Salient Phrase Aware Dense Retrieval:
Can a Dense Retriever Imitate a Sparse One?

Anonymous ACL submission

Abstract

Despite their recent popularity and well known
advantages, dense retrievers still lag behind
sparse methods such as BM25 in their ability
to reliably match salient phrases and rare enti-
ties in the query. It has been argued that this
is an inherent limitation of dense models. We
disprove this claim by introducing the Salient
Phrase Aware Retriever (SPAR), a dense re-
triever with the lexical matching capacity of
a sparse model. In particular, we show that a
dense retriever A can be trained to imitate a
sparse one, and SPAR is built by augmenting
a standard dense retriever with A. When eval-
uated on five open-domain question answering
datasets and the MS MARCO passage retrieval
task, SPAR sets a new state of the art for dense
and sparse retrievers and can match or exceed
the performance of more complicated dense-
sparse hybrid systems.

1 Introduction

Text retrieval is a crucial component for a wide
range of knowledge-intensive NLP systems, such
as open-domain question answering (ODQA) mod-
els and search engines. Recently, dense retriev-
ers (Karpukhin et al., 2020; Xiong et al., 2021)
have gained popularity and demonstrated strong
performance on a number of retrieval tasks. Dense
retrievers employ deep neural networks to learn
continuous representations for the queries and doc-
uments, and perform retrieval in this dense embed-
ding space using nearest neighbor search (John-
son et al., 2019). Compared to traditional sparse
retrievers that rely on discrete bag-of-words rep-
resentations, dense retrievers can derive more se-
mantically expressive embeddings, thanks to its
end-to-end learnability and powerful pre-trained
encoders. This helps dense retrievers to overcome
several inherent limitations of sparse systems such
as vocabulary mismatch (where different words
have the same meaning) and semantic mismatch
(where the same word has multiple meanings).

On the other hand, while existing dense retriev-
ers excel at capturing semantics, they sometimes
fail to match the salient phrases in the query. For
example, Karpukhin et al. (2020) show that DPR,
unlike a sparse BM25 retriever (Robertson and
Walker, 1994), is unable to catch the salient phrase
“Thoros of Myr” in the query “Who plays Thoros
of Myr in Game of Thrones?”. Similarly, Xiong
et al. (2021) observe that ANCE fails to recognize
“active margin” as a key phrase in the query “What
is an active margin” and instead retrieves passages
describing the financial term “margin”. As a result,
dense retrievers occasionally retrieve completely
irrelevant results. In practice, therefore, hybrid re-
trieval systems are built that combine dense and
sparse retrievers to enjoy the higher overall per-
formance of dense retrievers while avoiding such
failure cases. In fact, the predictions of DPR and
BM25 are drastically different from each other,
with only about 10% overlap between top-100 re-
trieved passages (discussed in §6.1.1). This sug-
gests that a sparse retriever captures complemen-
tary information to a dense model, and its lexical
matching capacity may further improve the per-
formance of a dense retriever. For instance, new
state-of-the-art performance on ODQA can be ob-
tained using a hybrid system of DPR and a simple
well-tuned BM25 (Ma et al., 2021).

Such a hybrid design, however, complicates the
architecture of the retrieval system, increases la-
tency, and takes more effort to maintain. Further-
more, as dense and sparse retrievers rely on dif-
ferent pieces of infrastructure for retrieval (text
indexing for sparse retrievers and vector similar-
ity search for dense ones), exact hybrid retrieval
is computationally prohibitive. In reality, approxi-
mate hybrid search is performed such as using the
one retriever to rerank the retrieval results of the
other, leading to potentially inferior results.

In this work, we propose SPAR (Figure 1), a
dense retriever with the lexical matching capacity

The SPAR model:

SimSPAR(q, p)
Query Emb. / \ Passage Emb.
(En ><(mx'§)
an ,
T 0(q) T P(p) Tp-Q"\(cﬂ T PAp) S
[De?es'Z.Rsér:;ver] Lexical Model A]
Query q Passage p

,-— A Training ----- S
t
Query Encoder Q

r

Random Sentences

?

-
o9

£ K

S |
A

"m‘.’/ ?

Wikp oA ——— Teacher: BM25

The Free Encyclop

Figure 1: SPAR augments a dense retriever with a dense model A trained to imitate a sparse teacher retriever. A is
trained using random sentences as queries with positive and negative passages generated from the teacher model.
A is then combined with a dense retriever via vector concatenation to form a salient-phrase aware retriever (§4).

of a sparse model. SPAR has the high accuracy of a
hybrid system without the need to maintain a com-
plex pipeline of two separate retrieval architectures.
In particular, we address an important yet largely
unanswered research question: Can we train a
dense retriever to imitate a sparse one? There
have been theoretical and empirical studies sug-
gesting a negative answer due to alleged intrinsic
limitations of dense retrievers (Luan et al., 2021).
For instance, Reimers and Gurevych (2021) show
that dense retrievers prefer gibberish strings with
random letters and spaces over the gold passage
in up to 10% of cases, while it never happens to
BM25. In addition, Sciavolino et al. (2021) find
that DPR performs poorly compared to BM25 on
simple entity-centric questions.

Contrary to these findings, we show that it is
indeed possible to mimic a given sparse retriever
(e.g., BM25 or UniCOIL (Lin and Ma, 2021)) with
a dense model A, and we build the SPAR model
by combining A with a standard dense retriever
(e.g., DPR or ANCE). Despite the long-standing
dichotomy between sparse and dense retrievers, we
arrive at a simple yet elegant solution of SPAR in
§4, by conducting an extensive study to answer two
key questions: i) How to train A to imitate a sparse
retriever (§4.1) and ii) How to best utilize A to
build a salient-phrase aware dense retriever (§4.2).

