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Abstract

After pre-training, large language models are aligned with human preferences based
on pairwise comparisons. State-of-the-art alignment methods (such as PPO-based
RLHF and DPO) are built on the assumption of aligning with a single preference
model, despite being deployed in settings where users have diverse preferences. As
a result, it is not even clear that these alignment methods produce models that satisfy
users on average — a minimal requirement for pluralistic alignment. Drawing on
social choice theory and modeling users’ comparisons through individual Bradley-
Terry (BT) models, we introduce an alignment method’s distortion: the worst-case
ratio between the optimal achievable average utility, and the average utility of the
learned policy. The notion of distortion helps draw sharp distinctions between
alignment methods: Nash Learning from Human Feedback achieves the minimax
optimal distortion of ( 1

2+o(1)) ·β (for the BT temperature β), robustly across utility
distributions, distributions of comparison pairs, and permissible KL divergences
from the reference policy. RLHF and DPO, by contrast, suffer ≥ (1−o(1)) · β
distortion already without a KL constraint, and eΩ(β) or even unbounded distortion
in the full setting, depending on how comparison pairs are sampled.

1 Introduction

Reinforcement Learning from Human Feedback (RLHF) [38, 43, 18, 59] has become the dominant
paradigm for aligning large language models (LLMs) with human values and preferences. In a
typical alignment pipeline, human feedback is provided as ordinal comparisons between pairs of
candidate model outputs. This feedback is used to fine-tune a pre-trained model, steering it toward
the preferences expressed in these comparisons. A major limitation of RLHF and of many proposed
alternatives (including DPO [43], ΦPO [5], KTO [24], SimPO [34], χPO [30]) is that they do not
take into account that users will disagree on which model outputs are most useful or least harmful. A
growing body of evidence — from both the general public and the research community [1, 47, 20, 8] —
suggests that this blind spot of current alignment methods can lead to unfair outcomes. For example,
Chakraborty et al. [13] argue that RLHF may align with a majority group’s preferences and ignore
the preferences of a minority.

In this work, we study a more basic question: do current alignment methods reliably lead to a high
average utility across the users? Even such a minimal requirement might not be automatically met
since alignment methods such as RLHF were originally designed with a single, perhaps representative,
user in mind whose noisy ordinal preferences are assumed to be consistent with an underlying utility
model. As a result, RLHF fits a single reward model to the observed ordinal comparisons of a
population of users with different utility functions, effectively constructing a utility function for a
“mythical” representative user. Could it be that optimizing a model for this mythical user leads to
poor outcomes on average for real users? More fundamentally, do ordinal preferences even contain
enough information to ensure high average utility across a heterogeneous user population?
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Figure 1: The typical RLHF pipeline. The preference optimization process begins by collecting comparison
data from users with potentially diverse utilities. A single Bradley-Terry model is then fit to this data via
Maximum Likelihood Estimation (MLE), producing a single reward model that represents a “mythical user”
whose utility best explain the observed heterogeneous preferences. This reward model is used to fine-tune the
pretrained policy. We define distortion as the ratio between the average utility of an optimal policy and that of
the output policy, capturing how well the mythical user’s utility aligns with the true average utility.

Distortion of alignment. To address these questions, we introduce the distortion of an alignment
method,1 which we define as the ratio between the optimal average utility of a policy (if the training
process had access to users’ true utilities) and the average utility achieved by the fine-tuned policy. A
larger distortion implies lower average quality relative to the optimal policy. This notion is adapted
from social choice theory [e.g., 41, 10, 4], where distortion quantifies the loss in average utility
caused by using a voting rule that relies solely on ordinal preferences rather than full cardinal utilities.

Our setting departs from this classical formulation of distortion in two ways. First, we assume
that users make pairwise comparisons probabilistically, following a Bradley–Terry model based
on the user’s idiosyncratic utilities. This assumption of probabilistic comparisons enables much
less pessimistic distortion bounds than in the classic, deterministic-choice setting while capturing
heterogeneous preferences. Second, our model and distortion bounds reflect that, in alignment, the
models’ generation policy is constrained to stay close to the pre-trained reference policy. These
departures generate insights for both the social choice and the alignment communities.

1.1 Our Results
Our results address both the social choice setting with individual Bradley–Terry comparisons (Sec-
tion 3) and the alignment setting (Section 4), which additionally constrains the policy to remain close
in Kullback-Leibler (KL) divergence to a reference policy. The social choice setting is a special case
of the alignment setting, in which the proximity constraint is not binding. Besides RLHF, which
coincides with the Borda voting rule in the social choice setting, we study the proposed alternative
Nash Learning from Human Feedback (NLHF) [36], which coincides with the Maximal Lotteries [25]
voting rule. Direct Preference Optimization (DPO) [43] is equivalent to RLHF in our analysis and
hence has the same distortion (see Appendix F.3). We define these alignment methods and voting
rules in Section 2. In Section 5, we discuss how our results extend to KL-regularized (rather than
constrained) alignment methods and to generalized models of sampling comparison pairs.

In this overview of results, summarized in Table 1, we present our bounds for the case where the
number of sampled pairwise comparisons goes to infinity. In later sections, we accompany these
statements with polynomially fast, finite-sample convergence bounds.

Our results establish that some distortion is unavoidable: in the social choice setting (i.e., without KL
constraints), if each user only provides a single comparison, we show through a non-identifiability
argument2 that, for each value β > 0 of the Bradley–Terry temperature, every alignment method
(or, equivalently, any voting rule) will suffer a distortion of ( 1

2 + o(1))β on some instances. This
lower bound reflects a fundamental information bottleneck: even under Bradley–Terry generative

1While prior work has called for the study of distortion in alignment [21], or used alignment as a motivation
for studying the distortion of voting rules [29, 22], our work is to our best knowledge the first to systematically
define and analyze the distortion of alignment methods. We discuss these related efforts in Appendix A.

2While the non-identifiability of mixtures of ranking models is well established [57, 56, 55], our result shows
that the non-identifiability can be catastrophic, leading to unavoidable loss in average utility.
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Table 1: Overview of distortion bounds by alignment method and setting.
Alignment Method Social Choice Setting AI Alignment Setting

RLHF [59] ≤ O(β2) Thm 2
(Borda)≥ (1− o(1))β Thm 5 ≥ eΩ(β) Thm 6 / Unbounded in β* Thm 9

NLHF [36] =
(

1
2
+ o(1)

)
β Cor 4 (Max. Lotteries) =

(
1
2
+ o(1)

)
β Thm 7

all (one comparison per user/
Condorcet loser property) ≥

(
1
2
+ o(1)

)
β Thm 3 ≥

(
1
2
+ o(1)

)
β Thm 3

*comparison pairs sampled from a distribution over pairs.

assumptions, ordinal feedback is not rich enough to perfectly optimize for the average utility of a
heterogeneous user population. If each user provides d ≥ 2 (possibly correlated) comparisons, the
same lower bound applies to all voting rules that satisfy a probabilistic relaxation of the Condorcet
loser criterion, a social-choice axiom widely satisfied by desirable voting rules, including Borda and
Maximal Lotteries. As a result, this lower bound extends to RLHF and NLHF.

In the social choice setting, we show that both Borda and Maximal Lotteries have a distortion that is
bounded in β. Borda’s distortion lies between (1− o(1))β and O(β2), whereas Maximal Lotteries’
distortion is ( 1

2 + o(1))β, matching even the lower-order terms of the lower bound. These results
are of independent interest to the social choice community since they show that the introduction
of randomized pairwise comparisons circumvents the necessary growth of distortion in the number
of alternatives m. Recently, Goyal and Sarmasarkar [29] showed that the same Bradley–Terry
assumption can reduce the distortion of specific voting rules in the metric distortion setting, where
utilities are distances in a metric space. Our results show that the Bradley–Terry assumption has an
even larger impact on general-utility distortion, where constant distortion is classically impossible,
than in metric distortion. We derive the distortion bounds through a simple yet broadly applicable
linearization lemma that sandwiches win-rates between linear functions, which can be generalized
to other random utility models as well. These distortion bounds also carry implications for AI
leaderboards such as Chatbot Arena [16], where heterogeneous user preferences across diverse tasks
are aggregated via MLE under a single Bradley–Terry model — effectively equivalent to using Borda
scores. We elaborate on these implications in Section 3.3.

In the alignment setting, we show that NLHF maintains Maximal Lotteries’ optimal ( 1
2 + o(1))β

distortion with remarkable robustness: regardless of the population’s utilities, how comparison
pairs are sampled, the number of comparisons per user, the reference policy, and the bound on the
permissible KL divergence, NLHF obtains a Ω(1/β) fraction of the highest average utility achievable
within the KL-divergence bound. Though we present this result for KL-constrained NLHF, we show
in Section 5 that this directly implies a similar distortion guarantee for regularized NLHF. In contrast,
RLHF’s distortion can grow as eΩ(β) in the alignment setting and is even unbounded in β if the two
outcomes to be compared are sampled in a correlated way rather than i.i.d.

We discuss additional related work in Appendix A.

2 Preliminaries
Let A = {1, . . . ,m} be a finite set of alternatives. The population of users is described by a
probability distribution D over utility vectors u = (u(1), . . . , u(m)), whose entries 0 ≤ u(x) ≤ 1
indicate a user’s utility for alternative x.3 The objective is to find an alternative x such that its average
utility AvgUtil(x) := Eu∼D[u(x)] across the user population (also known as the utilitarian social
welfare) is as high as possible. We extend this notation to probability distributions π over alternatives
by setting AvgUtil(π) := Ex∼π[AvgUtil(x)].

Both voting rules and alignment methods observe comparisons from n users. We model each
i = 1, . . . , n as a fresh user with independently drawn utility vector ui ∼ D. For exposition, we
assume that each user i provides an equal number d ≥ 1 of pairwise comparisons. For each i,
and for j = 1, . . . , d, we independently draw alternatives xji , y

j
i from a fixed distribution µ over

3Our assumption that utilities be in [0, 1] is weaker than any of the three assumptions — unit-sum, unit-range,
or approval [23] — made in classic distortion to avoid trivial infinite lower bounds.
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alternatives, in which the minimum probability mass µmin := minx∈A µ(x) is positive.4 User i
then compares each pair {xji , y

j
i } (for j = 1, . . . , d) through a Bradley-Terry model based on i’s

utilities: i prefers xji over yji (written “xji �i y
j
i ”) with probability σ

(
β · (ui(xji )− ui(y

j
i ))
)
, where

σ(t) := 1/(1+e−t) is the logistic sigmoid function and β > 0 is a temperature parameter, and prefers
yji over xji (“yji �i x

j
i ”) otherwise.5 Whereas this specifies the marginal probability of each pairwise

comparison, we make no assumption about the correlation between i’s choices. For example, i might
derive the pairwise comparisons from a Plackett-Luce ranking, ensuring that the user’s comparisons
are always consistent.6 We set p(x � y) for the expected win rate Eu∼D

[
σ
(
β · (u(x)− u(y))

)]
.

Social Choice Setting. A voting rule f observes the sampled pairwise comparisons {xji �i
yji }i∈[n],j∈[d] and maps them to a probability distribution over alternatives. For some m, D, β, d, µ,
and the correlation between comparisons, the average utility of f for n samples is AvgUtiln(f) :=

E
[
AvgUtil

(
f({xji �i y

j
i }i,j)

)]
, where the expectation is taken over the pairwise comparisons. The

distortion of f on D is the competitive ratio between AvgUtiln(f) and the optimal average utility
maxx∈A AvgUtil(x) in the limit of n→∞ samples, and the distortion of f the worst-case distortion
over all D:

dist(f,D) := lim supn→∞
maxx∈A AvgUtil(x)

AvgUtiln(f) , dist(f) = supD dist(f,D).

For alternatives x, y, let #(x � y) := {(i, j) | xji = x, yji = y} denote the number of pairwise
comparisons in which x beat y. The (normalized) Borda score [45] of alternative x is

BC(x) :=
∑
y∈A #(x�y)∑

y∈A #(x�y)+
∑
y 6=x #(y�x) ,

i.e., the fraction of pairwise comparisons involving x in which it wins. The Borda voting rule chooses
the winner uniformly among all alternatives with maximum Borda score. The Maximal Lotteries vot-
ing rule first computes the margin matrix M ∈ Rm×m, where Mx,y = #(x�y)−#(y�x)

#(x�y)+#(y�x) . It then con-
siders a symmetric two-player zero-sum game in which player 1 selects alternative x1, player 2 selects
alternative x2, and the payoffs areMx1,x2 for player 1 andMx2,x1 = −Mx1,x2 for player 2. The max-
imal lotteries rule returns a distribution π ∈ argmaxπ1∈∆(A) minπ2∈∆(A) Ex1∼π1,x2∼π2 [Mx1,x2 ],
i.e., a mixed strategy in Nash equilibrium. When several such π exist, our results hold for any choice.

Alignment Setting. The alignment setting generalizes the social choice setting in two ways: first,
user utilities ui(y | x) may depend on a state x; second, the goal in determining a policy π is not
purely to maximize the reward AvgUtil(π | x), but a trade-off between this reward and the goal of
remaining close to a reference policy πref(· | x) ∈ ∆(A) in terms of the KL divergence DKL(· ‖πref).
For theoretical tractability, we focus our analysis on a single state x, which we from here on omit
from the notation. Conceptually, this treatment of alignment on a state-by-state basis corresponds to
an assumption that our policy class is expressive enough so that it can take the optimal distribution of
actions at each state7 and abstracts from the generalization problem of estimating the population’s
preference between a pair of alternatives at the given state x based on preferences in similar states x′.

