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Abstract
Despite their recent popularity and well known001
advantages, dense retrievers still lag behind002
sparse methods such as BM25 in their ability003
to reliably match salient phrases and rare enti-004
ties in the query. It has been argued that this005
is an inherent limitation of dense models. We006
disprove this claim by introducing the Salient007
Phrase Aware Retriever (SPAR), a dense re-008
triever with the lexical matching capacity of009
a sparse model. In particular, we show that a010
dense retriever Λ can be trained to imitate a011
sparse one, and SPAR is built by augmenting012
a standard dense retriever with Λ. When eval-013
uated on five open-domain question answering014
datasets and the MS MARCO passage retrieval015
task, SPAR sets a new state of the art for dense016
and sparse retrievers and can match or exceed017
the performance of more complicated dense-018
sparse hybrid systems.019

1 Introduction020

Text retrieval is a crucial component for a wide021

range of knowledge-intensive NLP systems, such022

as open-domain question answering (ODQA) mod-023

els and search engines. Recently, dense retriev-024

ers (Karpukhin et al., 2020; Xiong et al., 2021)025

have gained popularity and demonstrated strong026

performance on a number of retrieval tasks. Dense027

retrievers employ deep neural networks to learn028

continuous representations for the queries and doc-029

uments, and perform retrieval in this dense embed-030

ding space using nearest neighbor search (John-031

son et al., 2019). Compared to traditional sparse032

retrievers that rely on discrete bag-of-words rep-033

resentations, dense retrievers can derive more se-034

mantically expressive embeddings, thanks to its035

end-to-end learnability and powerful pre-trained036

encoders. This helps dense retrievers to overcome037

several inherent limitations of sparse systems such038

as vocabulary mismatch (where different words039

have the same meaning) and semantic mismatch040

(where the same word has multiple meanings).041

On the other hand, while existing dense retriev- 042

ers excel at capturing semantics, they sometimes 043

fail to match the salient phrases in the query. For 044

example, Karpukhin et al. (2020) show that DPR, 045

unlike a sparse BM25 retriever (Robertson and 046

Walker, 1994), is unable to catch the salient phrase 047

“Thoros of Myr” in the query “Who plays Thoros 048

of Myr in Game of Thrones?”. Similarly, Xiong 049

et al. (2021) observe that ANCE fails to recognize 050

“active margin” as a key phrase in the query “What 051

is an active margin” and instead retrieves passages 052

describing the financial term “margin”. As a result, 053

dense retrievers occasionally retrieve completely 054

irrelevant results. In practice, therefore, hybrid re- 055

trieval systems are built that combine dense and 056

sparse retrievers to enjoy the higher overall per- 057

formance of dense retrievers while avoiding such 058

failure cases. In fact, the predictions of DPR and 059

BM25 are drastically different from each other, 060

with only about 10% overlap between top-100 re- 061

trieved passages (discussed in §6.1.1). This sug- 062

gests that a sparse retriever captures complemen- 063

tary information to a dense model, and its lexical 064

matching capacity may further improve the per- 065

formance of a dense retriever. For instance, new 066

state-of-the-art performance on ODQA can be ob- 067

tained using a hybrid system of DPR and a simple 068

well-tuned BM25 (Ma et al., 2021). 069

Such a hybrid design, however, complicates the 070

architecture of the retrieval system, increases la- 071

tency, and takes more effort to maintain. Further- 072

more, as dense and sparse retrievers rely on dif- 073

ferent pieces of infrastructure for retrieval (text 074

indexing for sparse retrievers and vector similar- 075

ity search for dense ones), exact hybrid retrieval 076

is computationally prohibitive. In reality, approxi- 077

mate hybrid search is performed such as using the 078

one retriever to rerank the retrieval results of the 079

other, leading to potentially inferior results. 080

In this work, we propose SPAR (Figure 1), a 081

dense retriever with the lexical matching capacity 082
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Figure 1: SPAR augments a dense retriever with a dense model Λ trained to imitate a sparse teacher retriever. Λ is
trained using random sentences as queries with positive and negative passages generated from the teacher model.
Λ is then combined with a dense retriever via vector concatenation to form a salient-phrase aware retriever (§4).

