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Abstract

We present TimeAutoDiff, a unified latent–diffusion framework that addresses four funda-
mental time-series tasks—unconditional generation, missing-data imputation, forecasting,
and time-varying-metadata conditional generation—within a single model that natively
handles heterogeneous features (continuous, binary, and categorical). We unify these tasks
through a simple masked-modeling strategy: a binary mask specifies which time–feature
cells are observed and which must be generated. To make this work on mixed data types, we
pair a lightweight variational autoencoder—which maps continuous, categorical, and binary
variables into a continuous latent sequence—with a diffusion model that learns dynamics
in that latent space, avoiding separate likelihoods for each data type while still capturing
temporal and cross-feature structure. Two design choices give TimeAutoDiff clear speed
and scalability advantages. First, the diffusion process samples a single latent trajectory
for the full time horizon rather than denoising one timestep at a time; this whole-sequence
sampling drastically reduces reverse-diffusion calls and yields an order-of-magnitude through-
put gain. Second, the VAE compresses along the feature axis, so very wide tables are
modeled in a lower-dimensional latent space, further reducing computational load. Across
six real-world datasets, TimeAutoDiff matches or surpasses strong baselines in synthetic se-
quence fidelity (discriminative, temporal-correlation, and predictive metrics) and consistently
lowers MAE/MSE for imputation and forecasting tasks. Time-varying-metadata condition-
ing unlocks real-world scenario exploration: by editing metadata sequences (e.g., regime
labels, environmental or policy indicators), practitioners can generate coherent families of
counterfactual trajectories that track intended directional changes, preserve cross-feature
dependencies, and remain conditionally calibrated—making “what-if” analysis practical.
Ablations attribute performance gains to whole-sequence sampling, latent compression,
and mask conditioning, while a distance-to-closest-record audit indicates strong generaliza-
tion with limited memorization. Code implementations of TimeAutoDiff are provided in
https://anonymous.4open.science/r/TimeAutoDiff-TMLR-7BA8/README.md.

1 Introduction

Time series with heterogeneous features are ubiquitous in both engineering and scientific domains, such
as financial markets combining continuous stock prices with categorical market sentiment indicators (Zou
et al., 2022), and healthcare systems (Theodorou et al., 2023) integrating continuous vital signs with discrete
treatment variables.

The recent emergence of diffusion models (DMs) (Ho et al., 2020; Song et al., 2020b) has garnered significant
attention across scientific disciplines, achieving remarkable success in diverse domains, including image
synthesis (Rombach et al., 2022), tabular data generation (Zhang et al., 2023b), molecular modeling (Xu
et al., 2023), and audio synthesis (Zhang et al., 2023a). The diffusion model consists of two processes. In the
forward process, data are progressively perturbed until they resemble pure Gaussian noise, while a neural
network is trained to estimate the noise added at each diffusion step. In the reverse process, the trained
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Figure 1: The overview of TimeAutoDiff (Unconditional Generation): the model has three components:
(1) pre- and post-processing steps for the original (i.e., XOrig) and synthesized data (i.e., X̃Post); (2) VAE for
training encoder and decoder, and for projecting the pre-processed data to the latent space; (3) Diffusion
model for learning the distribution of projected data in latent space and generating new latent data. Note
that the dimension of the latent matrix ZLat

0 ∈ RT×F is set to be the same as that of the original data.

denoising network generates new samples by iteratively removing noise, starting from random Gaussian noises.
Time series community has recently adopted DMs for downstream tasks (Yang et al., 2024b) for their abilities
of generating high quality, complex sequences. Nonetheless, existing models primarily focus on continuous
time series data, which is suboptimal for tasks involving heterogeneous features. (The modeling efforts for
time series with heterogeneous features are surprisingly sparse.) Additionally, most models lack versatility,
typically being capable of performing only a single task.

In this paper, we propose a novel approach designed to overcome the aforementioned constraints by utilizing
a smooth continuous latent space, named TimeAutoDiff. Our framework is structured as a Variational
Autoencoder (VAE) (Kingma & Welling, 2013), with DMs functioning on the latent space. The model
is designed for ‘multi-task’ functionalities, capable of performing four distinct tasks on time series with
heterogeneous features: (1) unconditional time series generation (Yoon et al., 2019; Naiman et al., 2023),
(2) missing data imputation (Tashiro et al., 2021; Wang et al., 2023b). (3) forecasting (Nie et al., 2022;
Naiman et al., 2024), and (4) time-varying metadata conditional generation (hereafter referred to
as TV-MCG) (Narasimhan et al., 2024). Technically, these four tasks can be framed within the context of
conditional distribution modeling, where the goal is to generate target data given observed data, inspired by
the idea used in masked language modeling (Devlin, 2018). To the best of our knowledge, we are the first
work to incorporate heterogeneous features into latent space modeling for multi-task time series generations.

A unique advantage of TimeAutoDiff is that unlike previous DM methods operating in the feature domain (Tian
et al., 2023), we explicitly incorporate a latent space to capture the complex structures of time series with
heterogeneous features. This framework exhibits several strengths. First, projecting the raw data to continuous
latent space avoids direct modeling of complicated likelihood of heterogeneous features in the original data
space (VAE’s role), and leverages the power of DMs for modeling distributions in the continuous space, and
is therefore more expressive. Second, working on the latent space allows the model to capture complicated
dependent structures along feature and temporal dimensions of data naturally without sophisticated modeling
of heterogeneous issues. Third, the latent space allows for training and sampling in a lower dimensionality,
reducing generative modeling complexity by compressing data along feature dimensions and facilitating
efficient modeling of high-dimensional features. Lastly, the latent space approach simplifies modeling by
transforming P (heterogeneous | heterogeneous) into the more tractable P (continuous | heterogeneous). This
enables efficient handling of diverse heterogeneous features as conditions, crucial for tasks like imputation,
forecasting, and TV-MCG. Our framework, inspired by successes in text-guided image generation (Rombach
et al., 2022), offers a unified solution for complex, heterogeneous data that would be challenging to model
otherwise.
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Models Hetero. Single-Seq. Multi-Seq. Cond. Gen. Applicability Code Sampling Time
TimeAutoDiff ✓ ✓ ✓ ✓ ✓ ✓ 3
TimeDiff (Tian et al., 2023) ✓ ✓ ✗ ✗ ✗ ✗ –
Diffusion-ts (Yuan & Qiao, 2023) ✗ ✓ ✗ ✗ ✓ ✓ 5
TSGM (Lim et al., 2023) ✗ ✓ ✗ ✗ ✓ ✓ 6
TimeGAN (Yoon et al., 2019) ✗ ✓ ✗ ✗ ✓ ✓ 2
DoppelGANger (Lin et al., 2020) ✗ ✓ ✗ ✗ ✓ ✓ 1
EHR-M-GAN (Li et al., 2023) ✓ ✓ ✗ ✗ ✗ ✓ –
CPAR (Zhang et al., 2022) ✓ ✗ ✓ ✗ ✓ ✓ 4
TabGPT (Padhi et al., 2021b) ✓ ✗ ✓ ✗ ✗ ✓ –

Table 1: A comparison table that summarizes TimeAutoDiff against baseline methods, evaluating metrics
like heterogeneity, single- and multi-sequence data generation, conditional generation, applicability (i.e.,
whether the model is not designed for specific domains), code availability, and sampling time. Baseline models
without domain specificity and with available code are used for numerical comparisons. The sampling time
column ranks models by their speed, with lower numbers indicating faster sampling.

2 Relevant Literatures

In this section, we focus on the topics most relevant to our work: time series data generation and heterogeneous
tabular modeling.

Heterogeneous Non-time series-tabular Modeling: For mixed-type tables, GAN methods such as
CTGAN (Xu et al., 2019) and its extensions CTABGAN (Zhao et al., 2021) and CTABGAN+ (Zhao et al., 2022)
popularized adversarial synthesis for categorical–continuous data (Goodfellow et al., 2020). Diffusion-based
tabular synthesizers soon showed advantages, with Stasy (Kim et al., 2022) outperforming GANs on several
tasks, although classical diffusion processes (Ho et al., 2020; Song et al., 2020b) are not inherently tailored to
heterogeneity. Subsequent work addressed this via tailored stochastic processes and objectives—e.g., Doob’s
h-transform for categorical variables (Liu et al., 2022), TabDDPM (Kotelnikov et al., 2022) and CoDi (Lee et al.,
2023), which combine discrete/continuous diffusion (Song et al., 2020b; Hoogeboom et al., 2022) and employ
contrastive co-evolution (Schroff et al., 2015). Most recently, latent diffusion has emerged as a simple and
effective unifying strategy: AutoDiff (Suh et al., 2023) and TabSyn (Zhang et al., 2023b) first compress
heterogeneous tables with an autoencoder and then learn a diffusion model in the continuous latent space,
demonstrating strong fidelity and utility across diverse tabular benchmarks (see Appendix D for a detailed
comparison with TabSyn).

Unconditional Time Series Data Generation: Early work adopts GANs: TimeGAN (Yoon et al.,
2019) learns a latent sequence representation with an autoencoder–adversarial scheme, followed by
healthcare-oriented variants such as EHR-Safe (Yoon et al., 2023), which integrates an encoder–decoder
with a GAN, and EHR-M-GAN (Li et al., 2023), which employs type-specific encoders; however, GANs remain
sensitive to non-convergence and mode collapse (Goodfellow et al., 2020). Diffusion models then gain traction:
TimeDiff (Tian et al., 2023) couples multinomial diffusion for discrete variables with Gaussian diffusion for
continuous ones to synthesize mixed-type EHR sequences; TSGM (Lim et al., 2023) uses a latent conditional
score-based diffusion for continuous series; and Diffusion-TS (Yuan & Qiao, 2023) combines a transformer
autoencoder with latent diffusion to capture temporal dynamics. Beyond these, GPT-style and parametric
approaches include TabGPT (Padhi et al., 2021b), a GPT-2 based synthesizer for mixed-type time-series
tables, and CPAR (Zhang et al., 2022), which assigns different parametric models to heterogeneous variables
in multi-sequence tabular settings. Despite progress, accurately modeling cross-feature correlations while
handling complex temporal dependencies across data types remains challenging.

Imputation & Forecasting for Time Series Data: Several recent methods addressed time series tasks
like filling missing data and predicting future values. For filling in missing data, CSDI (Tashiro et al., 2021)
studied the imputations of continuous time series tabular data through a diffusion-based framework. The main
idea was to employ specially designed masks; masking the observed data, and letting the model predict the
masked values in the observations, i.e., self-supervised learning. Then, the trained model could impute the real
missing parts of the table by treating them as masked observations. FiLM (Zhou et al., 2022) used a memory

3



Under review as submission to TMLR

A  𝑀𝑈 = 𝐼 C  𝑀𝑡,𝑓
𝐹 = 𝕀(𝑡 > 𝑤)B  𝑀𝑡,𝑓

𝐼 = 𝕀(𝑋𝑡,𝑓 𝑖𝑠 𝑚𝑖𝑠𝑠𝑖𝑛𝑔. )

T
em

p
o
ra

l A
x
is

Feature Axis

𝑤

Target mask Conditioning mask

D  𝑀𝑡,𝑓
𝑀 = 𝕀(𝑓 ∈ ℱ)

Figure 2: Illustration of four binary-mask patterns M (shaded cells = 1) on a T × F time–series
grid: (A) Unconditional Generation (MU ): all T × F entries shaded. (B) Missing-Data Imputation
(MI

t,f = 1(Xt,f is missing)): shaded cells mark missing entries, and unshaded cells indicate observed values.
(C) Forecasting (MF

t,f = 1(t > w)): only rows with t > w shaded, the first w rows serve as conditioning. (D)
Metadata-Conditional (MM

t,f = 1(f ∈ F)): only columns corresponding to features in F are shaded at every
t.

system and noise-filtering techniques to capture long-term patterns efficiently. Meanwhile, DLinear (Zeng
et al., 2023) broke time series into seasonal and trend parts, using simple linear models to match or outperform
complex Transformer models, offering a fast and lightweight option. TimesNet (Wu et al., 2022) organized
time series into a 2D format to highlight repeating patterns, using advanced convolution techniques to
capture both short-term and long-term trends, which helped with both predicting future values and filling
in missing data. MICN (Wang et al., 2023a) blended local and overall patterns in time series data using a
mix of standard and specialized convolution methods across different scales, boosting long-term prediction
accuracy while keeping computations fast. Time-LLM (Jin et al., 2023) adapted a pre-trained language model
using text-based guides and a special input format to predict time series values, achieving strong results
with little or no extra training. MOMENT (Goswami et al., 2024) trained a large Transformer model on a wide
range of time series data, teaching it to fill in missing parts, creating a versatile model that worked well
for predicting future values, filling gaps, classifying patterns, and detecting anomalies with minimal extra
training. TEFN (Zhan et al., 2024) used a method to measure both feature-specific and time-based patterns
in data, combining them to make accurate and reliable long-term predictions. Finally, TimeMixer (Wang
et al., 2024) blended patterns across different time scales using a simple, fast model (MLP-only architecture),
combining specialized predictors to achieve top results for both short-term and long-term forecasting.

Time-Varying Metadata Conditional Generation: The only work on TV-MCG we are aware of is
Timeweaver (Narasimhan et al., 2024), which formulates conditional generation as diffusion conditioned
on heterogeneous, time-varying metadata Xcon: categorical and continuous metadata are tokenized, fused
via self-attention into a time-aligned conditioning sequence, and injected into a CSDI-style denoiser to
learn P (Xtar | Xcon), enabling metadata-controllable synthesis. Unlike Timeweaver, which restricts Xtar to
continuous variables, TimeAutoDiff supports heterogeneous Xtar (continuous, binary, categorical).

3 Problem Setting

Let X := [x1, . . . ,xT ]⊺ ∈ RT×F be a T -sequence time series tabular data with heterogeneous features. Each
observation xj := [xDisc,j ,xCont,j ] is an F dimensional feature vector that includes both discrete (xDisc,j) and
continuous (xCont,j) variables. Throughout this paper, we assume that there are B i.i.d observed sequences
(i.e., {Xi}Bi=1) sampled from P (X). Every record is timestamped in the ‘YEAR-MONTH-DATE-HOUR’
format. Notably, these timestamps (i.e, tsi ∈ RT×4, i ∈ {1, . . . , B}) may differ across sequences within the
same batch (i.e, tsi ̸= tsj ,∀i ̸= j) and are treated as auxiliary variables that can be leveraged during training
and inference. (This will be more detailed in Subsection 4.4.)

Our goal is to model the conditional distribution Pθ
(
Xtar | Xcon,M

)
, where M ∈M is a binary mask that

specifies which entries belong to target output (i.e., Xtar). In other words, the target data Xtar := M⊙X
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and the conditioning data Xcon := (I−M)⊙X with I being a matrix all entries are 1s. Here, ⊙ denotes
element-wise matrix multiplication. A family of the binary masks M ∈ {0, 1}T×F provides a unified framework
that supports four different time series tasks framed under conditional distributional modeling:

1. Unconditional Generation: Setting MU = I (all entries are 1) makes Xcon = 0 (all entries are 0)
inducing unconditional generation.