Having set aside the dependency between states, we focus on how the regularization with respect
to a reference policy impacts the ability to optimize the average utility of three alignment methods:
RLHF, DPO, and NLHF. In addition to the pairwise comparisons, these methods take in a reference
policy πref ∈ ∆(A) and a KL bound τ ≥ 0, and map these inputs to a policy π in the KL-ball
Bτ (πref) := {π ∈ ∆(A) | DKL(π ‖πref) ≤ τ} around the reference policy. RLHF, DPO, and NLHF
are typically implemented with a KL regularization rather than our KL-constrained formulation,
which we adopt to enable a comparison on equal terms. In Section 5, we show that these perspectives
are equivalent, and that distortion upper bounds carry over to regularized alignment methods.

4In Section 5, we discuss how most of our results extend more general distributions over comparison pairs,
which can, for example. capture k-wise comparisons.

5Should we sample the same alternative x = xji = yji twice for a pair, the user is not asked for a pairwise
comparison. We record this as “x �i x”, in a slight abuse of notation.

6In particular, if we sample the same unordered pair twice for a user, the answers can be perfectly correlated.
7This assumption is common in the literature; see, for example, Rafailov et al. [43]’s application of first-order

optimality conditions of PPO loss minimization.
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The RLHF method first estimates rewards for each alternative, using maximum likelihood estimation
assuming that comparisons were generated by a single Bradley–Terry model:

r := argmaxr∈Rm
∑

1≤i≤n,1≤j≤d log
(
σ(r(xji )− r(y

j
i ))
)
.8

Next, RLHF uses PPO [44] to compute the policy πRLHF := argmaxπ∈Bτ (πref) Ex∼π[r(x)] with
maximum expected reward within the KL-ball. In our setup, DPO is equivalent to RLHF (see
Appendix F.3) and thus has the same distortion.

The alignment method NLHF was inspired in part by a desire to better align with the
preferences of a heterogeneous group [36]. NLHF naturally adapts the definition of maxi-
mal lotteries by constraining both players’ mixed strategies to the KL-ball, i.e., πNLHF :=
argmaxπ1∈Bτ (πref) minπ2∈Bτ (πref) Ex1∼π1,x2∼π2

[Mx1,x2
].

To generalize the definition of distortion to alignment methods, we set the maximum average utility of
any policy in the KL-ball as the benchmark. For fixed m,D, β, d, µ and correlation between pairwise
comparisons, the distortion of alignment method f is

dist(f) = supD,πref,τ lim supn→∞
maxπ∈Bτ (πref) AvgUtil(π)

AvgUtiln(f(·,πref,τ)) .

3 Social Choice (or AI Alignment without KL Constraint)
We begin the demonstration of our distortion framework in the social choice setting. From the
perspective of alignment, this setting is the limit where the KL constraint (equivalently, KL regu-
larization) to the reference policy vanishes. Hence, distortion measures whether the “direction” in
which an alignment method pushes the pre-trained policy is aligned with average utility at all.

Moreover, the social choice setting allows us to illustrate how the Bradley-Terry assumption over-
comes the pessimism of classic deterministic-choice distortion. In the classic setting, high distortion —
Ω(
√
m) even for randomized voting rules and under utility-normalization assumptions [10, 23] — is

unavoidable because a voting rule observes no signal about preference intensity, i.e., whether a user
prefers a over b strongly or is merely breaking a tie between equally valued alternatives. Random
Bradley-Terry comparisons would clearly side-step this problem if we could observe many samples
of each pairwise comparison for a single utility vector: by consistency, the Bradley-Terry MLE would
recover the utilities (up to an additive shift), allowing us to select the utility-maximizing alternative
and achieve a perfect distortion of 1.

It is not obvious, by contrast, that random pairwise comparisons will be similarly useful in our
heterogeneous setting, where each observation is drawn from a mixture of users’ Bradley-Terry
models. Because users are not labeled and may provide as little as a single pairwise comparison,
there is no hope to cluster users and estimate rewards per cluster. Instead, a source of inspiration
is an observation by Caragiannis and Procaccia [12] in a much simpler model, in which each
user votes for a single alternative with probability equal to their utility (which is normalized to
sum to 1). Since the probability of the event “i votes for x” equals ui(x), the total number of
votes of alternative x (i.e.,

∑
i∈N 1i votes for x) is an unbiased estimator of its total utility. For many

samples, this estimator concentrates around its mean and allows to select the optimal alternative.

Figure 2: Bounds on probability of pre-
ferring x over y, β = 5.

The argument would extend if some observed events from a
user had a probability that is affine in the user’s utilities. Alas,
we are not so lucky: the sigmoid function in the probability
of the event “i ranks x over y” is nonlinear, and we show in
Theorem 3 that this nonlinearity makes a distortion of at least
β
2

1+e−β

1−e−β > 1 unavoidable.

Though our observations’ probabilities are not affine in the
utilities, we can bound these probabilities by affine functions,
which ultimately powers our distortion upper bounds. As
shown in Fig. 2, we sandwich the probability σ(β · (u(x)−
u(y))) that a user with utilities u prefers x over y between
the affine lower bound β · (Lu(x)− `β u(y)) + 1

2 and affine

8Assuming that each x ∈ A wins at least one pairwise comparison against each y 6= x, this optimization has
a maximizer, which is unique up to additive shifts, by strict convexity.
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upper bound β · (`β u(x)− Lu(y)) + 1
2 , for constants L, `β defined below. By linearity, this bound

extends to a bound of the expected win-rate p(x � y) = Eu∼D [σ(β · (u(x)− u(y)))] by affine
expressions in AvgUtil(x) = Eu∼D [u(x)] and AvgUtil(y) = Eu∼D [u(y)]. We defer the lemma’s
formal proof to Appendix C.

Lemma 1 (Linearization of Expected Win-Rates). Let L := σ′(0) = 1/4 and `β :=
σ(β)− 1

2

β =
1

2β ·
1−e−β
1+e−β

. For any pair of alternatives x, y ∈ A, we have

β · (`β · AvgUtil(x)− L · AvgUtil(y)) ≤ p(x � y)− 1
2 ≤ β · (L · AvgUtil(x)− `β · AvgUtil(y)) .

3.1 Upper Bound on Borda Distortion (and Copeland)

Siththaranjan et al. [46] observed that RLHF and the Borda voting rule are closely linked in that
the Bradley-Terry MLE rewards are ordered by their alternatives’ Borda score. Hence, as the KL
constraint relaxes, RLHF moves all of the policy’s probability mass on the Borda winner. Because
Borda has infinite distortion in the classic setting [41], we would hope that distortion is more
reasonable under our assumptions. Fortunately, Borda indeed has at most O(β2) distortion, which
we prove through two applications of our linearization lemma:
Theorem 2 (Borda Distortion Upper Bound). For any instance D with any number of alternatives m,
distribution µ over alternatives, and temperature β, Borda has at most distortion

(
β
2 ·

1+e−β

1−e−β
)2

=

O(β2). In the finite-sample regime, we have that

AvgUtiln(Borda) ≥
(

2
β ·

1−e−β
1+e−β

)2 ·maxx?∈A AvgUtil(x?)−O
(

1
β2

√
log(mnβ)

n·min{1,dµ2
min}

+ m log(mnβ)
n·β2µ2

min

)
.

Proof sketch (full proof in Appendix E.1). For exposition, we sketch this proof for n→∞, assuming
that each alternative’s Borda count has converged to its expectation BC?(x) :=

∑
y∈A µ(y)·p(x � y).

Let x̂ = argmaxx∈A BC?(x) be the Borda winner in the limit, and x? = argmaxx∈A AvgUtil(x) be
the utility maximizer. Applying Lemma 1 to the win-rates p(x̂ � y) and p(x? � y) for all y ∈ A, we
have that

BC?(x̂)− 1
2 ≤

∑
y∈A µ(y) · β (L · AvgUtil(x̂)− `β · AvgUtil(y))

= β (L · AvgUtil(x̂)− `β · AvgUtil(µ)) ; (1)

BC?(x?)− 1
2 ≥

∑
y∈A µ(y) · β (`β · AvgUtil(x?)− L · AvgUtil(y))

= β (`β · AvgUtil(x?)− L · AvgUtil(µ)) .

Since BC?(x̂) ≥ BC?(x?), we obtain from the above two inequalities that

L · AvgUtil(x̂) + (L− `β) · AvgUtil(µ) ≥ `β · AvgUtil(x?). (2)

A standard averaging argument shows that Ex∼µ[BC?(x)] ≥ 1/2, which implies that BC?(x̂) must be
at least 1/2. Combining this with Eq. (1), we obtain that AvgUtil(µ) ≤ L

`β
· AvgUtil(x̂). Substituting

this into Equation (2) (noting that L ≥ `β), we have that

L2

`β
AvgUtil(x̂) = L · AvgUtil(x̂) +

(L−`β)L
`β

· AvgUtil(x̂)

≥ L · AvgUtil(x̂) + (L− `β) · AvgUtil(µ) ≥ `β · AvgUtil(x?),

which yields the distortion guarantee AvgUtil(x?)
AvgUtil(x̂) ≤

(
L
`β

)2
=
(
β
2

1+e−β

1−e−β
)2

.

The linearization lemma can also be used to derive an upper bound on the distortion of the Copeland
voting rule, which selects the alternative that wins against most number of other alternatives by a
majority of voters. We state and prove the distortion bound (Theorem 12) in Appendix E.2.

3.2 Lower Bounds (and Upper Bound for Maximal Lotteries)
The upper bound for Borda nested two applications of the linearization lemma. As a result, it twice
incurred a distortion factor of L

`β
= σ′(0)

(σ(β)−σ(0))/β , which measures the sigmoid function’s deviation
from linearity in the relevant range. Below, we show that any voting rule must incur this factor at
least once, at least for the case of d = 1 comparisons per user. This distortion occurs even though
the voting rule has access to infinitely many pairwise comparison samples, which shows that the
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nonlinearity of the Bradley-Terry model can cause a loss of the information necessary to find the
utility maximizer.

The proof (in Appendix E.4) constructs a user population D in which a small minority has utility 1
for some special alternative a and 0 for all other alternatives, whereas the majority has a small utility
ε for all alternatives except for a, for which they have utility 0. The sizes of these blocs are balanced
such that all expected win-rates are 1/2. Due to the diminishing returns in the sigmoid function, the
resulting average utility for a is L

`β
times higher than that of the other alternatives. But since the

pairwise comparisons observed by a voting rule are just independent Bernoulli draws with bias 1/2,
all versions of the instance with permuted alternatives are indistinguishable. Since no voting rule can
identify alternative a better than random guessing, they must incur L

`β
distortion.

If there are d ≥ 2 observations per user, the above argument does not apply to all voting rules because
an elaborate voting rule might use the correlations within a user’s comparisons to identify a. We
can, however, extend the lower bound to d ≥ 2 for all voting rules that put at most 1/m probability
mass on a Condorcet loser, i.e., an alternative x such that #(y � x) > #(x � y) for all y 6= x.
This property generalizes the Condorcet loser criterion and is satisfied by a wide range of voting
rules deemed desirable, including Borda and Maximal Lotteries. The proof uses essentially the same
instance as above, slightly tipping the expected win-rates against a to make it a Condorcet loser.
Since the social choice setting is a special case of alignment, the lower bound extends to alignment.

Theorem 3 (Voting Rule-Independent Distortion Lower Bound). Fix any β > 0. If each user provides
d=1 comparison, no voting rule can guarantee distortion better than β

2 ·
1+e−β

1−e−β for large m. If each
user reports d ≥ 2 pairwise comparisons, any voting rule that puts at most 1/m probability mass on
a Condorcet loser must have at least the above distortion.

The Maximal Lotteries voting rule exactly matches the above lower bound of β2 ·
1+e−β

1−e−β . We omit the
proof here, as it follows as a direct corollary of NLHF’s upper bound (Theorem 7) in the next section.

Corollary 4 (of Theorem 7). The Maximal Lotteries voting rule has a distortion of β2 ·
1+e−β

1−e−β .

The Borda rule, in contrast, does not match this optimal distortion bound, as shown by the following
bound that we prove and state in full detail in Appendix E.3.

Theorem 5 (Borda Distortion Lower Bound, Informally). For any β > 0 and m ≥ 3, the distortion
guaranteed by Borda (and, hence, RLHF) is greater than and bounded away from β

2
1+e−β

1−e−β . In
particular, as β →∞, this distortion guarantee is at least (1− o(1)) · β.

3.3 Discussion
Implications for Social Choice Theory. Though we have presented these bounds in terms of
their implications for alignment, they are of independent interest to social choice theory. In the
classical social choice setting — where each voter’s ranking is produced deterministically, without
any randomness such as that introduced by a Bradley–Terry model — the distortion framework
(with nonnegative utilities) exhibits serious limitations. In particular, it leads to unreasonably high
distortion and some unnatural prescriptions. For example, any deterministic voting rule has distortion
Ω(m2), where optimal distortion is achieved by Plurality [12] (a rule widely disregarded by social
choice theorists) whereas Borda and all Condorcet consistent rules have infinite distortion [41]. These
limitations may explain in part why recent research activity [e.g., 28, 14, 29] has focused on the
metric distortion setting [3, 4], in which many natural voting rules have constant distortion. But
this comes at the cost of expressiveness: the metric setting assumes utilities are (negated) distances
satisfying the triangle inequality. For example, the metric distortion setting implies that, if i has high
utility for x and y, and j has high utility for x, then j must also have high utility for y, which need
not be the case in our setting. We see our assumption of a user-specific random choice model as
another way to make distortion a more practical criterion for choosing between voting rules.