of a sparse model. SPAR has the high accuracy of a083

hybrid system without the need to maintain a com-084

plex pipeline of two separate retrieval architectures.085

In particular, we address an important yet largely086

unanswered research question: Can we train a087

dense retriever to imitate a sparse one? There088

have been theoretical and empirical studies sug-089

gesting a negative answer due to alleged intrinsic090

limitations of dense retrievers (Luan et al., 2021).091

For instance, Reimers and Gurevych (2021) show092

that dense retrievers prefer gibberish strings with093

random letters and spaces over the gold passage094

in up to 10% of cases, while it never happens to095

BM25. In addition, Sciavolino et al. (2021) find096

that DPR performs poorly compared to BM25 on097

simple entity-centric questions.098

Contrary to these findings, we show that it is099

indeed possible to mimic a given sparse retriever100

(e.g., BM25 or UniCOIL (Lin and Ma, 2021)) with101

a dense model Λ, and we build the SPAR model102

by combining Λ with a standard dense retriever103

(e.g., DPR or ANCE). Despite the long-standing104

dichotomy between sparse and dense retrievers, we105

arrive at a simple yet elegant solution of SPAR in106

§4, by conducting an extensive study to answer two107

key questions: i) How to train Λ to imitate a sparse108

retriever (§4.1) and ii) How to best utilize Λ to109

build a salient-phrase aware dense retriever (§4.2).110

We evaluate SPAR on five ODQA datasets (§5.1)111

as well as the MS MARCO (Bajaj et al., 2018) pas-112

sage retrieval benchmark (§5.2), and show that it113

outperforms existing dense and sparse retrievers,114

matching or even beating the more complex hy-115

brid systems. In addition, we conduct a series of116

analyses of Λ showcasing its lexical matching ca-117

pability (§6.1). We also examine the generalization 118

of SPAR showing strong zero-shot performance 119

across datasets (§6.2), typically a weak point of 120

dense retrievers, including on a new dataset of 121

entity-centric questions (Sciavolino et al., 2021). 122

2 Related Work 123

Sparse retrievers date back for decades and suc- 124

cessful implementations such as BM25 (Robertson 125

and Walker, 1994) remain popular to date for its 126

lexical matching capacity and great generalization. 127

Despite the rapid rise of dense retrievers in recent 128

years, development in sparse retrievers remain ac- 129

tive, partly due to the limitations of dense retrievers 130

discussed in §1. Various methods have been pro- 131

posed to improve term weight learning (Dai and 132

Callan, 2020; Mallia et al., 2021) and to address vo- 133

cabulary mismatch (Nogueira and Lin, 2019) and 134

semantic mismatch (Gao et al., 2021), inter alia. 135

While most of these methods have been incom- 136

patible with dense retrievers, our SPAR method 137

provides a route for incorporating any such im- 138

provement into a dense retriever. 139

Dense retrievers employ pre-trained neural en- 140

coders to learn vector representations and per- 141

form retrieval by using nearest-neighbor search 142

in this dense embedding space (Lee et al., 2019; 143

Karpukhin et al., 2020). Subsequent works have de- 144

veloped various improvements, including more so- 145

phisticated training strategies and using better hard 146

negatives (Xiong et al., 2021; Qu et al., 2021; Mail- 147

lard et al., 2021; Oğuz et al., 2021). Such improve- 148

ments are also complementary to the SPAR ap- 149

proach, which can potentially leverage these more 150

powerful dense retrievers as shown in §5.2. 151
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A few recent studies focus on the limitations152

