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Abstract

We study dangling-aware entity alignment in001
knowledge graphs (KGs), which is an under-002
explored but important problem. As different003
KGs are naturally constructed by different sets004
of entities, a KG commonly contains some005
dangling entities that cannot find counterparts006
in other KGs. Therefore, dangling-aware en-007
tity alignment is more realistic than the con-008
ventional entity alignment where prior studies009
simply ignore dangling entities. We propose010
a framework using mixed high-order proximi-011
ties on dangling-aware entity alignment. Our012
framework utilizes both the local high-order013
proximity in a nearest neighbor subgraph and014
the global high-order proximity in an embed-015
ding space for both dangling detection and en-016
tity alignment. Extensive experiments with two017
evaluation settings shows that our framework018
more precisely detects dangling entities, and019
better aligns matchable entities. Further in-020
vestigations demonstrate that our framework021
can mitigate the hubness problem on dangling-022
aware entity alignment.023

1 Introduction024

Knowledge graphs (KGs) have become the back-025

bone of many intelligent applications (Ji et al.,026

2021). In spite of their importance, many KGs027

are independently created without considering the028

interrelated and interchangeable nature of individ-029

ually created knowledge (Chen et al., 2020). To030

allow complementary knowledge to be automat-031

ically combined and migrated across individual032

KGs, entity alignment seeks to identify equivalent033

entities in distinct KGs (Sun et al., 2020a). Re-034

cent literature has focused on learning embedding035

representations of multiple KGs where identical036

entities are aligned based on their embedding simi-037

larity (Chen et al., 2017; Cao et al., 2019; Fey et al.,038

2020; Sun et al., 2020a; Liu et al., 2021).039

Aside from the surge of research effort on en-040

tity alignment (Zeng et al., 2021), an unresolved041
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Figure 1: Toy examples for mixed high-order proximi-
ties. (a) Nearest neighbor (NN) subgraph where entities
connect to NNs in the other KG using embedding simi-
larities. 4 and its nearest neighbor B have 0.85 similarity.
B prefers 2 and 3 with higher similarities. 1 and A are
mutual nearest neighbors. (b) Labeled alignments and
dangling entities. (c) Aligning matchable source and
target distributions rather than only labeled alignments.

but important challenge that existing methods face 042

is the dangling entity problem. Dangling entities 043

are those unique entities in a KG that cannot find 044

counterparts in another KG. Considering that in- 045

dividually created KGs are unlikely to share the 046

same set of entities, identifying dangling entities is 047

undoubtedly an indispensable step of any practical 048

solution to entity alignment. However, nearly all 049

prior studies have neglected dangling entities and 050

assume there must be one-to-one entity mapping 051

from the source KG to the target one (Sun et al., 052

2020c). This assumption prevents prior methods 053

from practically supporting the alignment between 054

KGs in real-world scenarios. To fill the gap, Sun 055

et al. (2021) formally define a more practical prob- 056

lem setting where a model needs to both determine 057

whether each given source entity is a matchable 058

one, as well as retrieve counterparts for the pre- 059

dicted matchable entities. 060
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Although some preliminary attempts have been061

made to implement dangling-aware entity align-062

ment (Sun et al., 2021), the attempted methods still063

suffer from a major drawback, i.e., they only con-064

sider the first-order proximity (namely, pairwise co-065

sine similarity) between source and target entities.066

However, to effectively discover dangling entities067

as outliers in the embedding representation, we ar-068

gue that high-order proximity measures should also069

be involved. Fig. 1a shows the intuition of using the070

high-order proximity for dangling entity detection.071

Despite a fairly high cosine similarity, the source072

entity 4 is not the nearest neighbor of target entity073

B, indicating that 4 is likely to be dangling. In con-074

trast, 1 and A are mutual nearest neighbors even075

with a relatively low similarity, indicating that 1 is076

more likely to be matchable. Hence, in addition to077

the first-order proximity from source to target, the078

local high-order proximity (e.g., the second-order079

proximity1 in the nearest neighbor subgraph) is also080

useful for detecting dangling entities. In alignment081

learning, the previous works neglect global infor-082

mation since they merely optimize the entity-level083

alignment loss on labeled alignments without con-084

sidering entity embedding distributions as shown085

in Fig. 1b. In Fig. 1c, we show that a desirable086

dangling-aware model should align the global dis-087

tributions of matchable source and target entities088

(i.e., global high-order proximity in an embedding089

distribution space), such that dangling entities in090

both KGs could appear as dissimilar outliers in091

both distributions.092

Motivated by the above intuition, we propose a093

dangling-aware entity alignment framework based094

on mixed high-order proximities (MHP). MHP095

considers both local and global high-order proxim-096

ities to foster both dangling entity detection and097

matchable entity alignment. We introduce the opti-098

mization of global high-order proximity measure as099

finding the Optimal Transport between matchable100

source entities and target entities. Through this op-101

timization process, to facilitate dangling detection,102

MHP also encourages a large distance between103

the dangling entity distribution and matchable en-104

tity distribution. Additionally, to leverage the local105

high-order proximity, we propose a dangling entity106

classifier which takes into account the second-order107

proximity in the nearest neighbor subgraph. Fur-108

thermore, with the similar principle of local high-109

1The second-order proximity of a source entity s is defined
as aggregated cosine similarities between the nearest targets
of s and the nearest sources of these nearest targets.