Implications for AI Leaderboards. Our results also have implications beyond being a special
case of alignment. A notable example is LLM leaderboards such as Chatbot Arena [16], where
users submit prompts, are shown the responses of two anonymized models, and select their preferred
response. The leaderboard aggregates these pairwise comparisons by fitting a Bradley-Terry model
via MLE, and ranking the models according to their estimated rewards. As in the alignment setting,
this approach assumes a single latent notion of LLM quality, ignoring the fact that LLMs are used by
diverse users for a wide range of tasks, each with their own goals, preferences, and prompt styles.
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This setting fits neatly into our social-choice model, where D captures a random user’s utility for the
responses of different models to a random prompt (drawn from an arbitrary joint distribution over
users and prompts), and AvgUtil quantified the average utility a model delivers for a random user and
task, which captures the model’s usability. We defer a more detailed discussion to Appendix B.

4 AI Alignment with KL Constraint
We now tackle the general alignment setting, in which the output policy π must be chosen within
a prescribed KL divergence of the reference policy πref. This setting is more challenging than the
social choice setting because even an alignment method that would choose high-utility alternatives in
the absence of constraints might make poor use of a finite KL budget.

4.1 Lower Bound for RLHF
Before presenting the optimal distortion upper bound for NLHF, we illustrate the pitfalls of the
alignment setting with a lower bound on RLHF. This bound shows that a KL constraint can cause
RLHF to have exponential distortion in β, exceeding its quadratic upper bound in the social choice
setting (Theorem 2).

Theorem 6 (RLHF Distortion Lower Bound). For m ≥ 3, there is a sequence of alignment problems
on which the distortion of RLHF scales as eΩ(β) in β.

Proof sketch (full proof in Appendix F.2). For ease of exposition, consider an instance with three
alternatives a, b, c where µ(c) is about eβ times larger than µ(a) = µ(b).9 Let the population consist
of a tiny minority (a Θ(eβ) fraction) with utilities u(a) = 0, u(b) = 1, u(c) = 0, and a large majority
with utilities u(a) = 1

β , u(b) = 0, u(c) = 1. Both a and b are likely to be beaten by c, but by carefully
choosing the size of the minority, we can make p(b � c) > p(a � c), i.e., we can make b’s advantage
of being preferred by the minority outweigh a’s advantage of being slightly less dispreferred by the
majority. Since µ(c) is so much larger than µ(a), µ(b), the vast majority of pairwise comparisons
involving a or b are against c. As a result, the MLE reward for b will be higher than for a, even
though AvgUtil(a) = Θ( 1

β ) is exponentially larger than AvgUtil(b) = Θ(e−β). (In the social choice
setting, this would not be a problem because c has even higher average utility and higher reward.)

The lower bound arises for a reference policy that puts a tiny probability mass ε on c, and 1−ε
2

probability mass each on a and b, together with a KL constraint of τ = log 2. Now DKL(π ‖πref) =

π(a) log π(a)
(1−ε)/2 + π(b) log π(b)

(1−ε)/2 + π(c) log π(c)
ε . Since ε is very small, π(c) cannot be increased

by enough to make a meaningful difference on the achievable utility; but the KL budget essentially
allows to spread the probability mass of π freely between a and b. Since b has a higher MLE
reward, RLHF puts almost all of π’s mass on b, which yields exponentially less utility than the
utility-maximizing policy in the KL ball, which puts almost all mass on a.

This bound formalizes a key limitation of the reward-based approach inherent to RLHF. The MLE
phase of RLHF attempts to fit rewards to the observed comparisons, whose frequencies are determined
by µ. Due to preference heterogeneity, not all three pairwise win-rates can be simultaneously fit by a
reward vector, so the MLE sacrifices accuracy on the rarely observed pair {a, b} for higher accuracy
of comparisons involving c. By placing so little mass on c, our choice of πref forces RLHF to choose
between the misrepresented alternatives a and b, causing it to make a high-distortion choice.

Our lower bound exploits that the distribution µ governing the frequencies of comparison pairs differs
greatly from the reference policy πref. We leave open to characterize RLHF’s distortion under the
assumption that µ = πref, for which we only know the lower bound Theorem 5.

4.2 Distortion of NLHF
While we saw above that a mismatch between input distribution µ and reference policy πref can lead
RLHF towards highly suboptimal policies, NLHF has no such problem. Below, we show that, across
all settings of our model, NLHF’s distortion exactly matches the lower bound from Theorem 3.

Despite the generality of this result, the proof is no harder than our upper bound for Borda in the social
choice setting and involves only a single application of the linearization lemma. It also highlights
a key advantage over RLHF’s reward-based approach: Since the NLHF policy is computed as a
Nash-equilibrium strategy in a game where the opponent might select any policy in the KL ball, the
NLHF automatically “hedges” to perform well in expectation against all such policies, including the

9To avoid such unbalanced µ, one could equivalently copy alternative c many times and let µ be uniform.
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utility-maximizing benchmark π?. Since the social choice setting is a special case of alignment, this
theorem immediately implies the distortion upper bound for Maximal Lotteries (Corollary 4), and
both NLHF and Maximal Lotteries are minimax optimal by the lower bound in Theorem 3.
Theorem 7 (NLHF Distortion Upper Bound). For any instance D and any m, data distribution µ,
temperature β of the Bradley-Terry model, and any reference policy πref and KL budget τ , we have
dist(NLHF) ≤ β

2 ·
1+e−β

1−e−β . In the finite-sample regime, we have

AvgUtiln(NLHF) ≥
(

2
β ·

1−e−β
1+e−β

)
·maxπ?∈Bτ (πref) AvgUtil(π

?)−O
(

1
β

√
log(mn)

n·min{1, d·µ2
min}

+ log(mn)
n·βµ2

min

)
.

Proof sketch (full proof in Appendix F.1). For exposition, we assume that the NLHF method knows
the expected win-rates p(x � y), and defer the proof of finite-sample guarantees. Hence, the NLHF
policy by definition satisfies

πNLHF ∈ argmax
π1∈Bτ (πref)

min
π2∈Bτ (πref)

Ex1∼π1,x2∼π2
[p(x1 � x2)− p(x2 � x1)].

Since this describes a Nash-equilibrium strategy for a symmetric two-player zero-sum game, and any
such game has value 0, it must hold that

min
π2∈Bτ (πref)

Ex1∼πNLHF,x2∼π2 [p(x1 � x2)− p(x2 � x1)] = 0.

Plugging in p(x1 � x2)− p(x2 � x1) = 2 p(x1 � y1)− 1, we obtain
minπ2∈Bτ (πref) Ex1∼πNLHF,x2∼π2 [p(x1 � x2)− 1/2] = 0.

Using the utility-maximizing policy π? := argmaxπ∈Bτ (πref) AvgUtil(π) for π2, we obtain that
Ex1∼πNLHF,x2∼π? [p(x1 � x2)− 1

2 ] ≥ 0.

At this point, we upper bound the win-rate with the linearization lemma (Lemma 1), and obtain
0 ≤ Ex1∼πNLHF,x2∼π? [β · (L · AvgUtil(x1)− `β · AvgUtil(x2))]

= β · (L · AvgUtil(πNLHF)− `β · AvgUtil(π?)) .

This implies that AvgUtil(π?)
AvgUtil(πNLHF) ≤

L
`β

= β
2 ·

1+e−β

1−e−β = O(β), thus completing the proof.

The simplicity of the proof above also speaks to its generality. For instance, the only property of
KL divergence we used was that the feasible region Bτ (πref) is a closed convex set (to ensure the
existence of a Nash equilibrium). Consequently, the distortion bound of Nash learning extends to
other ways of constraining proximity to the reference policy, such as by χ2 divergence [30].

5 Extensions of the Model
KL Constraints vs. Regularization. In our model, we defined alignment methods as taking in an
explicit KL bound τ as an input parameter, which is convenient for comparing the policy against a fair
benchmark. In practice, however, alignment methods such as RLHF, DPO, and NLHF are regularized
rather than constrained in terms of their KL-divergence. For example, the PPO phase of RLHF finds
a policy π maximizing the regularized objective Ex∼π[r(x)]− λDKL(π ‖πref), and the payoff matrix
in the game solved by NLHF is Ex1∼π1,x2∼π2 [Mx1,x2 ]− λDKL(π1 ‖πref) + λDKL(π2 ‖πref), where
λ ≥ 0 is a regularization parameter given to the alignment method instead of τ .

We prove in Appendix F.4 that the regularized and constrained versions of RLHF and NLHF are
equivalent. That is, each policy π returned by the λ-regularized version of a method is optimal for the
τ -constrained version for τ = DKL(π ‖πref) (and any policy returned by the τ -constrained version is
optimal for the λ-regularized version and some λ ≥ 0).

Through this equivalence, any distortion upper bound in our setting applies to the KL-regularized
versions of the alignment method: if π results from the λ-regularized alignment method, π is optimal
for the τ =DKL(π ‖πref)-constrained version by equivalence, at which point the distortion upper
bound shows that π can compete with any policy with no larger KL divergence from πref.10 Applying
this observation to Theorem 7, we obtain the following guarantee for regularized NLHF:
Corollary 8. If λ-regularized NLHF (for any λ ≥ 0) returns a policy π̃NLHF, this policy’s average
utility is at least a 2

β ·
1−e−β
1+e−β

fraction of the optimal average utility of any policy π withDKL(π ‖πref) ≤
DKL(π̃NLHF ‖πref) (minus finite-sample errors, see Theorem 7).

10Why not define distortion by flexibly selecting the benchmark based on the output policy’s KL divergence?
For this definition, an alignment method that always returns the reference policy would spuriously achieve
distortion 1: because its KL divergence is 0, we would benchmark it only against the reference policy, i.e., itself.
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Sampling of Comparison Pairs. In our model, we assume that each voter provides d pairwise
comparisons, where both members xji , y

j
i of each comparison pair are sampled i.i.d. from µ. More

generally, we can model {xji , y
j
i } ∼ ν where ν is a distribution over unordered alternative pairs, or

even a distribution over d pairs of alternatives from which {x1
i , y

1
i , . . . , x

d
i , y

d
i } are sampled. (To keep

the alignment methods well defined, we assume that each comparison pair has positive probability of
being sampled.) The latter of these models can, for example, express k-wise (rather than pairwise)
comparisons, if d =

(
r
2

)
are all pairs inside a randomly chosen set of r alternatives. Almost all of

our results continue to hold in these general models: the lower bound for all alignment methods that
satisfy the Condorcet loser criterion in the social choice setting (Theorem 3), the exponential lower
bound for RLHF (Theorem 6), and the upper bound for NLHF/Maximal Lotteries (Theorem 7)11.

Given that our proofs continue to work out, the only “disadvantage” of these stronger models for
sampling comparison pairs is that, without a distribution µ, the Borda voting rule is no longer defined
(and we see no obvious way to generalize the Borda–MLE equivalence [46, 42]). It seems that RLHF
does not only become harder to analyze under these comparison-pair models, but actually performs
worse: we show in Appendix G that RLHF can have a distortion that is not bounded in β in these
extended models, leading to an even clearer separation with NLHF.
Theorem 9 (Unbounded Distortion of RLHF Under Correlated Sampling). For any β > 0, there
exists a sequence of alignment instances and distributions ν ∈ ∆

((
A
2

))
over comparison pairs such

that RLHF’s distortion is unbounded.

6 Discussion and Practical Takeaways
In this paper, we introduced the notion of distortion for AI alignment. We showed that one such
alignment method, NLHF, obtains the optimal distortion guarantee of ( 1

2 + o(1))β. Putting this
bound into perspective, if we assume that a user will rate a minimally preferred alternative over a
maximally preferred alternative with 1% probability, this suggests a value of β = log 99%

1% ≈ 4.60
and a distortion guarantee of about 2.34, which is a quite reasonable worst-case guarantee.

For the incumbent method, RLHF, our analysis gave more negative results. Its distortion was
worse than NLHF’s in the unconstrained setting, exponentially worse in the constrained setting,
and unbounded if the comparison pairs are not drawn i.i.d.. Given the ubiquity of RLHF, it is a
pressing open question to fully characterize its distortion (especially when µ coincides with πref) or
find assumptions that guarantee a lower distortion. A major technical challenge is that bounding this
distortion requires reasoning not only about the relative ordering of rewards but also their magnitudes.

Beyond these theoretical contributions, our results yields several practical insights:

Limitations of reward models as evaluation metrics. Our findings indicate that reward-model
scores are unreliable proxies for human satisfaction, not only because of insufficient data diversity
or scale, but also due to fundamental information-theoretic limits of cardinal-to-ordinal conversion.
Due to this limitation, it may be valuable to complement reward-model evaluations with direct
measurements of cardinal preferences, such as graded feedback or satisfaction scores.

Sensitivity to post-training data distribution. The performance of reward-based pipelines such as
RLHF is sensitive to the sampling distribution of pairwise comparisons, while the reward-free method
NLHF shows greater robustness and theoretical tractability. As practitioners increasingly share or
reuse post-training datasets across models and platforms, mitigating sensitivity becomes crucial.

Potential failure modes. Although our lower-bound constructions are stylized for analytic clarity,
they highlight patterns that may emerge in practice — for instance, systematic bias arises when
comparisons frequently involve actions suppressed by the reference policy. Our theoretical frame-
work provides a principled way to study such effects and to identify the structural features of data
distributions that most influence worst-case misalignment.

Finally, the distortion framework opens up many more questions: How large is the distortion
of alignment methods besides RLHF, DPO, and NLHF? Can we extend the model to capture
the generalization of preferences across states? Can distortion be reduced with a little additional
information? And can we go beyond average utility to capture finer-grained notions? After all,
high average utility is necessary, but not sufficient, for successful alignment to a heterogeneous
population.