of current dense retrievers. Lewis et al. (2021a);153

Liu et al. (2021) study the generalization issue of154

dense retrievers in various aspects, such as the over-155

lap between training and test data, compositional156

generalization and the performance on matching157

novel entities. Thakur et al. (2021) introduce a new158

BEIR benchmark to evaluate the zero-shot general-159

ization of retrieval models showing that BM25 out-160

performs dense retrievers on most tasks. A differ-161

ent line of research explores using multiple dense162

vectors as representations which achieves higher163

accuracy but is much slower (Khattab and Zaharia,164

2020). Lin et al. (2021b) further propose a knowl-165

edge distillation method to train a standard dense166

retriever with similar performance of the multi-167

vector ColBERT model. More recently, Sciavolino168

et al. (2021) create a synthetic dataset of entity-169

centric questions (EntityQuestions) to highlight the170

failure of dense retrievers in matching key entities171

in the query. We perform a zero-shot evaluation172

on EntityQuestions in §6.2.1 and show that SPAR173

substantially outperforms DPR. The idea of using174

BM25 as weak supervision has been explored in175

IR (Dehghani et al., 2017), but their work predated176

dense retrieval, hence focusing on a different task177

(query-dependent ranking). As a result, the motiva-178

tion and modeling are quite different from ours.179

3 Preliminaries: Dense Retrieval180

In this work, we adopt DPR (Karpukhin et al.,181

2020) as our dense retriever architecture for learn-182

ing Λ. We give a brief overview of DPR and refer183

the readers to the original paper for more details.184

DPR is a bi-encoder model with a query en-185

coder and a passage encoder, each a BERT trans-186

former (Devlin et al., 2019), which encodes the187

queries and passages into d-dimensional vectors,188

respectively. Passage vectors are generated offline189

and stored in an index built for vector similarity190

search using libraries such as FAISS (Johnson et al.,191

2019). The query embedding is computed at the192

run time, which is used to look up the index for k193

passages whose vectors are the closest to the query194

representation using dot-product similarity.195

DPR is trained using a contrastive loss: Given a196

query and a positive (relevant) passage, the model197

is trained to increase the similarity between the198

query and the positive passage while decreasing199

the similarity between the query and negative ones.200

It is hence important to have hard negatives (HN,201

irrelevant passages that are likely to be confused 202

with positive ones) for more effective training1. 203

We employ the DPR implementation from Oğuz 204

et al. (2021), which supports efficient multi-node 205

training as well as memory-mapped data loader, 206

both important for the large-scale training of Λ. 207

We also adopt their validation metrics of mean re- 208

ciprocal rank (MRR) on a surrogate corpus using 209

one positive and one HN from each query in the 210

development set. Assuming a set of N dev queries, 211

this creates a mini-index of 2N passages, where the 212

MRR correlates well with full evaluation while be- 213

ing much faster. At test time, the standard recall@k 214

(R@k) metric is used for full evaluation, which is 215

defined as the fraction of queries that has at least 216

one positive passage retrieved in the top k. 217

4 The SPAR Model 218

In this section, we put forward our SPAR method, 219

and explain how we arrive at our final approach 220

by presenting pilot experiments on NaturalQues- 221

tions (NQ, Kwiatkowski et al., 2019), a popular 222

ODQA dataset. A key ingredient of SPAR is the 223

dense model Λ trained to imitate the prediction of 224

a sparse retriever. As a proxy, we adopt MRR on a 225

special validation set as a metric when training Λ 226

to approximate how well Λ is imitating the sparse 227

teacher model. In particular, we use questions from 228

NQ dev as queries and the passage with the high- 229

est score from the sparse teacher model as posi- 230

tive, and thus a higher MRR on this set indicates a 231

higher correlation between Λ and the teacher. We 232

first investigate how to successfully train Λ (§4.1) 233

and then study how to best leverage Λ to form a 234

salient-phrase aware dense retriever (§4.2). 235

4.1 Training Λ 236

In training Λ, we are essentially distilling a sparse 237

retriever into a bi-encoder model. There are many 238

potential ways to do this, such as imitating the 239

scores of the sparse retriever with the MSE loss 240

or KL divergence, learning the passage ranking 241

of the teacher while discarding the scores. After 242

unsuccessful initial attempts with these methods, 243

we instead adopt a very simple contrastive loss, 244

inspired by DPR training, where passages ranked 245

highly by the teacher model are taken as positives 246

and those ranked lower as negatives. 247

In particular, using the top-k retrieved passages 248

from the sparse retriever for a given query (§4.1.1), 249

1DPR uses BM25 to generate hard negatives.
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we treat the top np as positives and the bottom nn250

as hard negatives2. In our preliminary experiments,251

we find that k = 50 and k = 100 perform similarly,252

and nn also does not affect the performance much253

as long as nn ≥ 5. Hence, we pick k = 50 and254

nn = 5 in all experiments. On the other hand, np255

carries a significant impact on the success of Λ256

training, and will be discussed later in §4.1.2.257

4.1.1 Training queries258

Model MRR

NQ Λ 76.5
Wiki Λ 92.4
Perturbed Wiki Λ 92.5
PAQ Λ 94.7

Table 1: Λ trained with various data regimes. MRR is
calculated on questions from NQ dev, using one posi-
tive and one hard negative from BM25.

Now, we turn our attention to how the training259

queries are produced. Since a sparse retriever can260

be queried with arbitrary text, abundant choices261

are available. We consider two potentially help-262

ful options, in-domain (queries similar to those263

in the downstream evaluation dataset) and large-264

scale training queries with an experiment on NQ.265

For in-domain queries, we use the questions from266

the NQ training set itself to generate the training267

data for Λ. For large-scale queries, we randomly268

select sentences from each Wikipedia passage, re-269

sulting in a total of 37 million queries3. In addi-270

tion, we experiment with questions from the PAQ271

dataset (Lewis et al., 2021b), a collection of 65 mil-272

lion synthetically generated probably asked ques-273

tions for ODQA, which can be thought of as both274

in-domain and large-scale.275

Table 1 shows how well Λ trained with each276

option can imitate the teacher BM25 model. The277

main takeaway is that the size of the query set is278

more consequential than the syntax of the queries,279

as both Wiki Λ and PAQ Λ outperform NQ Λ by a280

wide margin. Intuitively, large-scale training data281

is helpful for learning lexical matching as it gives282

the neural models more exposure to rare words and283

2When using multiple positives for a query, one positive is
randomly sampled at each training iteration of training.

