VerilogEval-Machine, even surpassing much larger models including GPT-4 Turbo.

2 BACKGROUND

Recent years have seen a surge of interest in applying large language models (LLMs) to hardware
design, particularly for generating Register-Transfer Level (RTL) code in Verilog.Liu et al. (2023a;
2024b); Chang et al. (2023); Blocklove et al. (2023); Wang et al. (2025b); Thakur et al. (2024);
Zhong et al. (2023); Lu et al. (2024); Liu et al. (2024a); Tsai et al. (2024); Pearce et al. (2020); Fu
et al. (2023). Previous reseach have shown significant potential for LLM-based RTL generation
in automating parts of the hardware design process using finetuning, or using differnt prompting
techniques. However, it has also revealed several key challenges of produce correct and efficient
hardware designs reliably.

Challenges in LLM-based RTL generation tasks Researchers investigated fine-tuning LLMs
using domain-specific data and techniques to improve their performance Liu et al. (2024b); Pei
et al. (2024). For example, Liu et.al introduced ChipNeMo Liu et al. (2023a), which fine-tunes a
general-purpose LLM on internal NVIDIA datasets for various chip design tasks. Similarly, Thankur
et.al developed VeriGen Thakur et al. (2024) to improve Verilog generation capabilities. Subsequent
works, such as RTLCoder Liu et al. (2024b) is trained based on automatically generated datasets.
BetterV Pei et al. (2024), finetunes LLM by converting Verilog code to the C language. While
effective, these methods face challenges of scalability and generalizability due to their high demand
for high quality instruction-code pairs. The inherent limitation of lack of human-written RTL code
and the low quality of generated code make it hard to make further improvement.

Moreover, LLM generated Verilog code often face the issue of hallucination. Prompt-based methods
Blocklove et al. (2023); Chang et al. (2023) rely heavily on the quality and clarity of the input
prompts, facing difficulties in consistently aligning complex, multi-step circuit specifications with
the generated code. These methods often suffer from hallucinations or syntactically correct yet
functionally incorrect outputs due to inadequate contextual understanding. Moreover, they inherently
lack iterative refinement capabilities, making them incapable of progressively improving RTL code
quality. Chain of Thought (CoT) methods Yang et al. (2025), which encourage models to generate
step-by-step reasoning sequences, typically excel in structured reasoning tasks but face challenges
in RTL contexts due to the strict requirement for functional correctness and structural precision.
Although CoT enhances reasoning, its effectiveness heavily depends on the clarity and correctness of
intermediate reasoning steps, which can still suffer from errors in the absence of explicit correctness
feedback mechanisms. Furthermore, the CoT has made the process of generation very ineffective due
to long inference time.

2.1 REINFORCEMENT LEARNING FOR LLM REASONING

Recent research has demonstrated the potential of reinforcement learning (RL) techniques to signifi-
cantly enhance the reasoning capabilities of large language models (LLMs) Ouyang et al. (2022);
Shao et al. (2024); Guo et al. (2025). By providing explicit rewards for logical correctness and step-
wise reasoning, RL enables models to autonomously discover effective problem-solving strategies,
often mirroring structured human reasoning Wei et al. (2022); Xie et al. (2025). Applications span
mathematical problem solving (where RL fine-tuning on step-by-step correctness or final answer
accuracy yields substantial improvements Shao et al. (2024); Guo et al. (2025)) and code generation,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

You are tasked with

designing a Verilog

module for a 4-bit

adder/subtractor…

<think> … \<think>
<answer>
module checker (
input [2:0] data,
output reg parity);
 always @(*) begin

Golden Code w/ reasoning

Prompt
module tb;
// Inputs
reg [3:0] A;
reg [3:0] B;
reg C;
wire [3:0] S;

Test Bench

Fine-tuned Model

GRPO Trainer

Completions Rewards
Syntax Functional Structural

R1

R1

R1

R2

R2

R2

R3

R3

R3

R3

Base Model

Policy Model

in out
0000 1000000
0001 1111001
0010 0100100
0100 0011001

Expected Output

Figure 1: Workflow of VeriReason. The framework combines supervised fine-tuning with GRPO
reinforcement learning. A base model is fine-tuned and then improved through the GRPO trainer,
which leverages multiple reward signals (syntax, functional, and structural correctness) derived from
testbench execution and code analysis. The model incorporates explicit reasoning (<think> blocks) to
break down complex hardware design tasks.

where preference optimization and RL from feedback have led to greater code validity and efficiency
Chen et al. (2021).

Most successful approaches build upon policy gradient algorithms such as Proximal Policy Opti-
mization (PPO) Schulman et al. (2017) or, more recently, GRPO Shao et al. (2024); Lambert et al.
(2024). GRPO, in particular, compares groups of generated responses rather than evaluating them
in isolation, enabling the model to build a deeper understanding of what constitutes high-quality
reasoning through relative comparisons. The effectiveness of these frameworks depends on carefully
designed reward functions that accurately reflect the target domain. For hardware description tasks
like Verilog generation, structural similarity as provides a clear, unambiguous reward signal Wang
et al. (2025a), encouraging models to internalize domain-specific constraints and develop robust
reasoning capabilities that translate natural language specifications into golden-code similarity.

3 METHODOLOGY

We present VeriReason, a comprehensive framework that combines supervised fine-tuning with
reinforcement learning specifically tailored for Verilog RTL generation. Our approach addresses four
critical challenges in automated hardware design: (1) data scarcity of high-quality RTL examples,
(2) weak alignment between natural language specifications and generated code, (3) lack of self-
checking mechanisms in current models, and (4) insufficient complex logical reasoning capabilities
for hardware design.

As shown in Figure 1, VeriReason employs a multi-stage approach to generate high-quality Verilog
code. First, a base model is fine-tuned on a curated dataset consisting of high-quality prompt-code
pairs enhanced with explicit reasoning steps and testbenches. This fine-tuned model produces initial
code implementations that are then evaluated through our reward system, which combines three
key components: syntax correctness, functional validation via testbench execution, and structural
analysis. The GRPO trainer leverages these rewards to iteratively improve the model’s ability to
generate correct code while maintaining alignment with the original specification. Through this
process, the model learns to incorporate reasoning steps (shown as <think> blocks) that decompose
complex hardware design problems into manageable components, resulting in a policy model capable
of generating functionally correct and structurally sound Verilog implementations on the first attempt.