order proximity, we adopt an NCA (Neighborhood 110

Component Analysis) loss (Goldberger et al., 2004; 111

Liu et al., 2021) for alignment learning to mitigate 112

the hubness problem2 (Radovanovic et al., 2010), 113

which is severe in dangling-aware entity alignment 114

as observed in our experiments. 115

Our main technical contributions to the studied 116

problem are two-fold. First, the local high-order 117

proximity (i.e., the second-order proximity in the 118

nearest neighbor subgraph) is modeled to facilitate 119

both dangling detection and alignment learning. 120

Second, we design the use of the global high-order 121

proximity to align the distributions of matchable 122

entities, therefore precisely separating the repre- 123

sentations of dangling entities and matchable ones. 124

In addition, the techniques are model-agnostic and 125

can be incorporated with various alignment meth- 126

ods (e.g., MTransE (Chen et al., 2017) or AliNet 127

(Sun et al., 2020a)) and dangling detection meth- 128

ods (e.g., the marginal or background ranking (Sun 129

et al., 2021)). Extensive experiments on DBP2.0 130

demonstrate its effectiveness and adaptiveness. 131

2 Preliminary 132

In this section, we provide the problem definition 133

of dangling-aware entity alignment and briefly in- 134

troduce previous methods for this problem. 135

2.1 Problem definition 136

A KG is defined as G = (E ,R, T ), where E de- 137

notes a set of entities; R denotes a set of relations, 138

and T ⊂ E×R×E is a set of triples. Following the 139

convention (Chen et al., 2017), we consider entity 140

alignment between a source KG Gs = (Es,Rs, Ts) 141

and a target KG Gt = (Et,Rt, Tt). Our study fo- 142

cuses on a more practical and challenging setting 143

with dangling entities (Sun et al., 2021). In this 144

setting, the training data contain a set of seed entity 145

alignment A = {(xs, xt) ∈ Es × Et∥xs ≡ xt} and 146

a set of source dangling entities D ⊂ Es that has 147

no counterparts in target KG. After training, the 148

model is required to first identify dangling entities 149

and then find alignment for predicted matchable 150

entities. This definition breaks the one-to-one as- 151

sumption used in previous studies on the conven- 152

tional setting (Sun et al., 2020c) and causes their 153

methods to not be directly usable in our setting. 154

2The hubness problem is where some target entities domi-
nantly appear as the nearest neighbors of many source entities.
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2.2 Dangling-aware entity alignment155

To the best of our knowledge, there is only one156

previous work (Sun et al., 2021) which has been at-157

tempted for dangling-aware entity alignment along158

with the proposing of this important problem. This159

work also incorporates an embedding-based entity160

alignment technique (i.e., MTransE (Chen et al.,161

2017) and AliNet (Sun et al., 2020a)) as the back-162

bone, which learns alignment of KG embeddings163

based on the seed entity pairs. Taking MTransE as164

an example, for each pair (xs, xt) ∈ A, MTransE165

uses the learned embedding xs and xt to optimize166

a linear transformation matrix M by minimizing167

||Mxs − xt||. To detect dangling entities in the168

embedding space, a margin ranking (MR) loss and169

a background ranking (BR) loss are experimented170

with, both encouraging dangling entities to be iso-171

lated from others in the embedding space. MR172

sets a distance margin λ to separate the dangling173

entity x and its nearest neighbors by minimizing174

max (0, λ− ∥Mx− xnn∥). In like manner, BR175

treats dangling entities as the background of embed-176

ding space and learns to separate dangling entities177

and randomly-sampled other entities.178

3 Methodology179

In this section, we introduce the techniques in our180

framework which captures both local and global181

high-order proximities to collaboratively tackle182

dangling detection and entity alignment.183

3.1 Global high-order proximity184

To leverage the global high-order proximity in an185

embedding space, in MHP, we introduce a method186

based on Optimal Transport (OT) for globally align-187

ing the distributions of matchable source and target188

entities. In addition, to facilitate dangling entity189

detection, the OT model encourages a large dis-190

tribution distance between source- and target-KG191

dangling entities. Intuitively, this strategy treats192

dangling entities as dissimilar parts of two embed-193

ding distributions, therefore tending to put dangling194

entities as outliers in the embedding space.195

Optimal transport. Let s and t be the distribution196

of transformed source-space embeddings Mxs and197

target space embeddings xt, respectively.3 Intu-198

itively, s should be similar with t if they represent199

matchable entities. Meanwhile, to make dangling200

3Without loss of generality, we use a matrix M to transform
embeddings from source KG to target KG.

entities distinguishable, the distribution of trans- 201

formed dangling entity vectors Mxd should be dif- 202

ferent from t. The discrepancy between s and t 203

can be represented as a Wasserstein distance which 204

is one type of OT distance (Peyré et al., 2019): 205

Dc(s, t) = inf
γ∈Π(s,t)

E(x,y)∼γ [c(x,y)], (1) 206

where Π(s, t) is the set of all possible joint distribu- 207

tions γ(s, t) and c(x,y) denotes the cost function 208

describing the distance between x and y. Then the 209

Wasserstein distance Dc(s, t) denotes the cost of 210

the optimal transport plan. 211

However, the infimum to calculate Dc(s, t) is 212

highly intractable (Arjovsky et al., 2017). To han- 213

dle this, the Kantorovich-Rubinstein duality points 214

out that Eq. (1) can be transformed to: 215

Lot(s, t) =
1

K
sup

∥f∥L≤K
Ex∼t[f(x)]−Ex∼s[f(x)],

(2) 216

where the supremum is over all possible K- 217

Lipschitz functions f . As Arjovsky et al. 218

(2017) point out that optimizing Wasserstein GAN 219

(WGAN) can be used to solve this optimal transport 220

problem, we utilize WGAN in our study. Specifi- 221

cally, we adopt a MLP to approximate the function 222

f (called as critic D) since neural networks are 223

universal approximators (Hornik et al., 1989). The 224

objective of the critic is defined as follows: 225

max
D

Ey∼t [fD(y)]− Ex∼s [fD (Mx)] . (3) 226

Thus, the critic D aims to distinguish transformed 227

source embeddings from target embeddings. In 228

contrast, the transformation matrix M tries to min- 229

imize the distance between the two sets of embed- 230

dings. The objective to optimize M is defined as: 231

min
M

Ey∼t [fD(y)]− Ex∼s [fD (Mx)] 232

= min
M

−Ex∼s [fD (Mx)] . (4) 233

Therefore, conducting entity alignment with the 234

consideration of whole embedding distributions is 235

converted to the problem of optimizing a WGAN. 236

So far, only the distribution of matchable source 237

entity embeddings and that of target entity embed- 238

dings are considered, whereas the distribution of 239

dangling entity embeddings is neglected. There- 240

fore, to tailor the optimization problem for dangling 241

entities, we adopt an additional objective for the 242
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(b) Proximity distribution of the second nearest entities.