2. Missing Data Imputation: The mask identifies missing entries in the data as MI
t,f =

1(Xt,f is missing.),∀t ∈ {1, . . . , T}, f ∈ {1, . . . , F}.
3. Forecasting: Given a lookback window of size w ∈ {1, 2, . . . , T − 1}, the mask is defined as

MF
t,f = 1(t > w) for all f ∈ {1, . . . , F}, where 1(t > w) is the indicator function with values 1 for

t > w, and 0 otherwise.
4. Metadata Conditional Generation: For a fixed set of features F := {fi : i ∈ {1, . . . , F}} and all

time steps t ∈ {1, . . . , T}, the mask is set to MM
t,f = 1(f ∈ F).

This formulation imposes no parametric assumptions on w, feature indices f , or missingness patterns.
Experimental settings for each case are detailed in Section 5.

4 Method

In this section, we formally introduce our model, TimeAutoDiff, which extends recent advances in latent
diffusion for image (Rombach et al., 2022) and tabular data generation (Zhang et al., 2023b; Suh et al.,
2023). Unlike these domains, heterogeneous time series require tailored architectural choices: a customized
encoder-decoder in the VAE (Section 4.3) and a domain-aware denoising module in the diffusion model
(Section 4.4) to effectively capture inductive biases specific to temporal data. We begin with the overall
training objective in Section 4.1, followed by pre- and post-processing strategies in Section 4.2. Sections 4.3
and 4.4 detail the VAE and DDPM components, respectively. The training and sampling procedures are
summarized in Section 4.5,

4.1 Objective function

Let Θ = (ϕ, ψ, θ) denote the parameters involved in TimeAutoDiff where each parameter character-
izes the encoder (i.e., qϕ), decoder (i.e., Pψ), and diffusion prior (i.e., Pθ) distributions, respectively.
The model (i.e., PΘ) estimates the conditional distribution P (Xtar | Xcon,Mtask) with given samples
{
(
Xtar,(i),Xcon,(i),Mtask,(i))}Bi=1 ∼ P

(
Xtar,Xcon,Mtask) by minimizing the ELBO loss (i.e., LELBO :=

LVAE + LDM) of the following negative log-likelihood:

− logPΘ
(
Xtar | Xcon,Mtask)

≤ Eqϕ

[
− logPψ

(
Xtar | Xcon,ZLat

0 ,Mtask)]+DKL
(
qϕ
(
ZLat

0 | Xtar,Xcon) || N (0, ITF×TF
))︸ ︷︷ ︸

:=LVAE

+ Eqϕ

[
− logPθ

(
ZLat

0 | Xcon)]︸ ︷︷ ︸
≤LDM

+ Constant.

The DKL(P || Q) is a KL-divergence between two probability measures P and Q, and ITF×TF is an identity
matrix of dimension TF × TF . A simple proof of the above ELBO loss is provided in Appendix A.

As reflected in the reconstruction term of LVAE, the VAE component takes both Xtar and Xcon as input
to the encoder (i.e., qϕ), which outputs the latent representation ZLat

0 . The decoder then reconstructs Xtar

conditioned on ZLat
0 , Xcon, and the task-specific mask Mtask. This design enables the latent representation

to capture richer context from the full input X = Xtar + Xcon, and empirically leads to more stable training
compared to using Xtar alone as input to the encoder. The diffusion prior, Pθ, models the conditional
distribution P

(
ZLat

0 | Xcon). The model parameter θ can be estimated through minimizing the ELBO loss of
− logPθ

(
ZLat

0 | Xcon), denoted as LDM . The further descriptions on LVAE and LDM will be specified in the
following sections.
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4.2 Pre- and post-processing steps in TimeAutoDiff

It is essential to pre-process the real tabular data in a form that the machine learning model can extract the
desired information from the data properly. We divide the heterogeneous features into two categories; (1)
continuous, and (2) discrete. Following is how we categorize the variables and process each feature type. Let
x be the column of a table to be processed.

1. Continuous Features: A column x is treated as a continuous (numerical) feature if its entries are
real-valued, or if they are integers with more than 25 unique values (e.g., “Age”). The threshold
of 25 is a user-defined hyperparameter to distinguish high-cardinality integer features from discrete
ones. All continuous features are normalized to the range [0, 1] using min-max scaling (Yoon et al.,
2019). The processed output is denoted by xProc

Num.

2. Discrete / Categorical Features: A column x is categorized as discrete if its entries are of
string type (e.g., “Gender”), or if it consists of integers with fewer than 25 distinct values. During
preprocessing, each unique value in x is mapped to a non-negative integer index. We further divide
these into binary and categorical types: xProc

Bin for variables with exactly two categories, and xProc
Cat for

those with more than three categories.

3. Post-processing: Once the TimeAutoDiff model generates synthetic data, we apply inverse transfor-
mations to recover the original format. For continuous features, this involves reversing the min-max
scaling. For discrete features, the integer-encoded values are mapped back to their original categorical
or string representations.

4.3 Variational Autoencoder in TimeAutoDiff

In this section, encoder, decoder, objective function and training of VAE will be introduced.

Encoder in VAE: We begin with the pre-processed input data

X = Xtar + Xcon := [xProc
Disc ; xProc

Cont] ∈ RT×F ,

where xProc
Disc ∈ RT×m contains discrete (binary and categorical) features, and xProc

Cont ∈ RT×c contains continuous
features, with F = m+ c.

For discrete features xj (j ∈ {1, . . . ,m}), we map their values into a d-dimensional embedding space
e(xj(t)) ∈ Rd using a lookup table e(·) ∈ Rd, where d = 128. This embedding approach, motivated by
TabTransformer (Huang et al., 2020), allows the model to easily differentiate discrete classes across columns.
For a continuous feature value ν = xProc

Cont(t, i), we employ a frequency-based representation (in short ‘FR’ for
later use in Figure 5):

ni(ν) := Linear
(
SiLU

(
Linear

(
[sin(20πν), cos(20πν), . . . , sin(27πν), cos(27πν)]

)))
∈ Rd, (1)

which captures high-frequency variations in continuous signals. This leverages the spectral bias of deep
networks towards low-frequency functions (Rahaman et al., 2019), ensuring better reconstruction fidelity for
continuous features.

At each time step t, we concatenate the discrete and continuous embeddings:

E(t) :=[e(x1(t)); . . . ; e(xm(t));n1(xProc
Cont(t, 1)); . . . ;nc(xProc

Cont(t, c))] ∈ R(m+c)d.

Applying an MLP block at each timestep and stacking the outputs gives

Emb(XProc) = [MLP(E(1)); . . . ; MLP(E(T ))]⊤ (2)
= [f1, f2, . . . , fT ]⊤ ∈ RT×F .

The output from the MLP block, [f1, f2, . . . , fT ]⊤ ∈ RT×F , is fed into two separate RNNs, each unfolded
over T steps, to model the mean and covariance of the latent distribution. Specifically, these RNNs process
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Figure 3: Schematic architecture of the encoder in the variational autoencoder (VAE). The encoder
takes pre-processed multivariate time series input X = [xProc

Disc ; xProc
Cont] ∈ RT×F composed of m discrete and c

continuous features, where F = m+ c. Discrete features are embedded via a lookup table e(·) ∈ Rd, while
continuous features are transformed using frequency-based representations equation 1 to capture spectral
information. At each time step t, the embeddings are concatenated into E(t) ∈ R(m+c)d and passed through
an MLP to yield feature embeddings ft ∈ RF . The full sequence {ft}Tt=1 is then processed independently by
two RNNs to model temporal dependencies: one RNN estimates the mean vector µ ∈ RT×L, and the other
the log-variance log σ2 ∈ RT×L of the approximate posterior. The latent trajectory ZLat

0 ∈ RT×L is obtained
by sampling via the reparameterization trick: ZLat

0 = µ + E⊙Σ, where Σ = exp(0.5 log σ2) and E ∼ N (0, I).
This encoder compresses the feature dimension from F to L while preserving temporal resolution.

{fj}Tj=1 to capture temporal dependencies. The final hidden states are then passed through fully connected
(FC) layers (see Figure 3) to produce:

µ := [µ1, . . . , µT ]⊤ ∈ RT×L,

log σ2 := [log σ2
1 , . . . , log σ2

T ]⊤ ∈ RT×L.

Sampling from these parameters via the reparameterization trick yields:

ZLat
0 := µ+ E⊙Σ ∈ RT×L,

where Σ = exp
( 1

2 log σ2) and E ∈ RT×L whose entries are drawn from N (0, 1). Note that the compression
into this lower-dimensional latent space occurs along the feature dimension, reducing it from F to L(≤ F ).

Dencoder in VAE: The decoder reconstructs the binary, categorical, and numerical components of the
target data Xtar from latent representations conditioned with Xcon. Given a latent feature tensor ZLat

0 ∈ RT×L

through a MLP block:
Hdec = MLP(ZLat

0 ) ∈ RT×h,

where h = hidden_size.

The decoder incorporate conditioning information Xcon ∈ RT×F . This conditioning data is embedded through
the operation equation 2 (i.e., Emb(Xcon)) and projected into the hidden space. The resulting conditional
embedding is added to Hdec, enabling context-dependent reconstruction:

H̃dec = Hdec + Linear(Emb(Xcon)).

Additionally, to handle masked values and produce modality-specific reconstructions, the decoder uses the
provided mask Mtask ∈ {0, 1}T×F to create separate masks for binary (Mbin), categorical (M(i)

cat), and

7
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Figure 4: VAE decoder with conditioning and modality-specific masking. A latent trajectory ZLat
0

is mapped by an MLP to a hidden sequence Hdec. Conditioning information Xcon is embedded (Emb) and
projected with a Linear layer, then added to the hidden state to form H̃dec = Hdec + Linear(Emb(Xcon)),
injecting context at every time step. From H̃dec, three modality-specific heads produce targets: Binary —
Linear(H̃dec) + Mbin → xtar

Bin (logits with an additive mask that biases masked positions); Categorical —
for each categorical variable i, Linear[i](H̃dec) + M(i)

cat → xtar,i
Cat (class logits with an additive mask that routes

masked entries to a designated class, e.g., index 0); Numerical — σ(Linear(H̃dec))⊙Mnum → xtar
Num (values

with a multiplicative elementwise gate). Type-specific masks {Mbin, M(i)
cat, Mnum} are derived from the task

mask Mtask by splitting and reshaping according to feature types, so that binary/categorical channels use
additive logit biasing while numerical channels use elementwise gating.

numerical (Mnum) features. These newly formed masks are adjusted such that masked inputs are effectively
forced to zero for binary, categorical and numerical features, ensuring coherent reconstructions even in the
presence of unobserved entries.

Mnum ∈ RT×nnums , Mbin ∈ RT×nbins ,

{M(i)
cat}

ncats
i=1 , M(i)

cat ∈ RT×cati .

Here, nbins, ncats, and nnums are the counts of binary, categorical, and numerical features, respectively, and
cati is the cardinality of i-th categorical feature. These modality-specific masks are constructed as follows:

• Numerical Mask: Mnum is identical in shape and values to the corresponding numerical portion
of M. Thus, masked values are directly mapped to zeros, making no predictions are produced for
masked numerical entries.

• Binary Mask: Mbin retains the same shape as the binary portion of M, but any zero-valued entries
are replaced with a large negative constant. This effectively suppresses any positive predictions and
forces the model to output zeros for masked binary features.

• Categorical Mask: For each categorical feature i, M(i)
cat is expanded along the category dimension,

and any zero-valued entries of the original mask are assigned a large positive constant at the first
category index. This ensures that masked categorical inputs are consistently mapped to a designated
“masked” category (assigned index 0), concentrating the predicted probability mass on that category.

Equipped with the well-designed masks Mbin, {M(i)
Cat}

ncats
i=1 , Mnum, the final outputs of decoder is X̂tar :=

[xtar
Bin, {x

tar,i
Cat }

ncats
i=1 ,xtar

Num]:

xtar
Bin = Linear(H̃dec) + Mbin ∈ RT×nbins .

xtar,i
Cat = Linear[i](H̃dec) + M(i)

cat ∈ RT×cati .

xtar
Num = σ(Linear(H̃dec))⊙Mnum ∈ RT×num,

where σ(·) denotes a sigmoid function.

8



Under review as submission to TMLR

Obj. function & Training of VAE: The reconstruction error ℓrecons(Xtar, X̂tar) in the VAE is defined as
the sum of mean-squared error (MSE), binary cross entropy (BCE), and cross-entropy (CE) between the
target tuple Xtar := [xtar

Bin,xtar
Cat,xtar

Num] and the output tuple from decoder X̂tar := [xOut
Bin ,xOut

Cat ,xOut
Num]:

BCE(xtar
Bin,xOut

Bin ) + CE(xtar
Cat,xOut

Cat ) + MSE(xtar
Num,xOut

Num).

We use β-VAE (Higgins et al., 2017), where a coefficient β(≥ 0) balances between the reconstruction error
and KL-divergence of N (0, ITF×TF ) and ZLat

0 ∼ N (vec(µ),diag(vec(σ2)). The notations vec(·) and diag(·)
are vectorization of input matrix and diagonalization of input vector, respectively. Finally, we minimize the
following objective function LVAE for training:

LVAE := ℓrecons(Xtar, X̂tar) + βDKL
(
N (vec(µ),diag(vec(σ2))) || N (0, ITF×TF )

)
. (3)

Our model does not require the distribution of embeddings ZLat
0 to strictly follow a standard normal

distribution, as the diffusion model additionally handles the distributional modeling in the latent space.
Therefore, following Zhang et al. (2023b), we adopt the adaptive schedules of β with its maximum value set
as 0.1 and minimum as 10−5, decreasing the β by a factor of 0.7 (i.e., βnew = 0.7βold) from maximum to
minimum whenever ℓrecons fails to decrease for a predefined number of epochs. The effects of β-scheduling
will be more detailed in Section 5.

4.4 Diffusion Model in TimeAutoDiff

In this section, our customized DDPM and a newly designed denoiser ϵθ in TimeAutoDiff are introduced.

Let ZLat
0 ∈ RT×L be the initial latent matrix derived from the VAE, and let ZLat

n := [zLat
n,1 , zLat

n,2 , . . . , zLat
n,L]

represent the latent matrix corrupted by noises after n ∈ {1, 2, . . . , N} diffusion steps. Here, zLat
n,j ∈ RT is the

j-th column of ZLat
n . The noising process is applied column-wise, independently for each j ∈ [L], according to:

q(zLat
n,j |zLat

0,j ) = N
(√
ᾱnzLat

0,j , (1− ᾱn) · IT×T
)
,

where ᾱn =
∏n
i=1 αi and {αi}ni=1 ∈ [0, 1]n is a decreasing sequence. We employ a linear noise schedule (Ho

et al., 2020). Further details on DDPM are provided in Appendix F.

Conceptually, each column of ZLat
0 is treated as a discretized univariate time series in the latent space, and noise

is added independently to each column. However, this does not preclude modeling cross-feature dependencies
in ZLat

0 (Biloš et al., 2023). Although the forward diffusion corrupts columns independently, the reverse
(denoising) process operates on the entire latent matrix simultaneously, capturing inter-feature correlations.
A similar approach has been adopted in TabDDPM (Kotelnikov et al., 2022) for categorical data modeling.
Under this formulation, we can write: ZLat

n =
√
ᾱnZLat

0 +
√

1− ᾱnEn, where En := [ϵn1 , . . . , ϵnF ] ∈ RT×F and
each ϵnj ∼ N (0, IT×T ).