11The finite-sample bounds even improve in the latter model since each pair appears only once.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and the introduction clearly state the claims and contributions of
this paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

15



Justification: We state our assumptions in each theorem, and provide a proof for each
theoretical result in either the main body or the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: This paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]
Justification: This paper does not include experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: This paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: This paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We proposed a theoretical analysis framework rather than a model or technol-
ogy, so there is no direct societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Related work

Reward-based and reward-free alignment methods. The RLHF pipeline typically includes first
training a reward model via maximum likelihood estimation (MLE), then applying RL algorithms such
as Proximal Policy Optimization (PPO) [44] to optimize a policy that maximizes the reward [59, 7].
Rafailov et al. [43] proposes an alternative approach, Direct Preference Optimization (DPO), which
bypasses explicit reward model training by directly optimizing an equivalent objective derived from
the closed form of KL-constrained reward-maximizing policy. While the original formulation is
based on a single Bradley–Terry model, we show in Appendix F.4 that the equivalence extends to
settings with heterogeneous preferences. Building on the DPO framework, several recent methods
including χPO [30], RPO [32] and SimPO [34] have been proposed to improve the robustness and
effectiveness.

Azar et al. [5] introduce ΨPO, another reward-free method that optimizes the expectation of a Ψ-
transformation of the win-rates estimated from the offline comparison data. When Ψ is the identity
function, the resulting method — IPO — reduces to directly optimizing the normalized Borda count.
Since RLHF is implicitly optimizing the normalized Borda count [46, 42], this connection implies
that IPO, DPO, and RLHF are all equivalent in the unregularized/unconstrained setting.

Another reward-free method is Nash Learning from Human Feedback (NLHF) [36] and its vari-
ants [48, 52, 11], which finds the Nash equilibrium of a game defined over the win-rate margins
(i.e., p(x � y) − p(y � x)) via online learning or self-play style algorithms. Maura-Rivero et al.
[33] point out that NLHF can be viewed as a natural generalization of the Maximal Lotteries rule
in social choice. Wang et al. [50] consider finding the Nash equilibrium of the win-rate matrix and
reduce the problem to multiagent reward-based RL. They provide an impossibility result, showing
the optimal policy is indeterminate when the underlying ranking model (e.g., Bradley-Terry with
certain temperature) is unknown. In contrast, our results show that even when the ranking model is
known, the optimal policy can remain nonidentifiable due to preference heterogeneity.

AI Alignment under heterogeneous user preferences. A growing body of recent works studies
algorithms for AI alignment under heterogeneous user preferences. Siththaranjan et al. [46] points
out that RLHF implicitly optimizes the normalized Borda count, which can lead to poor outcomes in
the social choice setting. To address this, they propose Distributional Preference Learning (DPL),
a method that estimates a distribution of score values for each alternative. Another line of work
deals with heterogeneity by clustering user preferences and learning several reward models at once,
then aggregate the learned reward models using various techniques such as max-min optimization,
which optimizes the worst-case reward among all clusters [17, 13], or through aggregation rules
motivated by axiomatic properties in social choice theory [58, 39]. Poddar et al. [40] proposes a
variational inference approach that infers user-specific latent variables from preference data which
enables steerable personalized language models. Chen et al. [15] proposes a framework based on
the ideal point model, which learns a latent space of user preferences that can few-shot generalize to
unseen users.

Statistical and Axiomatic Perspectives on Preference Aggregation. Maximum likelihood estima-
tors (MLE), which serves as the core of the widely-used RLHF pipeline, can be viewed as voting
rules: given a set of rankings, they output a score for each alternative, thereby producing a single
aggregated ranking. This connection was first observed by Conitzer and Sandholm [19], who show
that any scoring-based voting rule is a maximum likelihood estimator under a specific noise model. A
rich literature in social choice theory has studied the axiomatic properties of such MLE-based voting
rules under various randomized ranking models [6, 53, 37, 27, 42]. Notably, Ge et al. [27] analyzes
the axiomatic properties of MLE-based AI alignment methods under the Bradley-Terry model for
linear utility functions.

On the learning side, several works study the problem of learning mixture models from ranking
data, see textbooks [2, 54] for a comprehensive overview. Recently, Wang et al. [51], Tatli et al.
[49] focus on learning metric spaces from pairwise preferences. Our work is notably related to
the results on the non-identifiability of learning mixture of Bradley-Terry models from pairwise
or k-wise preferences [57, 56, 55]. We build on these results to quantify the loss of utility due to
non-identifiability by proving a voting-rule independent distortion lower bound.
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Distortion of randomized voting and RLHF. The framework of implicit utilitarian voting, i.e., of
comparing voting rules in terms of their distortion was introduced by Procaccia and Rosenschein [41],
which has since sparked a large body of work — both in the original utility setting [12, 10, 23, 26, 9,
23] and in the metric setting [3, 4, 28, 14, 31]. Several recent works have highlighted the importance
of using distortion as a metric to evaluate the quality of AI alignment methods. Dai and Fleisig [21]
draw a conceptual connection between social choice and RLHF, and propose to apply the notion of
distortion to RLHF. Goyal and Sarmasarkar [29] uses alignment as motivation for studying the metric
distortion of probabilistic voting rules under Bradley-Terry and other random utility models, where
the voters and candidates are assumed to lie in a common metric space satisfying triangle inequality.
We not only study the non-metric distortion (which is more expressive), but also go beyond the social
choice setting to consider the alignment setting in which output policies are constrained to remain
close to a given reference policy. More broadly, our work also contributes to the growing line of
research on the intersection of social choice theory and RLHF, as advocated in recent position papers
[20, 35].

B Distortion in AI Leaderboards

The AI leaderboard setting fits natural into our social-choice model, where D captures a random
user’s utility for the responses of different models to a random prompt (drawn from an arbitrary joint
distribution over users and prompts), and AvgUtil quantified the average utility a model delivers for a
random user and task, which we call the model’s usability.

Since Chatbot Arena and RLHF are based on the same MLE, our distortion bounds on RHLF in the
social choice setting imply that the usability of the top-ranked language model (i.e., the Borda winner)
may be (1− o(1)) · β times worse than the usability of some other ranked model (Theorem 5) (but
at most by a O(β2) factor, see Theorem 2). Our results in an extended setting in which comparison
pairs are drawn in a correlated way (Section 5) show that Chatbot Arena’s ranking is highly sensitive
to the distribution of LLM pairs. For certain correlated distributions, the gap in usability could be
unbounded (Theorem 9), which is concerning since Chatbot Arena adaptively oversamples new and
highly ranked models.

These findings suggest that current leaderboard rankings may not fully reflect true model quality.
Could alternative aggregation rules, such as Maximal Lotteries or the Copeland voting rule, provide
more accurate assessments of model usability and be more robust to the choice of sampling distribu-
tion? Does adaptive sampling introduce systematic biases that exacerbate the distortion of current
pipelines? Addressing these questions is an important direction for future work to ensure the fidelity
of leaderboard-based evaluations.

C Linearization Lemma for Expected Win-Rates

Lemma 1 (Linearization of Expected Win-Rates). Let L := σ′(0) = 1/4 and `β :=
σ(β)− 1

2

β =
1

2β ·
1−e−β
1+e−β

. For any pair of alternatives x, y ∈ A, we have

β · (`β · AvgUtil(x)− L · AvgUtil(y)) ≤ p(x � y)− 1
2 ≤ β · (L · AvgUtil(x)− `β · AvgUtil(y)) .

Proof of Lemma 1. We prove this lemma by linearizing the sigmoid function σ(z) = 1
1+e−z in the

domain of z ∈ [−β, β]. When z ∈ [0, β], the sigmoid function is concave and increasing, thus we
have σ(z) ≤ σ′(0) · z + σ(0) = 1

2 + Lz, where L = 1
4 is the derivative σ′(0). When z ∈ [−β, 0],

the sigmoid function is convex, thus we have σ(z) ≤
(

1 + z
β

)
σ(0)− z

βσ(−β) = 1
2 + lβ · z, where

lβ =
σ(β)− 1

2

β is the slope of the line connecting (−β, σ(−β)) and (0, σ(0)).

Plugging the above bounds into σ
(
β · (u(x)− u(y))

)
, we have that

σ
(
β · (u(x)− u(y))

)
− 1

2
≤ β · (u(x)− u(y)) ·

(
L · 1u(x)−u(y)≥0 + lβ · 1u(x)−u(y)<0

)
≤ β · (L · u(x)− lβ · u(y)) .
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Finally, taking an expectation over u ∼ D, we have that

p(x � y)− 1

2
≤ β

(
L · E

u∼D
[u(x)]− lβ · E

u∼D
[u(y)]

)
= β (L · AvgUtil(x)− lβ · AvgUtil(y)) .

This completes the proof of the upper bound. The lower bound follows from applying the same
argument to p(y � x) and using the fact that p(x � y) = 1− p(y � x).

D Finite-Sample Convergence Bounds

In this section, we use standard concentration techniques to derive finite-sample convergence bounds
for the normalized Borda score and the empirical win rate. The lemmas presented in this section will
serve as a building block for proving finite-sample guarantees for the alignment methods studied in
Sections 3 and 4.

D.1 Estimation Error of Win-Rates

Lemma 10. For any instance D with any number of alternatives m, any distribution µ over alter-
natives with µmin = minx∈A µ(x), and n i.i.d. users sampled from D where each user labels d
comparison pairs following the Bradley-Terry model with temperature β, we have that with probability
at least 1− δ where δ ≥ m2 exp

(
−ndµ

2
min

8

)
, the empirical win rates pn(x � y) := #(x�y)

#(x�y)+#(y�x)

satisfies that:

∀x, y ∈ A, |pn(x � y)− p(x � y)| ≤ O

(√
log(m/δ)

n ·min{1, d · µ2
min}

+
log(m/δ)

nµ2
min

)
.

Proof of Lemma 10. We first bound the estimation error of pn(x � y) for a fixed pair x, y ∈
(
A
2

)
.

Here we assume x 6= y without loss of generality, because the estimation error for the x = y case is
0.

Since each voter i ∈ [n] is asked to label d pairwise comparisons, if each of them are asked to label a
pair {x, y} multiple times, their answer will be consistent. Therefore, we can equivalently rewrite the
process of sampling pn(x � y) as follows:

1. Draw k1, . . . , kn
i.i.d.∼ Binomial(d, q) to represent the number of times the i-th voter is asked

to label {x, y}, where q := 2µ(x)µ(y) is the probability that each comparison pair is {x, y};

2. Draw p1, . . . , pn
i.i.d.∼ Bernoulli(p) to represent the preference of the i-th voter on pair {x, y},

where p := p(x � y) is the probability that a fresh voter prefers x over y. In particular, we
have pi ⊥ ki because the sampling of voters and comparison pairs are independent;

3. Each voter i ∈ [n] contributes ki · pi to #(x � y) and ki · (1− pi) to #(y � x).

As a result, the empirical win rate pn(x � y) can be rewritten as:

pn(x � y) =
#(x � y)

#(x � y) + #(y � x)
=

∑n
i=1 kipi∑n
i=1 ki

.

The error term is then given by:

pn(x � y)− p(x � y) =

∑n
i=1 kipi∑n
i=1 ki

− p =

∑n
i=1 ki(pi − p)∑n

i=1 ki
.

Now we use Bernstein’s inequality to bound the numerator. We start by bounding the variance of
random variable Zi := ki(pi − p). Note that E [Zi] = E [ki] · E [pi − p] = 0 because ki and pi − p
are independent. Therefore, we have

Var (Zi) = E
[
Z2
i

]
= E

[
k2
i

]
· E
[
(pi − p)2

]
≤ E

[
k2
i

]
= Var (ki) + (E [ki])

2 = dq(1− q) + d2q2.
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According to Bernstein’s inequality, we have that with probability at least 1− δ,∣∣∣∣∣
n∑
i=1

Zi

∣∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

ki(pi − p)

∣∣∣∣∣ ≤√2n(dq(1− q) + d2q2) log(2/δ) + 3d log(2/δ). (3)

Now we bound the denominator. Note that E [ki] = dq and Var (ki) = dq(1− q). From the Chernoff
bound, we have that with probability at least 1− e−

ndq
8 ,

n∑
i=1

ki ≥
nE [ki]

2
=
ndq

2
. (4)

Combining the bounds in Equation (3) and Equation (4), we have that when δ ≥ e−
ndq

8 , with
probability at least 1− 2δ, for a fixed pair x, y ∈ A, we have

|pn(x � y)− p(x � y)| ≤
√

2n(dq(1− q) + d2q2) log(2/δ) + 3d log(2/δ)

ndq/2

≤ O

(√
(1− q + dq) log(1/δ)

ndq
+

log(1/δ)

nq

)

where we use the fact that 1−q+dq
dq ≤ 2

min{1,dq} and q = 2µ(x)µ(y) ≥ µ2
min to obtain:

≤ O

(√
log(1/δ)

nmin{1, d · µ2
min}

+
log(1/δ)

nµ2
min

)
.

Finally, by union bound over all
(
m
2

)
pairs, we have that with probability at least 1 − δ where

δ ≥ m2 exp
(
−ndµ

2
min

8

)
, the following holds simultaneously for all x, y ∈ A:

|pn(x � y)− p(x � y)| ≤ O

(√
log(m/δ)

n ·min{1, d · µ2
min}

+
log(m/δ)

nµ2
min

)
.

The proof is complete.