We evaluate SPAR on five ODQA datasets (§5.1)
as well as the MS MARCO (Bajaj et al., 2018) pas-
sage retrieval benchmark (§5.2), and show that it
outperforms existing dense and sparse retrievers,
matching or even beating the more complex hy-
brid systems. In addition, we conduct a series of
analyses of A showcasing its lexical matching ca-

pability (§6.1). We also examine the generalization
of SPAR showing strong zero-shot performance
across datasets (§6.2), typically a weak point of
dense retrievers, including on a new dataset of
entity-centric questions (Sciavolino et al., 2021).

2 Related Work

Sparse retrievers date back for decades and suc-
cessful implementations such as BM25 (Robertson
and Walker, 1994) remain popular to date for its
lexical matching capacity and great generalization.
Despite the rapid rise of dense retrievers in recent
years, development in sparse retrievers remain ac-
tive, partly due to the limitations of dense retrievers
discussed in §1. Various methods have been pro-
posed to improve term weight learning (Dai and
Callan, 2020; Mallia et al., 2021) and to address vo-
cabulary mismatch (Nogueira and Lin, 2019) and
semantic mismatch (Gao et al., 2021), inter alia.
While most of these methods have been incom-
patible with dense retrievers, our SPAR method
provides a route for incorporating any such im-
provement into a dense retriever.

Dense retrievers employ pre-trained neural en-
coders to learn vector representations and per-
form retrieval by using nearest-neighbor search
in this dense embedding space (Lee et al., 2019;
Karpukhin et al., 2020). Subsequent works have de-
veloped various improvements, including more so-
phisticated training strategies and using better hard
negatives (Xiong et al., 2021; Qu et al., 2021; Mail-
lard et al., 2021; Oguz et al., 2021). Such improve-
ments are also complementary to the SPAR ap-
proach, which can potentially leverage these more
powerful dense retrievers as shown in §5.2.

A few recent studies focus on the limitations
of current dense retrievers. Lewis et al. (2021a);
Liu et al. (2021) study the generalization issue of
dense retrievers in various aspects, such as the over-
lap between training and test data, compositional
generalization and the performance on matching
novel entities. Thakur et al. (2021) introduce a new
BEIR benchmark to evaluate the zero-shot general-
ization of retrieval models showing that BM25 out-
performs dense retrievers on most tasks. A differ-
ent line of research explores using multiple dense
vectors as representations which achieves higher
accuracy but is much slower (Khattab and Zaharia,
2020). Lin et al. (2021b) further propose a knowl-
edge distillation method to train a standard dense
retriever with similar performance of the multi-
vector ColBERT model. More recently, Sciavolino
et al. (2021) create a synthetic dataset of entity-
centric questions (EntityQuestions) to highlight the
failure of dense retrievers in matching key entities
in the query. We perform a zero-shot evaluation
on EntityQuestions in §6.2.1 and show that SPAR
substantially outperforms DPR. The idea of using
BM25 as weak supervision has been explored in
IR (Dehghani et al., 2017), but their work predated
dense retrieval, hence focusing on a different task
(query-dependent ranking). As a result, the motiva-
tion and modeling are quite different from ours.

3 Preliminaries: Dense Retrieval

In this work, we adopt DPR (Karpukhin et al.,
2020) as our dense retriever architecture for learn-
ing A. We give a brief overview of DPR and refer
the readers to the original paper for more details.

DPR is a bi-encoder model with a query en-
coder and a passage encoder, each a BERT trans-
former (Devlin et al., 2019), which encodes the
queries and passages into d-dimensional vectors,
respectively. Passage vectors are generated offline
and stored in an index built for vector similarity
search using libraries such as FAISS (Johnson et al.,
2019). The query embedding is computed at the
run time, which is used to look up the index for k
passages whose vectors are the closest to the query
representation using dot-product similarity.

DPR is trained using a contrastive loss: Given a
query and a positive (relevant) passage, the model
is trained to increase the similarity between the
query and the positive passage while decreasing
the similarity between the query and negative ones.
It is hence important to have hard negatives (HN,

irrelevant passages that are likely to be confused
with positive ones) for more effective training!.

We employ the DPR implementation from Oguz
et al. (2021), which supports efficient multi-node
training as well as memory-mapped data loader,
both important for the large-scale training of A.
We also adopt their validation metrics of mean re-
ciprocal rank (MRR) on a surrogate corpus using
one positive and one HN from each query in the
development set. Assuming a set of N dev queries,
this creates a mini-index of 2V passages, where the
MRR correlates well with full evaluation while be-
ing much faster. At test time, the standard recall@k
(R@kK) metric is used for full evaluation, which is
defined as the fraction of queries that has at least
one positive passage retrieved in the top k.

4 The SPAR Model

In this section, we put forward our SPAR method,
and explain how we arrive at our final approach
by presenting pilot experiments on NaturalQues-
tions (NQ, Kwiatkowski et al., 2019), a popular
ODQA dataset. A key ingredient of SPAR is the
dense model A trained to imitate the prediction of
a sparse retriever. As a proxy, we adopt MRR on a
special validation set as a metric when training A
to approximate how well A is imitating the sparse
teacher model. In particular, we use questions from
NQ dev as queries and the passage with the high-
est score from the sparse teacher model as posi-
tive, and thus a higher MRR on this set indicates a
higher correlation between A and the teacher. We
first investigate how to successfully train A (§4.1)
and then study how to best leverage A to form a
salient-phrase aware dense retriever (§4.2).