The training objective is the evidence lower bound (ELBO) defined as:

LDM := En,En

[
∥ϵθ(ZLat

n ,Xcon, n, t, ts)−En∥2
2
]
, (4)

where ϵθ is a neural network that predicts the noise En at a uniformly sampled diffusion step n ∼
Unif{1, . . . , N}.

Given the noisy latent matrix ZLat
n ∈ RT×F , conditional data Xcon ∈ RT×F , the diffusion step n ∈ {1, . . . , N},

a normalized time vector t = {t1, . . . , tT } where ti = i
T , and additional timestamp information ts, goal of the

denoiser ϵθ is to predict the added noise En ∈ RT×F at step n.

Design of ϵθ: First, we encode the diffusion step n and the normalized time vector t using positional
encodings (PE), as described in the Vaswani et al. (2017). These encodings make the model aware of the
current diffusion progression and the temporal ordering of rows in ZLat

n .

Since t alone provides limited temporal context, we enhance it with cyclic date-time encodings for ‘YEAR-
MONTH-DATE-HOURS’. These cyclical encodings are computed via sine and cosine transformations:

CE(ts) :=
{(

sin( x
Period×2π ), cos( x

Period×2π )
)}

: Period ∈ {YEAR,MONTH,DATE,HOURS}
}
.
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Figure 5: The schematic architecture of the denoising model ϵθ(ZLat
n , n, t, ts) in the diffusion

framework. The inputs to the model ϵθ include the noisy latent matrix ZLat
n at the nth diffusion step, the

diffusion step index n, the normalized time points t, and the periodic timestamp embeddings ts, projected
through a multilayer perceptron (MLP). When conditional data Xcon = [cdisc, ccont] is available, it is embedded
using a word embedding (WE) for discrete variables and frequency-based representations (FR) for continuous
variables, producing Zcon := Emb(Xcon). These embeddings are processed through a Bi-directional RNN
(Bi-RNN) to capture temporal correlations, and the output is linearly projected and fused with ZLat

n to
produce Z′

n. All components—Z′
n, n, t, and ts—are passed through positional encodings and MLPs before

concatenation. Here,
⊕

denotes matrix summation. The final block of RNNs, followed by layer normalization
or fully connected layers (LN/FC), produces the timestep-wise prediction of noise ϵθ(ZLat

n , n, t, ts).

and yield an 8-dimensional representation per timestamp. Here, Period is chosen based on the temporal
granularity of the dataset (e.g., total number of years till today (for instance, 2025), 12 for months, 365 for
days, and 24 for hours). This augmented timestamp information ts is projected through an MLP to match
the dimension of the other encoded inputs. See Figure 5.

Similarly, if conditional data Xcon is provided, it is processed through the same embedding procedures
described in the VAE encoder (i.e., discrete features via lookup embeddings and continuous features via
frequency-based encodings in equation 2), denoting Zcon := Emb(Xcon).

Next, we integrate the conditional embeddings Zcon with the noisy latent matrix ZLat
n . The relation

Z′
n = Linear(ZLat

n ) + Linear(Bi-RNN(Zcon))

defines a fused latent representation Z′
n. In this construction, ZLat

n encodes the corrupted latent factors
at diffusion step n, while Zcon contains temporally aligned conditional embeddings that have been further
processed through a Bi-directional RNN (Bi-RNN) (Schuster & Paliwal, 1997) to capture sequence-level
dependencies among the conditional variables. Each of these two components—ZLat

n and Bi-RNN(Zcon)—is
passed through its own linear mapping, ensuring both latent representations share a compatible feature space.

Next, we concatenate all encodings—Z′
n, the positional encodings of n and t, and the augmented timestamp

encodings from ts—into a single tensor. This concatenated representation is passed through another MLP:

N = MLP([Z′
n,PE(n),PE(t),CE(ts)]) ∈ RT×F .

To capture temporal dependencies along the sequence length T , we feed N into a Bi-RNN, similar to the
approach taken by Tian et al. (2023). The Bi-RNN processes the entire sequence {N(t1), . . . ,N(tT )} forward
and backward in time, producing a context-aware representation for each time step.

After applying layer normalization and a final fully-connected layer to the Bi-RNN outputs, ϵθ generates:

[ϵθ(t1), . . . , ϵθ(tT )]⊤ ∈ RT×F ,

which serves as the estimate of the noise En at the given diffusion step n.

10
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4.5 Training & Inference of TimeAutoDiff

In this section, we give the detailed procedures on training and sampling of TimeAutoDiff.

Training: While the training objectives for the VAE (i.e., LVAE) and the DDPM (i.e., LDM) are defined
in equation 3 and equation 4, it remains unclear whether to train these models sequentially (Rombach
et al., 2022) or in a joint manner (Vahdat et al., 2021). Recent research on latent DMs for image (Rombach
et al., 2022), molecule (Xu et al., 2023), and tabular (Suh et al., 2023; Zhang et al., 2023b) generation
indicates that a two-stage training approach usually achieves superior results, which we also observe in our
experiments. Specifically, we first train the VAE with regularization and then train the latent DMs on the
latent representations produced by the pre-trained encoder. A formal description of this procedure is provided
in Algorithm 1.

Inference: A generative process, defined as Pθ,ψ(Xtar,ZLat
0 | Xcon,Mtask) := Pθ(ZLat

0 | Xcon)Pψ(Xtar |
ZLat

0 ,Xcon,Mtask) operates in two steps. First, given Xcon, the trained diffusion prior pθ samples a new
latent matrix ZLat

0 . Next, the decoder takes
(
Xcon,ZLat

0 ,Mtask) as input and generates a new sample, where
Mtask ∈ M is a user-defined mask for specific time-series tasks. Finally, after post-processing, the final
sample XNew is obtained. The sampling procedure is detailed in Algorithm 2.

Algorithm 1 Training Algorithm of TimeAutoDiff
Input: (Xtar,Xcon), Mtask, ts, t =

{
i
T

}T
i=1

Initial: encoder network Eϕ, decoder network Dψ, denoising network ϵθ
First Stage: VAE Training
while ϕ, ψ have not converged do
µ, log σ2 ← Eϕ(Xtar,Xcon) {Encoding}
E ∼ N (0, I)
ZLat

0 ← µ+ E⊙Σ {Reparameterization}
X̂tar ← Dψ(Xcon,ZLat

0 ,Mtask) {Decoding}
LVAE = ℓrecons(Xtar, X̂tar) + βDKL

(
qϕ || N (0, I)

)
ϕ, ψ ← Optimizer(LVAE;ϕ, ψ)
if ℓrecons has not improved for 10 epochs then
β ← max(βmin, 0.7β) {Adaptive β-update}

end while
Second Stage: DDPM Training
Fix encoder, decoder parameters ϕ, ψ and latent data ZLat

0
while θ have not converged do
n ∼ Unif{1, . . . , N}, En ∼ N (0, I)
ZLat
n =

√
ᾱnZLat

0 +
√

1− ᾱnEn

LDM = ∥ϵθ(ZLat
n ,Xcon, n, t, ts)−En∥2

2
θ ← Optimizer(LDM; θ)

end while
return Eϕ,Dψ, ϵθ

Algorithm 2 Inference of TimeAutoDiff
Input: decoder network Dψ, denoising network ϵθ, Xcon,Mtask, ts, t = { iT }Ti=1, Z

Lat
N ∼ N (0, I)

for n in N,N − 1, . . . , 1 do
z ∼ N (0, I).reshape(T, F ) {Latent Denoising Loop}
ϵ̃θ := ϵθ

(
ZLat
n ,Xcon, n, t, ts

)
ZLat
n−1 = 1√

αn

(
ZLat
n − 1−αn√

1−ᾱn
· ϵ̃θ
)

+ βnz

end for
XNew ∼ Dψ(Xcon,ZLat

0 ,Mtask) {Decoding}
return XNew:=post-process(XNew)
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5 Experiments

This section provides a thorough empirical evaluation of our proposed TimeAutoDiff model. We compare its
performance against several state-of-the-art baselines across various time series generation and downstream
tasks. This section is divided into two subsections (to be completed):

5.1 Unconditional Generation

This subsection evaluates the core capability of TimeAutoDiff to synthesize realistic time series data in an
unconditioned setting. We assess the fidelity of generated samples using a comprehensive suite of quantitative
metrics, including low-order statistics (e.g., feature and temporal correlations) and high-order statistics
(e.g., statistical fidelity to the original data). Additionally, we evaluate the utility of the synthetic data
for downstream predictive tasks, examine sampling efficiency. Next, we provide an ablation study which
disentangles the contributions of individual model components to overall performance. Finally, we assess
model generalizability using the Distance to the Closest Record (DCR).

5.1.1 Experimental Setting

Datasets: We use eight real-world time-series tabular datasets in this subsection. Among them, ETTh1
contains only numerical features, while the others include both numerical and categorical variables: Traffic,
Pollution, Hurricane, AirQuality, Energy (single-sequence), NASDAQ100, and Card Fraud (multi-sequence).
Appendix B provides details on how we preprocess both single- and multi-sequence tables for training, along
with dataset-specific statistics. For all experiments in this section—except for qualitative analysis, where we
use T = 500—we set the window size to T = 48 and stride to S = 1 (see Appendix B for details).

Baselines: To assess the quality of unconditionally generated time series data, we use 5 baseline models:
(1) GAN based methods: TimeGAN (Yoon et al., 2019), DoppelGANger (Lin et al., 2020). (2) Diffusion based
methods: Diffusion-TS (Yuan & Qiao, 2023), TSGM (Lim et al., 2023), (3) Parametric model: CPAR (Zhang
et al., 2022).

Evaluation Methods: For the comprehensive quantitative evaluation of the synthesized data, we mainly
focus on four criteria: (1) Low-order statistic- pair-wise column correlations and row-wise temporal
dependences in the table are evaluated via feature correlation score (Kotelnikov et al., 2022) and temporal
discriminative score (devised by us), respectively. (2) High-order statistic- the overall fidelities of the
synthetic data in terms of joint distributional modeling are measured through discriminative score (Yoon
et al., 2019). (3) The effectiveness of the synthetic data for downstream tasks is assessed through the
predictive score (Yoon et al., 2019), where a predictive model (i.e., regressor or classifier) is trained using
synthesized data and tested on real data (Mogren, 2016). (4) Sampling times (in sec.) are compared
with other base-line methods. Detailed explanations for each metric are deferred in the Appendix E. (5)
generalizability of the model is evaluated under “Distance to the Closest Record” (DCR; Park et al. (2018))
metric to ensure it draws samples from the distribution rather than memorizing the training data points.

Model Parameter Configuration: In Appendix F, we present the parameter configurations of VAE and
DDPM in our model. Unless otherwise specified, they are universally applied to the entire dataset in the
experiments conducted in this paper. Additionally, we study how the sizes of network architectures in DDPM
and VAE, training epochs for both models, and noise schedulers (linear vs quadratic) in DDPM affect the
performances of the model.

5.1.2 Unconditional Generation

Experimental Results: Table 2 shows that our TimeAutoDiff consistently outperforms other baseline
models in almost all metrics both for single- and multi-sequence generation tasks. It significantly improves the
(temporal) discriminative and feature correlation scores in all datasets over the baseline models. TimeAutoDiff
also dominates the predictive score metric. (We train a classifier to predict a column in the dataset to measure
the predictive score. The columns predicted in each dataset are listed in Table 4 in Appendix B.) But for
some datasets, the performance gaps with the second-best model are negligible: e.g., TimeAutoDiff vs TSGM
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Metric Model Single-Sequence Multi-Sequence
Traffic Pollution Hurricane AirQuality Card Transaction nasdaq100

Discriminative
Score

(The lower, the better)

TimeAutoDiff
Diffusion-ts

TSGM
TimeGAN

DoppelGANger
CPAR

Real vs Real

0.026(0.014)
0.202(0.021)
0.500(0.000)
0.413(0.057)
0.258(0.215)
0.498(0.002)
0.053(0.009)

0.016(0.009)
0.133(0.015)
0.488(0.010)
0.351(0.053)
0.100(0.103)
0.500(0.000)
0.048(0.017)

0.047(0.016)
0.181(0.018)
0.482(0.020)
0.254(0.062)
0.176(0.099)
0.500(0.000)
0.034(0.011)

0.061(0.013)
0.134(0.016)
0.452(0.009)
0.460(0.020)
0.211(0.116)
0.499(0.001)
0.040(0.011)

0.215(0.058)
N.A.
N.A.

0.482(0.037)
0.485(0.025)
0.500(0.000)
0.225(0.094)

0.067(0.046)
N.A.
N.A.

0.267(0.115)
0.071(0.032)
0.143(0.120)
0.190(0.051)

Predictive
Score

(The lower, the better)

TimeAutoDiff
Diffusion-ts

TSGM
TimeGAN

DoppelGANger
CPAR

Real vs Real

0.203(0.014)
0.231(0.007)
0.247(0.002)
0.297(0.008)
0.300(0.005)
0.263(0.003)
0.206(0.012)

0.008(0.000)
0.013(0.000)
0.009(0.000)
0.043(0.000)
0.282(0.028)
0.032(0.009)
0.010(0.000)

0.098(0.026)
0.306(0.076)
0.290(0.007)
0.180(0.027)
0.214(0.000)
0.420(0.055)
0.098(0.026)

0.005(0.001)
0.017(0.002)
0.006(0.000)
0.057(0.011)
0.060(0.009)
0.030(0.007)
0.005(0.001)

0.001(0.000)
N.A.
N.A.

0.130(0.022)
0.004(0.006)
0.132(0.035)
0.001(0.000)

10.863(0.716)
N.A.
N.A.

9.597(0.016)
11.556(1.093)
8.270(0.019)
9.281(0.009)

Temporal
Discriminative

Score

(The lower, the better)

TimeAutoDiff
Diffusion-ts

TSGM
TimeGAN

DoppelGANger
CPAR

Real vs Real

0.047(0.018)
0.199(0.028)
0.499(0.001)
0.429(0.050)
0.400(0.039)
0.436(0.073)
0.061(0.011)

0.014(0.013)
0.165(0.084)
0.499(0.001)
0.397(0.060)
0.444(0.050)
0.492(0.021)
0.044(0.009)

0.026(0.024)
0.247(0.093)
0.497(0.002)
0.465(0.025)
0.464(0.028)
0.497(0.009)
0.039(0.012)

0.033(0.014)
0.183(0.064)
0.499(0.000)
0.457(0.014)
0.335(0.091)
0.493(0.010)
0.050(0.017)

0.290(0.040)
N.A.
N.A.

0.497(0.007)
0.362(0.097)
0.470(0.041)
0.360(0.051)

0.159(0.140)
N.A.
N.A.