3.1 REINFORCEMENT LEARNING FRAMEWORK

Our approach adapts GRPO specifically for RTL code generation. Unlike traditional RL methods,
our framework incorporates domain-specific constraints and verification mechanisms directly into
the learning process, providing immediate feedback on functional correctness, syntax, and specifi-

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

cation adherence. This targeted optimization enables the model to efficiently learn correct Verilog
implementation patterns while minimizing hallucinations and specification misalignments.

3.1.1 GROUP RELATIVE POLICY OPTIMIZATION (GRPO)

We adopt GRPO as our core reinforcement learning algorithm due to its efficiency and demonstrated
effectiveness in tasks requiring complex reasoning. GRPO provides several advantages over tradi-
tional reinforcement learning methods like Proximal Policy Optimization (PPO), including lower
memory requirements and more stable training dynamics.

In GRPO, the language model serves as the policy network, taking a natural language specification
q as input and producing a sequence of tokens representing Verilog code as actions. The policy
distribution factors across tokens: πθ(a|q) =

∏N
t=1 πθ(at|q, a<t), where πθ represents the policy

parameterized by θ, a is the complete sequence of tokens (the Verilog code), and at is the token at
position t.

Unlike PPO, which requires a separate value function, GRPO estimates advantages using group-based
sampling. For each natural language specification q, we generate a group of G candidate Verilog
implementations {o1, o2, . . . , oG} from the current policy and compute rewards for each. The GRPO
objective function is defined as:

LGRPO(θ) = Eq∼D,{oi}G
i=1∼πθold (·|q)

[
1

G

G∑
i=1

min (ri · ρi, clip(ρi, 1− ϵ, 1 + ϵ) · ri)

]
−β·DKL(πθ(·|q)∥πref(·|q))

(1)

where: where ρi = πθ(oi|q)
πθold (oi|q)

is the importance sampling ratio, ri is the normalized reward for
candidate oi, ϵ is a hyperparameter controlling the clipping range, β is a coefficient balancing the KL
divergence penalty, πref is a reference policy (typically the supervised fine-tuned model), and DKL is
the Kullback-Leibler divergence.

The advantage estimation in GRPO is simplified by normalizing rewards within each group, where
ri =

R(oi)−µR

σR+δ , with R(oi) being the raw reward for output oi, µR and σR are the mean and standard
deviation of rewards within the group, and δ is a small constant for numerical stability.

This group-based normalization provides several benefits: it eliminates the need for a separate value
network, reduces variance in advantage estimation, and naturally compares alternative implementa-
tions of the same specification, which aligns well with the goal of generating functionally correct
Verilog code. See Appendix B for theoretical analysis of GRPO’s effectiveness with multi-level
rewards compared to binary reward methods.

3.2 REWARD MODEL

Our reward function combines both structural correctness and functional validation to provide
comprehensive feedback during training. The reward R for a generated Verilog implementation is
computed as:

R(o) =


2.0, if functionally correct
0.1 + 1.0 · ASTscore(o), if syntactically correct
0, otherwise

(2)

where: Functional correctness is determined by running the generated code through testbenches
and comparing outputs with the expected behavior. Syntactic correctness is verified by successful
parsing of the Verilog code. The ASTscore(o) measures structural similarity between the generated
code’s Abstract Syntax Tree (AST) and reference implementations, with values ranging from 0 to
1. The reward values establish a clear hierarchy: 0.1 for syntax-only correctness prevents gradient
vanishing, the AST score (0.1-1.1) provides fine-grained structural feedback, and 2.0 for functional
correctness creates a strong convergence signal approximately 2× the maximum partial reward. This
ratio empirically balanced exploration with exploitation during GRPO training.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

The AST score provides a fine-grained measure of structural correctness even when the code is not
functionally perfect. VeriReason employs a hierarchical AST comparison algorithm specifically
tailored for Verilog code structures, where ASTscore(o) =

∑
c∈C wc·(0.6·simc+0.5·covc−0.3·redc)

calculates weighted structural similarity across categories C = {module, port, always, ...} with
respective importance weights wc. For each category c, we compute sequence similarity simc

using Levenshtein distance, coverage covc = |Gc ∩Dc|/|Gc| between generated elements Dc and
golden elements Gc, and redundancy redc = |Dc − Gc|/|Dc| to penalize hallucinated structures.
This domain-specific structural analysis enables our model to maintain correct interface definitions,
signal declarations, and control logic while internalizing hardware design patterns during GRPO
optimization. This domain-specific structural analysis enables our model to maintain correct interface
definitions, signal declarations, and control logic while internalizing hardware design patterns during
GRPO optimization. The detailed AST extraction and scoring algorithms are provided in Appendix C.
For functional verification, we use testbenches to evaluate the generated Verilog against reference
implementations. A generated design is considered functionally correct only when it passes all test
cases in the testbench, providing identical output signals to those of the golden reference for all test
vectors.

3.3 DATA PREPROCESSING

We address the critical issue of data scarcity in RTL generation, and the challenge of low dataset
quality through a data augmentation pipelines, and a data filtration pipeline.

3.3.1 DATA FILTRATION

We implement a two-stage adaptive filtration process to optimize the dataset for GRPO training
effectiveness. For each sample s in our initial dataset D, we generate a set of k = 8 candidate
implementations {o1, o2, . . . , ok} using our base model and compute their corresponding rewards
{r1, r2, . . . , rk} based on our reward function R defined in Equation 2. The filtration process
is formalized as follows: Dfiltered = {s ∈ D | µr(s) ∈ [αmin, αmax] and σr(s) > β}, where:

µr(s) = 1
k

∑k
i=1 ri is the mean reward for sample s, σr(s) =

√
1
k

∑k
i=1(ri − µr(s))2 is the

standard deviation of rewards, αmin = 0.3 is the minimum acceptable mean reward, αmax = 1.8 is
the maximum acceptable mean reward, β = 0.1 is the minimum acceptable reward variance. This
filtration strategy excludes samples that are either too difficult (consistently low rewards) or too trivial
(consistently high rewards), retaining only those samples that provide meaningful learning signals for
the GRPO algorithm. Specifically, we filter out data where all rewards are zero or the average reward
is below αmin, as well as samples where all generations achieve near-perfect scores.