4.1 Training A

In training A, we are essentially distilling a sparse
retriever into a bi-encoder model. There are many
potential ways to do this, such as imitating the
scores of the sparse retriever with the MSE loss
or KL divergence, learning the passage ranking
of the teacher while discarding the scores. After
unsuccessful initial attempts with these methods,
we instead adopt a very simple contrastive loss,
inspired by DPR training, where passages ranked
highly by the teacher model are taken as positives
and those ranked lower as negatives.

In particular, using the top-k retrieved passages
from the sparse retriever for a given query (§4.1.1),

'DPR uses BM25 to generate hard negatives.

we treat the top n, as positives and the bottom 7,
as hard negatives®. In our preliminary experiments,
we find that £ = 50 and & = 100 perform similarly,
and n,, also does not affect the performance much
as long as n,, > 5. Hence, we pick ¥ = 50 and
n, = 5 in all experiments. On the other hand, n,,
carries a significant impact on the success of A
training, and will be discussed later in §4.1.2.

4.1.1 Training queries

Model MRR
NQA 76.5
Wiki A 92.4
Perturbed Wiki A 92.5
PAQ A 947

Table 1: A trained with various data regimes. MRR is
calculated on questions from NQ dev, using one posi-
tive and one hard negative from BM25.

Now, we turn our attention to how the training
queries are produced. Since a sparse retriever can
be queried with arbitrary text, abundant choices
are available. We consider two potentially help-
ful options, in-domain (queries similar to those
in the downstream evaluation dataset) and large-
scale training queries with an experiment on NQ.
For in-domain queries, we use the questions from
the NQ training set itself to generate the training
data for A. For large-scale queries, we randomly
select sentences from each Wikipedia passage, re-
sulting in a total of 37 million queries’. In addi-
tion, we experiment with questions from the PAQ
dataset (Lewis et al., 2021b), a collection of 65 mil-
lion synthetically generated probably asked ques-
tions for ODQA, which can be thought of as both
in-domain and large-scale.

Table 1 shows how well A trained with each
option can imitate the teacher BM25 model. The
main takeaway is that the size of the query set is
more consequential than the syntax of the queries,
as both Wiki A and PAQ A outperform NQ A by a
wide margin. Intuitively, large-scale training data
is helpful for learning lexical matching as it gives
the neural models more exposure to rare words and

2When using multiple positives for a query, one positive is
randomly sampled at each training iteration of training.

3 At least one sentence is sampled from each passage. We
sample more sentences from the first few passages of each
document following a pseudo-exponential distribution, as they
tend to contain more answers. However, early experiment
showed that sampling uniformly worked equally well.

Validation MRR
[ee] foe]
o ee]

®
S

©
N

12 5 10 15
Number of positive passages

Figure 2: Validation MRR of the Wiki A using various
numbers of positive passages.

phrases. Finally, PAQ A further beats the Wiki A,
achieving the highest MRR score. However, as we
shall see later, SPAR models built with Wiki and
PAQ A achieve similar end performance as both
are able to fully match the performance of a hybrid
model, suggesting that carefully generated queries
are not necessary for training A. This makes our
approach very appealing in practice as we can gen-
erate the training data of A cheaply, without relying
on computationally intensive methods like PAQ.

Query Perturbation For Wiki A, we initially
hypothesized that query perturbation is needed to
avoid exact phrase matches, which may improve
the model robustness. We hence experimented with
several perturbation strategies, including randomly
dropping 15% of tokens, shuffling all tokens, and
swap the order of the two chunks of text before
and after a random anchor word. We found that all
these perturbed variants, as well as a version that
uses a mix of all perturbations (shown in Table 1),
performed similarly to using the original sentences
as queries. Therefore, we did not conduct any query
perturbation in our final Wiki A model.

4.1.2 Number of positive passages

We now return to the selection of 7, the number
of positive passages per training query. As shown
in Figure 2, using multiple positive passages is crit-
ical to successful training, as n, = 2 significantly
improves the validation metrics over n;, = 1. Fur-
ther increase in n,, remains helpful, but the gain is
naturally diminishing as A is already imitating the
teacher model closely. We use n,, = 10 for A.

4.2 Building SPAR with A

With a successfully trained A, we now study how
to build a salient-phrase aware retriever with it. We
compare implicit and explicit use of A, where the

Model NQ
@20 @100

DPR 783 85.6
SPAR (Initialization) 78.1 86.3
SPAR (Joint Training) 79.2 86.6
SPAR (Weighted Sum) 81.3 88.0
SPAR (Weighted Concat) 82.2 88.3
2 DPRs (Weighted Concat) 79.8 86.4
DPR + BM25 80.9 879

Table 2: Comparison of various methods of leveraging
the Wiki A in SPAR: used as initialization for DPR
training; combining two trained models with weighted
vector sum or concatenation; vector concatenation dur-
ing DPR training (joint training).

latter explicitly employs A in the final representa-
tion space when computing similarity. An example
of implicit use of A is using it as initialization for
DPR training with the hope that DPR can inherit
the lexical matching capacity from A. Unfortu-
nately, this is ineffective as shown in Table 2.

Explicit use of A can be done either during train-
ing or inference time. The more straightforward
inference-time utilization involves combining the
vectors of the trained A with a separately trained
dense retriever such as DPR at inference time. The
vectors from the two models can be combined us-
ing various pooling methods such as summation or
concatenation. Since both models are dense retriev-
ers, this post-hoc combination can be easily done
without affecting the architecture of retrieval index.
Table 2 indicates that concatenation performs bet-
ter, but summation has the benefit of not increasing
the dimension of the final vectors.