0.419(0.140)
0.497(0.007)
0.404(0.099)
0.150(0.090)

Feature
Correlation

Score

(The lower, the better)

TimeAutoDiff
Diffusion-ts

TSGM
TimeGAN

DoppelGANger
CPAR

Real vs Real

0.022(0.014)
2.148(1.439)
2.092(1.485)
1.243(0.535)
0.885(0.737)
0.538(0.336)
0.000(0.000)

1.244(0.844)
1.716(1.096)
1.710(0.705)
2.068(1.093)
2.371(0.875)
1.280(0.931)
0.000(0.000)

0.074(0.013)
1.881(1.208)
0.424(0.249)
2.151(1.113)
2.380(0.798)
0.965(0.287)
0.000(0.000)

0.463(0.080)
0.716(0.141)
0.543(0.077)
0.865(0.123)
1.628(0.231)
1.552(0.220)
0.000(0.000)

0.078(0.137)
N.A.
N.A.

2.301(0.723)
1.550(1.034)
0.295(0.294)
0.000(0.000)

0.243(0.012)
N.A.
N.A.

1.488(1.069)
1.035(0.818)
0.514(0.445)
0.000(0.000)

Sampling Time
(in Sec)

(The lower, the better)

TimeAutoDiff
Diffusion-ts

TSGM
TimeGAN

DoppelGANger
CPAR

3.512 (0.065)
≫
≫

0.127(0.056)
0.011(0.002)
17.466(0.734)

3.947 (0.070)
≫
≫

0.113(0.058)
0.014(0.001)
18.597(0.558)

3.740 (0.132)
≫
≫

0.125(0.060)
0.010(0.003)
15.839(0.324)

3.945 (0.103)
≫
≫

0.131(0.060)
0.017(0.003)
29.816(0.846)

3.384(0.064)
N.A.
N.A.

0.051(0.051)
0.018(0.004)
141.425(2.435)

3.133(0.129)
N.A.
N.A.

0.047(0.039)
0.041(0.001)
112.506(2.152)

Table 2: Experimental results for single- and multi-sequence time series tabular data generation are reported
under Discriminative, Predictive, Temporal Discriminative, and Feature Correlation metrics. Sampling times
(in Secs) over 6 datasets are included; ≫ indicates times exceeding 300 seconds, and ‘N.A.’ denotes not
applicable. Bold numbers indicate the best performance. Each metric shows the mean and standard deviation
(in parentheses) over 10 synthetic datasets generated by the trained model. ‘Real Data’ serves as a baseline
with each metric computed on Real vs. Real.

for Hurricane and AirQuality datasets. It is intriguing to note that the predictive scores can be good even
when the data fidelity is low. The GAN-based models are faster in terms of sampling time compared to
the diffusion-based models. These results are expected, as diffusion-based models require multiple denoising
steps for sampling, whereas GAN-based models generate samples in a single step. Nonetheless, among
diffusion-based models, our approach achieves the fastest sampling time—approximately 90 to 100 times
faster than existing methods. In the Appendix G and H, we provide additional experiments on more metrics
such as volatility, moving averages, Maximum Mean Discrepancy (MMD) and entropy for diversity (Nikitin
et al., 2023).

Qualitative Illustrations of Temporal & Feature Dependences: Aside from the quantitative evaluations
under the aforementioned metrics, we provide the qualitative analysis in Fig. 6 further demonstrating the
effectiveness of TimeAutoDiff. The autocorrelation plots for both real datasets (AirQuality and ETTh1)
and their synthetic counterparts reveal that TimeAutoDiff successfully captures complex and long-range
temporal dependencies—extending up to T = 500 time steps. Additionally, the similar patterns observed for
each feature in the real and synthetic data demonstrate the model’s ability to capture the correlations along
the feature dimension. We provide more visualizations across more various datasets in the Appendix J.

Ablation: The ablation test results are summarized in Table 3. A single model alone (i.e., only VAE or DDPM)
cannot accurately capture the statistical properties of the distributions of tables, which strongly supports the
motivation of our model. The components related to the diffusion model, such as timestamp encoding and
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Figure 6: Real (left) vs. Synthetic (right): Autocorrelation plots with a time lag of 300 (hours) for the
AirQuality (top) and the ETTh1 (bottom) datasets. Sequence length is set as T = 500.

Bi-RNN, impact the generative performance across most cases as models lacking these components do not
exhibit optimal performance. The encodings for continuous features in the VAE notably enhance the fidelity
and temporal dependences of the generated data.

Additionally, we consider the following scenarios:

1. Replacing the MLP with an RNN in the decoder of the VAE.

2. Replacing the two RNNs with an MLP in the encoder of the VAE.

3. Inspired by Biloš et al. (2023), we explore injecting continuous noise from a stochastic process
(Gaussian process) into the DDPM. Specifically, the perturbation kernel

q(zLat
n,j |zLat

0,j ) = N (
√
ᾱnzLat

0,j , (1− ᾱn)Σ)

is applied independently to each column of ZLat
0 ∈ RT×F , where Σij = exp(−γ|ti − tj |) with γ = 0.2.

The experimental results indicate that none of the ablated models significantly outperformed the original
configuration. In particular, the second configuration highlights the potential benefits of modeling temporal
dependencies at two stages—within both the VAE and the DDPM. While the precise mechanisms remain to
be further validated, we hypothesize the following contributing factors: (1) Hierarchical Temporal Dependency
Modeling: The VAE encoder captures compact latent representations that preserve temporal structure,
providing a well-organized foundation for the diffusion model. This hierarchical setup may allow the diffusion
process to focus on refining fine-grained temporal patterns, rather than redundantly learning high-level
structures, leading to more realistic outputs. (2) Noise-Tolerant Latent Representation: Incorporating
temporal dependencies early in the VAE may yield a latent variable ZLat

0 that is inherently more robust to
noise. This resilience could help preserve critical temporal information during the diffusion process, ultimately
improving the fidelity of the generated sequences.

The effect of adaptive β-VAE: Motivated from (Zhang et al., 2023b), we evaluate the effects of scheduling
on β coefficients in VAE in terms of tradeoffs between reconstruction error and KL-divergence. In Fig 7,
we observe that while large β can ensure the close distance between the embedding and standard normal
distributions, its reconstruction loss is relatively larger than that of smaller ones, and vice versa. The adaptive
β-scheduling ensures both the lowest reconstruction error and relatively lower KL-divergence, preserving
the shape of embedding distribution. The adaptive β-scheduling achieves the fastest and the most stable
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Metric Model Traffic Pollution Hurricane AirQuality

Discriminative
Score

(The lower, the better)

TimeAutoDiff
only VAE

only DDPM
w/o Encoding equation 1

w/o Timestamps
w/o Bi-directional RNN
RNN in decoder (VAE)
MLP in encoder (VAE)
Smooth Noise (DDPM)

0.027(0.014)
0.476(0.010)
0.283(0.131)
0.029(0.017)
0.095(0.016)
0.049(0.015)
0.186(0.019)
0.017(0.011)

0.015(0.009)

0.014(0.011)
0.491(0.010)
0.313(0.163)
0.062(0.015)
0.105(0.012)
0.021(0.020)
0.185(0.020)
0.072(0.020)
0.078(0.013)

0.035(0.010)
0.490(0.010)
0.252(0.034)
0.063(0.018)
0.171(0.085)
0.300(0.036)
0.198(0.031)
0.117(0.019)
0.140(0.016)

0.035(0.016)
0.494(0.007)
0.266(0.048)
0.072(0.020)
0.074(0.013)

0.019(0.015)
0.124(0.018)
0.067(0.025)
0.140(0.016)

Predictive
Score

(The lower, the better)

TimeAutoDiff
only VAE

only DDPM
w/o Encoding equation 1

w/o Timestamps
w/o Bi-directional RNN
RNN in decoder (VAE)
MLP in encoder (VAE)
Smooth Noise (DDPM)

0.229(0.010)
0.241(0.001)
0.241(0.012)

0.219(0.011)
0.241(0.003)
0.231(0.008)
0.232(0.008)
0.220(0.011)
0.221(0.011)

0.008(0.000)
0.008(0.000)
0.016(0.000)
0.008(0.000)
0.008(0.000)
0.008(0.000)
0.008(0.000)
0.008(0.000)
0.008(0.000)

3.490(0.097)
4.566(0.041)

0.034(0.007)
3.611(0.216)
4.228(0.248)
3.549(0.047)
3.598(0.095)
3.365(0.072)
0.091(0.027)

0.004(0.000)
0.019(0.002)
0.009(0.002)
0.005(0.000)
0.004(0.000)
0.004(0.000)
0.012(0.004)
0.061(0.002)
0.059(0.001)

Temporal
Discriminative

Score

(The lower, the better)

TimeAutoDiff
only VAE

only DDPM
w/o Encoding equation 1

w/o Timestamps
w/o Bi-directional RNN
RNN in decoder (VAE)
MLP in encoder (VAE)
Smooth Noise (DDPM)

0.047(0.017)
0.368(0.107)
0.197(0.127)
0.036(0.016)
0.084(0.047)
0.031(0.021)
0.130(0.025)
0.037(0.017)

0.020(0.007)

0.008(0.005)
0.484(0.043)
0.135(0.131)
0.052(0.019)
0.053(0.018)
0.047(0.057)
0.133(0.019)
0.060(0.018)
0.059(0.029)

0.020(0.010)
0.490(0.014)
0.213(0.096)
0.049(0.022)
0.117(0.065)
0.404(0.013)
0.324(0.072)
0.094(0.019)
0.090(0.027)

0.035(0.024)
0.493(0.006)
0.242(0.122)

0.008(0.005)
0.064(0.019)
0.023(0.015)
0.331(0.130)
0.045(0.032)
0.091(0.027)

Feature
Correlation

Score

(The lower, the better)

TimeAutoDiff
only VAE

only DDPM
w/o Encoding equation 1

w/o Timestamps
w/o Bi-directional RNN
RNN in decoder (VAE)
MLP in encoder (VAE)
Smooth Noise (DDPM)

0.022(0.014)
0.404(0.339)
2.238(1.530)
0.029(0.021)
0.247(0.521)
0.048(0.024)
0.413(0.544)
0.025(0.015)
0.059(0.037)

1.104(0.900)
1.329(0.757)
2.020(1.460)
1.148(0.850)
1.303(0.793)
1.227(0.863)
1.187(0.820)
1.240(0.853)
1.246(0.843)

0.069(0.027)
0.427(0.371)
2.380(1.513)
0.077(0.034)
0.097(0.044)
0.090(0.043)
0.247(0.123)
0.122(0.058)
0.882(1.271)

0.147(0.230)
0.702(1.001)
0.198(0.298)
0.266(0.405)
0.231(0.349)
0.155(0.256)
0.913(1.302)
1.217(1.745)
1.215(1.345)

Table 3: The experimental results of ablation test in TimeAutoDiff. The bolded number indicates the
best-performing model.

0 5000 10000 15000 20000
Training Epoch

0

10

20

30

40

50

Lo
ss

KL Divergence Loss
Scheduled 

=0.1
=0.01
=0.001
=0.0001
=1e-5

0 5000 10000 15000 20000
Training Epoch

0.0

0.1

0.2

0.3

0.4

0.5

Lo
ss

Reconstruction Loss
Scheduled 

=0.1
=0.01
=0.001
=0.0001
=1e-5

0 5000 10000 15000 20000
Training Epoch

0.000

0.001

0.002

0.003

0.004

0.005

Lo
ss

Reconstruction Loss (Zoom-In)
Scheduled 

=0.1
=0.01
=0.001
=0.0001
=1e-5

Figure 7: KL-Divergence (left) and Reconstruction (middle) losses
over 20000 training iterations of VAE on Traffic dataset. The zoomed-
in panel (right) displays the scheduled-β reaches the lowest recon-
struction error stably without any spikes.

β Disc. Score
10−1 0.369(0.101)
10−2 0.041(0.011)
10−3 0.043(0.019)
10−4 0.079(0.012)
10−5 0.043(0.009)

Scheduled β 0.023(0.015)

Figure 8: The results of discrimina-
tive scores with varying β values on
the Traffic dataset.

signal reconstructions among other β-choices. Table 8 shows the effectiveness of β-scheduling for quality of
synthetic data in discriminative score.
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Figure 9: The leftmost column plots the empirical distributions of distance-to-closest-record (DCR) for the
training and test splits across four datasets (top to bottom: Traffic, Pollution, Hurricane, AirQuality). For
each dataset, we pick two representative variables: the second and third columns show these variables over
time for one synthetic sample (T = 48), and the fourth and fifth columns show the same variables for its
nearest training record (by DCR). On Traffic and Pollution, the DCR mass lies noticeably away from zero
and the synthetic trajectories visibly diverge from their nearest neighbors, indicating new patterns rather
than replicas. On Hurricane and AirQuality, the DCR concentrates near zero and the synthetic trajectories
closely track the nearest training records, suggesting replication.

Memorization versus generalization: Consistent with the phenomenon reported by (Zhang
et al., 2023c), TimeAutoDiff exhibits data-regime–dependent behavior: when effective model capacity
exceeds the available data (data-poor regime), memorization is more likely; when the data budget dwarfs
model capacity (memorization regime), generalization emerges. With model size fixed in our study, Traffic
and Pollution provide over 20K training sequences (generalization regime), aligning with the nonzero DCR
and novel trajectories, whereas Hurricane and AirQuality provide fewer than 5K (data-poor), aligning with
near-zero DCR and training-like generations.
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Generalizability of TimeAutoDiff: In generative modeling, it is essential to check whether the learned
model can generate the datasets not seen in the training set. If model memorizes and reproduces data
points from the training dataset (Zhang et al., 2023c), this can undermine the primary motivation of data
synthesizing, which is ‘increasing dataset diversity’. To investigate further in this regard, we design an
experiment using the notion of Distance to the Closest Record (DCR) (Park et al., 2018), which computes
the Euclidean distance between a data point r ∈ RT×F in the synthesized dataset and the closest record to r
in the original table. We split the data into training (50%) / testing (50%) sets.

DCR scores for both training and testing datasets can be used to evaluate the model’s performance. Significant
overlap between the DCR distributions of the training and testing datasets suggests that the model is drawing
data from the data distribution. However, even with substantial overlap between the distributions, if the
distances to the origin are small, this suggests that the patterns in the training and testing sets are alike,
implying the model may have memorized specific training data points. If the DCR distribution of the training
data is notably closer to zero compared to the testing data, it indicates that the model has memorized the
training dataset. Last but not least, it’s important to recognize that random noise can also produce similar
DCR distributions. Therefore, the DCR score should be evaluated in conjunction with other measures of
fidelity (i.e., discriminative score), and utility measures (i.e., predictive score), to provide a comprehensive
assessment of the model’s generalization capabilities. We provide the interpretations of DCR distributions of
TimeAutoDiff for Traffic, Pollution, Hurricane, and AirQuality datasets in the caption of Fig. 9.

5.2 Imputation & Forecasting

In this subsection, we present experimental results on two conditional generation tasks: Imputation and
Forecasting.