Additionally, we compute a difficulty score δ(s) for each remaining sample:

δ(s) = 1− µr(s)− αmin

αmax − αmin
(3)

Samples are then categorized into “simple” and “hard” portions based on this difficulty score, with
samples where δ(s) > 0.5 classified as “hard” and the remainder as “simple.” This stratification
enables targeted training strategies that progressively build model competence. The final dataset
comprises 1149 samples in the hard level and 743 samples in the easy level, example in Appendix E.

3.3.2 REASONING GENERATION WITH OPTIMIZATION

To enhance the model’s reasoning capabilities, we augment the training data with explicit reason-
ing steps that decompose complex hardware design problems into manageable components. Our
reasoning generation pipeline extracts natural language specifications and corresponding Verilog
implementations from the original dataset and uses chain-of-thought prompting with domain-specific
guidance to generate detailed reasoning steps that explain the design choices, module interfaces, and
implementation details. We apply an optimization process where the model is encouraged to critique
its own reasoning and suggest improvements. When the model identifies a better alternative solution,
we generate an improved implementation and incorporate it into the dataset. This self-improvement
mechanism enables the model to iteratively refine both its reasoning process and the quality of

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

generated code. The resulting dataset contains not only input-output pairs but also explicit reasoning
traces that guide the model to develop stronger internal reasoning capabilities.

3.3.3 TESTBENCH GENERATION

To provide reliable functional correctness signals during training, we develop an automated testbench
generation pipeline that analyzes specifications to identify signal characteristics, boundary conditions,
and expected behaviors. The pipeline generates comprehensive testbenches with at least 100 test
vectors per specification, combining directed testing for explicit requirements with constrained
random testing for broader coverage. These testbenches serve dual purposes: computing rewards
during GRPO training and validating final outputs, ensuring the model produces functionally correct
Verilog implementations. See Appendix D for the complete testbench generation algorithm.

By combining these data preprocessing techniques—reasoning distillation, adaptive filtration, and
testbench generation—with GRPO-based reinforcement learning, VeriReason addresses the core
challenges of RTL generation: data scarcity, specification-code misalignment, and lack of self-
verification. The framework enables models to internalize hardware design constraints through
multi-level rewards and develop robust reasoning capabilities for RTL synthesis.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Our primary dataset is derived from the RTLCoder Liu et al. (2024b) dataset of 26500 samples. We
apply a thorough filtration technique on the dataset. First, we apply a simple syntax check to ensure
we keep only the syntactically valid code. Then we use ChatGPT-4.1 to check whether the code
matches the input prompt correctly, and generate reasoning steps for the code. For code that does not
fully match the input prompt, it is re-generated and checked for syntax. We then generate a testbench
for each entry with at least 100 test cases for best coverage.

The testbench output is also saved to the dataset; in this way, during the GRPO, the testbench will
only run once on the generated code, and the outcome will be directly compared to the golden code’s
output. Next, we run the dataset on the Qwen2.5B model to generate the code and its corresponding
rewards. Based on the reward, we split the dataset into simple and hard portions for the next training
steps. We end up with 1149 samples in the hard level and 743 samples in the easy level.

Our evaluation focuses on the primary benchmarks for Verilog code generation, VerilogEval Liu
et al. (2023b). The comprehensive benchmark containing both machine-generated and human-crafted
Verilog specifications. VerilogEval-Machine contains 143 samples with algorithmically generated
specifications, while VerilogEval-Human includes 156 samples with human-written specifications.

We evaluate VeriReason across multiple model scales to assess parameter efficiency, including
Qwen2.5-1.5B, Qwen2.5-3B, Qwen2.5-7B, and CodeLlama3-7B architectures. GRPO is used as our
default RL algorithm. RL-specific settings include a generation temperature of 0.5, a total batch size
of 16 (8 rollouts each), an update batch size of 2 per GRPO step with a gradient accumulation of 8, a
lowered learning rate of 1.0e-6 with constant scheduler type, and repetition penalty of 1.3. The reward
model follows the design in Equation 2, with execution correctness verified using industry-standard
Verilog simulators, Iverilog Williams (2023).

4.2 MAIN RESULTS

Table 1 compares VeriReason against state-of-the-art Verilog generation models. Our approach
achieves superior performance across all model sizes, with VeriReason-Qwen2.5-7B demonstrating
remarkable gains over base models: +17.1 and +24.0 percentage points on pass@1 for VerilogEval-
Machine and VerilogEval-Human, respectively.

Even our smallest model, VeriReason-Qwen2.5-1.5B, outperforms many larger models after applying
our reinforcement learning framework. The performance gains are particularly notable for smaller
models, demonstrating the effectiveness of our approach in optimizing parameter efficiency. We

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Comparative analysis of Verilog code generation performance. Gray highlighting denotes
the overall state-of-the-art results. (bold) indicates the best results in the model size category. Color-
coded numbers show performance deltas relative to base models (green: improvement).

Category Method Params. Open Source VerilogEval-Machine VerilogEval-Human
pass@1 pass@5 pass@1 pass@5

Base Model

GPT-3.5-Turbo N/A ✗ 63.5 78.0 31.2 47.0
GPT-4o-mini N/A ✗ 66.0 72.4 54.2 62.0
GPT-4-Turbo N/A ✗ 72.5 83.0 64.3 76.1
Qwen-2.5-Coder 1.5B ✓ 25.6 40.8 8.3 17.9
Qwen2.5-Coder 3B ✓ 48.4 58.9 21.3 32.7
Qwen2.5-Coder 7B ✓ 52.7 69.7 23.9 41.1
CodeLlama 7B ✓ 26.1 49.1 18.8 28.6
CodeQwen1.5-7B-Chat 7B ✓ 29.1 61.9 14.8 36.8
DeepSeek-Coder 6.7B ✓ 8.8 34.3 4.9 19.3
DeepSeek-V3 671B ✓ 79.2 80.7 66.1 72.1

Fine-tuned Generation

ChipNeMo† 70B ✗ 53.8 N/A 27.6 N/A
BetterV-CodeQwen† 7B ✗ 68.1 79.4 46.1 53.7
RTLLLM† 13B ✗ 65.3 77.2 43.7 51.8
VerilogEval† 16B ✗ 46.2 67.3 28.8 45.9