3At least one sentence is sampled from each passage. We
sample more sentences from the first few passages of each
document following a pseudo-exponential distribution, as they
tend to contain more answers. However, early experiment
showed that sampling uniformly worked equally well.
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Figure 2: Validation MRR of the Wiki Λ using various
numbers of positive passages.

phrases. Finally, PAQ Λ further beats the Wiki Λ, 284

achieving the highest MRR score. However, as we 285

shall see later, SPAR models built with Wiki and 286

PAQ Λ achieve similar end performance as both 287

are able to fully match the performance of a hybrid 288

model, suggesting that carefully generated queries 289

are not necessary for training Λ. This makes our 290

approach very appealing in practice as we can gen- 291

erate the training data of Λ cheaply, without relying 292

on computationally intensive methods like PAQ. 293

Query Perturbation For Wiki Λ, we initially 294

hypothesized that query perturbation is needed to 295

avoid exact phrase matches, which may improve 296

the model robustness. We hence experimented with 297

several perturbation strategies, including randomly 298

dropping 15% of tokens, shuffling all tokens, and 299

swap the order of the two chunks of text before 300

and after a random anchor word. We found that all 301

these perturbed variants, as well as a version that 302

uses a mix of all perturbations (shown in Table 1), 303

performed similarly to using the original sentences 304

as queries. Therefore, we did not conduct any query 305

perturbation in our final Wiki Λ model. 306

4.1.2 Number of positive passages 307

We now return to the selection of np, the number 308

of positive passages per training query. As shown 309

in Figure 2, using multiple positive passages is crit- 310

ical to successful training, as np = 2 significantly 311

improves the validation metrics over np = 1. Fur- 312

ther increase in np remains helpful, but the gain is 313

naturally diminishing as Λ is already imitating the 314

teacher model closely. We use np = 10 for Λ. 315

4.2 Building SPAR with Λ 316

With a successfully trained Λ, we now study how 317

to build a salient-phrase aware retriever with it. We 318

compare implicit and explicit use of Λ, where the 319
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Model NQ

@20 @100

DPR 78.3 85.6
SPAR (Initialization) 78.1 86.3
SPAR (Joint Training) 79.2 86.6
SPAR (Weighted Sum) 81.3 88.0
SPAR (Weighted Concat) 82.2 88.3

2 DPRs (Weighted Concat) 79.8 86.4
DPR + BM25 80.9 87.9

Table 2: Comparison of various methods of leveraging
the Wiki Λ in SPAR: used as initialization for DPR
training; combining two trained models with weighted
vector sum or concatenation; vector concatenation dur-
ing DPR training (joint training).

latter explicitly employs Λ in the final representa-320

tion space when computing similarity. An example321

of implicit use of Λ is using it as initialization for322

DPR training with the hope that DPR can inherit323

the lexical matching capacity from Λ. Unfortu-324

nately, this is ineffective as shown in Table 2.325

Explicit use of Λ can be done either during train-326

ing or inference time. The more straightforward327

inference-time utilization involves combining the328

vectors of the trained Λ with a separately trained329

dense retriever such as DPR at inference time. The330

vectors from the two models can be combined us-331

ing various pooling methods such as summation or332

concatenation. Since both models are dense retriev-333

ers, this post-hoc combination can be easily done334

without affecting the architecture of retrieval index.335

Table 2 indicates that concatenation performs bet-336

ter, but summation has the benefit of not increasing337

the dimension of the final vectors.338

Finally, instead of training the two models sep-339

arately, we experiment with a joint training ap-340

proach, in which we concatenate the DPR embed-341

dings with that of a trained Λ during DPR training.342

The similarity and loss are computed with the con-343

catenated vector, but we freeze Λ, and only train344

the DPR encoders as well as the scalar weight for345

vector concatenation. The idea is to make DPR346

“aware” of the lexical matching scores given by Λ347

during its training in order to learn a SPAR model.348

This can also be viewed as training DPR to correct349

the errors made by Λ. Somewhat surprisingly, how-350

ever, this strategy does not work well compared to351

post-hoc concatenation as shown in Table 2.352

We also compare with the ensemble (weighted353

concatenation of embeddings) of two DPR mod-354

els trained with different random seeds, which has 355

the same dimension and number of parameters as 356

SPAR. While SPAR beats it substantially, this base- 357

line does show non-trivial gains over DPR. We 358

leave further investigation of the intriguing efficacy 359

of post-hoc vector concatenation to future work. 360

Concatenation Weight Tuning When concate- 361

nating the vectors from two dense retrievers, they 362

may be on different scales, especially across var- 363

ied datasets. It is hence helpful to add a weight µ 364

to balance the two models during concatenation. 365

We add the weight to the query embeddings so 366

that the offline passage index is not affected by a 367

change of weight. Specifically, for a query q and 368

a passage p, a dense retriever with query encoder 369

Q and passage encoder P , as well as a Λ model 370

with QΛ and PΛ, the final query vector in SPAR 371

is
[
Q(q), µQΛ(q)

]
while the passage vector being 372[

P (p), PΛ(p)
]
. The final similarity score: 373

simSPAR(q, p) =
[
Q(q), µQΛ(q)

]ᵀ [
P (p), PΛ(p)