Finally, instead of training the two models sep-
arately, we experiment with a joint training ap-
proach, in which we concatenate the DPR embed-
dings with that of a trained A during DPR training.
The similarity and loss are computed with the con-
catenated vector, but we freeze A, and only train
the DPR encoders as well as the scalar weight for
vector concatenation. The idea is to make DPR
“aware” of the lexical matching scores given by A
during its training in order to learn a SPAR model.
This can also be viewed as training DPR to correct
the errors made by A. Somewhat surprisingly, how-
ever, this strategy does not work well compared to
post-hoc concatenation as shown in Table 2.

We also compare with the ensemble (weighted
concatenation of embeddings) of two DPR mod-

els trained with different random seeds, which has
the same dimension and number of parameters as
SPAR. While SPAR beats it substantially, this base-
line does show non-trivial gains over DPR. We
leave further investigation of the intriguing efficacy
of post-hoc vector concatenation to future work.

Concatenation Weight Tuning When concate-
nating the vectors from two dense retrievers, they
may be on different scales, especially across var-
ied datasets. It is hence helpful to add a weight u
to balance the two models during concatenation.
We add the weight to the query embeddings so
that the offline passage index is not affected by a
change of weight. Specifically, for a query ¢ and
a passage p, a dense retriever with query encoder
@ and passage encoder P, as well as a A model
with Q* and P», the final query vector in SPAR
is [Q(q), MQA(q)] while the passage vector being
[P(p), P*(p)]. The final similarity score:

sim***%(q, p) = [Q(q), nQ"(q)]" [P(p), P (p)]
Ma,p) (D

1 1s tuned on the validation set, as detailed in Ap-
pendix B. Note that our decision of adding y to the
query vectors can potentially support dynamic or
query-specific weights without the need to change
the index, but we leave this for future work.

Our final SPAR model is a general recipe for aug-
menting any dense retriever with the lexical match-
ing capability from any given sparse retriever. We
first train A using queries from random sentences
in the passage collection and labels generated by
the teacher model with 10 positive and 5 hard neg-
ative passages. We then combine A and the dense
retriever with weighted vector concatenation using
weights tuned on the development set. The pas-
sage embeddings can still be generated offline and
stored in a FAISS index and retrieval can be done in
the same way as a standard dense retriever. Further
implementation details are in Appendix B.

= sim(g,p) + p - sim

S Experiments

5.1 Open-Domain Question Answering

Datasets We evaluate on five widely used ODQA
datasets (Lee et al., 2019): NaturalQuestions (NQ,
Kwiatkowski et al., 2019), SQuAD v1.1 (Rajpurkar
et al., 2016), TriviaQA (Joshi et al., 2017), We-
bQuestions (WebQ, Berant et al., 2013) and Curat-
edTREC (TREC, Baudi§ and Sedivy, 2015). We
follow the exact setup of DPR (Karpukhin et al.,

NQ

SQuAD

TriviaQA

WebQ TREC Average

Model R@20 R@100 R@20 R@100 R@20 R@100 R@20 R@100 R@20 R@100 R@20 R@100
(s) BM25 629 783 71.1 818 764 832 624 755 80.7 899 70.7 81.7
(d) Wiki A 620 774 67.6 794 75.7 833 604 75.0 79.8 905 69.1 8l1.1
(d) PAQ A 63.8 78.6 68.0 80.1 76.5 834 63.0 764 81.0 90.5 70.5 81.8
(d) DPR-multi 79.5 86.1 520 67.7 78.9 8438 75.0 83.0 88.8 934 74.8 83.0
(d) xMoCo' 825 863 559 70.1 80.1 857 782 84.8 894 941 772 842
(d) ANCE? 82.1 879 - - 80.3 852 - - - - - -
(d) RocketQA® 827 885 - - - - - - - - - -
(h) DPR + BM25* 826 88.6 75.1 844 82.6 86.5 773 847 90.1 950 815 878
(d) sPAR-Wiki 83.0 88.8 73.0 83.6 82.6 86.7 76.0 844 899 952 80.9 87.7
(d) SPAR-PAQ 82.7 88.6 729 837 825 869 76.3 852 90.3 954 80.9 88.0
Cross-dataset model generalization

(d) SPAR-MARCO 82.3 885 71.6 82.6 82.0 86.6 772 848 89.5 947 80.5 874

! (Yang et al., 2021)

2 (Xiong et al., 2021)

3(Quetal., 2021)

*Maetal., 2021)

Table 3: R@20 and 100 for Open-Domain Question Answering. Model types are shown in parentheses (d: dense,
s: sparse, h: hybrid). The highest performance is in bold, while the highest among dense retrievers is underlined.

2020), including the train, dev and test splits, and
the Wikipedia passage collection.

Table 3 presents the main results on ODQA. For
SPAR models, we report two variants both trained
with BM25 as teacher, using the Wiki and PAQ
training queries respectively (§4.1).* SPAR outper-
forms all state-of-the-art retrievers in the literature,
usually by wide margins, demonstrating the effec-
tiveness of our approach. Notably, SPAR even per-
forms better than some recent approaches with so-
phisticated multi-stage training that are more com-
plicated and expensive (Qu et al., 2021).