Extended Evaluation Settings: We evaluate TimeAutoDiff across a comprehensive suite of six benchmark
cases, encompassing three imputation regimes and three forecasting horizons. All experiments are conducted
on four real-world tabular time series datasets—Bike Sharing, Traffic, Pollution, and AirQuality—each of
which contains both numerical and categorical variables. The sequence length is fixed to T = 48 for all
tasks to ensure comparability. For imputation, we simulate three types of missingness using the binary
mask MI

t,f = 1(Xt,f is missing): (1) MCAR (Missing Completely At Random), where entries are masked
uniformly; (2) Block Missingness, where rectangular regions over time and features simulate sensor dropouts;
and (3) Sequential Missingness, where temporally contiguous subsequences emulate localized corruption. For
the forecasting task, we vary the look-back window size w ∈ {12, 24, 36}, defining the forecasting mask as
MF

t,f = 1(t > w). This setup evaluates the model’s ability to extrapolate across both short- and long-range
temporal horizons, while maintaining a fixed total sequence length T = 48.

Baselines: To evaluate the performance of TimeAutoDiff on imputation and forecasting tasks, we compare
it against nine established baseline models: TimeLLM (Jin et al., 2023), Moment (Goswami et al., 2024),
TEFN (Zhan et al., 2024), TimeMixer (Wang et al., 2024), TimesNet (Wu et al., 2022), MICN (Wang et al.,
2023a), DLinear (Zeng et al., 2023), FiLM (Zhou et al., 2022), and CSDI (Tashiro et al., 2021). All selected
models are designed to support both imputation and forecasting tasks. For consistency and reproducibility,
we utilize the PyPOTS framework (Du, 2023), which provides unified implementations of all nine baselines.
Detailed descriptions of each baseline model are provided in the Appendix D.2.

Evaluation Methods: For the experiments, we split the dataset into training (70%) / validation (20%) /
testing (10%) sets. The model achieving the lowest validation error during training is selected for evaluation.
For both imputation and forecasting tasks, we use two standard metrics: Mean Absolute Error (MAE) and
Mean Squared Error (MSE) for performance evaluations.

Quantitative Summary: Across all six benchmark settings, TimeAutoDiff consistently outperforms strong
baselines in both MAE and MSE metrics. See Figure 10 for a performance overview, and refer to Appendix I
for detailed results of TimeAutoDiff and other baseline models under each benchmark setting. Its advantage
becomes especially pronounced in structured and challenging regimes—e.g., block-missing imputation or
short-horizon forecasting (w = 36)—where conventional models such as TimeLLM, TEFN, and Moment often
degrade sharply or fail to converge altogether. Notably, TimeAutoDiff’s error remains low even when large
portions of the input sequence are masked, indicating its ability to capture high-level temporal abstractions
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Figure 10: Dataset-averaged benchmark performance across cases. Bars report the mean error over the
four datasets (Bike Sharing, Traffic, Pollution, AirQuality) for each model and benchmark case, with the total
sequence length fixed to T = 48. Left: MAE (linear scale). Right: MSE (log scale). The six benchmark cases
are, from left to right on the x-axis: Imputation-MCAR, Imputation-Block (block_len=3, block_width=2),
Imputation-Sequential (seq_len=12), and forecasting with look-back windows w ∈ {12, 24, 36}. For entries
not reported by a baseline in the original tables (e.g., some Moment, MICN, TimeLLM, DLinear results for w=12
or w=36), bars are rendered with zero height; means are computed by ignoring NaNs. A logarithmic y-axis is
used for MSE to reduce the dominance of large errors (notably in Imputation-MCAR) and to reveal relative
differences among the remaining cases.

that generalize beyond local continuity or short-term trends. This robustness is particularly valuable in
tabular settings, where feature modalities can vary drastically and missingness patterns are rarely uniform.

Limitations of Existing Methods: In contrast, models such as TimeMixer and CSDI demonstrate narrow
specialization: they show competitive performance in isolated settings—for example, CSDI on AirQuality
MCAR or TimeMixer on Pollution forecasting—but lack the generalization capacity to perform well across
all masking types or forecasting horizons. Their architectures often omit explicit mechanisms for hierarchical
temporal abstraction, making them more sensitive to the structure and scale of the corrupted or missing
regions. Furthermore, many baselines exhibit significant performance variance across different datasets and
tasks, whereas TimeAutoDiff maintains consistently low error profiles with reduced variance, especially in
MSE—a desirable trait for handling noisy or heterogeneous real-world sequences.

Dataset-Specific Trends: At the dataset level, Bike Sharing presents regular temporal cycles and well-
structured categorical features such as working day, season, and weather conditions. This structured periodicity
is effectively modeled by TimeAutoDiff, which achieves dominant performance across both imputation and
forecasting settings. On the other hand, the Traffic dataset is characterized by high variance and cross-sensor
inconsistencies. Here, most baselines suffer from instability or degraded accuracy, particularly under block
imputation and w = 36 forecasting, while TimeAutoDiff remains robust and accurate. The Pollution dataset
features smoother yet multivariate dynamics. Although some models like TimeMixer and CSDI perform well
under specific conditions, TimeAutoDiff is the only model that consistently performs well across all settings.
Finally, the AirQuality dataset, with its strong inter-feature correlations and relatively low noise, allows
CSDI to perform competitively under MCAR. However, in block-missing and long-horizon forecasting tasks,
TimeAutoDiff reestablishes its superiority, capturing both stable global structure and fine-grained variation.

5.3 Time Varying-Metadata Conditional Generation (TV-MCG)

We evaluate TimeAutoDiff on the Time-Varying Metadata Conditional Generation (TV–MCG) setting,
where a metadata trajectory Xcon is fixed and the target sequence Xtar is generated conditionally. Note that
Xcon corresponds to a subset of features from the full dataset X, selected along the feature axis, characterized
by a mask MM. Our study is organized into two complementary parts:
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Metric Methods Single-Sequence
Traffic Pollution Hurricane AirQuality ETTh1 Energy

Discriminative
Score

TimeAutoDiff
Real vs Real

0.078(0.038)
0.091(0.021)

0.056(0.017)
0.067(0.020)

0.014(0.005)
0.081(0.009)

0.090(0.007)
0.085(0.027)

0.036(0.008)
0.051(0.011)

0.113(0.070)
0.270(0.028)

Predictive
Score

TimeAutoDiff
Real vs Real

0.113(0.007)
0.107(0.001)

0.008(0.000)
0.008(0.000)

0.060(0.009)
0.058(0.010)

0.004(0.000)
0.004(0.000)

0.048(0.002)
0.051(0.001)

0.228(0.005)
0.230(0.003)

Temporal
Discriminative

Score

TimeAutoDiff
Real vs Real

0.123(0.034)
0.134(0.015)

0.081(0.027)
0.083(0.019)

0.048(0.025)
0.072(0.019)

0.116(0.018)
0.138(0.014)

0.045(0.015)
0.074(0.014)

0.224(0.013)
0.300(0.031)

Feature
Correlation

Score

TimeAutoDiff
Real vs Real

0.012(0.003)
0.000(0.000)

0.026(0.008)
0.000(0.000)

0.175(0.032)
0.000(0.000)

0.011(0.002)
0.000(0.000)

0.014(0.002)
0.000(0.000)

0.029(0.007)
0.000(0.000)

Table 4: Time varying metadata conditional generations: the experiments conducted over 6 single-sequence
datasets with sequence length set as T = 96. See the caption of Figure 16 (Appendix ??) for output and
condition pairs for each dataset used for the experiments. Overall, TimeAutoDiff performs well, achieving
results comparable to the Real vs Real baseline over the test dataset.

(i) Quantitative assessment: We benchmark TimeAutoDiff on public datasets against an oracle
Real-vs-Real proxy, reporting four standard quality measures that jointly probe fidelity, predictiveness,
temporal dynamics, and cross-feature structure (Table K). (ii) Counterfactual scenario exploration:
To verify that the model learns the conditional law P(Xtar | Xcon,MM)—for both continuous→discrete and
discrete→continuous cases—we first build a controlled synthetic setting with known rules. We then examine
a real Traffic dataset and pose counterfactuals—“How would the traffic-volume trajectory change if the same
timestamps were labeled Cloudy, Squall, or Clear?”—to assess behavior under realistic conditions.

5.3.1 Quantitative assessment with public data

Baselines. To our knowledge, few prior models address conditional tabular time-series generation with fixed
side information. To our knowledge, TimeWeaver (Narasimhan et al., 2024) is conceptually the closest, but it
can only deal with continuous time series data, and no public implementation is available. Accordingly, we
report a Real vs Real proxy baseline as an oracle reference and compare it against our conditional generator.

Evaluation Methods: To evaluate the generalization capability of TimeAutoDiff to unseen conditions, we
randomly split each dataset into training and test sets using an 80%/20% ratio. Synthetic samples are then
generated to match the size of the test set, with the sequence length fixed at T = 96. The quality of the
generated data is assessed using the 4 evaluation metrics: Discriminative Dcore, Predictive Score, Temporal
Discriminative Score, and Feature correlation score.

Quantitative Results. Table K shows that TimeAutoDiff matches or improves upon the Real vs Real oracle
across datasets. Discriminative and temporal–discriminative scores are consistently lower, indicating high
conditional fidelity and well-preserved long- and short-range dynamics. Predictive scores are on par with or
slightly better than the oracle, confirming that synthetic data retain task-relevant signal. Feature-correlation
deviations remain small, evidencing faithful cross-feature structure under fixed metadata. Overall, the model
reliably captures both fidelity and conditional coupling across easy (periodic) and challenging (high-variance,
regime-shifting) settings.

Dataset-level Observations. Datasets with strong exogenous structure or seasonal drivers—ETTh1,
AirQuality—show very low discriminative and predictive gaps, reflecting that TimeAutoDiff reliably repro-
duces condition-aligned periodic and cross-feature patterns. Challenging, high-variance settings such as
Hurricane and Energy still yield markedly low discriminative and temporal discriminative scores, underscoring
the model’s capacity to respect conditional dynamics even when the marginal variability is large. On Traffic
and Pollution, the method remains close to (or better than) Real vs Real across all metrics, evidencing
accurate conditional coupling between environmental or load conditions c and observed responses x.
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Figure 11: Datasets: (output variables) from top to bottom: Traffic: (‘Weather main’, ‘temp’), The output
is chosen to be heterogeneous both having discrete and continuous variables. Conditional variables are set as
remaining variables from the entire features. See the list of entire features of the dataset through the link in
Appendix B.

5.3.2 Counterfactual scenario exploration

We further provide numerical validations that TimeAutoDiff indeed learn the conditional distribution
P(Xtar|Xcon,MM) of both P(‘Cont Var.’|‘Disc Var.’) and P(‘Disc Var.’|‘Cont Var.’) under synthetic data set-
ting. Additionally, we explore its application in counterfactual scenario analysis with real-world Traffic data,
investigating how weather sequences affect traffic volume.

Synthetic Setting: Real-world data often involves complex correlations and confounding factors, making
it difficult to establish strict causal relationships. To validate that TimeAutoDiff can effectively learn
conditional rules, we use a synthetic dataset with variables ‘Temperature’ and ‘Weather’. The ‘Temperature’
is generated over 10,000 time points as:

Temp(t) = 15 + 10 sin
(

2πt
365

)
+N (0, 22),

where Temp(t) follows a sinusoidal pattern with added Gaussian noise. Based on the generated ‘Temperature’,
the categorical ‘Weather’ variable is derived as follows: ‘Sunny’ if Temp > 20, ‘Cloudy’ if 10 < Temp ≤ 20,
and ‘Rainy’ if 0 < Temp ≤ 10. We set the time window as T = 48 (hours) and train the model to
learn two conditional distributions: P(Temp|Weather), which predicts temperature given weather, and
P(Weather|Temp), which predicts weather given temperature.

Fig 12 (top 3) demonstrates the model’s ability to generate ‘Temperature’ sequences corresponding to
specific weather conditions under three scenarios: (1) constant weather conditions over three consecutive
48-time periods (‘Sunny’, ‘Cloudy’, ‘Rainy’), (2) a repeating pattern of weather labels (e.g., 16 ‘Rainy’,
16 ‘Cloudy’, 16 ‘Sunny’), and (3) random alternating patterns of ‘Cloudy’ and ‘Rainy’. The results show
distinct separations in the temperature sequences generated for each weather condition, validating the model’s
ability to learn P(Cont Var.|Disc Var.). Similarly, Fig 12 (bottom 3) demonstrates the reverse case. When
conditioned on ‘Temperature’ values generated in the previous scenarios, the model correctly predicts the
corresponding ‘Weather’ labels at each time step (which is surprising), further validating its ability to learn
P(Disc Var.|Cont Var.).

Traffic Data: To evaluate TimeAutoDiff on real-world data, we use the Traffic dataset with ‘Traffic Volume’
(continuous) as the output and ‘Weather-main’ (categorical) as the conditional variable. ‘Weather-main’
includes labels such as {‘Clear’, ‘Rain’, ‘Squall’, ‘Cloudy’}, among others. Intuitively, we expect lower traffic
volumes during adverse weather conditions (e.g., ‘Squall’, ‘Rain’) and higher traffic volumes during good
weather (e.g., ‘Clear’, ‘Cloudy’). We test the model under three weather scenarios: ‘Cloudy’, ‘Squall’, and
‘Clear’, using six different timestamp sequences to observe patterns. As shown in the results, ‘Traffic Volume’
is consistently lower during ‘Squall’ compared to ‘Cloudy’ and ‘Clear’, while no significant differences are
observed between ‘Clear’ and ‘Cloudy’. These findings confirm the model’s ability to reflect expected traffic
patterns under different weather conditions.
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Figure 12: Empirical validations of the model’s ability to learn the conditional probability distributions
P
(
‘Temperature’|‘Weather’

)
(top 3 panels) and P

(
‘Weather’|‘Temperature’

)
(bottom 3 panels).
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Figure 13: We choose arbitary 6 timestamp sequences in dataset, and give the models labels of [‘Cloudy’,
‘Squall’, ‘Clear’] weather-conditions. The traffic-volume axis is normalized.

6 Discussions on future topics with relevant literature

In this subsection, we further discuss about the four possible extensions of TimeAutoDiff in sequel: (1)
Privacy guarantees; (2) Interpretability of generated time series data; (3) Extension to foundational model.
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(1) Privacy Guarantees is one of the main motivations of synthetic data. Specifically, in the time series
domain, data from the healthcare and financial sectors is ubiquitous, but it often comes with significant
privacy concerns. We hope the synthetic data does not leak any private information of the original data,
while preserving good fidelities. TimeAutoDiff lays the foundation for guaranteeing such privacy concerns
with the generated synthetic data. In the vision domain, differential privacy guarantees (Dwork, 2006) of
synthetic images from diffusion-based models have been investigated by several researchers (Dockhorn et al.,
2022; Ghalebikesabi et al., 2023; Lyu et al., 2023). Specifically, Lyu et al. (2023) studied DP-guarantees of
latent diffusion model by fine-tuning the attention module of noise predictor in their diffusion model, and
claim their synthetic images both have good fidelities and DP-guarantees.