]
374

= sim(q, p) + µ · simΛ(q, p) (1) 375

µ is tuned on the validation set, as detailed in Ap- 376

pendix B. Note that our decision of adding µ to the 377

query vectors can potentially support dynamic or 378

query-specific weights without the need to change 379

the index, but we leave this for future work. 380

Our final SPAR model is a general recipe for aug- 381

menting any dense retriever with the lexical match- 382

ing capability from any given sparse retriever. We 383

first train Λ using queries from random sentences 384

in the passage collection and labels generated by 385

the teacher model with 10 positive and 5 hard neg- 386

ative passages. We then combine Λ and the dense 387

retriever with weighted vector concatenation using 388

weights tuned on the development set. The pas- 389

sage embeddings can still be generated offline and 390

stored in a FAISS index and retrieval can be done in 391

the same way as a standard dense retriever. Further 392

implementation details are in Appendix B. 393

5 Experiments 394

5.1 Open-Domain Question Answering 395

Datasets We evaluate on five widely used ODQA 396

datasets (Lee et al., 2019): NaturalQuestions (NQ, 397

Kwiatkowski et al., 2019), SQuAD v1.1 (Rajpurkar 398

et al., 2016), TriviaQA (Joshi et al., 2017), We- 399

bQuestions (WebQ, Berant et al., 2013) and Curat- 400

edTREC (TREC, Baudiš and Šedivý, 2015). We 401

follow the exact setup of DPR (Karpukhin et al., 402
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NQ SQuAD TriviaQA WebQ TREC Average

Model R@20 R@100 R@20 R@100 R@20 R@100 R@20 R@100 R@20 R@100 R@20 R@100

(s) BM25 62.9 78.3 71.1 81.8 76.4 83.2 62.4 75.5 80.7 89.9 70.7 81.7

(d) Wiki Λ 62.0 77.4 67.6 79.4 75.7 83.3 60.4 75.0 79.8 90.5 69.1 81.1
(d) PAQ Λ 63.8 78.6 68.0 80.1 76.5 83.4 63.0 76.4 81.0 90.5 70.5 81.8

(d) DPR-multi 79.5 86.1 52.0 67.7 78.9 84.8 75.0 83.0 88.8 93.4 74.8 83.0
(d) xMoCo1 82.5 86.3 55.9 70.1 80.1 85.7 78.2 84.8 89.4 94.1 77.2 84.2
(d) ANCE2 82.1 87.9 - - 80.3 85.2 - - - - - -
(d) RocketQA3 82.7 88.5 - - - - - - - - - -

(h) DPR + BM254 82.6 88.6 75.1 84.4 82.6 86.5 77.3 84.7 90.1 95.0 81.5 87.8

(d) SPAR-Wiki 83.0 88.8 73.0 83.6 82.6 86.7 76.0 84.4 89.9 95.2 80.9 87.7
(d) SPAR-PAQ 82.7 88.6 72.9 83.7 82.5 86.9 76.3 85.2 90.3 95.4 80.9 88.0

Cross-dataset model generalization
(d) SPAR-MARCO 82.3 88.5 71.6 82.6 82.0 86.6 77.2 84.8 89.5 94.7 80.5 87.4
1 (Yang et al., 2021) 2 (Xiong et al., 2021) 3 (Qu et al., 2021) 4 (Ma et al., 2021)

Table 3: R@20 and 100 for Open-Domain Question Answering. Model types are shown in parentheses (d: dense,
s: sparse, h: hybrid). The highest performance is in bold, while the highest among dense retrievers is underlined.

2020), including the train, dev and test splits, and403

the Wikipedia passage collection.404

Table 3 presents the main results on ODQA. For405

SPAR models, we report two variants both trained406

with BM25 as teacher, using the Wiki and PAQ407

training queries respectively (§4.1).4 SPAR outper-408

forms all state-of-the-art retrievers in the literature,409

usually by wide margins, demonstrating the effec-410

tiveness of our approach. Notably, SPAR even per-411

forms better than some recent approaches with so-412

phisticated multi-stage training that are more com-413

plicated and expensive (Qu et al., 2021).414

Another appealing result comes from SQuAD, a415

dataset on which all previous dense retrievers fail416

to even get close to a simple BM25 model. As the417

SQuAD annotators are given the Wikipedia passage418

when they write the questions, the lexical overlap419

between the questions and the passages is hence420

higher than other datasets. The poor performance421

of dense retrievers on SQuAD confirms that dense422

retrieval struggles at lexical matching. In contrast,423

SPAR dramatically improves over previous models,424

achieving an improvement of 13.6 points in R@100425

over xMoCo, the best dense retriever on SQuAD.426

PAQ Λ matches the accuracy of the teacher427

BM25 model, while Wiki Λ performs slightly428

worse. The performance gap, however, is smaller429

in the final SPAR model. Both approaches are able430

to match the performance of the hybrid model, and431

SPAR-PAQ is 0.3% better on average than SPAR-432

Wiki (88.0 vs. 87.7). This enables us to go with the433

4The cross-dataset model generalization section in Table 3
and 4 will be discussed in §6.2.