D.2 Estimation Error of Normalized Borda Score

Lemma 11. For any instance D with any number of alternatives m, any distribution µ over alter-
natives with µmin = minx∈A µ(x), and n i.i.d. users sampled from D where each user labels d
comparison pairs, the normalized Borda score BCn(x) of any alternative x ∈ A satisfies that with
probability at least 1− δ where δ ≥ 2m exp(−ndµmin

8 ),

∀x ∈ A, |BCn(x)− BC?(x)| ≤ O

(√
log(m/δ)

n ·min{1, d · µ2
min}

+
m log(m/δ)

nµmin

)
, (5)

where BC?(x) is the limiting normalized Borda score of candidate x, defined as

BC?(x) :=
∑
y∈A

µ(y) · p(x � y) =
1

2
µ(x) +

∑
y 6=x

µ(y) · p(x � y). (6)

Proof. We first bound the estimation error |BCn(x) − BC?(x)| for a fixed alternative x ∈ A. For
notational simplicity, we use Tn(x) to denote the number of comparison pairs involving x, andWn(x)
to denote the number of comparison pairs where x is the winner, i.e.,

Tn(x) = 2#(x � x) +
∑
y 6=x

#(x � y) + #(y � x), Wn(x) = #(x � x) +
∑
y 6=x

#(x � y).
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The normalized Borda score of x is then given by BCn(x) = Wn(x)
Tn(x) . It is then easy to see that

E [Tn(x)] = nd

2µ(x)2 +
∑
y 6=x

2µ(x)µ(y)

 = 2ndµ(x);

E [Wn(x)] = nd

µ(x)2 +
∑
y 6=x

µ(x)µ(y)p(x � y)

 = ndµ(x)

1

2
µ(x) +

∑
y 6=x

µ(y)p(x � y)

 .

The limiting Borda score BC?(x) is then given by the ratio of the above two expectations, i.e.,

BC?(x) =
E [Wn(x)]

E [Tn(x)]
=

1

2
µ(x) +

∑
y 6=x

µ(y)p(x � y).

We can thus decompose the estimation error |BCn(x)− BC?(x)| as follows:

|BCn(x)− BC?(x)| =
∣∣∣∣Wn(x)

Tn(x)
− E [Wn(x)]

E [Tn(x)]

∣∣∣∣
≤ |Wn(x)− E [Wn(x)] |

Tn(x)
+

E [Wn(x)]

E [Tn(x)]︸ ︷︷ ︸
BC?(x)≤1

· |Tn(x)− E [Tn(x)]|
Tn(x)

≤ |Wn(x)− E [Wn(x)] |
Tn(x)

+
|Tn(x)− E [Tn(x)]|

Tn(x)
.

Now we bound the two terms |Wn(x)− E [Wn(x)] | and |Tn(x)− E [Tn(x)] | separately, and apply
the union bound at the end.

(I). Bounding |Wn(x)− E [Wn(x)] |: For each y 6= x, we can write bound the deviation |#(x �
y) − E [#(x � y)] | using the same argument as in the proof of Lemma 10. Specifically, we
can write #(x � y) as a sum of i.i.d. random variables kipi where ki ∼ Binomial(d, qx,y) and
pi ∼ Bernoulli(p(x � y)), where qx,y = 2µ(x)µ(y) is the probability that each comparison pair is
{x, y}. Therefore, we have

Var (kipi) = Var (ki) ·Var (pi) + Var (ki)E
[
p2
i

]
+ Var (pi)E [ki]

2

≤ 2dqx,y(1− qx,y + dqx,y)

since 1− qx,y + dqx,y ≤ 2dqx,y
min{1,dqx,y} ≤

2dqx,y
min{1,dµ2

min}
, we can further bound the variance as

≤ 2(dqx,y)2

min{1, dµ2
min}

=
8(dµ(x)µ(y))2

min{1, dµ2
min}

.

Thus, by Bernstein’s inequality, with probability at least 1− δ′,

∣∣∣#(x � y)− E [#(x � y)]
∣∣∣ ≤ 4dµ(x)µ(y)

√
n log(2/δ′)

min{1, d · µ2
min}

+ 3d log(2/δ′).

On the other hand, for the comparison of x with itself, we have that #(x � x) ∼
Binomial(nd, µ(x)2). Therefore, with probability at least 1− δ′,∣∣∣#(x � x)− E [#(x � x)]

∣∣∣ ≤√2ndµ(x)2 log(2/δ′) + 3d log(2/δ′)

≤ 4dµ(x)2

√
n log(2/δ′)

min{1, d · µ2
min}

+ 3d log(2/δ′).
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Applying a union bound over all the m alternatives y ∈ A, we have that with probability at least
1−mδ′,

|Wn(x)− E [Wn(x)] | ≤
∑
y 6=x

∣∣∣#(x � y)− E [#(x � y)]
∣∣∣

≤
∑
y 6=x

(
4dµ(x)µ(y)

√
n log(2/δ′)

min{1, d · µ2
min}

+ 3d log(2/δ′)

)

≤ 4dµ(x)

√
n log(2/δ′)

min{1, d · µ2
min}

+ 3md log(2/δ′).

(II). Bounding |Tn(x)− E [Tn(x)] |: We can write Tn(x) as a sum of i.i.d. random variables:

Tn =

n∑
i=1

d∑
j=1

(1xji=x
+ 1yji=x

)

Since each comparison pair xji , y
j
i is sampled independently from µ × µ, we have that Tn ∼

Binomial(2nd, µ(x)). Therefore, with probability at least 1− δ′,∣∣∣Tn(x)− E [Tn(x)]
∣∣∣ ≤ 2

√
ndµ(x) log(2/δ′) + 3 log(2/δ′).

In addition, with probability at least 1− exp(−ndµ(x)
4 ), we also have

Tn ≥
E [Tn]

2
= ndµ(x).

(III). Combining the two bounds: Finally, combining the above bounds on |Wn(x)−E [Wn(x)] |
and |Tn(x) − E [Tn(x)] |, together with the bound on the denominator Tn(x), we have that with
probability at least 1− 2mδ′ − exp(−ndµ(x)

4 ),

|BCn(x)− BC?(x)| ≤ |Wn(x)− E [Wn(x)] |
Tn(x)

+
|Tn(x)− E [Tn(x)]|

Tn(x)

.
1

ndµ(x)

(
dµ(x)

√
n log(1/δ′)

min{1, d · µ2
min}

+md log(1/δ′) +
√
ndµ(x) log(2/δ′)

)

.

√
log(1/δ′)

n ·min{1, d · µ2
min}

+
m log(1/δ′)

nµmin
.

Finally, setting δ′ = δ
4m2 and taking a union bound over all the m alternatives x ∈ A, we have that

when δ ≥ 2m exp(−ndµmin

8 ), with probability at least 1− δ, the above bound holds simultaneously
for all x ∈ A. This completes the proof.

E Supplemental Materials for Section 3

E.1 Upper Bound for Borda

Theorem 2 (Borda Distortion Upper Bound). For any instance D with any number of alternatives m,
distribution µ over alternatives, and temperature β, Borda has at most distortion

(
β
2 ·

1+e−β

1−e−β
)2

=

O(β2). In the finite-sample regime, we have that

AvgUtiln(Borda) ≥
(

2
β ·

1−e−β
1+e−β

)2 ·maxx?∈A AvgUtil(x?)−O
(

1
β2

√
log(mnβ)

n·min{1,dµ2
min}

+ m log(mnβ)
n·β2µ2

min

)
.

Proof of Theorem 2. From Lemma 11, we have that with probability at least 1− δ, all x ∈ A satisfy
that |BCn(x)− BC?(x)| ≤ εn,d(δ), where

εn,d(δ) = O

(√
log(m/δ)

n ·min{1, d · µ2
min}

+
m log(m/δ)

nµmin

)
.
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Following the proof sketch in Section 3.1, we use x̂ = argmaxx∈A BCn(x) to denote the Borda
winner, and x? = argmaxx∈A AvgUtil(x) to denote the true welfare maximizer.

Since BCn(x̂) ≥ BCn(x?), we have

BC?(x̂)− BC?(x?) ≥ −2εn,d(δ). (7)

For the limiting Borda score BC?(x), the argument in Section 3.1 shows that

BC?(x̂)− BC?(x?) ≤ β · (L · AvgUtil(x̂)− `β · AvgUtil(x?) + (L− `β) · AvgUtil(µ))

≤ β ·
(
L2

`β
· AvgUtil(x̂)− `β · AvgUtil(x?)

)
(8)

Therefore, Combining Equations (7) and (8), we have

−2εn,d(δ) ≤ β ·
(
L2

`β
· AvgUtil(x̂)− `β · AvgUtil(x?)

)
⇒ AvgUtil(x̂) ≥

(
`β
L

)2

AvgUtil(x?)− 2`β · εn,d(δ)
βL2

.

Combining this with the failure probability δ of the above argument, the expected social welfare
AvgUtiln(Borda) satisfies that

AvgUtiln(Borda) ≥ (1− δ) ·

((
`β
L

)2

AvgUtil(x?)− 2`β · εn,d(δ)
βL2

)

≥
(
`β
L

)2

AvgUtil(x?)−O

(
εn,d(δ)

β
·
(
`β
L

)
+ δ ·

(
`β
L

)2
)
.

Finally, we set the failure probability to be

δ = Θ

(
L

β · `β
·

√
1

n ·min{1, d · µ2
min}

)
(which satisfies the condition in Lemma 11 for large n), we have

AvgUtiln(Borda) ≥
(
`β
L

)2

AvgUtil(x?)−O

(
1

β2

√
log(mnβ)

n ·min{1, dµ2
min}

+
m log(mnβ)

n · β2µ2
min

)
,

which completes the proof.

E.2 Upper Bound for Copeland

Theorem 12 (Copeland Distortion Upper Bound). For any instanceD with any number of alternatives
m, distribution µ over alternatives, and temperature β, Copeland has at most distortion

(
β
2 ·

1+e−β

1−e−β
)2

= O(β2). In the finite-sample regime, we have that

AvgUtiln(Copeland) ≥
(

2
β ·

1−e−β
1+e−β

)2 ·maxx?∈AAvgUtil(x
?)−O

(
1
β2

√
log(mnβ)

n·min{1,dµ2
min}

+ m log(mnβ)
n·β2µ2

min

)
.

Proof of Theorem 12. Recall that in Appendix D.1, we have defined pn(x � y) := #(x�y)
#(x�y)+#(y�x)

to be the empirical win-rate of x over y in n samples of comparison pairs. We use x̂ =
argmaxx∈A

∑
y 6=x 1pn(x�y)≥ 1

2
to denote the Copeland winner, and x? = argmaxx∈A AvgUtil(x)

to denote the true welfare maximizer. According to Anshelevich et al. [3], we have that one of the
two following scenarios must hold:

• pn(x̂ � x?) ≥ 1
2 . In other words, the Copeland winner x̂ wins against the true welfare

maximizer x? by a majority of voters.

• There exists an alternative y ∈ A such that pn(x̂ � y) ≥ 1
2 and pn(y � x?) ≥ 1

2 .
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According to Lemma 10, we have that with probability at least 1 − δ, all x, y ∈ A satisfy that
|pn(x � y)− p(x � y)| ≤ εn, where εn = O

(√
log(m/δ)

n·min{1, d·µ2
min}

+ log(m/δ)
nµ2

min

)
. Therefore, if

pn(x � y) ≥ 1
2 , we have p(x � y) ≥ 1

2 − εn(δ), which, combined with Lemma 1, implies
that

− εn ≤ p(x � y)− 1

2
≤ β · (L · AvgUtil(x)− `β · AvgUtil(y))

⇒AvgUtil(x) ≥ `β
L
· AvgUtil(y)− εn(δ)

βL
=

(
2

β
· 1− e−β

1 + e−β

)
· AvgUtil(y)− 4εn(δ)

β
.

Therefore, in the first scenario, we can apply the above inequality under the success of concentration
inequality (which holds with probability at least 1− δ) to get that

AvgUtil(x̂) ≥ (1− δ) ·
[(

2

β
· 1− e−β

1 + e−β

)
· AvgUtil(x?)−O

(
εn(δ)

β

)]
.

In the second scenario, we can similarly apply the above inequality twice (for p(x̂ � y) and p(y � x?)
respectively) to get that

AvgUtil(x̂) ≥ (1− δ) ·

[(
2

β
· 1− e−β

1 + e−β

)2

· AvgUtil(x?)−O
(
εn(δ) + εn(δ)2

β2

)]
.

Finally, we set the failure probability to be δ = Θ
(

L
β·`β ·

√
1

n·min{1,d·µ2
min}

)
and substitute εn(δ)

with its upper bound. This gives the desired bound.

E.3 Lower Bound for Borda

0 2 5 10 20 50 ∞
β
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β

NLHF/Maximum Lotteries

RLHF/Borda lower bound

Figure 3: Comparison of the distortion achieved by NLHF/Maximum Lotteries and the lower bound
on RLHF/Borda in Theorem 5, both as a fraction of β. The figure illustrates that NLHF has a worse
distortion for every value of β > 0 (for worst-case distributions µ); in particular, the distortion of
RLHF for large β is at least β − o(β), whereas the distortion of NLHF is β/2 + o(β).

Theorem 13 (Lower Bound for Borda; Formal Version of Theorem 5). For any β > 0 andm ≥ 3, the
Borda voting rule (and, hence, RHLF) cannot guarantee a distortion better than max0<γ<1

β
2

1+e−β

1−e−β ·(
1− γ + σ(βγ)−1/2

σ(β)−1/2

)
. This bound is strictly higher than the voting-rule independent lower bound

β
2

1+e−β

1−e−β for all β and is at least (1− o(1))β as β →∞.