Figure 2: Second-order proximity distributions.

transformation matrix M:243

max
M

Ey∼t [fD(y)]− Ex∼d [fD (Mx)]244

= min
M

Ex∼d [fD (Mx)] , (5)245

where d denotes the distribution of dangling entity246

embeddings. Hence, the transformation matrix M247

is enforced to maximize the difference between the248

distribution of transformed dangling embeddings249

and that of target entity embeddings, which can250

make dangling entities more distinguishable.251

3.2 Local high-order proximity252

In addition to the global proximity measure, MHP253

also captures local high-order proximity measures254

in the nearest neighbor subgraph. In contrast, the255

previous work (Sun et al., 2021) merely uses the256

first-order proximity between an individual source257

entity s and its nearest target entity to decide258

whether s should be dangling. However, apart259

from the first-order proximity, the second-order260

proximity measure could be informative as well for261

detecting dangling entities.262

Furthermore, we verify the above hypothesis em-263

pirically using the previous work. From the nearest264

target entity t of a given source entity, we obtain265

the cosine similarities between t and its top 2 near-266

est source entities as the second-order proximity267

measures, and plot the proximity distributions in268

Fig. 2a and 2b for the first and second nearest en-269

tities, respectively. Fig. 2a shows that the second-270

order proximity between matchable entities and271

their nearest neighbors appear as a very different272

distribution in comparison to that of the proximity 273

between dangling entities and their nearest neigh- 274

bors. Fig. 2b demonstrates a similar observation for 275

the proximity distributions of the second nearest en- 276

tities. Therefore, the second-order proximities are 277

informative and should be used for distinguishing 278

dangling entities, meanwhile combining proximity 279

measures that consider multiple neighboring enti- 280

ties is more useful than a single similarity measure 281

on only the nearest entity. 282

To this end, we design a dangling entity classi- 283

fier using both first-order and second-order prox- 284

imity measures as the input. From the perspec- 285

tive of a given source entity s, we conduct nearest 286

neighbor search to obtain top k nearest target en- 287

tities {t1, ..., tk} and their proximity score vector 288

d1 = [dst1 , ..., dstk ] ∈ R1×k. The proximity dst is 289

measured by the cosine similarity between trans- 290

formed source embedding Mxs and target entity 291

embedding xt: 292

dst1 =
〈 Mxs

∥Mxs∥2
,

xt

∥xt∥2

〉
(6) 293

After getting the first-order proximity vector d1 294

between the source and target, through the reverse 295

direction (target KG to source KG), we can further 296

obtain the second-order proximity vector. Specif- 297

ically, we retrieve top m nearest source entities 298

{s1, ..., sm} of each target entity t in {t1, ..., tk}. 299

Accordingly, through the target entity t, the second- 300

order proximity measures with regard to the m 301

retrieved source entities are obtained as the vec- 302

tor dt = [ds1t, ..., dsmt] ∈ R1×m. Subsequently, 303

we can collect {dt1 ...dtk} and concatenate them 304

as the whole second-order proximity vector d2 = 305

[dt1 ||...||dtk ] ∈ R1×km. 306

To utilize both second-order and first-order in- 307

formation, the whole proximity distribution vector 308

is constructed as d = [d1||d2] ∈ R1×(k+1)m. In 309

this way, we use the distribution as profile of the 310

neighborhood of a source entity s, then we adopt 311

a simple feed-forward neural network (FNN) bi- 312

nary classifier to determine whether s is dangling. 313

The probability of s being a dangling entity can 314

be calculated as p(y = 1|s) = sigmoid(FNN(d)). 315

Define D and A to be the training set of dangling 316

entities and that of matchable entities, respectively. 317

We minimize the binary cross-entropy loss: 318

Ls = − 1

|D ∪ A|
∑

s∈D∪A
(ys log(p(y = 1|s))

+ (1− ys) log(1− p(y = 1|s)))
(7) 319
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NCA loss. With the similar principle of local320