much cheaper Wiki option for training Λ without 434

sacrificing much of the end performance. 435

5.2 MS Marco Passage Retrieval 436

MS MARCO Dev

Model MRR@10 R@1000

(s) BM25 18.7 85.7
(s) UniCOIL (Lin and Ma, 2021) 35.2 95.8

(d) MARCO BM25 Λ 17.3 83.1
(d) MARCO UniCOIL Λ 34.1 97.0

(d) ANCE (Xiong et al., 2021) 33.0 95.9
(d) TCT-ColBERT (Lin et al., 2021b) 35.9 97.0
(d) RocketQA (Qu et al., 2021) 37.0 97.7

(h) RocketQA + BM25 38.1 98.0
(h) RocketQA + UniCOIL 38.8 97.3

(d) SPAR (RocketQA + Λ=BM25) 37.9 98.0
(d) SPAR (RocketQA + Λ=UniCOIL) 38.6 98.5

Cross-dataset model generalization
(d) Wiki BM25 Λ 15.8 78.8
(d) SPAR (RocketQA + Λ=Wiki BM25) 37.7 98.0

Table 4: SPAR results on MS MARCO passage re-
trieval. We consider several options for Λ, trained with
different objectives (BM25 and UniCOIL) and differ-
ent corpora (MSMARCO and Wikipedia). Full results
are available in Table 9.

In this section, we report our experiments on 437

the MS MARCO passage retrieval dataset (Bajaj 438

et al., 2018), a popular IR benchmark with queries 439

from the Bing search engine and passages from the 440

web. To highlight the versatility of our approach, 441

we adopt two dense retrievers in SPAR, ANCE and 442

RocketQA. (The full results with ANCE experi- 443

ments and more metrics are shown in Table 9 in the 444
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Appendix.) We further consider two sparse retriev-445

ers for training Λ, BM25 and UniCOIL (Lin and446

Ma, 2021), a recent state-of-the-art (SoTA) sparse447

retriever, to study whether SPAR training can un-448

pack the knowledge from a more advanced teacher449

model. Similar to the Wiki training queries, we450

create a MARCO corpus for training Λ. Details451

can be found in Appendix B.452

As demonstrated in Table 4, SPAR is able to453

augment RocketQA with the lexical matching ca-454

pacity from either BM25 or UniCOIL, leading to455

a performance similar to the hybrid retriever and456

again outperforming all existing dense and sparse457

retrievers with a MRR@10 of 38.6 (see row group458

5 and 4). The fact that SPAR works with not only459

DPR and BM25, but other SoTA dense and sparse460

retrievers makes SPAR a general solution for com-461

bining the knowledge of dense and sparse retrievers462

in a single dense model.463

One intriguing observation is that SPAR works464

better when retrieving more candidates. SPAR465

is slightly worse than the hybrid models on466

MRR@10, but catches up on R@50 (Table 9), and467

even outperforms the hybrid ones when consid-468

ering R@1000. This is also observed on ODQA469

experiments between R@20 and R@100.470

Another interesting phenomenon in both experi-471

ments is that while Λ by itself achieves a slightly472

lower performance than the teacher sparse retriever,473

the final SPAR model can reach or beat the hy-474

brid model when combined with the same dense475

retriever. One reason why SPAR outperforms the476

hybrid model may be that SPAR is able to perform477

an exact “hybrid” of two retrievers since both are478

dense models (Eqn. 1), while the real hybrid model479

has to rely on approximation. We leave further in-480

vestigation in these curious findings to future work.481

6 Discussions482

In this section, we dive deeper into the Λ model483

with a number of analyses on its behaviors.484

6.1 Does Λ Learn Lexical Matching?485

The first and foremost question is whether Λ actu-486

ally learns lexical matching. We conduct a series487

of direct and indirect analyses to get more insights.488

6.1.1 Rank Biased Overlap with BM25489

We first directly compare the predictions of Λ490

against BM25 using rank biased overlap (RBO,491

Webber et al., 2010), a similarity measure of ranked492

lists. As shown in Table 5, the prediction of DPR493

RBO w/ BM25 NQ SQuAD Trivia

DPR .104 .078 .170
Wiki Λ .508 .452 .505
Perturbed Wiki Λ .506 .453 .504
PAQ Λ .603 .478 .527

Table 5: Rank Biased Overlap (RBO, Webber et al.,
2010) between BM25 and various dense retrievers on
the dev set. We use the standard p = 0.9 in RBO.

and BM25 are dramatically different from each 494

other, with a RBO of only 0.1, which is a correla- 495

tion measure between partially overlapped ranked 496

lists. In contrast, Λ achieves a much higher overlap 497

with BM25 of around 0.5 to 0.6. It also confirms 498

that query perturbation does not make a difference 499

in Λ training as the two variants of Wiki Λ perform 500

almost identically. 501

6.1.2 Stress test: token-shuffled questions 502

Model Original Shuffled ∆

@20 @100 @20 @100 @20 @100

DPR 77.4 84.7 69.4 80.1 8.0 4.6
BM25 62.3 76.0 62.3 76.0 0.0 0.0
Wiki Λ 60.9 74.9 60.8 74.9 0.1 0.0
PAQ Λ 62.7 76.4 62.6 76.2 0.1 0.2

Table 6: Lexical matching stress test on NQ Dev, using
token-shuffled questions. Λ maintains its performance
on randomly shuffled queries.