Proof of Theorem 13. Without loss of generality, we may assume that m = 3. If m > 3, we can
repeatedly “split” some alternative x in two new alternatives y, y′ (where each user has the utility for
y, y′ as for the original alternative x, and µ(y) + µ(y′) is equal to the original mass of x in µ). In this
operation, the social welfares and Borda scores of y, y′ in the new instance are equal to the social
welfare and Borda score of x in the original instance, and the social welfares and Borda scores of all
other alternatives do not change.
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For any 0 < ε < 1, 0 ≤ ε′ < 1− ε, and 0 < γ < 1, consider the following distribution D of utilities
over alternatives (a, b, c):

(u(a), u(b), u(c)) =


(1− γ, 1, 0) with probability pA := σ(βε)−1/2

σ(β)+σ(βε)−1

(1, 0, ε) with probability pB := pA · σ(βγ)−1/2
σ(β)−1/2

(0, 0, ε+ ε′) with probability 1− pA − pB .

One verifies that 0 < pA, pB and pA + pB < 1, so this describes a valid probability distribution for
all ε, ε′, γ and each type of utilities has positive probability of being drawn. Assuming that ε′ = 0, it
must be true that p(b � c) = 1/2 = p(c � b) because

pA · σ(β(1− 0)) + (1− pA) · σ(β(0− ε)) = pA ·
(
σ(β)− σ(−βε)︸ ︷︷ ︸

=1−σ(βε)

)
+ σ(−βε)︸ ︷︷ ︸

=1−σ(βε)

= pA ·
(
σ(β) + σ(βε)− 1

)
+ 1− σ(βε)

= σ(βε)− 1/2 + 1− σ(βε) = 1/2.

If ε′ > 0, it must be the case that p(c � b) > 1/2 by monotonicity. A similar chain of algebra shows
that p(a � b) = 1/2 = p(b � a):

pA · σ(−βγ) + pB · σ(β) + 1−pA−pB
2 = pA ·

(
σ(−βγ)− 1/2

)︸ ︷︷ ︸
=1/2−σ(βγ)

+ pB ·
(
σ(β)− 1/2

)︸ ︷︷ ︸
=pA·(σ(βγ)−1/2)

+1/2 = 1/2.

For any ε, γ and positive ε′, note that, as the number of samples goes to infinity, the Borda score of
the alternatives concentrate around their expected values:

BC(a)→ 1

2
µ(a) +

1

2
µ(b) + p(a � c)µ(c)

BC(b)→ 1

2
µ(a) +

1

2
µ(b) + p(b � c)µ(c)

BC(c)→ p(c � a)µ(a) + p(c � b)µ(b) +
1

2
µ(c).

Recall that p(c � b) > 1/2 > p(b � c). Regardless of what p(a � c) = 1− p(c � a) may be, for
any distribution µ with small enough µ(a), µ(c) (and hence large µ(b)), the expected Borda score of
c will be strictly larger than that of a and b. By concentration, for large enough n, the Borda voting
rule will almost surely select c as the winner, and the Borda’s distortion for that µ will be at least

maxx∈A AvgUtil(x)

AvgUtil(c)
≥ AvgUtil(a)

AvgUtil(c)
=

pA (1− γ) + pB
pB ε+ (1− pA − pB) (ε+ ε′)

. (9)

We can now derive lower bounds on the distortion of Borda by defining sequences of parameters
ε, ε′, γ (and implicitly, a sequence of corresponding distributions µ), and considering the limit of
Eq. (9). In each such sequence, we treat γ as a fixed parameter, but let ε′ := ε2 and letting ε go to
0. As ε → 0, it holds that pA → 0 (because its numerator σ(βε) − 1/2 → 1/2 − 1/2 = 0), that
pB → 0 (since it is a constant multiple of pA), and hence both the numerator and denominator of
Eq. (9) converge to 0. We apply l’Hôpital’s rule to determine the limit. Treating pA and pB , as well
as the numerator num and denominator den of the equation as functions in ε, we observe that

p′A(0) =
β

4 · (σ(β)− 1/2)

p′B(0) =
β · (σ(βγ)− 1/2)

4 · (σ(β)− 1/2)2

num ′(0) =
β

4 · (σ(β)− 1/2)
·
(

1− γ +
σ(βγ)− 1/2

σ(β)− 1/2

)
den ′(0) = pB(0)︸ ︷︷ ︸

=0

·1 + p′B(0) · 0 + (1− pA(0)− pB(0))︸ ︷︷ ︸
=1

·(1 + 2 · 0) + 0 · (−p′A(0)− p′B(0)) = 1.
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Hence, the limit of Eq. (9) is

num ′(0)

den ′(0)
=

β

4(σ(β)− 1/2)
·
(

1− γ +
σ(βγ)− 1/2

σ(β)− 1/2

)
=
β

2

1 + e−β

1− e−β
·
(

1− γ +
σ(βγ)− 1/2

σ(β)− 1/2

)
,

(10)
which means that each 0 < γ < 1 yields a distortion lower bound for Borda that is larger by a factor
of 1 − γ + σ(βγ)−1/2

σ(β)−1/2 than our algorithm-independent lower bound/the upper bound achieved by
NLHF. Since this factor is strictly concave in γ and is equal to 1 for γ → 0 and γ → 1, any value of
γ will lead to a strictly higher bound.

The value of γ that maximizes the bound in Eq. (10) is γ∗ := 2
β arctanh

(√
1− 4σ(β)−1/2

β

)
, which

we used to plot Appendix E.3. Since the resulting expression is algebraically unwieldy, we consider
the weaker bound for γ = log(β+1)

β , which yields

β

2

1 + e−β

1− e−β︸ ︷︷ ︸
→1 as β→∞

·
(

1− log(β + 1)

β
+

1
1+1/(β+1) − 1/2

σ(β)− 1/2

)
︸ ︷︷ ︸

→2 as β→∞

= (1− o(1))β.

E.4 Algorithm-Independent Lower Bounds

Theorem 3 (Voting Rule-Independent Distortion Lower Bound). Fix any β > 0. If each user provides
d=1 comparison, no voting rule can guarantee distortion better than β

2 ·
1+e−β

1−e−β for large m. If each
user reports d ≥ 2 pairwise comparisons, any voting rule that puts at most 1/m probability mass on
a Condorcet loser must have at least the above distortion.

Proof of Theorem 3. To prove this distortion lower bound, we identify a family of social choice
problems for which the distortion of any such social choice function converges towards the claimed
bound. We will parameterize these instances by the parameters m ≥ 2, 0 < ε ≤ 1/2, and 1 ≤ ξ < 2.
The instance has m alternatives labeled a, b1, . . . , bm−1. The distribution D is such that an agent
i ∼ D has utilities

(ui(a), ui(b1), . . . , ui(bm−1)) =

{
(1, 0, . . . , 0) with probability σ(βε)−1/2

σ(β)+σ(βε)−1

(0, ξε, . . . , ξε) with probability σ(β)−1/2
σ(β)+σ(βε)−1 .

Since the bj alternatives have the same utility for any agent, any agent asked to compare two of
them will prefer either one with probability 1/2. When ξ = 1, a randomly drawn rater will prefer
alternative a over some alternative bj with probability

σ(βε)− 1/2

σ(β) + σ(βε)− 1
· σ(β) +

σ(β)− 1/2

σ(β) + σ(βε)− 1
· σ(−βε)

=
σ(βε)σ(β)− σ(β)/2 + σ(β)(1− σ(βε))− (1− σ(βε))/2

σ(β) + σ(βε)− 1

=
σ(β)/2 + σ(βε)/2− 1/2

σ(β) + σ(βε)− 1
= 1/2.

It is easy to see that the probability of a random agent preferring a over bj is monotone decreasing in
ξ. The social welfare of a is clearly σ(βε)−1/2

σ(β)+σ(βε)−1 and the social welfare of any bj is ξε σ(β)−1/2
σ(β)+σ(βε)−1 .

Fix a voting rule f . If each agent only provides a single pairwise comparison, the voting rule simply
observes n independent Bernoulli samples with bias 1/2. For any number of samples n, denote by px
the probability that alternative x will win, where the randomness is taken over the realization of these
samples and the randomness in f . By the pigeon-hole principle, some alternative x must be chosen
with probability at most 1/m for infinitely many n. Without loss of generality, we can assume that
this alternative is a (otherwise, simply permute the roles of the alternatives, which does not change
the distribution over observed samples), and we restrict our focus to just the n where pa ≤ 1/m.
Now, the expected social welfare achieved by f is at most

1

m
AvgUtil(a) + AvgUtil(b1) =

1/m · (σ(βε)− 1/2) + ξε · (σ(β)− 1/2)

σ(β) + σ(βε)− 1
.
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This shows that the distortion is at least

AvgUtil(a)

AvgUtil(f)
≥ σ(βε)− 1/2

1/m · (σ(βε)− 1/2) + ξε · (σ(β)− 1/2)
=
(

1
m + ξε(σ(β)−1/2)

σ(βε)−1/2

)−1

. (11)

For a sequence of social choice problems in which m→∞, ε→ 0, and ξ = 1, this term converges
towards(

0 + (σ(β)− 1/2) · lim ε→0
ε

σ(βε)−1/2

)−1

=

(
(σ(β)− 1/2) · 4

β

)−1

=
β

2

1 + e−β

1− e−β
,

where the first equality follows from l’Hôpital’s rule and the Taylor approximation σ(t) = 1/2 +
t/4 + O(t3), and the second inequality follows from the identity σ(t) − 1/2 = 1

1+e−t − 1/2 =
2−1−e−t
2 (1+e−t) = 1

2 ·
1−e−t
1+e−t . This shows the claimed bound on the distortion of any voting rule.

If each agent may provide several pairwise comparisons, the above argument does not work for all
voting rules. The reason is that the correlations inside an agent’s comparisons might lead to nonzero
covariances that might allow an (arguably unnatural) voting rule to distinguish the special alternative
a. If the voting rule satisfies some natural social-choice properties, however, the lower bound above
goes through by just slightly changing ξ away from 1.

Suppose, first, that the voting rule satisfies the probabilistic Condorcet loser criterion, i.e., it will never
put more than 1/m probability mass on a Condorcet loser if one exists. If ξ > 1, a random agent
prefers a over bj with less than 1/2 probability. As a result, as the number of samples grows large,
the probability that a is a Condorcet loser with probability converging to 1. Hence, f cannot put more
than 1/m probability mass on a, and the distortion lower bound in Eq. (11) holds. If ξ approaches 1
from above as m→∞ and ε→ 0, the distortion bounds converge to the same limit.

In the lower bound above, the probabilistic Condorcet loser criterion can easily be replaced by other
axioms. If, for example, the voting rule is guaranteed to put at least 1− 1/m probability mass on a
Condorcet winner (if one exists), the proof goes through if we increase only b2’s utility by a factor
ξ ↘ 1.

F Supplemental Materials for Section 4

F.1 Upper Bound for NLHF

Theorem 7 (NLHF Distortion Upper Bound). For any instance D and any m, data distribution µ,
temperature β of the Bradley-Terry model, and any reference policy πref and KL budget τ , we have
dist(NLHF) ≤ β

2 ·
1+e−β

1−e−β . In the finite-sample regime, we have

AvgUtiln(NLHF) ≥
(

2
β ·

1−e−β
1+e−β

)
·maxπ?∈Bτ (πref) AvgUtil(π

?)−O
(

1
β

√
log(mn)

n·min{1, d·µ2
min}

+ log(mn)
n·βµ2

min

)
.

Proof of Theorem 7. We prove this theorem by leveraging the convergence of empirical win-rates in
Lemma 10. We first condition on the following successful event, which, according to Lemma 10,
holds with probability at least 1− δ over n samples of preference data,

∀x, y ∈ A, |pn(x � y)− p(x � y)| ≤ O

(√
log(m/δ)

n ·min{1, d · µ2
min}

+
log(m/δ)

nµ2
min

)
:= εn,d(δ).

As argued in the proof sketch, the NLHF policy by definition satisfies

πNLHF ∈ argmax
π1∈Bτ (πref)

min
π2∈Bτ (πref)

Ex1∼π1,x2∼π2
[pn(x1 � x2)− pn(x2 � x1)],

where pn(x1 � x2)−pn(x2 � x1) describes a Nash-equilibrium strategy for a symmetric two-player
zero-sum game, and thus have value 0. Therefore, for π? ∈ Bτ (πref), it must hold that

0 ≤ E
x1∼πNLHF,x2∼π?

[pn(x1 � x2)− pn(x2 � x1)] = E
x1∼πNLHF,x2∼π?

[2pn(x1 � x2)− 1]
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Since |pn(x � y)− p(x � y)| ≤ εn,d(δ), we have

≤ E
x1∼πNLHF,x2∼π?

[2p(x1 � x2)− 1] + 2εn,d(δ)

According to the linearization lemma (Lemma 1), we have

≤ E
x1∼πNLHF,x2∼π?

[2β(L · AvgUtil(x1)− `β · AvgUtil(x2))] + 2εn,d(δ)

≤ 2β(L · AvgUtil(πNLHF)− `β · AvgUtil(π?) +
εn,d(δ)

β
).

Therefore, under the successful event, we can lower bound the welfare of the NLHF policy by

AvgUtil(πNLHF) ≥ `β
L
AvgUtil(π?)− 4εn,d(δ)

β
.

Taking the failure event into account, the expected welfare of the NLHF method is at least

AvgUtiln(NLHF) ≥ (1− δ)
(
`β
L
AvgUtil(π?)− 4εn,d(δ)

β

)
≥ `β

L
· AvgUtil(π?)−O

(
εn,d(δ)

β
+ δ · `β

L

)
Finally, choosing δ = Θ

(
1√
n

)
, we have

≥ `β
L
· AvgUtil(π?)−O

(
1

β

√
log(mn)

n ·min{1, d · µ2
min}

+
log(mn)

n · βµ2
min

)
.

This completes the proof.

F.2 Lower Bound for PPO-based RLHF and DPO

Theorem 6 (RLHF Distortion Lower Bound). For m ≥ 3, there is a sequence of alignment problems
on which the distortion of RLHF scales as eΩ(β) in β.