Another appealing result comes from SQuAD, a
dataset on which all previous dense retrievers fail
to even get close to a simple BM25 model. As the
SQuAD annotators are given the Wikipedia passage
when they write the questions, the lexical overlap
between the questions and the passages is hence
higher than other datasets. The poor performance
of dense retrievers on SQuAD confirms that dense
retrieval struggles at lexical matching. In contrast,
SPAR dramatically improves over previous models,
achieving an improvement of 13.6 points in R@ 100
over xMoCo, the best dense retriever on SQuAD.

PAQ A matches the accuracy of the teacher
BM25 model, while Wiki A performs slightly
worse. The performance gap, however, is smaller
in the final SPAR model. Both approaches are able
to match the performance of the hybrid model, and
SPAR-PAQ is 0.3% better on average than SPAR-
Wiki (88.0 vs. 87.7). This enables us to go with the

*The cross-dataset model generalization section in Table 3
and 4 will be discussed in §6.2.

much cheaper Wiki option for training A without
sacrificing much of the end performance.

5.2 MS Marco Passage Retrieval

MS MARCO Dev

Model MRR@10 R@1000
(s) BM25 18.7 85.7
(s) UniCOIL (Lin and Ma, 2021) 352 95.8
(d) MARCO BM25 A 17.3 83.1
(d) MARCO UniCOIL A 34.1 97.0
(d) ANCE (Xiong et al., 2021) 33.0 95.9
(d) TCT-ColBERT (Lin et al., 2021b) 35.9 97.0
(d) RocketQA (Qu et al., 2021) 37.0 97.7
(h) RocketQA + BM25 38.1 98.0
(h) RocketQA + UniCOIL 38.8 97.3
(d) SPAR (RocketQA + A=BM25) 37.9 98.0
(d) SPAR (RocketQA + A=UniCOIL) 38.6 98.5
Cross-dataset model generalization

(d) Wiki BM25 A 15.8 78.8

(d) SPAR (RocketQA + A=Wiki BM25) 37.7 98.0

Table 4: SPAR results on MS MARCO passage re-
trieval. We consider several options for A, trained with
different objectives (BM25 and UniCOIL) and differ-
ent corpora (MSMARCO and Wikipedia). Full results
are available in Table 9.

In this section, we report our experiments on
the MS MARCO passage retrieval dataset (Bajaj
et al., 2018), a popular IR benchmark with queries
from the Bing search engine and passages from the
web. To highlight the versatility of our approach,
we adopt two dense retrievers in SPAR, ANCE and
RocketQA. (The full results with ANCE experi-
ments and more metrics are shown in Table 9 in the

Appendix.) We further consider two sparse retriev-
ers for training A, BM25 and UniCOIL (Lin and
Ma, 2021), a recent state-of-the-art (SoTA) sparse
retriever, to study whether SPAR training can un-
pack the knowledge from a more advanced teacher
model. Similar to the Wiki training queries, we
create a MARCO corpus for training A. Details
can be found in Appendix B.

As demonstrated in Table 4, SPAR is able to
augment RocketQA with the lexical matching ca-
pacity from either BM25 or UniCOIL, leading to
a performance similar to the hybrid retriever and
again outperforming all existing dense and sparse
retrievers with a MRR @10 of 38.6 (see row group
5 and 4). The fact that SPAR works with not only
DPR and BM25, but other SoTA dense and sparse
retrievers makes SPAR a general solution for com-
bining the knowledge of dense and sparse retrievers
in a single dense model.

One intriguing observation is that SPAR works
better when retrieving more candidates. SPAR
is slightly worse than the hybrid models on
MRR @10, but catches up on R@50 (Table 9), and
even outperforms the hybrid ones when consid-
ering R@1000. This is also observed on ODQA
experiments between R@20 and R@100.

Another interesting phenomenon in both experi-
ments is that while A by itself achieves a slightly
lower performance than the teacher sparse retriever,
the final SPAR model can reach or beat the hy-
brid model when combined with the same dense
retriever. One reason why SPAR outperforms the
hybrid model may be that SPAR is able to perform
an exact “hybrid” of two retrievers since both are
dense models (Eqn. 1), while the real hybrid model
has to rely on approximation. We leave further in-
vestigation in these curious findings to future work.

6 Discussions

In this section, we dive deeper into the A model
with a number of analyses on its behaviors.

6.1 Does A Learn Lexical Matching?

The first and foremost question is whether A actu-
ally learns lexical matching. We conduct a series
of direct and indirect analyses to get more insights.

6.1.1 Rank Biased Overlap with BM25

We first directly compare the predictions of A
against BM25 using rank biased overlap (RBO,
Webber et al., 2010), a similarity measure of ranked
lists. As shown in Table 5, the prediction of DPR

RBO w/ BM25 NQ SQuAD Trivia
DPR .104 .078 170
Wiki A .508 452 505
Perturbed Wiki A .506 453 504
PAQ A .603 478 527

Table 5: Rank Biased Overlap (RBO, Webber et al.,
2010) between BM25 and various dense retrievers on
the dev set. We use the standard p = 0.9 in RBO.

and BM25 are dramatically different from each
other, with a RBO of only 0.1, which is a correla-
tion measure between partially overlapped ranked
lists. In contrast, A achieves a much higher overlap
with BM25 of around 0.5 to 0.6. It also confirms
that query perturbation does not make a difference
in A training as the two variants of Wiki A perform
almost identically.

6.1.2 Stress test: token-shuffled questions

Model Original Shuffled A
@20 @100 @20 @100 @20 @100
DPR 774 847 694 80.1 8.0 4.6
BM25 623 76.0 623 76.0 0.0 0.0
Wiki A 609 749 60.8 749 0.1 0.0
PAQA 627 764 626 762 0.1 02

Table 6: Lexical matching stress test on NQ Dev, using
token-shuffled questions. A maintains its performance
on randomly shuffled queries.