Next, we inspect the lexical matching capacity 503

of Λ in an extreme case where the order of tokens 504

in each question is randomly shuffled. Table 6 505

indicates that the performance of DPR drops sig- 506

nificantly on this token-shuffled dataset, while the 507

bag-of-word BM25 model remains unaffected by 508

design. On the other hand, both Wiki Λ and PAQ 509

Λ remain highly consistent on this challenge set, 510

showing great robustness in lexical matching. 511

6.1.3 Hybrid SPAR + BM25 model 512

To confirm that SPAR improves DPR’s perfor- 513

mance by enhancing its lexical matching capability, 514

we add the real BM25 to SPAR to create a hybrid 515

model. As demonstrated in Table 7, adding BM25 516

to SPAR only results in minimal gains, suggesting 517

that the improvement SPARmade to DPR is indeed 518

due to better lexical matching. The results indicate 519

that SPAR renders BM25 almost completely redun- 520

dant, supporting our main claim. 521
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Model NQ

@20 @100

(d) DPR 79.5 86.1
(h) DPR + BM25 82.6 88.6

(d) SPAR-Wiki 83.0 88.8
(h) SPAR-Wiki + BM25 82.9 88.9

(d) SPAR-PAQ 82.7 88.6
(h) SPAR-PAQ + BM25 82.7 88.8

Table 7: The SPAR+BM25 model yields minimal gains
over SPAR, indicating that SPAR does well in lexical
matching and performs similarly to a hybrid model.

6.2 Generalization of Λ and SPAR522

We now focus on another important topic regard-523

ing the generality of SPAR. We have shown that524

Wiki Λ achieves a similar performance to PAQ Λ,525

making it often unnecessary to rely on sophisti-526

catedly generated queries for training Λ. A more527

exciting finding is that Λ also has great zero-shot528

generalization to other datasets.529

In the cross-dataset model generalization sec-530

tion of Table 3 and 4, we reported SPAR perfor-531

mance on ODQA using the Λ model built for MS532

MARCO and vice versa. In both directions, Λ has533

a high zero-shot performance, and the SPAR per-534

formance is close to that using in-domain Λ. This535

suggests that Λ shares the advantage of better gen-536

eralization of a sparse retriever, and it may not be537

always necessary to retrain Λ on new datasets.538

6.2.1 Zero-shot performance on539

EntityQuestions540

Model EQ

@20 @100

(d) DPR 56.6 70.1
(s) BM25 70.8 79.2
(h) DPR + BM25 73.3 82.3

(d) Wiki Λ 68.4 77.5
(d) PAQ Λ 69.4 78.6

(d) SPAR 73.6 81.5
(d) SPAR-PAQ 74.0 82.0

Table 8: Zero-shot performance on the EntityQues-
tions (Sciavolino et al., 2021) dataset. We report micro-
average instead of macro-average in the original paper.