VeriGen† 16B ✓ 44.0 52.6 30.3 43.9
RTLCoder-DeepSeek-Coder 6.7B ✓ 37.2+28.4 64.9+30.6 16.9+12.0 35.7+16.4

VeriReason (Ours)

VeriReason-Qwen2.5-1.5B 1.5B ✓ 44.7+19.1 49.1+8.3 23.5+15.2 26.7+8.8
VeriReason-Qwen2.5-3B 3B ✓ 55.9+7.5 72.8+13.9 33.2+11.9 47.4+14.7
VeriReason-Qwen2.5-7B 7B ✓ 69.8+17.1 83.1+13.4 47.9+24.0 58.4+17.3
VeriReason-codeLlama-7B 7B ✓ 51.3+25.2 64.0+14.9 27.5+8.7 39.9+11.3

†: Reported Results.

observe that VeriReason-Qwen2.5-7B achieves state-of-the-art performance on Machine pass@5
(83.1%), outperforming even GPT-4-Turbo on this metric, despite having significantly less parameters.

Furthermore, all VeriReason models establish themselves as the best performers in their respective
parameter size categories (1.5B, 3B, and 7B), highlighting the robustness of our approach across
model scales. The substantial improvements observed in VeriReason-codeLlama-7B (+25.2 percent-
age points in Machine pass@1) further demonstrates that our method generalizes effectively across
different model architectures.

4.3 TRAINING DYNAMICS ANALYSIS

Figure 2 illustrates the training dynamics of our VeriReason models across three different parameter
scales (1.5B, 3B, and 7B). We track both the mean reward values (top row) and their standard
deviations (bottom row) throughout the reinforcement learning process.

4.3.1 REWARD PROGRESSION

The reward curves reveal distinct learning patterns across model sizes. The 1.5B model demonstrates
steady, monotonic improvement in reward values from approximately 0.5 to 0.8 over 800 training
steps, suggesting a consistent optimization path. In contrast, the 3B model exhibits higher variance
in its learning trajectory, with reward values fluctuating between 0.6 and 0.8, before ultimately
converging to above 0.8 by step 400. The 7B model shows the most pronounced oscillatory behavior,
with rewards ranging between 0.50 and 0.65, reflecting the increased complexity of optimizing larger
parameter spaces.

4.3.2 REWARD STABILITY

The standard deviation plots (bottom row) provide critical insights into training stability. The
1.5B model demonstrates exceptional convergence properties, with reward variability consistently
decreasing from 0.3 to below 0.1 throughout training. This smooth reduction in standard deviation
correlates with the steady increase in mean rewards, indicating robust learning. The 3B model presents
a more complex pattern, with initial rapid variability reduction followed by fluctuations between 0.7
and 0.8, suggesting periodic exploration-exploitation transitions. The 7B model’s standard deviation

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 200 400 600 800
0.5

0.6

0.7

0.8

R
ew

ar
d

1.5B

Rewards

0 100 200 300 400

0.6

0.8

3B

Rewards

0 25 50 75 100
0.50

0.55

0.60

7B

Rewards

0 200 400 600 800
Training Steps

0.1

0.2

0.3

St
an

da
rd

 D
ev

ia
tio

n

Reward STD

0 100 200 300 400
Training Steps

0.7

0.8

0.9 Reward STD

0 25 50 75 100
Training Steps

0.10

0.12

0.14
Reward STD

Figure 2: Reward line and std line of VeriReason

exhibits the most dynamic behavior, oscillating between 0.09 and 0.14, which aligns with its more
variable reward progression.

Interestingly, despite having fewer parameters, the 1.5B model achieves the most stable convergence
pattern, with monotonically decreasing standard deviation. This suggests that smaller models may
benefit more consistently from our reinforcement learning framework, while larger models engage in
more extensive exploration of the parameter space before convergence. The final standard deviation
values (approximately 0.05 for 1.5B, 0.8 for 3B, and 0.1 for 7B) indicate that all models eventually
reach stable policy configurations, though with different convergence trajectories.

This analysis provides empirical evidence that our reinforcement learning approach effectively
optimizes models across different parameter scales, with larger models requiring more complex
optimization paths but ultimately achieving higher reward values, consistent with their superior
performance on the VerilogEval benchmarks shown in Table 1.

4.3.3 THE EFFECT OF SFT AND GRPO

Table 2: Ablation studies results.
Model Training Stage VerilogEval-Machine VerilogEval-Human

pass@1 pass@5 pass@1 pass@5

Qwen2.5-1.5B
Base 25.6 40.8 8.2 17.9
+ SFT 38.6 46.3 17.8 23.9
+ GRPO 44.7 49.1 23.5 26.7

Qwen2.5-3B
Base 48.4 58.9 21.3 32.7
+ SFT 51.9 69.9 31.3 45.1
+ GRPO 55.9 72.8 33.2 47.4

Qwen2.5-7B
Base 52.7 69.7 23.9 41.1
+ SFT 63.4 79.9 43.4 56.2
+ GRPO 69.8 83.1 47.9 58.4

CodeLlama-7B
Base 26.1 49.1 18.8 28.6
+ SFT 41.1 58.3 23.2 31.5
+ GRPO 51.3 64.0 27.5 39.9

Table 2 shows how SFT and GRPO contribute
to VeriReason’s performance. SFT provides
substantial initial gains across all models, with
smaller models benefiting most, by supplying
high-quality training examples with reasoning
steps. GRPO further improves performance
through testbench-driven reinforcement learn-
ing. While SFT establishes syntactic and seman-
tic understanding, GRPO enables functional cor-
rectness by internalizing structural constraints
and self-checking capabilities, demonstrating
their complementary roles.