Nonetheless, it is still not clear how the same idea can be applied to time series synthetic data (or
regular tabular data), as differentially private time series data is frequently challenging to interpret (Yoon
et al., 2020). In this regard, another privacy criterion, ε-identifiability (Yoon et al., 2020) (with ε ∈ [0, 1]) can
be considered as another alternative. The distance between synthetic and original data is measured through
Euclidean distance, and we want at least (1 − ε)-proportion of the synthetic data to be distinguishable
(or different enough) from the original data. Under this criterion, we conjecture TimeAutoDiff can be
extended to the synthesizer with a (theoretically-provable) privacy guarantees. The idea can be underpinned
around several recent results on diffusion model (Zhang et al., 2023c; Bodin et al., 2024). Zhang et al.
(2023c) showed that there exist closed-form solutions of noise predictors for every diffusion step of noisy
training data points. This means that we can trace back the latent vectors (or matrix) where the original
training data points are generated from. Recent findings (Bodin et al., 2024) suggest that a proper linear
combination of data in the latent space can produce a new semantically meaningful dataset in the original
space. Combining the fact that the mapping from the latent space to the original space is Lipschitz
continuous (Zhang et al., 2023c) through deterministic sampling (probability-flow), we might be able to have
controls over the generations of time series synthetic data, whose Euclidean distances from training data points
are away from the training data points. This idea is naturally related to the diversity of generated data as well.

(2) Interpretability of the generated time series data is another crucial aspect that time series
synthesizer should possess. In many practical applications, for instance, in financial sector, stakeholders and
domain experts may be hesitant to rely on synthesis models that are difficult to interpret, as they need
to understand and trust the model’s behavior, especially when dealing with critical or high-risk scenarios.
The current version of TimeAutoDiff does not have the luxury of generating interpretable results, but
this can be easily adopted by following the previous works. Specifically, we want to point out readers
TimeVAE (Desai et al., 2021) and Diffusion-TS (Yuan & Qiao, 2023), which both focus on building a
synthesizer with interpretability. Specifically, TimeVAE adopted a sophisticatedly designed decoder in VAE,
which has trend, seasonality, and residual blocks for signal decompositions. Similarly, Diffusion-TS also
design a sophisticated decoder for the decomposition of signals into trend, seasonality, and residual, where
they employ the latent diffusion framework. Both of these ideas can be directly employed in TimeAutoDiff,
where the current decoder is set as an MLP block for simplicity.

(3) Extension to foundational model is another promising route the TimeAutoDiff can take.
Recently, we have been seeing a wave of foundational models research on time series domain (Cao et al., 2024;
Liu et al., 2024; Das et al., 2023; Yang et al., 2024a). These models can accommodate multiple tables from
cross domains, enabling multiple time series tasks in one model; for instance, forecasting, anomaly detection,
imputation, and synthetic data generation (See Cao et al. (2024).) Among them, Cao et al. (2024) devised
cleverly designed masks, which provide the unifying framework to do the four abovementioned tasks under
diffusion-based framework. Nonetheless, their methods are confined to the continuous data modality, and not
clear how the model can be extended to heterogeneous features, leaving the great future opportunities for
TimeAutoDiff to be extended. We also conjecture the synthetic data from TimeAutoDiff can be beneficial to
improving quality of forecasting foundation model i.e., see Section 5 in (Das et al., 2023).

(4) Bias from conditional metadata generation: Generated data can indeed be biased with
respect to conditional metadata, arising from various factors. Bias in the training data, such as inherent
associations between metadata and outputs, may lead the model to replicate these biases, for instance,
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generating disproportionately high traffic volumes for "Clear" weather even when the true relationship is
less deterministic. Imbalanced metadata distributions further exacerbate this issue, as underrepresented
conditions in the training set often result in less reliable outputs for those conditions, such as biased
outcomes for minority demographic groups in healthcare datasets. Simplified assumptions in the model,
such as assuming linear relationships between metadata and outputs, can overlook complex dependencies,
producing data that fails to reflect the true conditional distribution. Noise injection, a feature of models like
diffusion models and VAEs, can introduce additional bias if the noise interacts with metadata in unexpected
ways, particularly for rare metadata values. Furthermore, limitations in conditional architectures, such as
inadequate metadata encoding, can prevent the model from capturing nuanced dependencies, leading to
misaligned outputs. To mitigate such biases, ensuring balanced training data, employing robust metadata
encoding techniques, applying regularization or fairness constraints, performing post-generation bias audits,
and designing disentangled latent spaces are crucial steps. While conditional generative models aim to align
generated data with metadata, addressing these biases is essential to ensure fairness and reliability.
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.

B Datasets and Data Processing Steps

We used six single-sequence and two multi-sequence time-series datasets for our experiments. The statistical
information of datasets used in our experiments is in Table 5.

Single-sequence: For single-sequence datasets, we segment the time series with N total timestamps into
overlapping windows of length T and stride S, resulting in a tensor of shape (N − T + S)× T × F , where F
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denotes the number of features in the table. The specific values of T and S vary across different experimental
settings.

• Traffic (UCI) is a single-sequence, mixed-type time-series dataset describing the hourly Minneapolis-
St Paul, MN traffic volume for Westbound I-94. The dataset includes weather features and holidays
for evaluating their impacts on traffic volume. (URL: https://archive.ics.uci.edu/dataset/
492/metro+interstate+traffic+volume)

• Pollution (UCI) is a single-sequence, mixed-type time-series dataset containing the PM2.5 data in
Beijing between Jan 1st, 2010 to Dec 31st, 2014. (URL: https://archive.ics.uci.edu/dataset/
381/beijing+pm2+5+data)

• Hurricane (NHC) is a single sequence, mixed-type time-series dataset of the monthly sales revenue
(2003-2020) for the tourism industry for all 67 counties of Florida which are prone to annual hurricanes.
This dataset is used as a spatio-temporal benchmark dataset for forecasting extreme events and
anomalies (Farhangi et al., 2023). (URL: https://www.nhc.noaa.gov/data/)

• AirQuality (UCI) is a single sequence, mixed-type time-series dataset containing the hourly averaged
responses from a gas multisensor device deployed on the field in an Italian city. (URL: https:
//archive.ics.uci.edu/dataset/360/air+quality)

• ETTh1 (Github: Zhou et al. (2021)) is a single sequence, continuous only time-series dataset,
recording hourly level ETT (i.e., Electricity Transformer Temperature), which is a crucial indicator in
the electric power long-term deployment. Specifically, the dataset combines short-term and long-term
periodical patterns, long-term trends, and many irregular patterns. (URL: https://github.com/
zhouhaoyi/ETDataset/tree/main)

• Energy (Kaggle) is a single sequence time-series dataset. The dataset, spanning 4.5 months,
includes 10-minute interval data on house temperature and humidity via a ZigBee sensor network,
energy data from m-bus meters, and weather data from Chievres Airport, Belgium, with two
random variables added for regression model testing. (URL: https://www.kaggle.com/code/
gaganmaahi224/appliances-energy-time-series-analysis)

• Bike Sharing (UCI) is a single sequence time-series dataset collected from a bike rental service with
automated stations. It contains hourly and daily rental records over two years, including information
on rental counts, weather conditions, seasonality, and timestamps. Each entry includes normalized
temperature, humidity, wind speed, and metadata like holiday/weekend indicators, making it suitable
for mobility modeling and demand forecasting tasks. (URL: http://archive.ics.uci.edu/ml/
datasets/Bike+Sharing+Dataset) In our experiment, we drop ‘instant‘, ‘yr‘, and ‘mnth‘ columns.

Multi-sequence: The sequences in the multi-sequence data vary in length from one entity to another, so we
selected entities with sequences longer than T = 200 and T = 177 and truncated them to a uniform length of
T for the "card transaction" and "nasdaq100" datasets.

• Card Transaction is a multi-sequence, synthetic mixed-type time-series dataset created by
Padhi et al. (2021a) using a rule-based generator to simulate real-world credit card transac-
tions. We selected 100 users (i.e., entities) for our experiment. In the dataset, we choose
{’Card’, ’Amount’, ’Use Chip’, ’Merchant’, ’MCC’, ’Errors?’, ’Is Fraud?’} as features for the ex-
periment. (URL: https://github.com/IBM/TabFormer/tree/main)

• nasdaq100 is a multi-sequence, mixed-type time-series dataset consisting of stock prices of 103
corporations (i.e., entities) under nasdaq 100 and the index value of nasdaq 100. This data covers
the period from July 26, 2016 to April 28, 2017, in total 191 days. (URL: https://cseweb.ucsd.
edu/~yaq007/NASDAQ100_stock_data.html)
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Dataset # of Rows #-Cont. #-Disc. Seq. Type Pred Score Col.
Traffic 48205 3 5 Single traffic volume

Pollution 43825 5 3 Single lr
Hurricane 9937 4 4 Single seasonal
AirQuality 9358 1 12 Single AH

ETTh1 17431 7 0 Single OT
Energy 19736 27 1 Single rv2

Bike Sharing 731 6 6 Single NaN
Card Transaction 20000 2 6 Multi Is Fraud?

nasdaq100 18231 3 4 Multi Industry

Table 5: Datasets used for our experiments. The date time column is considered as neither continuous nor
categorical. The ‘Seq.Type’ denotes the time series data type: single- or multi-sequence data. The ‘Pred
Score Col’ denotes columns in each dataset used for measuring predictive scores.

C Denoising Diffusion Probabilistic Model

Ho et al. (2020) proposes the denoising diffusion probabilistic model (DDPM) which gradually adds fixed
Gaussian noise to the observed data point x0 via known variance scales βn ∈ (0, 1), n ∈ {1, . . . , N} at the
diffusion step n. This process is referred as forward process in the diffusion model, perturbing the data point
and defining a sequence of noisy data x1,x2, . . . ,xN :

q(xn | xn−1) = N (xn;
√

1− βnxn−1, βnI), q(x1:N | x0) :=
N∏
n=1

q(xn | xn−1).

Since the transition kernel is Gaussian, the conditional probability of the xn given its original observation x0
can be succinctly written as:

q(xn | x0) = N
(
xn |
√
ᾱnx0, (1− ᾱn)I

)
,

where αn = 1− βn and ᾱn = Πn
k=1αk. Setting βn to be an increasing sequence, for large enough N , leads xN

to the isotropic Gaussian.

Training objective of DDPM is to maximize the evidence lower bound (in short ELBO) of the log-likelihood
Ex0 [log pθ(x0)] as follows;

Eq
[

log pθ(x0 | x1)−DKL(q(xN | x0) || p(xN ))−
N∑
n=1
DKL(q(xn−1 | xn,x0) || pθ(xn−1 | xn))

]
.

The first two terms in the expectation are constants, and the third KL-divergence term needs to be controlled.
Interestingly, the conditional probability q(xn−1 | xn,x0) can be driven in the closed-form solution:

q(xn−1 | xn,x0) = N
(

xn−1 |
√
ᾱn−1βn
1− ᾱn

x0 +
√
αn(1− ᾱn−1)

1− ᾱn
xn,

1− ᾱn−1

1− ᾱn
βnI

)
.

Noticing the covariance is a constant matrix and KL-divergence between two Gaussians has closed-form
solution; DDPM models pθ(xn−1 | xn) := N (xn−1 | µθ(xn, n), 1−ᾱn−1

1−ᾱn
βnI). The mean vector µθ(xn, n) is

parameterized by a neural network.

The trick used in (Ho et al., 2020) is to reparameterize µθ(xn, n) in terms of ϵθ(xn, n) where it predicts the
noise ϵ added to xn from x0. (Note that xn =

√
ᾱnx0 +

√
1− ᾱnϵ with ϵ ∼ N (0, I).)

Given this, the final loss function DDPM wants to minimize is:

Ldiff := En,ϵ
[
∥ϵθ
(√
ᾱnx0 +

√
1− ᾱnϵ, n

)
− ϵ∥2

2

]
,
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where the expectation is taken over ϵ ∼ N (0, I) and n ∼ Unif({0, . . . , N}).

The generative model learns the reverse process. To generate new data from the learned distribution, the first
step is to sample a point from the easy-to-sample distribution xN ∼ N (0, I) and then iteratively denoise
(xN → xN−1 → · · · → x0) it using the above model.

D Comparison Table of TimeAutoDiff with current literature

Table 1 compares TimeAutoDiff with other time series synthesizers in the literature under seven different
aspects. Additionally, we provide further detailed comparisons between our model and Diffusion-TS (Yuan &
Qiao, 2023) / TimeDiff (Tian et al., 2023), and TabSyn (Zhang et al., 2023b).

D.1 Baseline models for Unconditional Generation

Diffusion-TS (Yuan & Qiao, 2023)’s main purpose is to generate time series data with interpretability. They
employ the Autoencoder + DDPM framework, employing transformers as encoder and decoder for obtaining
the disentangled representations of time series. The main difference between Diffusion-TS and ours is on the
problem setting that their assumption on the signal is only restricted to continuous time series, whereas ours
is focused on the heterogeneous features. Diffusion-TS lies on the assumption that the signal is decomposable
into three main parts: trend, seasonality, and noise. However, the decomposition of heterogeneous features,
specifically discrete variables is not well defined in the literature, it is beyond the scope of our work, requiring
further research.

TimeDiff (Tian et al., 2023) integrates two types of diffusion models to handle heterogeneous features in
EHR datasets, employing DDPM for continuous variables and multinomial diffusion (Hoogeboom et al., 2021)
for discrete variables. In contrast, our approach leverages a VAE to project time series data into a latent
space and utilizes DDPM exclusively for modeling the time series within this latent representation, which is
continuous.

Our work is partially inspired by TabSyn Zhang et al. (2023b), which showed great successes in tabular
data modeling. But we argue that TabSyn cannot encompass the time-series data. The time series data
has 2-dimensional form (i.e., 2D data): one dimension for time-axis and another dimension for feature axis,
whereas the data format TabSyn can afford is in 1-dimensional space (only feature dimension). In their
modeling scheme, they take each row of the table as one data point, and think the rows are i.i.d., and this
means they didn’t model the temporal dependencies of rows in the table, which is an obvious difference
between our work and theirs.

D.2 Baseline models for Imputation & Forecasting

Time-LLM (Jin et al., 2023): Time-LLM reframes numerical forecasting as a language-modeling problem.
Numeric sequences are first segmented into short patches and mapped to a bank of text prototypes, creating
a token stream that a frozen LLM can ingest. A natural-language Prompt-as-Prefix (PaP) explains how these
synthetic tokens relate to time-series patterns and what forecast is required. The LLM reasons over this
hybrid input without any weight updates; its token outputs are then linearly projected back to real values to
obtain the prediction. With just the lightweight prototype encoder/decoder trained, Time-LLM matches or
surpasses specialist forecasting architectures—and remains effective in zero-shot and few-shot settings.

MOMENT (Goswami et al., 2024): MOMENT is a family of large-scale foundation models for time-series
analysis, designed to serve as general-purpose models across diverse tasks. Each MOMENT model is a
high-capacity Transformer architecture trained on the Time-series-Pile—a massive repository of time-series
data collected from many domains (e.g. healthcare, finance, climate). The training objective is a self-supervised
masked time-series prediction task, wherein the model learns to reconstruct missing portions of time-series
inputs, analogous to masked language modeling but for continuous sequences. Through this pre-training,
MOMENT learns rich representations of temporal patterns that can be adapted to various tasks. A single
pre-trained MOMENT model can be used out-of-the-box for forecasting, classification, anomaly detection,
imputation and more, often in a zero-shot or few-shot manner, while also allowing fine-tuning for further
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gains. Experiments show that these foundation models perform effectively with minimal task-specific data,
and the authors provide a benchmark to evaluate such models’ performance across multiple time-series tasks.