high-order proximity, MHP adopts an additional321

Neighbor Component Analysis (NCA) loss (Liu322

et al., 2021) to mitigate the hubness problem. The323

hubness problem can be more severe in dangling-324

aware entity alignment as dangling entities might325

be aligned to some certain hubs if they are not326

detected as dangling. The NCA loss measures im-327

portance of samples and punishes hard negative328

pairs based on the proximities. Given the set of329

seed entity alignments {(xs, xt) ∈ Es × Et}, let S330

be the cosine similarity matrix between source and331

target entity embeddings E1 and E2. The NCA332

loss can be defined as follows:333

LNCA =
1

N

N∑
i=1

( 1

α
log(1 +

∑
m̸=i

eαSim) +

1

α
log(1 +

∑
n̸=i

eαSni)− log(1 + βeSii)
)
,

(8)334

where Sii denotes the proximity of the i-th positive335

pair (i.e., the i-th source entity and the i-th target336

entity); α, β are temperature hyper-parameters; and337

N is the number of positive pairs in the mini-batch.338

3.3 Learning and inference339

Note that our techniques are used to improve exist-340

ing first-order methods. MHP optimizes the entity341

alignment component and the dangling detection342

component alternately. For entity alignment, be-343

sides an entity-level loss (e.g., MTransE), we first344

train WGAN for optimal transport and then opti-345

mize the NCA loss LNCA. For dangling detection,346

besides a first-order objective (e.g., a marginal rank-347

ing loss) used in Sun et al. (2021), we train our dan-348

gling classifier for detection. In the inference phase,349

for each source entity, the dangling entity classifier350

provides a probability score and uses a probability351

threshold to decide whether an entity is dangling,352

where the threshold is set as the average probability.353

After this dangling detection process, the predicted354

dangling entities are excluded from being aligned.355

Then, in the alignment process, MHP conducts356

nearest neighbor search to find the alignment in357

the target KG embedding space for each of the rest358

matchable source entities.359

4 Experiments360

In this section, we report our experiments to show361

the effectiveness of MHP. We describe the evalu-362

ation settings in Sec. 4.1, and present the results363

in two alignment settings separately in Sec. 4.2 364

and 4.3. We conduct an ablation study and demon- 365

strate that MHP can mitigate the hubness problem 366

in Sec. 4.4, followed by a case study to show the im- 367

portance of local high-order proximity in Sec. 4.5. 368

4.1 Experimental settings 369

We use two evaluation settings as suggested by Sun 370

et al. (2021). The first one is consolidated evalua- 371

tion which requires a model to first detect and re- 372

move dangling entities, and then conduct alignment 373

search for the rest of entities. The performance of 374

dangling entity detection is also evaluated in this 375

setting. Besides, a simplified relaxed evaluation 376

setting seeks to test the performance of alignment 377

alone without involving dangling source entities in 378

the test set. In this setting, the effect of dangling 379

detection on entity alignment can be evaluated. 380

Evaluation protocol. For the relaxed setting, the 381

counterpart list is selected by the Nearest Neigh- 382

bor (NN) search in the embedding space for each 383

source entity. To assess the ranking list, we use 384

mean reciprocal rank (MRR), Hits@1 and Hits@10 385

(hereinafter H@1 and H@10) as metrics. Higher 386

values indicate better performance. 387

For the consolidated setting, we evaluate the per- 388

formance of both dangling entity detection and en- 389

tity alignment using precision, recall, and F1 score, 390

following Sun et al. (2021).4 In this setting, only 391

the source entities that are correctly predicted as 392

matchable are sent to the NN search and the nearest 393

counterpart is evaluated. Particularly, incorrect dan- 394

gling detection (i.e., a matchable entity is wrongly 395

predicated as dangling or a dangling entity is pre- 396

dicted as matchable) will propagate an error case 397

to the alignment process. We refer to this practical 398

entity alignment as two-step entity alignment. 399

Dataset. We use the cross-lingual dangling-aware 400

entity alignment dataset DBP2.0 (Sun et al., 2021), 401

which is constructed using multilingual DBpedia 402

(Lehmann et al., 2015). There are three language 403

pairs (ZH-EN, JA-EN, FR-EN) in DBP2.0 and two 404

alignment directions are considered for each pair. 405

We follow its data splits where 30% dangling enti- 406

ties are for training, 20% for validation, and 50% 407

for test. The statistics are reported in Appx. A. 408

Baselines. To the best of our knowledge, the frame- 409

work with a dangling detection module proposed 410

4Note that H@1, H@10 and MRR are not applicable to
this entity alignment in the consolidated setting.
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Methods ZH-EN EN-ZH JA-EN EN-JA FR-EN EN-FR

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

MR .781 .702 .740 .866 .675 .759 .799 .708 .751 .864 .653 .744 .482 .575 .524 .639 .613 .625
BR .811 .728 .767 .892 .700 .785 .816 .733 .772 .888 .731 .801 .539 .686 .604 .692 .735 .713

MHP + MR .784 .831 .807 .858 .861 .859 .815 .791 .803 .865 .852 .858 .580 .724 .644 .707 .749 .727
MHP + BR .758 .815 .785 .832 .847 .839 .783 .785 .784 .834 .848 .841 .569 .706 .635 .685 .747 .714

Table 1: Dangling entity detection results on DBP2.0. MR refers to marginal ranking and BR refers to the
background ranking. The base alignment model is MTransE. More results based on AliNet are in Appx. Tab. 6.

Methods ZH-EN EN-ZH JA-EN EN-JA FR-EN EN-FR

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

MR .302 .349 .324 .231 .362 .282 .313 .367 .338 .227 .366 .280 .260 .220 .238 .213 .224 .218
BR .312 .362 .335 .241 .376 .294 .314 .363 .336 .251 .358 .295 .265 .208 .233 .231 .213 .222

MHP + MR .400 .363 .381 .375 .372 .373 .378 .394 .386 .371 .384 .377 .310 .249 .276 .266 .260 .263
MHP + BR .393 .347 .368 .347 .331 .339 .374 .372 .373 .359 .344 .352 .290 .235 .259 .269 .239 .253

Table 2: Two-step entity alignment results on DBP2.0. The base alignment model is MTransE.

in Sun et al. (2021) is the only study on dangling-411

aware entity alignment. It includes three dangling412

detection techniques: (i) NN classification, (ii)413

marginal ranking (MR), and (iii) background rank-414

ing (BR). As the NN classification performs much415

worse than others, we choose MR and BR as base-416

lines. For a fair comparison with (Sun et al., 2021),417

we use the same base alignment model MTransE418

(Chen et al., 2017). The results using AliNet (Sun419

et al., 2020b) 5 as a base are presented in Appx. D.420

Note that our methods are model-agnostic and can421

be incorporated with any detection and alignment422

methods. The entity alignment models that con-423

sider side information are left for future work.424

Model configuration. In MHP, aside from our425

proposed components as described in Sec. 3, we426

have a base alignment module (e.g., MTransE) and427

a base dangling entity loss (e.g., MR) as in Sun et al.428

(2021). For KG embeddings and model weights,429

we use Xavier initialization (Glorot and Bengio,430

2010) and optimize them using Adam optimizer431

(Kingma and Ba, 2014). The number of hidden432

units in the dangling entity classifier is 128. The433

number of nearest targets k and nearest sources m434

are set as 5. The learning rate is set to 0.001 for all435

components except WGAN where the learning rate436

is 5e-5 for three objectives. To terminate training,437

early stopping is used based on the F1 score of438

two-step entity alignment on validation set. The439

computational environment and other configuration440

details are reported in Appx. B and C.441

5AliNet performs worse than MTransE on dangling-aware
entity alignment as found by Sun et al. (2021).