5 CONCLUSION

This paper presents VeriReason, a framework that integrates supervised fine-tuning with GRPO-
based reinforcement learning for Verilog RTL generation. By combining explicit reasoning
with testbench-driven feedback, we address key challenges in LLM-based hardware design: data
scarcity, specification-code misalignment, lack of self-checking, and insufficient logical reasoning.
VeriReason achieves state-of-the-art performance across model scales, though with computational
overhead during training and 2.5-3× slower inference. Our multi-level reward model—combining
functional, structural, and syntactic validation—enables models to develop intrinsic self-checking
capabilities crucial for autonomous hardware design. The consistent improvements across different
architectures demonstrate the robustness of our approach. By open-sourcing our models and datasets,
we aim to accelerate progress in automated RTL generation and contribute to the community.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 ETHICS STATEMENT

The primary goal of this research is to advance automated hardware design through improved RTL
code generation techniques, potentially reducing development time and human error in digital circuit
design. Our work introduces VeriReason, a framework that combines reinforcement learning with
reasoning capabilities to generate functionally correct Verilog code. We emphasize that our research
is conducted purely for academic and technological advancement, with no intent to replace human
hardware engineers but rather to augment their capabilities and productivity.

The automated generation of hardware descriptions raises no immediate ethical concerns beyond
standard considerations for AI-assisted design tools. Our framework generates code that must still
undergo standard verification and testing procedures before deployment in any real-world system. We
do not target safety-critical systems or applications where hardware failures could endanger human
life without appropriate human oversight and validation.

All datasets used in this work are derived from publicly available sources or generated synthetically,
with no proprietary or confidential design information involved. We believe this research contributes
positively to the hardware design community by democratizing access to advanced RTL generation
capabilities and reducing the barrier to entry for hardware development.

7 REPRODUCIBILITY STATEMENT

To ensure full reproducibility of our research, we release our code, datasets, and trained models upon
acceptance. The implementation details necessary for reproduction include:

Dataset: The methodology for creating our training dataset from the RTLCoder dataset is detailed
in Section 3.3. We provide the complete data filtering pipeline, reasoning generation prompts, and
testbench generation scripts. Our filtered dataset consists of 1,892 high-quality samples (1,149 hard,
743 simple) with reasoning steps and testbenches.

Training Configuration: All hyperparameters are specified in Section 4.1, including: learning rate
(1.0e-6), batch size (16), temperature (0.5), GRPO rollouts (8), and reward weights (functional: 2.0,
AST: 1.0, syntax: 0.1). Model architectures tested include Qwen2.5 (1.5B, 3B, 7B) and CodeLlama-
7B.

Evaluation: We use the standard VerilogEval benchmark (Machine: 143 samples, Human: 156
samples) with pass@1 and pass@5 metrics. Evaluation scripts using Iverilog for syntax checking
and functional verification will be provided.

All experiments were conducted on NVIDIA RTX 6000 Ada GPUs. The complete code-
base, including data preprocessing, model training, and evaluation scripts, is available at
https://anonymous.4open.science/r/VeriReason-E625. We estimate the total computational cost
for reproducing our main results at approximately 200 GPU hours.

REFERENCES

Jason Blocklove, Siddharth Garg, Ramesh Karri, and Hammond Pearce. Chip-chat: Challenges
and opportunities in conversational hardware design. In 5th ACM/IEEE Workshop on Machine
Learning for CAD, MLCAD. IEEE, 2023.

Kaiyan Chang, Ying Wang, Haimeng Ren, Mengdi Wang, Shengwen Liang, Yinhe Han, Huawei
Li, and Xiaowei Li. Chipgpt: How far are we from natural language hardware design. CoRR,
abs/2305.14019, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv, 2107.03374, July 2021. doi: 10.48550/arXiv.2107.03374.

Yonggan Fu, Yongan Zhang, Zhongzhi Yu, Sixu Li, Zhifan Ye, Chaojian Li, Cheng Wan, and
Yingyan Celine Lin. GPT4AIGChip: Towards Next-Generation AI Accelerator Design Automation

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

via Large Language Models. arXiv, 2309.10730, September 2023. doi: 10.48550/arXiv.2309.10730.
Accepted by ICCAD 2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv, 2501.12948, January 2025. doi: 10.48550/arXiv.2501.12948.

Nathan Lambert, Salman Khan, Sunabha Chatterjee, Shandong Wu, William Mitchell, Yuntian Deng,
Hang Gao, Saurav Pahadia, Roshni Sahoo, Xuechen Li, Anca Dragan, and Jacob Steinhardt.
Reinforcement learning with verifiable rewards: Grpo’s effective loss, dynamics, and success
amplification. arXiv, 2503.06639, March 2024. doi: 10.48550/arXiv.2503.06639.

Mingjie Liu, Teodor-Dumitru Ene, Robert Kirby, Chris Cheng, Nathaniel Ross Pinckney, Rongjian
Liang, Jonah Alben, Himyanshu Anand, Sanmitra Banerjee, Ismet Bayraktaroglu, Bonita
Bhaskaran, Bryan Catanzaro, Arjun Chaudhuri, Sharon Clay, Bill Dally, Laura Dang, Parik-
shit Deshpande, Siddhanth Dhodhi, Sameer Halepete, Eric Hill, Jiashang Hu, Sumit Jain, Brucek
Khailany, Kishor Kunal, Xiaowei Li, Hao Liu, Stuart F. Oberman, Sujeet Omar, Sreedhar Pratty,
Jonathan Raiman, Ambar Sarkar, Zhengjiang Shao, Hanfei Sun, Pratik P. Suthar, Varun Tej, Kaizhe
Xu, and Haoxing Ren. Chipnemo: Domain-adapted llms for chip design. CoRR, abs/2311.00176,
2023a.

Mingjie Liu, Nathaniel Ross Pinckney, Brucek Khailany, and Haoxing Ren. Invited paper: Verilogeval:
Evaluating large language models for verilog code generation. In IEEE/ACM International
Conference on Computer Aided Design, ICCAD. IEEE, 2023b.

Shang Liu, Wenji Fang, Yao Lu, Jing Wang, Qijun Zhang, Hongce Zhang, and Zhiyao Xie. Rtlcoder:
Fully open-source and efficient llm-assisted rtl code generation technique, 2024a. URL https:
//arxiv.org/abs/2312.08617.

Shang Liu, Wenji Fang, Yao Lu, Jing Wang, Qijun Zhang, Hongce Zhang, and Zhiyao Xie. Rtlcoder:
Fully open-source and efficient llm-assisted rtl code generation technique. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2024b.