TEFN (Zhan et al., 2024): The Time Evidence Fusion Network explicitly fuses two complementary
evidential views of a multivariate series. First, a Basic Probability Assignment (BPA) module—grounded in
Dempster–Shafer theory—assesses the contribution and uncertainty of patterns within each channel (spatial
view) and across time (temporal view). A dedicated fusion layer then combines these sources of evidence
into a unified latent representation, enabling the model to exploit cross-variable interactions and temporal
dynamics coherently. This design delivers state-of-the-art long-horizon accuracy while remaining lightweight
and remarkably robust to hyper-parameter choices.

TimeMixer (Wang et al., 2024): TimeMixer views forecasting through a multi-scale lens. Its
Past-Decomposable-Mixing (PDM) block decomposes the history into frequency bands (e.g. seasonal vs.
trend) and mixes them bidirectionally—from fine→coarse and coarse→fine scales—so that microscopic and
macroscopic information reinforce each other. The Future-Multipredictor-Mixing (FMM) block then ensembles
several scale-specialized heads, blending their predictions into the final forecast. Built entirely from MLP
layers, TimeMixer attains SOTA accuracy on both short- and long-term tasks while keeping computational
complexity linear in sequence length.

TimesNet (Wu et al., 2022): TimesNet converts a 1-D sequence into a 2-D tensor to isolate periodic
structure. Dominant periods are detected, and the series is reshaped so that rows index successive periods
and columns index positions within each period—turning intra-period variations into column patterns and
inter-period variations into row patterns. A parameter-efficient TimesBlock (inception-style 2-D convolution)
then captures these variations jointly. This single backbone achieves competitive or superior results in
forecasting, imputation, classification, and anomaly detection, illustrating the power of modeling temporal
data in the 2-D variation domain.

MICN (Wang et al., 2023a): The Multi-scale Isometric Convolution Network combines the locality of
CNNs with global context modeling at linear cost. Parallel branches process progressively down-sampled
versions of the input, and each branch applies (i) standard convolutions for short-range patterns and (ii)
isometric dilated convolutions whose receptive field spans the entire (down-sampled) sequence. Outputs from
all branches are concatenated to form the forecast, yielding substantial improvements—17% (multivariate)
and 22% (univariate) error reductions—over previous best models.

DLinear (Zeng et al., 2023): Decomposition-Linear replaces deep networks with a two-step linear pipeline.
First, a simple moving-average filter separates each series into trend and seasonal components. Second, two
independent one-layer linear projections extrapolate these parts and their outputs are summed to obtain
the forecast. Despite its minimal complexity, this seasonal–trend decomposition plus linear extrapolation
matches or surpasses state-of-the-art Transformer models on long-horizon benchmarks, showing that carefully
chosen inductive bias can rival far more elaborate architectures.

FiLM (Zhou et al., 2022): The Frequency-Improved Legendre Memory module augments Legendre
polynomial projections with signal-processing tricks to preserve long-range history. A Legendre basis encodes
the entire past into a compact state; a learnable Fourier projector filters out high-frequency noise; and a
low-rank approximation accelerates computation. FiLM can operate as a standalone predictor or as a plug-in
memory block, boosting long-horizon accuracy by 20% when inserted into existing architectures.

CSDI (Tashiro et al., 2021): Conditional Score-based Diffusion Imputation frames gap-filling as conditional
generation. A diffusion process iteratively perturbs the full sequence, while a neural score model—conditioned
on the observed entries—guides reverse denoising to sample plausible completions. This yields a distribution
over imputations, enabling uncertainty quantification; deterministic estimates are obtained by averaging or
mode-seeking. Across healthcare and environmental datasets, CSDI reduces probabilistic-imputation errors
by 40–65% relative to previous methods, and >10% even in deterministic settings.

31



Under review as submission to TMLR

E Evaluation Metric

For the quantitative evaluation of synthesized data, we mainly focus on three criteria (1) the distributional
similarities of the two tables; (2) the usefulness for predictive purposes; (3) the temporal and feature
dependencies; We employ the following evaluation metrics:

Discriminative Score (Yoon et al., 2019) measures the fidelity of synthetic time series data to original
data, by training a classification model (optimizing a 2-layer LSTM) to distinguish between sequences from
the original and generated datasets.

Predictive Score (Yoon et al., 2019) measures the utility of generated sequences by training a posthoc
sequence prediction model (optimizing a 2-layer LSTM) to predict next-step temporal vectors under a
Train-on-Synthetic-Test-on-Real (TSTR) framework.

Temporal Discriminative Score measures the similarity of distributions of inter-row differences between
generated and original sequential data. This metric is designed to see if the generated data preserves the
temporal dependencies of the original data. For any fixed integer t ∈ {1, . . . , T − 1}, the difference of the
n-th row and (n+ t)-th row in the table over n ∈ {1, . . . , T − t} is computed for both generated and original
data and discriminative score (Yoon et al., 2019) is computed over the differenced matrices from original and
synthetic data. We average discriminative scores over 10 randomly selected t ∈ {1, . . . , T − 1}.

Feature Correlation Score measures the averaged L2-distance of correlation matrices computed on real
and synthetic data. Following (Kotelnikov et al., 2022), to compute the correlation matrices, we use the
Pearson correlation coefficient for numerical-numerical feature relationships, Theil’s U statistics between
categorical-categorical features, and the correlation ratio for categorical-numerical features. We use the
following metrics to calculate the feature correlation score:

• Pearson Correlation Coefficient: Used for Numerical to Numerical feature relationship.
Pearson’s Correlation Coefficient r is given by

r =
∑

(x− x̄)(y − ȳ)√∑
(x− x̄)2

√∑
(y − ȳ)2

where

– x and y are samples in features X and Y , respectively
– x̄ and ȳ are the sample means in features X and Y , respectively

• Theil’s U Coefficient: Used for Categorical to Categorical feature relationship. Theil’s U
Coefficient U is given by

U = H(X)−H(X|Y )
H(X)

where

– entropy of feature X is defined as

H(X) = −
∑
x

PX(x) logPX(x)

– entropy of feature X conditioned on feature Y is defined as

H(X|Y ) = −
∑
x,y

PX,Y (x, y) log PX,Y (x, y)
PY (y)

– PX and PY are empirical PMF of X and Y , respectively
– PX,Y is the joint distribution of X and Y
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• Correlation Ratio: Used for Categorical to Numerical feature relationship. The correlation
ratio η is given by

η =
√∑

x nx(ȳx − ȳ)2∑
x,i(yxi − ȳ)2

where
– nx is the number of observations of label x in the categorical feature
– yxi is the i-th observation of the numerical feature with label x
– ȳx is the mean of observed samples yi ∈ Y with label x
– ȳ is the sample mean of Y

F Model parameter settings, Training & Hyper-parameter choices

Our model consists of two components: VAE and DDPM. We present the sizes of networks in both
components that are applied entirely across the experiments in the paper.

VAE-Encoder =
{

Dimension of first FC-layer in MLP-block for encoded features:
(Num of disc var.×128+Num of cont var.×16)× 128,

Dimension of second FC-layer in MLP-block for encoded features:128× F,
Dimension of hidden layer for the 2-RNNs for µ and σ: 200,
Number of layers for the 2-RNNs for µ and σ: 2,
Dimension of fully-connected layer topped on 2-RNNs: 200× F

}
VAE-Decoder =

{
Dimension of first FC-layer in MLP-block for latent matrix Z0: F× 128,
Dimension of second FC-layer in MLP-block for latent matrix Z0: 128× 128

}
DDPM =

{
Output dimensions of encodings of (ZLat

n , n, t, ts): 200,
Dimension of hidden layer for the Bi-RNNs: 200,
Number of layers for the Bi-RNNs: 2,
Dimension of FC-layer of the output of Bi-RNNs: 400× F,
Diffusion Steps: 100

}
Training for both the VAE and DDPM models is set to 25,000 epochs. The batch size for VAE training is 100,
while the batch size for DDPM training matches the number of diffusion steps. We use the Adam optimizer,
with a learning rate of 2× 10−4 decaying to 10−6 for the VAE, and a learning rate of 10−3 for the DDPM.
For stabilization of diffusion training, we employ Exponential Moving Average (EMA) with decay rate 0.995.
We employ linear noise scheduling for βn := 1− αn, n ∈ {1, 2, . . . , N} with β1 = 10−4 and βN = 0.2:

βn =
(

1− n

N

)
β1 + n

N
βN .

In the following, we investigate the robustness of our models to the various hyper-parameter choices in VAE
and DDPM. Specifically, we studied the effects of (1) feature dimension of ZLat

0 (F/2, F/4), (2) number of
diffusion steps (75, 50, 25), (3) training epochs of VAE and DDPM (20000, 15000, 10000), (4) dimension of
hidden layers of two RNNs (for µ and σ) in VAE (150, 100, 50), (5) dimension of hidden layers of Bi-RNNs in
DDPM (150, 100, 50), (6) the number of layers of two RNNs (for µ and σ) in VAE (1), (7) the number of
layers of Bi-RNNs in DDPM (1). (8) the quadratic noise scheduler used in Song et al. (2020a); Tashiro et al.
(2021):

βn =
((

1− n

N

)√
β1 + n

N

√
βN

)2
.
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Method Disc. Score Pred. Score Temp. Disc Score Feat. Correl.
TimeAutoDiff

Latent Feature Dimension = F/2
Latent Feature Dimension = F/4

Diffusion Steps = 75
Diffusion Steps = 50
Diffusion Steps = 25

VAE Training = 15000
VAE Training = 10000
VAE Training = 5000

DDPM Training = 15000
DDPM Training = 10000
DDPM Training = 5000

Hidden Dimension of RNNs (VAE) = 150
Hidden Dimension of RNNs (VAE) = 100
Hidden Dimension of RNNs (VAE) = 50

Hidden Dimension of Bi-RNNs (DDPM) = 150
Hidden Dimension of Bi-RNNs (DDPM) = 100
Hidden Dimension of Bi-RNNs (DDPM) = 50

Number of layers in RNNs (VAE) = 1
Number of layers in Bi-RNNs (DDPM) = 1

Quadratic Noise Scheduler

0.015(0.012)
0.009(0.004)
0.038(0.021)
0.016(0.009)
0.118(0.019)
0.150(0.027)
0.075(0.009)
0.068(0.018)
0.195(0.025)
0.098(0.014)
0.220(0.025)
0.267(0.021)
0.013(0.008)
0.030(0.009)
0.082(0.023)
0.031(0.010)
0.167(0.012)
0.174(0.014)
0.024(0.013)
0.097(0.009)
0.109(0.017)

0.229(0.010)
0.227(0.009)
0.233(0.007)
0.224(0.015)
0.241(0.003)
0.248(0.006)
0.243(0.005)
0.242(0.007)
0.245(0.002)
0.237(0.015)
0.246(0.004)
0.255(0.001)
0.240(0.007)
0.236(0.017)
0.238(0.004)
0.243(0.011)
0.248(0.003)
0.251(0.005)
0.245(0.009)
0.250(0.002)
0.234(0.013)

0.034(0.020)
0.096(0.061)
0.099(0.171)
0.014(0.009)
0.092(0.046)
0.111(0.065)
0.035(0.007)
0.038(0.038)
0.039(0.019)
0.062(0.038)
0.165(0.045)
0.216(0.031)
0.031(0.009)
0.017(0.011)
0.051(0.038)
0.028(0.013)
0.094(0.054)
0.157(0.072)
0.042(0.018)
0.245(0.009)
0.072(0.025)

0.043(0.000)
0.055(0.000)
0.048(0.000)
0.039(0.000)
0.109(0.000)
0.100(0.000)
0.091(0.000)
0.050(0.000)
0.077(0.000)
0.086(0.000)
0.195(0.000)
0.190(0.000)
0.015(0.000)
0.039(0.000)
0.064(0.000)
0.035(0.000)
0.119(0.000)
0.132(0.000)
0.028(0.000)
0.086(0.000)
0.106(0.000)

Table 6: Performances measured with various choices of hyper-parameters in TimeAutoDiff. The experiments
are conducted on Traffic dataset with T = 24.

with the minimum noise level β1 = 0.0001, and the maximum noise level βN = 0.5.

The experiments are conducted over the varying parameters (in the paranthesis), while the remaining
parameters in the model are being fixed as in the above settings. The first 2000 rows of Traffic data are
used for the experiments with sequence length 24. (i.e., the dimensions of tensors used in the experiments are
[B, T, F ] = [1977, 24, 8])

Results Interpretations: Table 6 presents the performance of the models across four metrics, with
variations in hyperparameter settings. Overall, larger models yield better results. Reducing the diffusion
steps, dimensions, and the number of hidden layers in RNNs within the VAE and Bi-RNN components of
DDPM significantly degrades model performance. Longer training of both VAE and DDPM consistently
enhances results. The linear noise scheduler outperforms the quadratic noise scheduler. While reducing
the feature dimension to F/2 slightly improves discriminative and temporal discriminative scores, further
compression to F/4 leads to information loss during signal reconstruction, resulting in poorer performance.

G Volatility and Moving Average: comparison between real and synthetic under stock
data

We provide the performance of our model in terms of volatility and moving average. We first provide the
brief descriptions on Simple Moving Average, Exponential Moving Average, and Volatility.

Simple Moving Average (SMA): The Simple Moving Average (SMA) is computed as the arithmetic mean
of values over a sliding window of size w = 5. For a given time step t, the SMA is given by:

SMAt = 1
5

t∑
i=t−4

Valuei

where Valuei represents the value of the time series at time i. This metric smooths short-term fluctuations
and highlights the overall trend by averaging values in the specified window.

Exponential Moving Average (EMA) The Exponential Moving Average (EMA) is a weighted average of
values where recent data points have exponentially greater weight. For a window size of w = 5, the smoothing
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factor α is computed as: α = 2
w+1 = 2

5+1 = 1
3 . The EMA at time t is then computed recursively as:

EMAt = α ·Valuet + (1− α) · EMAt−1

where Valuet is the current value of the time series, and EMAt−1 is the EMA from the previous time step.
This method emphasizes recent changes while retaining some information from the historical trend.

Volatility Volatility measures the degree of variation in the time series over a sliding window of size w = 5.
It is calculated as the rolling standard deviation of the percentage changes (returns). First, the percentage
change (return) between consecutive values is computed as:

Returni = Valuei −Valuei−1

Valuei−1

For a given time step t, the volatility over the window w = 5 is given by: Volatilityt =√
1
5
∑t
i=t−4

(
Returni − ¯Return

)2 where ¯Return is the mean of the returns within the window.

Figure 14: Comparison of synthetic (left) and real (right) data across two features, illustrating alignment in
trends (SMA, EMA) and variability (Volatility: secondary y-axis).