Proof of Theorem 6. Suppose that the instance has m alternatives A = {a, b, c1, . . . , cm−2}, where
m−2 ≥ 4eβ . Let the data collection distribution be uniform over all candidates, i.e., µ = Uniform(A).
We consider the following distribution D over utility vectors, such that the utility vector of a random
agent i ∼ D satisfies

(ui(a), ui(b), ui(c1), . . . , ui(cm−2)) =

{
(0, 1, 0, . . . , 0) (type I) with probability δ,(

1
β , 0, 1, . . . , 1

)
(type II) with probability 1− δ,

where δ = 10
10+eβ

= Θ(e−β). In other words, type I users have a strong preference for candidate b
but only constitute a δ fraction of the population, while type II users have a strong preference for c
and weak preference for a � b and make up for a 1− δ fraction of the population.

For the reference policy and the KL budget, we set πref(a) = πref(b) = 1−ε
2 and πref(ci) = ε

m−2 for
all i ∈ [m− 2]. We leave the choice of ε to be determined later. The KL budget τ is set to be τ = 1.

Analysis of the MLE reward. Now we show that when n → ∞, the MLE reward satisfies
r(b) − r(a) > 0. According to [46, 42], it suffices to show that limn→∞ BCn(b) − BCn(a) > 0,
which, by Lemma 11, is implied by BC?(b)− BC?(a) > 0.

We have

BC?(b)− BC?(a) =
1

m

m−2∑
i=1

(p(b � ci)− p(a � ci)) +
1

m
(p(b � a)− p(a � b))

For each ci, we have

p(b � ci)− p(a � ci) = δ · (σ(β)− σ(0)) + (1− δ) · (σ(−β)− σ(1− β)) .
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In the above equation, the first term accounts for type-I users and is lower bounded by δ
3 when β ≥ 2.

The second term accounts for type-II users, and we leverage the fact that σ(x) is concave when x ≥ 0
to bound it as

(1− δ) · (σ(−β)− σ(1− β)) = −e
β

10
δ · (σ(β)− σ(β − 1)) ≥ −e

β

10
δ · σ′(β − 1) ≥ − e

10
δ,

where the last step uses σ′(x) = σ(x) · (1 − σ(x)) ≤ 1 − σ(x) ≤ e−x for all x. Plugging both
bounds into the limit BC?(b)− BC?(a) and substituting δ = 10

10+eβ
≥ 20

m−2 gives

lim
n→∞

BC(b)− BC(a) = BC?(b)− BC?(a) ≥ m− 2

m
· δ ·

(
1

3
− e

10

)
− 1

m
≥ 1

m
.

Therefore, when n is sufficiently large, we have BC(b) > BC(a) with high probability, which implies
that b is has higher MLE reward than a.

As for the MLE reward of type-c candidates, since BC?(ci) = BC?(cj) for all i, j ∈ [m − 2], we
have maxi,j∈[m−2] |r(ci)− r(cj)| → 0 when n→∞. In the limit, we can treat all type-c candidates
as having the same reward.

Analysis of the KL-constrained policies. Since all type-c candidates have the same estimated
reward and the same probability under the reference policy, both π? and π̂RLHF will assign the same
probability to all type-c candidates. This can be seen by the equivalence between regularized and
constrained RLHF as shown in Appendix F.4. As a result, we can view all type-c candidates as a
single candidate c which have mass ε under the reference policy.

We now show that for any η > 0, there exists an ε > 0 such that any policy π ∈ ∆({a, b, c}) inside
the KL ball Bτ (πref) cannot put more than η mass on c. We have

1 ≥ DKL(π ‖πref) = π(a) · log
π(a)

(1− ε)/2
+ π(b) · log

π(b)

(1− ε)/2
+ π(c) · log

π(c)

ε

Fixing π(c), the KL divergence is minimized when π(a) = π(b) = 1−π(c)
2 . Substituting this into the

KL divergence, we get

≥ (1− π(c)) · log
1− π(c)

1− ε
+ π(c) · log

π(c)

ε

Since t log t ≥ −1/e for all t > 0, and log 1
1−ε > 0, we have

≥ − 2

e
+ π(c) log

1

ε
.

Therefore, any policy in the KL ball must satisfy π(c) log 1
ε ≤ 1 + 2/e ≤ 2, which implies that

π(c) ≤ 2
log(1/ε) . We can choose ε to be any constant smaller than e−2/η to ensure that π(c) ≤ η.

We then show that when η is sufficiently small, πRLHF puts almost all probability mass on b, whereas
π? puts almost all probability mass on a. This will ultimately lead to a distortion of

AvgUtil(π?)

AvgUtil(π̂RLHF)
=

Θ(AvgUtil(a))

Θ(AvgUtil(b))
=

Θ(1/β)

Θ(e−β)
= eΩ(β).

• For πRLHF, we assume that the estimated reward is shifted such that r(c) = 0 (as a result,
r(a) < r(b) < 0). Since π′ = (0, 1, 0) also satisfies the KL constraint, we have r(πRLHF) ≥
r(π′). Together with the fact that πRLHF(c) ≤ η, we have

r(π′) = r(b) ≤ r(πRLHF) = r(a)πRLHF(a) + r(b)πRLHF(b)

≤ πRLHF(a) · r(a) + (1− πRLHF(a)− η) · r(b).

Therefore, we have πRLHF(a) ≤ η · |r(b)|
|r(b)−r(a)| . Setting ε to be sufficiently small, we can

guarantee that

η ≤ η1 :=
e−β

1 + |r(b)|
|r(b)−r(a)|

, (12)

and thus πRLHF(a) + πRLHF(c) ≤ η
(

1 + |r(b)|
|r(b)−r(a)|

)
≤ e−β . As a result, we have

AvgUtil(πRLHF) = Θ(AvgUtil(b)).
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• For π?, a similar argument shows that when

η ≤ η2 :=
e−β

1 + AvgUtil(a)
AvgUtil(a)−AvgUtil(b)

, (13)

We have π?(b) + π?(c) ≤ e−β . As a result, we have AvgUtil(π?) = Θ(AvgUtil(a)).

Finally, we set ε to be smaller than e−2/min{η1,η2} such that Equations (12) and (13) are both satisfied.
This ensures AvgUtil(π?)/AvgUtil(πRLHF) = eΩ(β) and completes the proof.

F.3 Equivalence of DPO and RLHF under Heterogeneous Preferences

In this section, we formalize the observation that DPO and RLHF are equivalent under heterogeneous
preferences. This is consistent with the result by Shirali et al. [45], which shows that DPO also aligns
with the Borda count. We start by recalling the DPO objective [43].12

LDPO(π;πref) = −
∑

1≤i≤n,1≤j≤d

log σ

(
β log

π(xji )

πref(x
j
i )
− β log

π(yji )

πref(y
j
i )

)
.

Now we perform a change of variables to transform π into the following form:

π(x) = πref(x) · exp(r̂(x)/β) where r̂(x) := β log
π(x)

πref(x)
, ∀x ∈ A.

Substituting this into the DPO objective, we get:

LDPO(π;πref) = −
∑

1≤i≤n,1≤j≤d

log
(
σ(r̂(xji )− r̂(y

j
i ))
)
,

which is exactly the MLE objective for reward learning in RLHF, repeated here for convenience:

LMLE(r) := −
∑

1≤i≤n,1≤j≤d

log
(
σ(r(xji )− r(y

j
i ))
)
.

Therefore, there is a one-to-one correspondence between the MLE reward r? =
argminr∈Rm LMLE(r)13, and the DPO policy πDPO = argminπ LDPO(π;πref) as:

πDPO(x) = πref(x) · exp(r?(x)/β).

On the other hand, the RLHF policy with regularization parameter λ (see Appendix F.4 for the
equivalence between regularized and constrained versions of RLHF) is also given by

πRLHF(x) = πref(x) · exp(r?(x)/λ).

Therefore, the DPO policy πDPO and the RLHF policy πRLHF are equivalent when the parameter β
in the DPO objective is equal to λ in the RLHF objective. Notably, both policies are different from
the optimal policy π? ∝ πref · exp(AvgUtil(x)/λ′) (for a potentially different λ′ that make the KL
constraint tight) as r? 6= AvgUtil, which has also been pointed out by Shirali et al. [45].

F.4 Equivalence of Regularized and Constrained Alignment Methods

In this section, we formally establish the equivalence between regularized and constrained formu-
lations of both RLHF and NLHF. Although this equivalence is standard and likely known to many,
we include the details here for completeness. We begin by proving the equivalence between the two
versions of NLHF (which involves max-min optimization over the policy space); the corresponding
result for RLHF then follows by analogous arguments.

12Note that the parameter β does not need to be the same as the true temperature of the Bradley-Terry model
in our setting.

13Note that we have a minus sign in the MLE objective, which is equivalent to maximizing the sum of
log-likelihoods.
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Proposition 14 (Equivalence between Constrained and Regularized NLHF.). Let πτ be the output of
the τ -constrained NLHF method defined in Section 2, i.e.,

πτ = argmax
π1∈Bτ (πref)

min
π2∈Bτ (πref)

E
x1∼π1,x2∼π2

[Mx1,x2 ] , (14)

and let π̃λ be the output of the λ-regularized NLHF method [36], i.e.,

π̃λ = argmax
π1∈∆(M)

min
π2∈∆(M)

E
x1∼π1,x2∼π2

[Mx1,x2
]− λ ·DKL(π1 ‖πref) + λ ·DKL(π2 ‖πref). (15)

Then, for each λ ∈ [0,∞] with solution π̃λ for Eq. (15), we have that π̃λ is also an optimal solution
to the τ -constrained optimization problem in Eq. (14), where τ = DKL(π̃λ ‖πref). Conversely, for
each τ ≥ 0 with solution πτ for Eq. (14), there exists λ ∈ [0,∞] such that πτ is also an optimal
solution to the λ-regularized optimization problem in Eq. (15).

Proof of Proposition 14. We start by observing that in both games Eq. (14) and Eq. (15), the utilities
are anti-symmetric functions, and the strategy spaces for both players are identical, convex and
compact. Therefore, the value of the both games is 0, and both games have symmetric Nash
equilibria.

Now, we prove the two directions of the claim separately.

Regularized⇒ Constrained. Given λ ∈ [0,∞] and π̃λ be the solution to Eq. (15). Consider the
constrained optimization problem in Eq. (14) with τ = DKL(π̃λ ‖πref). We show that π2 = π̃λ is a
best response to π1 = π̃λ in the constrained game with radius τ = DKL(π̃λ ‖πref), i.e.,

π̃λ = argmin
π2∈Bτ (πref)

E
x1∼π̃λ,x2∼π2

[Mx1,x2
] (16)

If Eq. (16) holds, then by the fact that the utility is anti-symmetric, we have that π1 = π̃λ is also a
best response to π2 = π̃λ in the same constrained game. Putting both together, we have that (π̃λ, π̃λ)
is a Nash equilibrium for the constrained game with radius τ = DKL(π̃λ ‖πref), thus establishing the
first direction.

Now we prove Equation (16). To see this, note that ∀π2 ∈ Bτ (πref), we have that DKL(π2 ‖πref) ≤
τ = DKL(π̃λ ‖πref). Therefore, from the fact that π̃λ is a Nash equilibrium for the regularized game
Eq. (15), we have that for any π2 ∈ ∆(M) and specifically π2 ∈ Bτ (πref), we have that

E
x1∼π̃λ,x2∼π2

[Mx1,x2
] + λ ·DKL(π2 ‖πref) ≥ E

x1∼π̃λ,x2∼π̃λ
[Mx1,x2

] + λ ·DKL(π̃λ ‖πref)

⇒ E
x1∼π̃λ,x2∼π2

[Mx1,x2
]− E

x1∼π̃λ,x2∼π̃λ
[Mx1,x2

] ≥ λ · (DKL(π̃λ ‖πref)−DKL(π2 ‖πref)) ≥ 0.

This proves Eq. (16) and completes the proof of the first direction.

Constrained⇒ Regularized. We prove the reverse direction using duality theory.

We first show how to construct the regularization parameter λ. For simplicity, we write πT
1Mπ2 as

a shorthand for Ex1∼π1,x2∼π2
[Mx1,x2

]. Then minimizing player in the constrained game Eq. (14)
with π1 = πτ can be written as

min
π2∈Rm

πT
τMπ2 s.t. DKL(π2‖πref) ≤ τ, π2 ≥ 0,1Tπ2 = 1. (Constrained Minimization)

The Lagrangian of this problem is

L(π2, λ, ~µ, η) = πT
τMπ2 + λ (DKL(π2‖πref)− τ)− ~µTπ2 + η1Tπ2,

where λ, ~µ, η ≥ 0 are the Lagrange multipliers for the KL divergence constraint, the non-negativity
constraint, and the normalization constraint, respectively. Since the utility πT

1Mπ2 is convex, the
normalization constraint is affine, and the inequality constraints are convex, and the reference
policy πref is strictly feasible with DKL(πref‖πref) = 0 < τ ,14 the Slater’s condition is satisfied,

14If τ = 0, the only feasible policy is πref, and the claim clearly holds for λ = ∞. We also assume that
πref(a) > 0 for all a ∈M . Otherwise if πref(a) = 0 for some a ∈M , then both the regularized and constrained
versions forbid any policy to put nonzero probability on a, which leads to an effectively smaller candidate set.
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which guarantees that the KKT conditions are necessary and sufficient for optimality — there exists
parameters λ?, ~µ?, η? ≥ 0 such that as an optimal solution to Eq. (Constrained Minimization),
π2 = πλ satisfies the following KKT conditions:

∇π2
L(π2, λ

?, ~µ?, η?) = MTπτ + λ? · ∇π2
DKL(π2‖πref)− ~µ? + η? · 1 = 0, (17)

where

η?(1Tπ2 − 1) = 0 and µ?i (π2)i = 0,∀i ∈ [m], (18)

due to complementary slackness.