Next, we inspect the lexical matching capacity
of A in an extreme case where the order of tokens
in each question is randomly shuffled. Table 6
indicates that the performance of DPR drops sig-
nificantly on this token-shuffled dataset, while the
bag-of-word BM25 model remains unaffected by
design. On the other hand, both Wiki A and PAQ
A remain highly consistent on this challenge set,
showing great robustness in lexical matching.

6.1.3 Hybrid SPAR + BM25 model

To confirm that SPAR improves DPR’s perfor-
mance by enhancing its lexical matching capability,
we add the real BM25 to SPAR to create a hybrid
model. As demonstrated in Table 7, adding BM25
to SPAR only results in minimal gains, suggesting
that the improvement SPAR made to DPR is indeed
due to better lexical matching. The results indicate
that SPAR renders BM25 almost completely redun-
dant, supporting our main claim.

Model NQ
@20 @100

(d) DPR 79.5 86.1
(h) DPR + BM25 82.6 88.6
(d) sPAR-Wiki 83.0 88.8
(h) SPAR-Wiki + BM25 829 889
(d) SPAR-PAQ 82.7 88.6
(h) SPAR-PAQ + BM25 82.7 88.8

Table 7: The SPAR+BM25 model yields minimal gains
over SPAR, indicating that SPAR does well in lexical
matching and performs similarly to a hybrid model.

6.2 Generalization of A and SPAR

We now focus on another important topic regard-
ing the generality of SPAR. We have shown that
Wiki A achieves a similar performance to PAQ A,
making it often unnecessary to rely on sophisti-
catedly generated queries for training A. A more
exciting finding is that A also has great zero-shot
generalization to other datasets.

In the cross-dataset model generalization sec-
tion of Table 3 and 4, we reported SPAR perfor-
mance on ODQA using the A model built for MS
MARCO and vice versa. In both directions, A has
a high zero-shot performance, and the SPAR per-
formance is close to that using in-domain A. This
suggests that A shares the advantage of better gen-
eralization of a sparse retriever, and it may not be
always necessary to retrain A on new datasets.

6.2.1 Zero-shot performance on

EntityQuestions
Model EQ
@20 @100

(d) DPR 56.6 70.1
(s) BM25 70.8 79.2
(h) DPR + BM25 733 823
(d) Wiki A 684 775
(d) PAQ A 69.4 78.6
(d) SPAR 73.6 815
(d) SPAR-PAQ 74.0 82.0

Table 8: Zero-shot performance on the EntityQues-
tions (Sciavolino et al., 2021) dataset. We report micro-
average instead of macro-average in the original paper.

A concurrent work (Sciavolino et al., 2021)
also identifies the lexical matching issue of dense
retrievers, focusing specifically on entity-centric
queries. They create a synthetic dataset containing
simple entity-rich questions, where DPR performs
significantly worse than BM25. In Table 8, we
evaluate SPAR on this dataset in a zero-shot set-
ting without any re-training, other than tuning the
concatenation weight on the development set. The
result further confirms the generalization of SPAR.
A transfers much better to this dataset than DPR,
achieving a slightly lower performance than BM25.
When A is combined with DPR in SPAR, the gap
is once again bridged, and SPAR achieves a higher
R @20 than the hybrid model, and overall an im-
provement of 17.4 points over DPR.

7 Conclusion

In this paper, we propose SPAR, a salient-phrase
aware dense retriever, which can augment any
dense retriever with the lexical matching capacity
from any given sparse retriever. This is achieved
by training a dense model A to imitate the behav-
ior of the teacher sparse retriever, the feasibility
of which remained unknown until this work. In
the experiments, we show that SPAR outperforms
previous state-of-the-art dense and sparse retriev-
ers, matching or even beating more complex hy-
brid systems, on five open-domain question an-
swering benchmarks and the MS MARCO passage
retrieval dataset. Furthermore, SPAR is able to
augment any dense retriever such as DPR, ANCE
or RocketQA, with knowledge distilled from not
only BM25, but more advanced sparse retrievers
like UniCOIL, highlighting the generality of our
approach. In addition, we show that A indeed
learns lexical matching, and generalizes well to
other datasets in a zero-shot fashion.

For future work we plan to explore if a dense
retriever can be trained to learn lexical matching
directly without relying on a teacher model. This
way, we can avoid imitating the errors of the sparse
retriever, and devise new ways of training dense
retrievers that can potentially surpass hybrid mod-
els. Moreover, there are several intriguing findings
in this work that may warrant further study, such
as why SPAR’s R@Fk improves relatively to the hy-
brid model as k increases, and why joint training is
less effective than post-hoc vector concatenation.

References

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng,
Jianfeng Gao, Xiaodong Liu, Rangan Majumder,
Andrew McNamara, Bhaskar Mitra, Tri Nguyen,
Mir Rosenberg, Xia Song, Alina Stoica, Saurabh
Tiwary, and Tong Wang. 2018. MS MARCO: A
human generated machine reading comprehension
dataset.

Petr Baudi§ and Jan Sedivy. 2015. Modeling of the
question answering task in the yodaga system. In
Experimental IR Meets Multilinguality, Multimodal-
ity, and Interaction, pages 222-228, Cham. Springer
International Publishing.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on Freebase from
question-answer pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1533—-1544, Seattle, Wash-
ington, USA. Association for Computational Lin-
guistics.