Results: We work on the stock data. The figure 14 provide a clear side-by-side comparison between the
synthetic and real data, with the left column displaying the synthetic data and the right column showcasing
the corresponding real data for two selected features (Open & Close prices) over 200 timestamps (i.e.,T=200).
Each row focuses on one feature, allowing for a detailed examination of the behavior across key metrics: Simple
Moving Average (SMA), Exponential Moving Average (EMA), and Volatility. The SMA and EMA curves,
plotted alongside the raw time series data, highlight the ability of the synthetic data to replicate the long-term
trends (SMA) and short-term responsiveness (EMA) observed in the real data. Volatility, overlaid as a
secondary y-axis in each plot, demonstrates the synthetic data’s capacity to reproduce the temporal variability,
including periods of high and low uncertainty, as reflected in the real data. The remarkable alignment across
all metrics suggests that the synthetic data closely mirrors the real data’s dynamics, effectively capturing
both the overall patterns and nuanced fluctuations. This visual comparison underscores the robustness and
reliability of the synthetic data generation process.
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Sine Waves. We simulate multivariate sinusoidal sequences of different frequencies η and phases θ,
providing continuous-valued, periodic, multivariate data where each feature is independent of others. For
each dimension i ∈ {1, ..., F}, xi(t) = sin(2πηt+ θ), where η ∼ Unif[0, 1] and θ ∼ Unif[−π, π].

We train the model with data of size [Batch Size × Seq Len × Feature Dim] and draw the samples
with same sizes. In the following Tables, training time for VAE, Diffusion models, and sampling time for data
are recorded in seconds. Allocated GPU memory for sampling (in MB), discriminative score and temporal
discriminative score are also recorded.

Under the model configurations stated in the Appendix F, TimeAutoDiff can generate the sequence of length
900 with 5 features with good fidelities. (See Table 7.) In contrast, we observe a performance drop when
the feature sizes increase (30 to 50 features) with a sequence length of 200. To address this, we reduce the
dimension of the feature axis in the latent space to F/2, resulting in a significant performance increase in the
high-dimensional feature setting.

Batch Size Seq Len VAE Diff Sampling GPU Mem Disc Scr Temp Disc Scr
500 100 187.23 94.32 1.294 910.47 0.067 (0.034) 0.143 (0.114)
400 300 420.23 201.47 3.585 1991.75 0.040 (0.023) 0.064 (0.059)
300 500 665.69 315.92 5.511 2572.63 0.032 (0.016) 0.078 (0.078)
200 700 928.83 415.36 7.303 2466.91 0.048 (0.016) 0.193 (0.122)
100 900 1209.34 530.36 8.499 1670.75 0.16 (0.094) 0.13 (0.143)

Table 7: The number of feature is fixed as 5. The sequence length increases up to 900.

Batch Size Feat Dim VAE Diff Sampling GPU Mem Disc Scr Temp Disc Scr
800 10 128.11 355.03 5.36 4696.21 0.24 (0.08) 0.26 (0.09)
800 20 132.48 359.32 4.12 5080.84 0.26 (0.05) 0.38 (0.08)
800 30 134.02 371.38 3.99 5540.96 0.31 (0.08) 0.33 (0.17)
800 40 134.72 364.85 3.97 6003.00 0.39 (0.14) 0.41 (0.14)
800 50 135.95 374.61 5.35 6464.41 0.48 (0.02) 0.49 (0.00)

Table 8: The sequence length is fixed as 200. The feature dimension increases up to 50.

Batch Size Feat Dim VAE Diff Sampling GPU Mem Disc Scr Temp Disc Scr
800 10 131.65 365.81 4.63 3288.57 0.20 (0.12) 0.23 (0.14)
800 20 128.34 344.86 4.53 3947.75 0.25 (0.13) 0.29 (0.09)
800 30 130.92 363.41 4.61 4358.76 0.17 (0.11) 0.34 (0.14)
800 40 132.03 359.15 4.58 4771.51 0.24 (0.19) 0.38 (0.09)
800 50 134.96 367.05 4.70 5185.07 0.32 (0.18) 0.41 (0.10)

Table 9: Same setting with Table 8, but the dimension of latent matrix is set as 200× 7.

H Maximum Mean Discrepancy & Entropy

We used two metrics proposed by TSGM (Nikitin et al., 2023): Maximum Mean Discrepancy (MMD) and
Entropy. MMD measures the similarity (or fidelity) between synthetic and real time series data, while Entropy
assesses the diversity of the synthetic data. The results are summarized in Table 10 and are consistent with
those in Table 2.

TimeAutoDiff achieves the lowest MMD scores across all four datasets, aligning with the discriminative
scores reported in Table 2. This indicates that TimeAutoDiff effectively generates synthetic data that closely
resembles real data. For diversity, higher Entropy values indicate a dataset with more diverse samples.
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However, as noted in (Nikitin et al., 2023), Entropy should be considered alongside other metrics, as random
noise can also result in high Entropy values. TimeAutoDiff produces synthetic data with higher Entropy
values than the real data, though not as excessively as other baseline models. This suggests that our model
generates synthetic data that preserves the statistical properties of the original data, maintaining diversity
without introducing excessive deviation.

Metric Method Traffic Pollution Hurricane AirQuality

MMD Score

(The lower, the better)

TimeAutoDiff
TimeGAN

DoppelGANer
Diffusion-TS

TSGM
real vs. real

0.000629
0.001738
0.000644
0.005099
0.001484
0.000000

0.000895
0.009791
0.000960
0.037102
0.006322
0.000000

0.000891
0.002775
0.005489
0.078387
0.031971
0.000000

0.001531
0.042986
0.017038
0.004144
0.013777
0.000000

Entropy Score

(Needs to be considered
with other metrics)

TimeAutoDiff
TimeGAN

DoppelGANer
Diffusion-TS

TSGM
Real

6419.404
6714.156
3941.083
9763.042
11899.225
5983.576

8472.642
11021.597
8656.403
7372.591
11854.764
6976.253

7129.152
7804.343
6946.678
9861.151
6535.306
6613.284

16570.016
15343.967
8708.616
15934.365
15766.673
14952.996

Table 10: Maximum Mean Discrepancy (MMD) and Entropy of TimeAutoDiff, TimeGAN, DoppelGANer,
Diffusion-TS, TSGM and Real data. The experimental setting is same with that of Table ??.

I Experimental details of Imputation and Forecasting Tasks

Model Metric Imputation (MCAR) Forecasting (w = 24)
Bike Sharing Traffic Pollution AirQuality Bike Sharing Traffic Pollution AirQuality

TimeAutoDiff
MAE 0.1456 1.3423 0.0795 0.0386 0.0186 0.5202 0.1457 0.0541
MSE 0.0356 7.8623 0.0406 0.0031 0.052 1.7045 0.1249 0.0097

TimeLLM
MAE 0.3050 2.3663 0.2676 0.1184 0.1554 0.5196 0.1528 0.0661
MSE 0.0926 11.4532 0.0945 0.0162 0.0800 2.1470 0.1765 0.0221

Moment
MAE 0.5251 2.3359 1.1244 0.1526 N.A. N.A N.A. N.A.
MSE 0.2279 9.8981 1.1153 0.0223 N.A. N.A. N.A. N.A.

TEFN
MAE 0.2999 2.0211 0.1005 0.0576 0.1493 0.5333 0.1466 0.0735
MSE 1.7018 41.4960 0.6051 0.5354 0.0641 1.9177 0.1485 0.0194

TimeMixer
MAE 0.1738 2.1692 0.1196 0.0582 0.0809 0.5455 0.1576 0.0887
MSE 0.0304 10.0108 0.0428 0.0051 0.0171 1.9208 0.1483 0.0243

TimesNet
MAE 0.4015 2.6672 0.2542 0.1231 0.1352 0.5473 0.1446 0.0766
MSE 0.1471 18.5159 0.1124 0.0205 0.0519 1.9260 0.1451 0.0189

MICN
MAE 0.1816 2.5605 0.2869 0.3336 0.1249 0.5593 0.1642 0.0700
MSE 0.0273 14.7340 0.0988 0.0909 0.0538 2.2501 0.2036 0.0251

DLinear
MAE 0.2620 2.5727 0.1936 0.1538 0.1358 0.5215 0.1449 0.0695
MSE 0.0698 15.1539 0.0788 0.0305 0.0659 1.9290 0.1549 0.0188

FiLM
MAE 0.3151 2.0586 0.1185 0.0580 0.3135 0.5382 0.1451 0.0800
MSE 0.1324 9.6541 0.0439 0.0048 0.4062 1.9271 0.1495 0.0213

CSDI
MAE 0.3013 1.5579 0.0947 0.0356 0.1339 0.5799 0.1603 0.0750
MSE 0.2337 10.3721 0.0572 0.0027 0.1008 3.6405 0.2764 0.0302

Table 11: Imputation (MCAR) and forecasting (w = 24). MAE/MSE on four datasets (Bike Shar-
ing, Traffic, Pollution, AirQuality). TimeAutoDiff leads MCAR (best MAE on 3/4; best MSE on Traf-
fic/Pollution, second on AirQuality) and dominates forecasting w=24 (best MSE on all; best MAE on Bike
Sharing/AirQuality). Bold = best; second; N.A. = not available.
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Model Metric
Imputation

(block_len = 3, block_width=2)
Imputation

(seq_len= 12)
Bike Sharing Traffic Pollution AirQuality Bike Sharing Traffic Pollution AirQuality

TimeAutoDiff MAE 0.1338 0.0517 0.0632 0.0409 0.2335 0.0564 0.1159 0.0362
MSE 0.0100 0.0088 0.0087 0.0006 0.0410 0.0118 0.0216 0.0008

TimeLLM MAE 0.2538 0.3658 0.0939 0.0586 0.2655 0.3992 0.1807 0.0651
MSE 0.0181 0.0678 0.0062 0.0167 0.0773 0.0208 0.0010

Moment MAE 0.5460 1.5252 0.2053 0.9840 0.4408 4.7744 0.1844 0.1113
MSE 0.0746 0.5611 0.0097 0.1206 0.0560 2.8733 0.0183 0.0020

TEFN MAE 0.3370 0.3603 0.1006 0.0276 0.2815 0.2769 0.1480 0.0263
MSE 2.0342 9.2575 0.9870 1.0955 2.0377 11.3851 0.9029 1.1034

TimeMixer MAE 0.1719 0.3229 0.0902 0.0520 0.1549 0.3031 0.1810 0.0588
MSE 0.0091 0.0690 0.0073 0.0008 0.0069 0.0628 0.0198 0.0010

TimesNet MAE 0.1840 0.4037 0.2165 0.0479 0.3474 0.3206 0.2675 0.0668
MSE 0.0100 0.1085 0.0206 0.0006 0.0343 0.0708 0.0404 0.0010

MICN MAE 0.1466 0.2819 0.0829 0.0533 0.4198 0.8763 0.2230 0.3570
MSE 0.0072 0.0604 0.0060 0.0010 0.0558 0.3507 0.0302 0.0171

DLinear MAE 0.2006 0.4745 0.1140 0.0839 0.2531 0.4918 0.1788 0.0819
MSE 0.0134 0.0804 0.0066 0.0016 0.0209 0.1008 0.0238 0.0014

FiLM MAE 0.3505 0.3615 0.1096 0.0524 0.3303 0.3007 0.1790 0.0591
MSE 0.0551 0.0745 0.0072 0.0008 0.0433 0.0701 0.0195 0.0008

CSDI MAE 0.3293 0.1018 0.0672 0.0231 0.2469 0.0933 0.1256 0.0286
MSE 0.1051 0.0229 0.0062 0.0003 0.0693 0.0208 0.0215 0.0006

Table 12: Imputation with structured masks (block vs. sequential). Block (block_len=3,
block_width=2) and Sequential (seq_len=12). TimeAutoDiff is strongest overall (block: best MAE
on 3/4 and best MSE on Traffic; sequential: best MAE on Traffic/Pollution and best MSE on Traffic), while
CSDI/TEFN lead AirQuality and MICN/TimeMixer top specific MSE columns. Bold = best; second.

Model Metric Forecasting (w=12) Forecasting (w=36)
Bike Sharing Traffic Pollution AirQuality Bike Sharing Traffic Pollution AirQuality

TimeAutoDiff MAE 0.0103 0.3942 0.1458 0.0689 0.0159 0.2544 0.1317 0.0156
MSE 0.0027 1.3371 0.1610 0.0221 0.0014 0.2223 0.0558 0.0004

TimeLLM MAE NaN NaN NaN NaN 0.1546 0.2785 0.1429 0.0655
MSE NaN NaN NaN NaN 0.0823 0.6198 0.0190

TEFN MAE 0.1537 0.3725 0.1377 0.0795 0.1330 0.2776 0.1381 0.0652
MSE 0.0724 0.9662 0.1186 0.0207 0.0640 0.5744 0.1390 0.0167

TimeMixer MAE 0.1430 0.3961 0.1372 0.0958 0.0574 0.3271 0.1394 0.0056
MSE 0.0564 0.9710 0.1179 0.0268 0.0080 0.6007 0.1343 0.0001

TimesNet MAE 0.1271 0.3785 0.1375 0.0744 0.0137 0.2820 0.1425 0.0234
MSE 0.0569 0.9659 0.1187 0.0204 0.0016 0.5722 0.1363 0.0027

DLinear MAE NaN NaN NaN NaN 0.1308 0.2687 0.1318 0.0616
MSE NaN NaN NaN NaN 0.0681 0.5816 0.1438 0.0158

FiLM MAE 0.3238 0.3736 0.1377 0.0823 0.2954 0.2712 0.1345 0.0692
MSE 0.4193 0.9620 0.1242 0.0219 0.3851 0.5615 0.1391 0.0179

CSDI MAE 0.1385 0.4616 0.1484 0.0718 0.1380 0.3025 0.1406 0.0476
MSE 0.1176 2.0394 0.2048 0.0269 0.0990 1.0445 0.1593 0.0176

Table 13: Short- and long-horizon forecasting. Left: w=12. Right: w=36. TimeAutoDiff is particularly
strong at w=36 (lowest MAE on Traffic/Pollution; lowest MSE on Bike Sharing/Traffic/Pollution), with
TimeMixer leading AirQuality; at w=12 it leads Bike Sharing/AirQuality MAE and Bike Sharing MSE, while
other baselines top a few columns. Bold = best; second; NaN = not available.
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J Additional Plots: Auto-Correlation / periodic, cyclic patterns
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Autocorrelation Plot of Partitioned Real Energy
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Figure 15: The four plots from the top are auto-correlation plots of lag 300 for real (left) and synthetic (right)
of ‘Traffic’,‘Hurricane’,‘Pollution’, and ‘Energy’.
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K Plots of Synthethic v.s. Real on TV-MCG from TimeAutoDiff
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Figure 16: Datasets: (output variables) from top to bottom: Traffic: (‘Weather main’, ‘temp’), Pollution:
(‘cbwd’, ‘Iws’), Hurricane: (‘year’, ‘trend’), AirQuality: (‘NOx(GT)’, ‘NO2(GT)’), ETTh1 : (‘LULL’,
‘OT’), Energy: (‘lights’, ‘rv1’). The output is chosen to be heterogeneous (except AirQuality & ETTh1)
both having discrete and continuous variables. Conditional variables c are set as remaining variables from
the entire features. See the list of entire features of each dataset through the link in Appendix B.
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