Yao Lu, Shang Liu, Qijun Zhang, and Zhiyao Xie. Rtllm: An open-source benchmark for design rtl
generation with large language model. In Proceedings of the 29th Asia and South Pacific Design
Automation Conference, ASPDAC ’24. IEEE Press, 2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730–27744, 2022.

Hammond Pearce, Benjamin Tan, and Ramesh Karri. Dave: Deriving automatically verilog from
english. In Proceedings of the 2020 ACM/IEEE Workshop on Machine Learning for CAD, pp.
27–32, 2020.

Zehua Pei, Hui-Ling Zhen, Mingxuan Yuan, Yu Huang, and Bei Yu. Betterv: Controlled verilog
generation with discriminative guidance. In Forty-first International Conference on Machine
Learning, ICML. OpenReview.net, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv, 1707.06347, July 2017. doi: 10.48550/arXiv.1707.06347.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models. arXiv, 2402.03300, February 2024. doi:
10.48550/arXiv.2402.03300.

Shailja Thakur, Baleegh Ahmad, Hammond Pearce, Benjamin Tan, Brendan Dolan-Gavitt, Ramesh
Karri, and Siddharth Garg. Verigen: A large language model for verilog code generation. ACM
Trans. Design Autom. Electr. Syst., 2024.

11

https://arxiv.org/abs/2312.08617
https://arxiv.org/abs/2312.08617

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yunda Tsai, Mingjie Liu, and Haoxing Ren. Rtlfixer: Automatically fixing RTL syntax errors with
large language model. In Proceedings of the 61st ACM/IEEE Design Automation Conference, DAC.
ACM, 2024.

Ning Wang, Bingkun Yao, Jie Zhou, Xi Wang, Zhe Jiang, and Nan Guan. Large language model
for verilog generation with code-structure-guided reinforcement learning, 2025a. URL https:
//arxiv.org/abs/2407.18271.

Yiting Wang, Wanghao Ye, Ping Guo, Yexiao He, Ziyao Wang, Yexiao He, Bowei Tian, Shwai He,
Guoheng Sun, Zheyu Shen, Sihan Chen, Ankur Srivastava, Qingfu Zhang, Gang Qu, and Ang
Li. Symrtlo: Enhancing rtl code optimization with llms and neuron-inspired symbolic reasoning,
2025b. URL https://arxiv.org/abs/2504.10369.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. arXiv,
2201.11903, January 2022. doi: 10.48550/arXiv.2201.11903.

Stephen Williams. The icarus verilog compilation system. [Online], 2023. Available: https:
//github.com/steveicarus/iverilog.

Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yuqian Hong, Bryan Dai, Joey Zhou, Kai Qiu,
Zhirong Wu, and Chong Luo. Logic-rl: Unleashing llm reasoning with rule-based reinforcement
learning. arXiv, 2504.04253, April 2025. doi: 10.48550/arXiv.2504.04253.

Yiyao Yang, Fu Teng, Pengju Liu, Mengnan Qi, Chenyang Lv, Ji Li, Xuhong Zhang, and Zhezhi He.
Haven: Hallucination-mitigated llm for verilog code generation aligned with hdl engineers, 2025.
URL https://arxiv.org/abs/2501.04908.

Ruizhe Zhong, Xingbo Du, Shixiong Kai, Zhentao Tang, Siyuan Xu, Hui-Ling Zhen, Jianye Hao,
Qiang Xu, Mingxuan Yuan, and Junchi Yan. Llm4eda: Emerging progress in large language
models for electronic design automation. arXiv preprint arXiv:2401.12224, 2023.

12

https://arxiv.org/abs/2407.18271
https://arxiv.org/abs/2407.18271
https://arxiv.org/abs/2504.10369
https://github.com/steveicarus/iverilog
https://github.com/steveicarus/iverilog
https://arxiv.org/abs/2501.04908

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A LLM USAGE STATEMENT

In the development of this work, we employed several LLMs at different stages to enhance research
efficiency and quality. The specific applications are as follows:

Dataset Curation and Quality Control. After establishing the initial VeriReason framework, we
used GPT-4 to verify the correctness of code-specification alignments in our dataset and to generate
initial reasoning steps for each sample. These outputs were thoroughly reviewed and refined by
the authors to ensure accuracy. The LLM-generated reasoning served as a starting point that was
iteratively improved through our reasoning-distillation pipeline described in Section 3.3.2.

Experimental Analysis. During the evaluation phase, we used LLMs to help identify potential failure
modes in generated Verilog code and to suggest additional test cases for our testbench generation
pipeline. This process helped improve the robustness of our evaluation methodology, though all final
decisions and implementations were made by the authors.

Manuscript Polishing. We used LLMs as writing assistants to improve sentence structure, check
technical terminology consistency, and enhance manuscript clarity. All LLM-generated content was
critically reviewed and verified by the authors.

In line with ICLR 2026 policy on LLM usage, we note that all analyses, design choices, and
interpretations of results was thoroughly reviewed, validated, and often substantially modified by
the authors, who take full responsibility for the scientific integrity and accuracy of this paper. LLMs
served purely as tools to enhance productivity and are not authors of this work.

B GRPO ADVANTAGE ESTIMATION FOR MULTI-LEVEL REWARDS

For group size G with rewards distributed across syntax errors (n0), partial correctness (np), and full
correctness (nf), the variance comparison shows:

Varmulti =
1

G

[
n0(0− µ)2 + npVar[AST] + nf (2− µ)2

]

< Varbinary =
1

G

[
(n0 + np)(0− µb)

2 + nf (2− µb)
2
]

where µb = 2nf/G for binary rewards and µ includes AST contributions. Since Var[AST] <
(0− µb)

2, multi-level rewards reduce gradient variance.

Gradient preservation: Binary rewards give∇θJ = 0 for syntactically correct but functionally incor-
rect samples, while multi-level rewards provide ∇θJ ∝ ASTscore(o)− ¯AST, ensuring continuous
learning signals.

Convergence rate: ∥θk+1 − θ∗∥ ≤ ρk∥θ0 − θ∗∥ where ρmulti < ρbinary due to continuous AST
guidance.