4.2 Consolidated evaluation 442

Dangling entity detection. According to the re- 443

sults in Tab. 1, no matter which base dangling de- 444

tection loss we adopt, MHP consistently achieves 445

better F1 scores compared with the corresponding 446

baseline by Sun et al. (2021) without our proposed 447

techniques. In terms of the recall, MHP also out- 448

performs baselines with a large margin, which in- 449

dicates that our framework has a better coverage 450

to find more dangling entities. With better recalls, 451

MHP has the same level or slightly worse precision 452

compared with baselines. But our higher recall and 453

F1 scores in dangling detection imply that more 454

predicted matchable source entities would enter 455

two-step entity alignment, which can improve the 456

final alignment performance. Comparing MHP + 457

MR and MHP + BR, we can see that the MR vari- 458

ant is generally better than the BR variant. This 459

is because MR considers the similarity between 460

a source and its nearest neighbor, which can ben- 461

efit the learning of local high-order proximity in 462

MHP. In summary, MHP demonstrates superior 463

effectiveness for detecting dangling entities. 464

Two-step entity alignment. The results of two- 465

step alignment are shown in Tab. 2. In general, 466

MHP again consistently offers better F1 scores 467

than baseline methods. The relative improvement 468

ranges from 11% to 32%. The improvement can 469

be partly attributed to the more accurate dangling 470

entity detection performance, and thus less error 471

is propagated to the alignment process. In con- 472

trast, baselines may try to align many dangling 473
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Methods ZH-EN EN-ZH JA-EN EN-JA FR-EN EN-FR

H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR

MTransE .358 .675 .463 .353 .670 .461 .348 .661 .453 .342 .670 .452 .245 .524 .338 .247 .531 .342
w/ MR .378 .693 .487 .383 .699 .491 .373 .686 .476 .374 .707 .485 .259 .541 .348 .265 .553 .360
w/ BR .360 .678 .468 .357 .675 .465 .344 .660 .451 .346 .675 .456 .251 .525 .342 .249 .531 .343

MHP + MR .418 .727 .523 .404 .724 .513 .408 .730 .517 .410 .747 .524 .274 .568 .371 .274 .566 .370
MHP + BR .412 .718 .517 .396 .714 .505 .400 .727 .511 .400 .728 .511 .278 .574 .376 .272 .569 .370

Table 3: Entity alignment results in the relaxed setting on DBP2.0.

Methods
Dangling detection Two-step alignment

F1 ∆ F1 ∆

MHP .807 0 .381 0

- Dangling cls. .752 -.055 .339 -.042
- OT .789 -.018 .369 -.012
- NCA .803 -.004 .361 -.020

Table 4: Ablation study in the consolidated setting on
ZH-EN. We remove each technique and report the per-
formance decline ∆ compared with the full MHP.

entities, which leads to lower performance on two-474

step alignment. As MHP with MR outperforms475

MHP + BR in dangling detection, MHP + MR also476

achieves better performance in two-step alignment.477

This indicates that dangling entity detection is of478

importance on the dangling-aware entity alignment479

problem since it has strong effects on the perfor-480

mance of two-step alignment.481

4.3 Relaxed evaluation482

Tab. 3 shows the results of relaxed evaluation. This483

setting only considers matchable source entities in484

the test phase to investigate how our framework485

affects the alignment learning of these entities.486

Generally, MHP offers better performance than487

baselines on all language pairs in terms of all met-488

rics. This indicates that dangling awareness cap-489

tured by MHP further helps with a more precise490

alignment. The improvement can also be partly491

attributed to the alleviated hubness problem by the492

NCA loss which we investigate more in Sec. 4.4.493

Comparing two variants of MHP, we can see that494

MHP + MR usually outperforms the BR variants495

on most language pairs except for FR-EN. The rea-496

son could be that FR-EN has more entities and only497

with sufficient data BR can effectively separate dan-498

gling entities from randomly sampled target enti-499

ties, while MR is not sensitive to data volume.500

4.4 Ablation study501

To investigate the effectiveness of each module in502

MHP, we conduct an ablation study on the con-503
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Figure 3: The number of total occurrences of most
frequently aligned target entities on ZH-EN.

solidated setting and show the results in Tab. 4. 504

Compared with the full version MHP, removing 505

any component causes the degraded performance. 506

Specifically, by removing the dangling classifier, 507

the F1 score of dangling detection drops 0.055, 508

which also leads to a large performance drop on 509

two-step alignment. This indicates that the local 510

high-order proximity is useful for dangling detec- 511

tion. Removing OT decreases the F1 scores on 512

both detection and two-step alignment, showing 513

the effectiveness of globally aligning distributions. 514

Lastly, leaving the NCA loss out makes the F1 515

score of two-step alignment decrease 0.02 com- 516

pared with MHP, because using the NCA loss re- 517

duces the extent of hubness, as discussed below. 518

Hubness problem. To examine whether the NCA 519

loss reduces the hubness problem, we list a set of 520

most frequently aligned (target) entities, and ob- 521

serve how frequently they appear as the nearest 522

neighbor of other entities in the embedding space. 523

We compare MHP with the MTransE + MR vari- 524

ant used by Sun et al. (2021). As shown in Fig. 3, 525

the most frequently aligned target entity (i.e., top 526

1) appears over 200 times as the nearest neighbor 527

using the baseline, whereas it only appears around 528

100 times using MHP. A similar phenomenon is 529

also observed for the top 3, top 5, and top 10 fre- 530

quently aligned target entities. This indicates that 531

the hubness problem is mitigated by using NCA. 532
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诺顿(堪萨斯州)
(Norton County, Kansas)

Barton County, Kansas

Dangling ent. NN target
0.99

网页颜色
(Web colors)

White

0.94

兴势之战
(Battle of Xingshi)

Conquest of Shu by Wei

0.93

0.71

0.73

0.78

魏灭蜀汉之战

0.80

白色
(White)

0.81

0.77

巴顿县(堪萨斯州)
(Barton County, Kansas)

NN source

(Conquest of Shu by Wei)

Figure 4: Case study on ZH-EN where some dangling
entities wrongly predicted as matchable by the previous
first-order method can be correctly predicted as dan-
gling with high probabilities via MHP. Arrows point
from an entity to its NN in the other KG. The scores
above arrows denote cosine similarities and those beside
dangling ent. are probabilities of dangling by MHP.