Zhuyun Dai and Jamie Callan. 2020. Context-Aware
Term Weighting For First Stage Passage Retrieval,
page 1533-1536. Association for Computing Ma-
chinery, New York, NY, USA.

Mostafa Dehghani, Hamed Zamani, Aliaksei Severyn,
Jaap Kamps, and W. Bruce Croft. 2017. Neural rank-
ing models with weak supervision. In Proceedings
of the 40th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
SIGIR 17, page 65-74, New York, NY, USA. Asso-
ciation for Computing Machinery.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Luyu Gao, Zhuyun Dai, and Jamie Callan. 2021.
COIL: Reyvisit exact lexical match in information
retrieval with contextualized inverted list. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
3030-3042, Online. Association for Computational
Linguistics.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with gpus. [EEE
Transactions on Big Data, 7(3):535-547.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke
Zettlemoyer. 2017. TriviaQA: A large scale dis-
tantly supervised challenge dataset for reading com-
prehension. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics

(Volume 1: Long Papers), pages 1601-1611, Van-
couver, Canada. Association for Computational Lin-
guistics.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 6769—
6781, Online. Association for Computational Lin-
guistics.

Omar Khattab and Matei Zaharia. 2020. Colbert: Effi-
cient and effective passage search via contextualized
late interaction over bert. In Proceedings of the 43rd
International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR
’20, page 3948, New York, NY, USA. Association
for Computing Machinery.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Al-
berti, Danielle Epstein, Illia Polosukhin, Jacob De-
vlin, Kenton Lee, Kristina Toutanova, Llion Jones,
Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai,
Jakob Uszkoreit, Quoc Le, and Slav Petrov. 2019.
Natural questions: A benchmark for question an-
swering research. Transactions of the Association
for Computational Linguistics, 7:452-466.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova.
2019. Latent retrieval for weakly supervised open
domain question answering. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 6086—6096, Florence,
Italy. Association for Computational Linguistics.

Patrick Lewis, Pontus Stenetorp, and Sebastian Riedel.
2021a. Question and answer test-train overlap in
open-domain question answering datasets. In Pro-
ceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 1000-1008, Online.
Association for Computational Linguistics.

Patrick Lewis, Yuxiang Wu, Linqging Liu, Pasquale
Minervini, Heinrich Kiittler, Aleksandra Piktus, Pon-
tus Stenetorp, and Sebastian Riedel. 2021b. PAQ: 65
million probably-asked questions and what you can
do with them. arXiv preprint.

Jimmy Lin and Xueguang Ma. 2021. A few brief notes
on deepimpact, coil, and a conceptual framework for
information retrieval techniques.

Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin, Jheng-
Hong Yang, Ronak Pradeep, and Rodrigo Nogueira.
2021a. Pyserini: A Python Toolkit for Repro-
ducible Information Retrieval Research with Sparse
and Dense Representations, page 2356-2362. Asso-
ciation for Computing Machinery, New York, NY,
USA.

http://arxiv.org/abs/1611.09268
http://arxiv.org/abs/1611.09268
http://arxiv.org/abs/1611.09268
http://arxiv.org/abs/1611.09268
http://arxiv.org/abs/1611.09268
https://aclanthology.org/D13-1160
https://aclanthology.org/D13-1160
https://aclanthology.org/D13-1160
https://doi.org/10.1145/3397271.3401204
https://doi.org/10.1145/3397271.3401204
https://doi.org/10.1145/3397271.3401204
https://doi.org/10.1145/3077136.3080832
https://doi.org/10.1145/3077136.3080832
https://doi.org/10.1145/3077136.3080832
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2021.naacl-main.241
https://doi.org/10.18653/v1/2021.naacl-main.241
https://doi.org/10.18653/v1/2021.naacl-main.241
https://doi.org/10.1109/TBDATA.2019.2921572
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.18653/v1/P19-1612
https://doi.org/10.18653/v1/P19-1612
https://doi.org/10.18653/v1/P19-1612
https://aclanthology.org/2021.eacl-main.86
https://aclanthology.org/2021.eacl-main.86
https://aclanthology.org/2021.eacl-main.86
http://arxiv.org/abs/2102.07033
http://arxiv.org/abs/2102.07033
http://arxiv.org/abs/2102.07033
http://arxiv.org/abs/2102.07033
http://arxiv.org/abs/2102.07033
http://arxiv.org/abs/2106.14807
http://arxiv.org/abs/2106.14807
http://arxiv.org/abs/2106.14807
http://arxiv.org/abs/2106.14807
http://arxiv.org/abs/2106.14807
https://doi.org/10.1145/3404835.3463238
https://doi.org/10.1145/3404835.3463238
https://doi.org/10.1145/3404835.3463238
https://doi.org/10.1145/3404835.3463238
https://doi.org/10.1145/3404835.3463238

Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy Lin.
2021b. In-batch negatives for knowledge distillation
with tightly-coupled teachers for dense retrieval. In
Proceedings of the 6th Workshop on Representation
Learning for NLP (RepL4NLP-2021), pages 163—
173, Online. Association for Computational Linguis-
tics.

Linqging Liu, Patrick Lewis, Sebastian Riedel, and Pon-
tus Stenetorp. 2021. Challenges in generalization in
open domain question answering. arXiv preprint.

Yi Luan, Jacob Eisenstein, Kristina Toutanova, and
Michael Collins. 2021. Sparse, Dense, and Atten-
tional Representations for Text Retrieval. Transac-
tions of the Association for Computational Linguis-
tics, 9:329-345.