C AST-BASED STRUCTURAL SIMILARITY CALCULATION

C.1 AST EXTRACTION ALGORITHM

The AST-based structural similarity score is computed by extracting and comparing key structural
elements from both generated and golden Verilog code. The extraction process identifies the following
components:

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Algorithm 1 Extract AST Statements from Verilog Code
1: Input: Verilog code string code
2: Output: List of AST statements statements
3: Remove all comments from code
4: Initialize statements← []
5: Extract Module Declaration:
6: Find module name and port list
7: statements.append("module {name}")
8: For each port: statements.append("port {port}")
9: Extract I/O Declarations:

10: For each type ∈ {input, output, inout}:
11: Find all declarations of type
12: statements.append("type [width] {name}")
13: Extract Variable Declarations:
14: For each type ∈ {wire, reg}:
15: Extract width and name
16: statements.append("type [width] {name}")
17: Extract Assign Statements:
18: For each assign statement:
19: statements.append("assign {lhs} = {rhs}")
20: Extract Always Blocks:
21: For each always block:
22: Extract sensitivity list
23: statements.append("always@({sensitivity})")
24: Extract control flow (if/else/case) within block
25: Extract Module Instantiations:
26: For each instance:
27: statements.append("instance {type} {name}")
28: Return statements

C.2 SIMILARITY SCORE CALCULATION

Given the extracted statements from generated code (Sg) and golden code (Sgold), the final AST
score is computed as:

Algorithm 2 Compute AST Similarity Score
1: Input: Generated statements Sg , Golden statements Sgold

2: Output: AST similarity score score ∈ [0, 1]
3: Compute sequence similarity: sim← SequenceMatcher(Sg , Sgold).ratio()
4: Convert to sets: Setg ← set(Sg), Setgold ← set(Sgold)
5: Compute coverage: cov ← |Setg∩Setgold|

|Setgold|

6: Compute redundancy: red← |Setg−Setgold|
|Setg|

7: Calculate weighted score: score← 0.7 · sim+ 0.3 · cov − 0.2 · red
8: Clamp to valid range: score← max(0,min(1, score))
9: Return score

C.3 SCORE COMPUTATION

Given generated statements set Sg and golden statements set Sgold:

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

sim = LevenshteinRatio(Sg, Sgold) (4)

cov =
|Sg ∩ Sgold|
|Sgold|

(5)

red =
|Sg \ Sgold|
|Sg|

(6)

ASTscore = min (1,max (0, 0.7 · sim+ 0.3 · cov − 0.2 · red)) (7)

where Sg \ Sgold denotes set difference (elements in Sg but not in Sgold).

D AUTOMATED TESTBENCH GENERATION

D.1 TESTBENCH GENERATION PIPELINE

Our automated testbench generation creates comprehensive test suites for Verilog modules by analyz-
ing specifications and generating diverse test vectors.

Algorithm 3 Generate Testbench for Verilog Module
1: Input: Module specification S, Module interface I
2: Output: Testbench code TB, Expected outputs E
3: Parse Module Interface:
4: Extract input ports: inputs← ParseInputs(I)
5: Extract output ports: outputs← ParseOutputs(I)
6: Identify signal widths and types
7: Identify Test Requirements:
8: Extract functional requirements from S
9: Determine boundary conditions

10: Identify edge cases from specification
11: Generate Test Vectors:
12: vectors← []
13: // Directed Testing
14: For each explicit requirement in S:
15: Generate specific test cases
16: vectors.append(directed_tests)
17: // Boundary Testing
18: For each input signal:
19: Add min/max values: {0, 2width − 1}
20: Add boundary transitions
21: // Constrained Random Testing
22: While |vectors| < 100:
23: Generate random inputs respecting constraints
24: Ensure coverage of untested combinations
25: vectors.append(random_test)
26: Generate Testbench Structure:
27: Create module instantiation
28: Initialize test vector application loop
29: Add output monitoring and logging
30: Write results to "test_vectors.txt"
31: Validate Testbench:
32: Run against golden implementation
33: Verify coverage ≥ threshold
34: Confirm detection of known-bad implementations
35: Return TB, E

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

D.2 TEST VECTOR GENERATION STRATEGIES

The testbench employs three complementary strategies to ensure comprehensive coverage:

Algorithm 4 Multi-Strategy Test Vector Generation
1: function GenerateTestVectors(inputs, spec, min_count = 100)
2: test_vectors← []
3: // Strategy 1: Directed Tests (30% of vectors)
4: For each functional requirement req in spec:
5: test_vectors.append(CreateDirectedTest(req))
6: // Strategy 2: Edge Cases (20% of vectors)
7: For each input in in inputs:
8: test_vectors.append({in 7→ 0, others 7→ random})
9: test_vectors.append({in 7→ 2width(in) − 1})

10: If in is clock/control signal:
11: Add transition tests
12: // Strategy 3: Random Coverage (50% of vectors)
13: coverage_map← InitializeCoverageGrid(inputs)
14: While |test_vectors| < min_count:
15: vector ← GenerateConstrainedRandom(inputs, spec)
16: If vector improves coverage_map:
17: test_vectors.append(vector)
18: UpdateCoverage(coverage_map, vector)
19: Return test_vectors

D.3 COVERAGE METRICS

Test vector coverage is validated using:

Functional Coverage =
|Tested Requirements|
|Total Requirements|

(8)

Input Coverage =
|Unique Input Combinations|
|Possible Combinations|

(9)

Boundary Coverage =
|Tested Boundaries|
2 · |Input Signals|

(10)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

E SAMPLE TRAINING DATASET

The following section demonstrates a sample entry from the training dataset used to train the
hardware optimization models. Each dataset entry contains a problem specification, implementation
requirements, and comprehensive test vectors for validation.

Problem Specification
You are tasked with creating a module that takes in two 16-bit unsigned numbers, a and b, and
outputs their sum. The sum output should be a 17-bit unsigned number to prevent overflow. You
are not allowed to use any built-in arithmetic operators or functions.
Create a module named adder that has the following inputs and outputs:

• Input a: a 16-bit unsigned number, Input b: a 16-bit unsigned number
• Output sum: a 17-bit unsigned number representing the sum of a and b

You may use any other verilog constructs to solve this problem.