4.5 Case study533

To further investigate the superiority of MHP, we534

provide a case study on ZH-EN comparing MHP535

with the previous method. Fig. 4 shows that, the536

previous method predicts some dangling source en-537

tities as matchable based on their high cosine sim-538

ilarities (i.e., > 0.7) to their nearest target entities.539

Each dangling entity and its corresponding nearest540

target entity are different but share similar mean-541

ings (e.g., are both war events in ancient China542

or locations). However, the nearest targets prefer543

other source entities with higher similarities. Us-544

ing this second-order proximity information, MHP545

correctly detects these dangling entities with high546

probability scores (i.e., > 0.9). We provide more547

cases in Appx. E548

5 Related Work549

Entity alignment. Embedding-based entity align-550

ment methods seek to find identical entities be-551

tween KGs in their embedding spaces. Such a552

method encodes each KG into an embedding space553

and capture entity alignment by learning a linear554

mapping between embedding spaces (Chen et al.,555

2017) or directly infer the embedding proximity in556

a shared space (Sun et al., 2017). Existing studies557

mainly fall into two lines of improving the embed-558

ding representations. The first line exploits bet-559

ter graph encoders to improve embedding learning560

(Sun et al., 2018; Wang et al., 2018; Cao et al.,561

2019; Sun et al., 2020a,b; Fey et al., 2020). The562

second group considers the side information of en-563

tities (Chen et al., 2018b; Trisedya et al., 2019;564

Zhang et al., 2019; Xu et al., 2019b; Wang et al., 565

2020; Tang et al., 2020; Wu et al., 2019; Yang et al., 566

2019; Liu et al., 2020, 2021). Interested readers 567

can refer to the recent surveys (Sun et al., 2020c; 568

Zeng et al., 2021). Note that prior methods nearly 569

all assume one-to-one perfect match exists between 570

two KGs, without considering dangling entities. 571

Recently, Sun et al. (2021) have proposed a new 572

problem setting, i.e., danging-aware entity align- 573

ment, which is more practical as dangling entities 574

naturally exist in real-world KGs. This problem 575

setting requests a model to both detect dangling 576

entities and align matchable ones. As the pioneer- 577

ing work, Sun et al. (2021) propose three base- 578

line methods (i.e., marginal ranking, background 579

ranking, and nearest neighbor classification) based 580

on the nearest neighbor of source entities. Thus, 581

these methods only rely on the first-order proximity, 582

which is the major difference with MHP. 583

Optimal transport. Optimal transport (OT) aims 584

to find the plan with minimal transportation cost for 585

changing one distribution to another distribution, 586

which naturally provides a way to align two distri- 587

butions. Arjovsky et al. (2017) use the Wasserstein 588

distances to recast the learning of generative ad- 589

versarial network (GAN) as a transportation prob- 590

lem. OT has been widely used in other applications 591

like text generation (Chen et al., 2018a) and graph 592

matching (Xu et al., 2019a). Pei et al. (2019) for- 593

malize entity alignment as OT in the conventional 594

setting, which however only considers one-to-one 595

alignment between matchable entities. We instead 596

leverage OT to identify dissimilar parts of embed- 597

ding distributions to detect dangling entities, mean- 598

while using OT only as one of the three high-order 599

measures for alignment. 600

6 Conclusion 601

In this paper, we propose a framework, MHP, with 602

mixed high-order proximities for dangling-aware 603

entity alignment. MHP captures the local high- 604

order proximity via a dangling classifier based on 605

both the first- and second-order proximities. Ad- 606

ditionally, we propose a Optimal Transport based 607

method considering the global high-order proxim- 608

ity to facilitate both dangling detection and entity 609

alignment. Comprehensive experiments on two 610

alignment settings show the effectiveness of uti- 611

lizing mixed high-order proximities. Furthermore, 612

our extensive ablation study demonstrates the ef- 613

fectiveness of each technique. 614
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Appendices 800

A Dataset Statistics 801

We present the dataset statistics of DBP2.0 (Sun 802

et al., 2021) in Tab. 5. DBP2.0 contains three cross- 803

lingual settings for dangling-aware entity align- 804

ment, i.e., Chinese-English (ZH-EN), Japanese- 805

English (JA-EN) and French-English (FR-EN). 806

Please note that FR-EN is much larger than ZH-EN 807

and JA-EN, and our methods are scalable to such a 808

large dataset.

Datasets # Entities # Danglings # Rel. # Triples # Align.