A concurrent work (Sciavolino et al., 2021) 541

also identifies the lexical matching issue of dense 542

retrievers, focusing specifically on entity-centric 543

queries. They create a synthetic dataset containing 544

simple entity-rich questions, where DPR performs 545

significantly worse than BM25. In Table 8, we 546

evaluate SPAR on this dataset in a zero-shot set- 547

ting without any re-training, other than tuning the 548

concatenation weight on the development set. The 549

result further confirms the generalization of SPAR. 550

Λ transfers much better to this dataset than DPR, 551

achieving a slightly lower performance than BM25. 552

When Λ is combined with DPR in SPAR, the gap 553

is once again bridged, and SPAR achieves a higher 554

R@20 than the hybrid model, and overall an im- 555

provement of 17.4 points over DPR. 556

7 Conclusion 557

In this paper, we propose SPAR, a salient-phrase 558

aware dense retriever, which can augment any 559

dense retriever with the lexical matching capacity 560

from any given sparse retriever. This is achieved 561

by training a dense model Λ to imitate the behav- 562

ior of the teacher sparse retriever, the feasibility 563

of which remained unknown until this work. In 564

the experiments, we show that SPAR outperforms 565

previous state-of-the-art dense and sparse retriev- 566

ers, matching or even beating more complex hy- 567

brid systems, on five open-domain question an- 568

swering benchmarks and the MS MARCO passage 569

retrieval dataset. Furthermore, SPAR is able to 570

augment any dense retriever such as DPR, ANCE 571

or RocketQA, with knowledge distilled from not 572

only BM25, but more advanced sparse retrievers 573

like UniCOIL, highlighting the generality of our 574

approach. In addition, we show that Λ indeed 575

learns lexical matching, and generalizes well to 576

other datasets in a zero-shot fashion. 577

For future work we plan to explore if a dense 578

retriever can be trained to learn lexical matching 579

directly without relying on a teacher model. This 580

way, we can avoid imitating the errors of the sparse 581

retriever, and devise new ways of training dense 582

retrievers that can potentially surpass hybrid mod- 583

els. Moreover, there are several intriguing findings 584

in this work that may warrant further study, such 585

as why SPAR’s R@k improves relatively to the hy- 586

brid model as k increases, and why joint training is 587

less effective than post-hoc vector concatenation. 588
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MS MARCO Dev Set

Model MRR@10 R@50 R@1000

(s) BM25 18.7 59.2 85.7
(s) UniCOIL (Lin and Ma, 2021) 35.2 80.7 95.8

(d) MARCO BM25 Λ 17.3 56.3 83.1
(d) MARCO UniCOIL Λ 34.1 82.1 97.0

(d) ANCE (Xiong et al., 2021) 33.0 79.1 95.9
(d) TCT-ColBERT (Lin et al., 2021b) 35.9 - 97.0
(d) RocketQA (Qu et al., 2021) 37.0 84.7 97.7

(h) ANCE + BM25 34.7 81.6 96.9
(h) RocketQA + BM25 38.1 85.9 98.0
(h) ANCE + UniCOIL 37.5 84.8 97.6
(h) RocketQA + UniCOIL 38.8 86.5 97.3

(d) SPAR (ANCE + Λ=MARCO BM25) 34.4 81.5 97.1
(d) SPAR (RocketQA + Λ=MARCO BM25) 37.9 85.7 98.0
(d) SPAR (ANCE + Λ=MARCO UniCOIL) 36.9 84.6 98.1
(d) SPAR (RocketQA + Λ=MARCO UniCOIL) 38.6 86.3 98.5

Cross-dataset model generalization

(d) Wiki BM25 Λ 15.8 50.8 78.8
(d) SPAR (ANCE + Λ=Wiki BM25) 34.4 81.5 97.0
(d) SPAR (RocketQA + Λ=Wiki BM25) 37.7 85.3 98.0

Table 9: SPAR results on MS MARCO passage retrieval. We consider several options for Λ, trained with different
objectives (BM25 and UniCOIL) and different corpora (MSMARCO and Wikipedia). For ANCE and RocketQA,
we use the released checkpoints and our evaluation scripts. We matched public numbers in most cases, but we
were unable to reproduce the R@50 and R@1000 reported by RocketQA.

A Complete Results for MS MARCO Passage Retrieval 798

Table 9 shows the full results on MS MARCO, with an additional column reporting R@50 in addition to 799

MRR@10 and R@1000. In Table 9, two state-of-the-art dense retrievers are considered in SPAR, namely 800

ANCE and RocketQA. The conclusions drawn for RocketQA in Table 4 in the main paper stays the same 801

for ANCE, further strengthening the generality of our approach. 802

B Implementation Details 803

For the Wiki training queries for Λ, we randomly sample sentences from each passage (following the DPR 804

passage split of Wikipedia) following a pseudo-exponential distribution while guaranteeing at least one 805

sentence is sampled from each passage. The pseudo-exponential distribution would select more sentences 806

in the first few passages of each Wikipedia document, as they tend to contain more answers, resulting in 807

a collection of 37 million sentences (queries) out of 22M passages. However, early experiment showed 808

that sampling uniformly worked almost equally well. For the MS MARCO passage collection, we use all 809

sentences as training queries without sampling, leading to a total of 28M queries out of 9M passages. 810

We train Λ for 3 days on 64 GPUs with a per-GPU batch size of 32 and a learning rate of 3e−5 (roughly 811

20 epochs for Wiki Λ and MARCO Λ, and 10 epochs for PAQ Λ). The remaining hyper-parameters are 812

the same as in DPR, including the BERT-base encoder and the learning rate scheduler. For Wiki and 813

PAQ Λ, we use NQ dev as the validation queries, and MS MARCO dev for MARCO Λ. For the dense 814

retrievers used in SPAR, we directly take the publicly released checkpoints without re-training to combine 815

with Λ. We use Pyserini (Lin et al., 2021a) for all sparse models used in this work including BM25 and 816

UniCOIL. 817
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For tuning the concatenation weights µ, we do a grid search on [0.1, 1.0] (step size 0.1) as well as their818

reciprocals, resulting in a total of 19 candidates ranging from 0.1 to 10. The best µ is selected using the819

best R@100 for ODQA (§5.1) and MRR@10 for MS MARCO (§5.2) on the development set for each820

experiment.821
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