Figure 3: Training Dataset Entry: Problem Specification

1. Requirement Analysis:
The module must compute the sum of two 16-bit unsigned inputs (a, b) and output a 17-bit
unsigned sum. No built-in adders/operators may be used.
2. Logical Design Decisions:
Manual bit-wise addition is necessary. For each bit, XOR forms the sum (with the carry-in),
while carry-out is calculated using bit-wise AND and carried forward. This ensures proper binary
addition and propagation of carries without +. The final carry becomes the most significant bit.
3. Implementation Choices:
Combinational logic is appropriate because the output should update immediately as inputs
change. Direct assignment with ‘assign‘ since this is best for power gating and quick changes.
This approach respects all constraints (no arithmetic ops), handles all bits and carry correctly,
and produces the required output in a clear hardware manner.

Figure 4: Training Dataset Entry: Design Reasoning

1module adder(
2input [15:0] a,
3input [15:0] b,
4output reg [16:0] sum
5);
6
7integer i;
8reg carry;
9always @(*) begin

10carry = 1'b0;
11// Loop through each bit
12for (i = 0; i < 16; i = i + 1) begin
13sum[i] = a[i] ^ b[i] ^ carry;
14carry = (a[i] & b[i]) | (a[i] & carry) | (b[i] & carry);
15end
16sum[16] = carry;
17end
18
19endmodule

Listing 1: Training Dataset Entry: Reference Implementation.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

1module adder_tb;
2
3// Inputs
4reg [15:0] a;
5reg [15:0] b;
6
7// Outputs
8wire [16:0] sum;
9

10// DUT instantiation
11adder uut (
12.a(a),
13.b(b),
14.sum(sum)
15);
16
17// File descriptor
18integer fd;
19integer i;
20integer error_count;
21reg [16:0] expected_sum;
22
23// Task to check result and report errors
24task check_result;
25input [15:0] a_in;
26input [15:0] b_in;
27input [16:0] sum_out;
28input [16:0] expected;
29begin
30if (sum_out !== expected) begin
31$display("ERROR: a=%h b=%h sum=%h expected=%h at time %0t",
32 a_in, b_in, sum_out, expected, $time);
33error_count = error_count + 1;
34end
35end
36endtask
37
38// Main stimulus with corner cases and randomized tests
39initial begin
40error_count = 0;
41fd = $fopen("test_vectors.txt", "w");
42
43// Corner case tests
44a = 16'h0000; b = 16'h0000; #1; // All zeros
45expected_sum = a + b;
46$fdisplay(fd, "%h %h %h", a, b, sum);
47check_result(a, b, sum, expected_sum);
48
49a = 16'hFFFF; b = 16'hFFFF; #1; // Maximum overflow
50expected_sum = a + b;
51$fdisplay(fd, "%h %h %h", a, b, sum);
52check_result(a, b, sum, expected_sum);
53
54// Randomized comprehensive testing
55for (i = 0; i < 90; i = i + 1) begin
56a = $random;
57b = $random;
58#1;
59expected_sum = a + b;
60$fdisplay(fd, "%h %h %h", a, b, sum);
61check_result(a, b, sum, expected_sum);
62end
63
64$display("Testing complete. Total errors: %0d", error_count);
65$fclose(fd);
66$finish;
67end
68
69endmodule

Listing 2: Training Dataset Entry: Comprehensive Testbench.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

1 A B Sum
2---------------
30000 0000 00000
4ffff ffff 1fffe
50000 ffff 0ffff
6ffff 0000 0ffff
78000 8000 10000
87fff 0001 08000
91234 4321 05555

10aaaa 5555 0ffff
110001 0001 00002
128000 7fff 0ffff
133524 5e81 093a5
14d609 5663 12c6c
157b0d 998d 1149a
168465 5212 0d677
17e301 cd0d 1b00e
18f176 cd3d 1beb3
1957ed f78c 14f79
20e9f9 24c6 10ebf
2184c5 d2aa 1576f
22f7e5 7277 16a5c
23d612 db8f 1b1a1
2469f2 96ce 100c0
257ae8 4ec5 0c9ad
26495c 28bd 07219
27582d 2665 07e92
286263 870a 0e96d
292280 2120 043a0
3045aa cc9d 11247
313e96 b813 0f6a9
32380d d653 10e60
33dd6b 2ad5 10840
344a02 3eae 088b0
35e91d 72cf 15bec
364923 650a 0ae2d
370aca 4c3c 05706
38bdf2 618a 11f7c
39b341 34d8 0e819
40f378 1289 10601
410deb 65b6 073a1
42f9c6 13ae 10d74
4302bc dd2a 0dfe6
449a0b be71 1587c
454185 554f 096d4
46603b 333a 09375
47327e 4b15 07d93
489bf1 4bd9 0e7ca
490762 fb4c 102ae
50559f a18f 0f72e
51a9f8 60b7 10aaf
52569f 945c 0eafb
53c05b 3789 0f7e4
543249 3ed0 07119
55c0d7 fc51 1bd28
562f96 7f0c 0aea2
57cec2 edc8 1bc8a
585a77 ed3d 147b4
59db12 007e 0db90
60816d e739 168a6
618f1f f6d3 185f2
622f85 8878 0b7fd
63595b 4b49 0a4a4
64ae3f af2a 15d69
656358 3886 09bde
660c8e f29c 0ff2a
6799fa bc26 15620
681773 b4a3 0cc16

Listing 3: Training Dataset Entry: Generated Test Vectors (Format: Input_A Input_B
Expected_Sum).

19

	Introduction
	Background
	Reinforcement Learning for LLM Reasoning

	Methodology
	Reinforcement Learning Framework
	Group Relative Policy Optimization (GRPO)

	Reward Model
	Data Preprocessing
	Data Filtration
	Reasoning Generation with Optimization
	Testbench Generation

	Experiments
	Experimental Setup
	Main Results
	Training Dynamics Analysis
	Reward Progression
	Reward Stability
	The effect of SFT and GRPO

	Conclusion
	Ethics Statement
	Reproducibility Statement
	LLM Usage Statement
	GRPO Advantage Estimation for Multi-Level Rewards
	AST-based Structural Similarity Calculation
	AST Extraction Algorithm
	Similarity Score Calculation
	Score Computation

	Automated Testbench Generation
	Testbench Generation Pipeline
	Test Vector Generation Strategies
	Coverage Metrics

	Sample Training Dataset