ZH-EN ZH 84,996 51,813 3,706 286,067 33,183EN 118,996 85,813 3,402 586,868

JA-EN JA 100,860 61,090 3,243 347,204 39,770EN 139,304 99,534 3,396 668,341

FR-EN FR 221,327 97,375 2,841 802,678 123,952EN 278,411 154,459 4,598 1,287,231

Table 5: Dataset statistics of DBP2.0

809

B Computational Environment 810

We run experiments on a Linux machine with a sin- 811

gle GeForce RTX 2080 Ti GPU with 11 GB GPU 812

memory and a Intel(R) Xeon(R) Gold 6240 CPU 813

@ 2.60GHz. The operating system of our machine 814

is Ubuntu 18.04.2 LTS. The major software pack- 815

ages used are as follows: TensorFlow 1.12; CUDA 816

10.1; Python 3.6; NumPy 1.18.1; SciPy 1.4.1. Our 817

source code is available in the attachment for repro- 818

ducible experiments. 819

10

https://doi.org/10.24963/ijcai.2018/611
https://doi.org/10.24963/ijcai.2018/611
https://doi.org/10.24963/ijcai.2018/611
https://aaai.org/ojs/index.php/AAAI/article/view/5354/5210
https://aaai.org/ojs/index.php/AAAI/article/view/5354/5210
https://aaai.org/ojs/index.php/AAAI/article/view/5354/5210
http://www.vldb.org/pvldb/vol13/p2326-sun.pdf
http://www.vldb.org/pvldb/vol13/p2326-sun.pdf
http://www.vldb.org/pvldb/vol13/p2326-sun.pdf
https://doi.org/10.24963/ijcai.2020/439
https://doi.org/10.24963/ijcai.2020/439
https://doi.org/10.24963/ijcai.2020/439
https://doi.org/10.24963/ijcai.2020/439
https://doi.org/10.24963/ijcai.2020/439
https://doi.org/10.1609/aaai.v33i01.3301297
https://doi.org/10.1609/aaai.v33i01.3301297
https://doi.org/10.1609/aaai.v33i01.3301297
https://www.aclweb.org/anthology/D18-1032
https://www.aclweb.org/anthology/D18-1032
https://www.aclweb.org/anthology/D18-1032
https://doi.org/10.18653/v1/2020.emnlp-main.130
https://doi.org/10.18653/v1/2020.emnlp-main.130
https://doi.org/10.18653/v1/2020.emnlp-main.130
https://doi.org/10.24963/ijcai.2019/733
https://doi.org/10.24963/ijcai.2019/733
https://doi.org/10.24963/ijcai.2019/733
https://doi.org/10.18653/v1/2020.acl-main.578
https://doi.org/10.18653/v1/2020.acl-main.578
https://doi.org/10.18653/v1/2020.acl-main.578
http://proceedings.mlr.press/v97/xu19b.html
http://proceedings.mlr.press/v97/xu19b.html
http://proceedings.mlr.press/v97/xu19b.html
https://www.aclweb.org/anthology/P19-1304
https://www.aclweb.org/anthology/P19-1304
https://www.aclweb.org/anthology/P19-1304
https://www.aclweb.org/anthology/P19-1304
https://www.aclweb.org/anthology/P19-1304
https://www.aclweb.org/anthology/D19-1451
https://www.aclweb.org/anthology/D19-1451
https://www.aclweb.org/anthology/D19-1451
https://www.sciencedirect.com/science/article/pii/S2666651021000036
https://www.sciencedirect.com/science/article/pii/S2666651021000036
https://www.sciencedirect.com/science/article/pii/S2666651021000036
https://doi.org/10.24963/ijcai.2019/754
https://doi.org/10.24963/ijcai.2019/754
https://doi.org/10.24963/ijcai.2019/754


Methods ZH-EN EN-ZH JA-EN EN-JA FR-EN EN-FR

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

MR .752 .538 .627 .828 .505 .627 .779 .580 .665 .854 .543 .664 .552 .570 .561 .686 .549 .609
BR .762 .556 .643 .829 .515 .635 .783 .591 .673 .846 .546 .663 .547 .556 .552 .674 .556 .609

MHP + MR .750 .711 .730 .838 .726 .778 .743 .702 .722 .831 .714 .768 .541 .601 .571 .638 .661 .649
MHP + BR .748 .718 .733 .841 .721 .776 .738 .702 .719 .833 .711 .767 .556 .568 .562 .681 .590 .632

Table 6: Dangling entity detection results on DBP2.0. MR refers to marginal ranking and BR refers to the
background ranking (Sun et al., 2021). The base alignment model is AliNet (Sun et al., 2020b).

Methods ZH-EN EN-ZH JA-EN EN-JA FR-EN EN-FR

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

MR .207 .299 .245 .159 .320 .213 .231 .321 .269 .178 .340 .234 .195 .190 .193 .160 .200 .178
BR .203 .286 .238 .155 .308 .207 .223 .306 .258 .170 .321 .222 .183 .181 .182 .164 .200 .180

MHP + MR .259 .280 .269 .222 .298 .254 .266 .288 .276 .225 .305 .259 .204 .186 .195 .197 .189 .193
MHP + BR .258 .274 .265 .223 .305 .257 .261 .281 .271 .224 .306 .258 .183 .180 .182 .172 .201 .185

Table 7: Two-step entity alignment results on DBP2.0. The base alignment model is AliNet.

Methods ZH-EN EN-ZH JA-EN EN-JA FR-EN EN-FR

H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR

AliNet .332 .594 .421 .359 .629 .451 .338 .596 .429 .363 .630 .455 .223 .473 .306 .246 .495 .329
w/ MR .343 .606 .433 .364 .637 .459 .349 .608 .438 .377 .646 .469 .230 .477 .312 .252 .502 .335
w/ BR .333 .599 .426 .357 .632 .451 .341 .608 .431 .369 .636 .461 .214 .468 .298 .238 .487 .321

MHP + MR .346 .613 .439 .375 .645 .469 .354 .617 .444 .379 .654 .473 .228 .477 .311 .253 .496 .335
MHP + BR .339 .611 .432 .373 .635 .464 .346 .614 .437 .367 .638 .460 .218 .473 .303 .244 .504 .331

Table 8: Entity alignment results in the relaxed setting on DBP2.0. The base alignment model is AliNet.