We will show that this λ? is the regularization parameter we are looking for. Namely, for the
regularized game in Eq. (15) with λ = λ?, we have that (πτ , πτ ) is a Nash equilibrium.

Again, let us first fix π1 = πτ and consider the regularized optimization problem for the minimizing
player:

min
π2

πT
τMπ2 − λ? ·DKL(π2‖πref) s.t. π2 ≥ 0,1Tπ2 = 1. (Regularized Minimization)

Since πT
τMπ2 is convex in π2, Slater’s condition is satisfied for the above problem and implies that

the KKT conditions are sufficient for optimality. It is also not hard to see that L(π2, λ
?, ~µ?, η?)

coincides with the Lagrangian of (Regularized Minimization). We can therefore conclude from
Eqs. (17) and (18) that for the minimizing player in the regularized game, π2 = πτ is a best response
strategy to π1 = πτ .

Since the regularized game is anti-symmetric, the same argument shows that for the maximizing
player in the regularized game, π1 = πτ is also a best response strategy to π2 = πτ . Together, we
have that (πτ , πτ ) is a Nash equilibrium for the regularized game in Eq. (15) with λ = λ?. The proof
is complete.

Combining Proposition 14 with Theorem 7, we obtain the following guarantee for the KL-regularized
version of NLHF:
Corollary 8. If λ-regularized NLHF (for any λ ≥ 0) returns a policy π̃NLHF, this policy’s average
utility is at least a 2

β ·
1−e−β
1+e−β

fraction of the optimal average utility of any policy π withDKL(π ‖πref) ≤
DKL(π̃NLHF ‖πref) (minus finite-sample errors, see Theorem 7).

For the RLHF case, the proof is analogous, except that we no longer have nested minimization-
maximization, so the proof is slightly simpler. We omit the details of proof, but state the result
below.
Proposition 15 (Equivalence between Constrained and Regularized RLHF). Let r be the MLE reward
learned from the comparison data, and let πτ be the output of the τ -constrained RLHF method defined
in Section 2, i.e.,

πτ = argmax
π∈Bτ (πref)

E
x∼π

[r(x)] , (19)

and let π̃λ be the output of the λ-regularized RLHF method, i.e.,

π̃λ = argmax
π∈∆(M)

E
x∼π

[r(x)]− λ ·DKL(π ‖πref). (20)

Then, for each λ ∈ [0,∞] with solution π̃λ for Eq. (20), we have that π̃λ is also an optimal solution
to the τ -constrained optimization problem in Eq. (19), where τ = DKL(π̃λ ‖πref). Conversely, for
each τ ≥ 0 with solution πτ for Eq. (19), there exists λ ∈ [0,∞] such that πτ is also an optimal
solution to the λ-regularized optimization problem in Eq. (20).

G Other Sampling Models

To prove Theorem 9, we first prove the following lemma. We illustrate the constructed sequence of
alternatives in Fig. 4.
Lemma 16. For any β > 0, there is an infinite sequence a1, a2, . . . of alternatives, and a distribution
D of utility functions over these alternatives such that
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u1

u2

u3

0.33 0.00 0.21 0.51 0.00 0.22 0.42 0.00 0.18 0.34 0.00 0.15 0.30 0.00

0.33 0.49 0.00 0.29 0.51 0.00 0.20 0.39 0.00 0.17 0.33 0.00 0.15 0.29

0.33 0.49 0.70 0.00 0.22 0.44 0.00 0.19 0.36 0.00 0.16 0.31 0.00 0.14

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14
0.51 0.52 0.55 0.53 0.53 0.52 0.52 0.51 0.51 0.51 0.51 0.51 0.51

0.0

0.2

0.4

SW
(a

t)

0.33 0.33 0.31
0.27 0.24 0.22 0.21 0.19 0.18 0.17 0.16 0.15 0.15 0.14

Figure 4: Utilities for first 14 alternatives in the sequences constructed in Lemma 16, for β = 5.
Bottom bar chart shows decreasing welfare. Numbers between alternative labels at+1 → at give the
expected win-rate p(at+1 � at).

• AvgUtil(a1) = 1/3,

• for all t ≥ 2, 0 < AvgUtil(at) ≤ AvgUtil(at−1) − 2
3 β log

(
1 + tanh

(
β/4 ·

AvgUtil(at−1)
)3)

< AvgUtil(at−1), and

• for all t ≥ 2, p(at � at−1) > 1/2.

Proof. Our population D will be a uniform distribution over three utility vectors, u1, u2, and u3. We
define the sequence of alternatives and prove the claim by induction over t ≥ 1.

For t = 1, set u1(a1) = u2(a1) = u3(a1) := 1/3, which clearly satisfies the first claim.

Now, let t ≥ 2, and suppose that we have defined the utilities for alternatives a1, . . . , at−1 and
established the claims for all t′ < t. We define utilities for at and extend the claims to t. Let uA
denote the utility vector among u1, u2, u3 with the highest utility for at−1, and denote the other two
utility vectors by uB , uC . For convenience, set ∆ := uA(at−1) · β and ∆′ := log

( (e∆/2+1)3

2 (e∆+3)

)
.

uA(at) := uA(at−1)−∆/β = 0, uB(at) := uB(at−1)+∆′/β, uC(at) := uC(at−1)+∆′/β.

It will be useful to derive an alternative expression for ∆′:

∆′ = log

(
(e∆/2 + 1)3

2 (e∆ + 3)

)
= log

(
e∆/2 (e∆/2 + 1)3

2 e∆/2 (e∆ + 3)

)
=

∆

2
− log

2 e∆/2 (e∆ + 3)

(e∆/2 + 1)3
=

∆

2
− log

(e∆/2 + 1)3 + (e∆/2 − 1)3

(e∆/2 + 1)3

=
∆

2
− log

(
1 +

(e∆/2 − 1

e∆/2 + 1

)3
)

=
∆

2
− log

(
1 + tanh(∆/4)3

)
.

Since the value 1 + ( e
∆/2−1
e∆/2+1

)3 in the logarithm is greater than 1, we know that ∆′ < ∆/2.

Since AvgUtil(at−1) > 0 by the induction hypothesis, it must hold that ∆ > 0, and, by expanding,
that

∆′ = log
(e∆/2 + 1)3

2 (e∆ + 3)
= log

3 e∆ + 1 + 1
2 · (e

∆/2 − 1)3

e∆ + 3
> log

3 e∆ + 1

e∆ + 3
. (21)

Since log 3 e∆+1
e∆+3 > log e∆+3

e∆+3 = 0, it holds that ∆′ > 0 and that AvgUtil(at) > 0.
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We first must show that we have not set uB(at) and uC(at) greater than 1. Since, by the induction
hypothesis, 1

3 (uA(at−1) + uB(at−1) + uC(at−1)) = AvgUtil(at−1) ≤ AvgUtil(at−2) ≤ · · · ≤
AvgUtil(a1) = 1/3, it must hold that uA(at−1) + uB(at−1) + uC(at−1) ≤ 1, which by the choice
of uA implies that uB(at−1), uC(at−1) are at most 1/2. Since ∆′ < ∆/2 = uA(at−1) · β/2 ≤ β/2,
uB(at) = uB(at−1) + ∆′/β ≤ 1/2 + 1/2 = 1, this holds for uB , and analogously for uC .

Next, we show the claimed reduction in social welfare using our alternative expression for ∆′.

AvgUtil(at) =
1

3
·
(
uA(at) + uB(at) + uC(at)

)
=

1

3
·
(
uA(at−1) + uB(at−1) + uC(at−1)− ∆− 2 ∆′

β

)
= AvgUtil(at−1)− ∆− 2 ∆′

3β
= AvgUtil(at−1)− 2

3β
log
(

1 + tanh(∆/4)3
)
.

By our choice of uA and averaging, it holds that uA(at−1) ≥ AvgUtil(at−1) and hence that ∆ ≥
β ·AvgUtil(at−1). Since the bound on AvgUtil(at) above is monotone nonincreasing in ∆, we obtain
our claim that

AvgUtil(at) ≤ AvgUtil(at−1)− 2

3β
log
(

1 + tanh
(
β/4 · AvgUtil(at−1)

)3)
.

Finally, it remains to show that p(at � at−1) > 1/2. Since

p(at � at−1) =
σ(−∆) + 2σ(∆′)

3
=

1

2
+

(σ(−∆)− 1/2) + 2 (σ(∆′)− 1/2)

3

=
1

2
+

(1/2− σ(∆)) + 2 (σ(∆′)− 1/2)

3
,

it suffices to show that 2 (σ(∆′)− 1/2) > σ(∆)− 1/2. Observing that σ(x)− 1/2 = 1
2 ·

1−e−x
1+e−x and

applying Eq. (21), we bound

2
(
σ(∆′)− 1

2

)
> 2

(
σ
(

log( 3∆+1
e∆+3 )

)
− 1

2

)
=

1− e∆+3
3 e∆+1

1 + e∆+3
3 e∆+1

=
2 e∆−2
3 e∆+1

4 e∆+4
3 e∆+1

=
2

4
· e

∆ − 1

e∆ + 1

=
1

2
· 1− e−∆

1 + e−∆
= σ(∆)− 1

2 ,

which establishes our claim.

Theorem 9 (Unbounded Distortion of RLHF Under Correlated Sampling). For any β > 0, there
exists a sequence of alignment instances and distributions ν ∈ ∆

((
A
2

))
over comparison pairs such

that RLHF’s distortion is unbounded.

Proof. We construct our sequence of instances by taking increasingly long prefixes of the sequence
in Lemma 16, i.e., by considering the alternatives a1, . . . , am for increasing m. Rescaling by some
constants, we can define the MLE rewards in RLHF as

r = argmax
r∈Rm

∑
{x,y}∈(A2)

#(x � y)

nd
log
(
σ(r(x)− r(y))

)
+

#(y � x)

nd
log
(
σ(r(y)− r(x))

)
.

Following Siththaranjan et al. [46], we apply the first-order optimality conditions to obtain that, for
each alternative x,∑

y 6=x

#(x � y)

nd
=
∑
y 6=x

#(x � y) + #(y � x)

nd
· σ(r(x)− r(y)).

By the strong law of large numbers, as the number n of samples goes to infinity (regardless of d), the
sample fraction #(x�y)

nd converges almost surely to its expected value ν({x, y}) · p(x � y). Hence,
as n → ∞, the rewards (a random variable depending on the random pairwise comparisons) will
satisfy that ∑

y 6=x

ν({x, y}) · σ(r(x)− r(y))
a.s.−→
∑
y 6=x

ν({x, y}) · p(x � y). (22)
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Consider a distribution ν over pairs of alternatives that assigns each pair of adjacent alternatives
{at, at+1} a probability of 1−ε

m−1 of being drawn for comparison, and all other pairs a probability
of ε

(m2 )−(m−1)
, where ε > 0 is a small value, dependent on the current m, to be determined in the

following.

Applying Eq. (22) to x = am, we obtain that 1−ε
m−1σ(r(am)− r(am−1)) + O(ε) converges almost

surely to 1−ε
m−1 · p(am � am−1) + O(ε). Since Lemma 16 guarantees that p(am � am−1) > 1/2,

for small enough ε, it will hold almost surely that σ(r(am)− r(am−1)) > 1/2, i.e., that r(am) >
r(am−1).

Next, we apply Eq. (22) to x = am−1, to obtain that 1−ε
m−1 (σ(r(am−1) − r(am)) + σ(r(am−1) −

r(am−2))) +O(ε) converges almost surely to 1−ε
m−1 · (p(am−1 � am) + p(am−1 � am−2)) +O(ε).

Having established above that, for small enough ε, we can make σ(r(am−1) − r(am)) = 1 −
σ(r(am) − r(am−1)) arbitrarily close to p(am−1 � am) = 1 − p(am � am−1), we see that
σ(r(am−1)− r(am−2)) must become arbitrarily close to p(am−1 � am−2) > 1/2.

Continuing this argument for x = am−2, am−3, . . . , a1, we obtain that, for small enough ε, the
rewards will be ordered as r(a1) < r(a2) < · · · < r(am) almost surely. Set ε (for this specific m)
so that this is the case. We set the KL constraint large enough that all policies are possible; say, by
choosing the reference policy to be uniform and setting τ = logm.15 Then, the reward-maximizing
policy clearly puts all probability mass on the alternative am with maximal reward, obtaining a
distortion of AvgUtil(a1)

AvgUtil(am) = 1/3
AvgUtil(am) .

We have now defined a sequence of instances, whose distortion grows as 1/3
AvgUtil(am) as m → ∞.

To show that distortion is not bounded in β, it remains to show that AvgUtil(am)→ 0. The lemma
already tells us that AvgUtil(at) (for t = 1, 2, . . . ) is a monotonically decreasing sequence. Since
the social welfare is nonnegative, the sequence is bounded from below and thus convergent, which
also implies that the sequence of differences AvgUtil(at−1)−AvgUtil(at) must converge to 0. Since
the bound 2

3β log(1 + tanh(β/4AvgUtil(at−1))3) is sandwiched between these differences and 0,
it must also converge to 0. Since it is continuous in AvgUtil(at−1) and positive for all positive
values of AvgUtil(at−1), this implies that AvgUtil(at−1) must converge to 0. This shows that
AvgUtil(am)→ 0 for largem, and that the distortion grows unboundedly large asm increases, which
concludes our proof.

15This means that this lower bound fits into the social choice subsetting. Note that the theorem does not apply
to Borda count (which is not defined for a general distribution ν), but to RLHF considered as a voting rule.
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