C Hyperparameter Settings820

To ensure a fair comparison, we follow the hyer-821

parameter settings of the base alignment model822

(i.e., MTransE and AliNet) and the base dangling823

detection loss (i.e., MR and BR) reported in the824

previous work (Sun et al., 2021). For our proposed825

methods, in WGAN, we use a two-layer FNN with826

500 hidden units for the critic. As suggested by827

Arjovsky et al. (2017), we adopt weight clipping to828

ensure K-Lipschitz for WGAN and train the critic829

more than the generator (i.e., the transformation830

matrix). Besides the hyperparameter stated in Sec-831

tion 4.1, we tune other hyperparameters within a832

search space as follows:833

• The number of nearest targets k: {5, 10, 15}834

• The number of nearest sources m: {5, 10, 15}835

• Batch size: {4096, 8192, 10240, 20480}836

D More on Experiments837

As shown in Sun et al. (2021), AliNet (Sun et al.,838

2020b) performs much worse than MTransE (Chen839

et al., 2017) in dangling-aware entity alignment. 840

Dangling entity detection would also suffer as a 841

result of the poor alignment performance. How- 842

ever, in this section, we still present the results of 843

MHP with AliNet as the base alignment model to 844

demonstrate that MHP is model-agnostic and has 845

a good robustness. 846

Consolidated evaluation. Tab. 6 shows that, using 847

AliNet as the base model, MHP still outperforms 848

baselines in terms of F1 scores on dangling detec- 849

tion. We can see that baselines sometimes achieve 850

better precision with the sacrifice of recall, which 851

leads to unsatisfactory F1 scores. Comparing our 852

two variants MHP + MR and MHP + BR, there is 853

no one consistently achieving better performance 854

than the other one. We report the performance of 855

two-step entity alignment on Tab. 7. In general, 856

MHP offers better performance on two-step align- 857

ment compared with baselines that do not consider 858

high-order proximities. We observe that when we 859

choose AliNet as the base model, the improvement 860

over the baselines is less than the improvement 861

when using MTransE as the base model. The rea- 862

son could be that AliNet generally performs worse 863
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Dangling entity Cls. Prob. The nearest target Cosine Sim. The nearest source Cosine Sim.

哥伦比亚国际学院(Columbia International College) 0.95 University of Ottawa 0.67 渥太华大学(University of Ottawa) 0.80
丁肇中(Samuel C. C. Ting) 0.91 George Uhlenbeck 0.65 乔治·乌伦贝克(George Uhlenbeck) 0.78

美国国会地铁(Congressional Subway) 0.99 United States Congress 0.67 美国国会(United States Congress) 0.75
王豫元(Larry Wang) 1.00 Wu Den-yih 0.65 吴敦义(Wu Den-yih) 0.91

新生党(Japan Renewal Party) 1.00 Democratic Party of Japan 0.64 民主党(日本) (Democratic Party of Japan) 0.85
意大利裔澳洲人(Italian Australians) 0.99 Chinese Australians 0.64 澳大利亚华人(Chinese Australians) 0.71

新加坡发展部(Ministry of Development (Singapore)) 0.93 Ministry of Transport (Singapore) 0.72 林瑞生(Lim Swee Say) 0.75

Table 9: Some dangling source entities wrongly predicted as matchable by the previous method, while MHP predicts
them as dangling with high probabilities. Cls. Prob. denotes the probabilities of dangling generated by MHP. The
fourth column denotes the cosine similarity between the dangling entity and its nearest target. The nearest source is
the nearest neighbor of the nearest target on the source KG. The last column denotes the cosine cosine similarity
between the nearest target and its nearest source.

than MTransE, even only with MR or BR. For ex-864

ample, combining Tab. 1 and 6, MTransE+MR865

can achieve 0.740 F1 score, while AliNet+MR866

only obtains 0.627 F1 score. The observation is867

also pointed out by Sun et al. (2021). The in-868

herent inferiority of AliNet in dangling-aware en-869

tity alignment can hinder our new proposed tech-870

niques. Therefore, we suggest to use MTransE as871

the base alignment model for dangling-aware en-872

tity alignment. Future work could investigate other873

advanced alignment models on this setting.874

Relaxed evaluation. Tab. 8 demonstrates the re-875

sults of entity alignment in the relaxed setting. We876

observe that AliNet without any dangling detec-877

tion technique performs the worst. By applying878

dangling detection techniques, the alignment per-879

formance increases, indicating that learning to de-880

tect dangling entities can indirectly help alignment.881

MHP with two different base dangling losses (i.e.,882

MR and BR) generally outperforms the correspond-883

ing baselines without our proposed techniques. For884

our two variants, MHP + MR slightly outperforms885

MHP + BR variants in most cases.886

E More on Case Study887

Tab. 9 demonstrates more dangling entities888

which are not correctly detected by the previous889

method (Sun et al., 2021). Most of the dangling890

entities are aligned to some similar counterparts891

sharing the same attribute. For example, the dan-892

gling entity and its nearest target entity are both893

colleges, theoretical physicists, or political parties.894

However, from the view of the nearest target entity,895

it prefers other nearest neighbors on source KG.896

Such second-order proximity information cannot897

be captured by the previous method, which causes898

those dangling entities not able to be detected. In899

contrast, MHP can successfully detect those dan-900

gling entities with high probabilities. This shows901

the effectiveness of MHP and the informativeness 902

of the second-order proximity as well. 903

F Computational Cost 904

Note that, similar with the MR loss (Sun et al., 905

2021), MHP also relies on nearest neighbor search 906

(NNS) for training. Therefore, MHP can reuse the 907

results of NNS obtained by MR during the training 908

phase, and cause negligible additional overhead. 909

On ZH-EN, MHP averagely spends around 60 sec- 910

onds training an epoch. When the efficiency is of 911

importance in some real-time applications, we can 912

adopt the large-scale efficient similarity search li- 913

brary faiss (Johnson et al., 2021) which uses GPUs 914

for fast NNS. Additionally, we could also maintain 915

a cache unit to store the results of NNS and only 916

lazily update the results every ten or twenty epochs 917

during training. 918

G Limitations 919

We notice that many prior studies on conven- 920

tional entity alignment consider the side informa- 921

tion of entities (e.g., names, descriptions and at- 922

tributes) (Chen et al., 2018b; Trisedya et al., 2019; 923

Zhang et al., 2019; Xu et al., 2019b; Wang et al., 924

2020; Wu et al., 2020). However, on dangling- 925

aware entity alignment, the pioneer work (Sun 926

et al., 2021) proposes a framework that only consid- 927

ers the structure information of entities since most 928

KGs are built around relation triples. Thus, for a 929

fair comparison, we follow their setting and do not 930

utilize side information of entities. Future work 931

could investigate how to effectively incorporate 932

side information for dangling-aware entity align- 933

ment in the proper way and with a fair evaluation. 934
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