Xueguang Ma, Kai Sun, Ronak Pradeep, and Jimmy
Lin. 2021. A replication study of dense passage re-
triever. arXiv preprint.

Jean Maillard, Vladimir Karpukhin, Fabio Petroni,
Wen-tau Yih, Barlas Oguz, Veselin Stoyanov, and
Gargi Ghosh. 2021. Multi-task retrieval for
knowledge-intensive tasks. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 1098—1111, Online. As-
sociation for Computational Linguistics.

Antonio Mallia, Omar Khattab, Torsten Suel, and
Nicola Tonellotto. 2021. Learning passage impacts
for inverted indexes. In Proceedings of the 44th
International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR
’21, page 1723-1727, New York, NY, USA. Associ-
ation for Computing Machinery.

Rodrigo Nogueira and Jimmy Lin. 2019. From
doc2query to docTTTTTquery. Technical report,
University of Waterloo.

Barlas Oguz, Kushal Lakhotia, Anchit Gupta, Patrick
Lewis, Vladimir Karpukhin, Aleksandra Piktus,
Xilun Chen, Sebastian Riedel, Wen tau Yih, Sonal
Gupta, and Yashar Mehdad. 2021. Domain-matched
pre-training tasks for dense retrieval. arXiv preprint.

Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang
Ren, Wayne Xin Zhao, Daxiang Dong, Hua Wu,
and Haifeng Wang. 2021. RocketQA: An opti-
mized training approach to dense passage retrieval
for open-domain question answering. In Proceed-
ings of the 2021 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
5835-5847, Online. Association for Computational
Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of

10

the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383-2392, Austin,
Texas. Association for Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2021. The curse
of dense low-dimensional information retrieval for
large index sizes. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 2:
Short Papers), pages 605-611, Online. Association
for Computational Linguistics.

Stephen E. Robertson and Steve Walker. 1994. Some
simple effective approximations to the 2-poisson
model for probabilistic weighted retrieval. In SIGIR
"94, pages 232-241, London. Springer London.

Christopher Sciavolino, Zexuan Zhong, Jinhyuk Lee,
and Dangi Chen. 2021. Simple entity-centric ques-
tions challenge dense retrievers. In Proceedings of
the 2021 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP-2021).

Nandan Thakur, Nils Reimers, Andreas Riicklé, Ab-
hishek Srivastava, and Iryna Gurevych. 2021. BEIR:
A heterogenous benchmark for zero-shot evaluation

of information retrieval models. arXiv preprint
arXiv:2104.08663.

William Webber, Alistair Moffat, and Justin Zobel.
2010. A similarity measure for indefinite rankings.
ACM Transactions on Information Systems, 28(4).

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang,
Jialin Liu, Paul N. Bennett, Junaid Ahmed, and
Arnold Overwijk. 2021. Approximate nearest neigh-
bor negative contrastive learning for dense text re-
trieval. In International Conference on Learning
Representations.

Nan Yang, Furu Wei, Binxing Jiao, Daxing Jiang, and
Linjun Yang. 2021. xMoCo: Cross momentum con-
trastive learning for open-domain question answer-
ing. In Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics and
the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 6120-6129, Online. Association for Computa-
tional Linguistics.

https://doi.org/10.18653/v1/2021.repl4nlp-1.17
https://doi.org/10.18653/v1/2021.repl4nlp-1.17
https://doi.org/10.18653/v1/2021.repl4nlp-1.17
http://arxiv.org/abs/2109.01156
http://arxiv.org/abs/2109.01156
http://arxiv.org/abs/2109.01156
https://doi.org/10.1162/tacl_a_00369
https://doi.org/10.1162/tacl_a_00369
https://doi.org/10.1162/tacl_a_00369
http://arxiv.org/abs/2104.05740
http://arxiv.org/abs/2104.05740
http://arxiv.org/abs/2104.05740
https://doi.org/10.18653/v1/2021.acl-long.89
https://doi.org/10.18653/v1/2021.acl-long.89
https://doi.org/10.18653/v1/2021.acl-long.89
https://doi.org/10.1145/3404835.3463030
https://doi.org/10.1145/3404835.3463030
https://doi.org/10.1145/3404835.3463030
https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf
https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf
https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf
http://arxiv.org/abs/2107.13602
http://arxiv.org/abs/2107.13602
http://arxiv.org/abs/2107.13602
https://doi.org/10.18653/v1/2021.naacl-main.466
https://doi.org/10.18653/v1/2021.naacl-main.466
https://doi.org/10.18653/v1/2021.naacl-main.466
https://doi.org/10.18653/v1/2021.naacl-main.466
https://doi.org/10.18653/v1/2021.naacl-main.466
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/2021.acl-short.77
https://doi.org/10.18653/v1/2021.acl-short.77
https://doi.org/10.18653/v1/2021.acl-short.77
https://doi.org/10.18653/v1/2021.acl-short.77
https://doi.org/10.18653/v1/2021.acl-short.77
https://arxiv.org/abs/2104.08663
https://arxiv.org/abs/2104.08663
https://arxiv.org/abs/2104.08663
https://arxiv.org/abs/2104.08663
https://arxiv.org/abs/2104.08663
https://doi.org/10.1145/1852102.1852106
https://openreview.net/forum?id=zeFrfgyZln
https://openreview.net/forum?id=zeFrfgyZln
https://openreview.net/forum?id=zeFrfgyZln
https://openreview.net/forum?id=zeFrfgyZln
https://openreview.net/forum?id=zeFrfgyZln
https://doi.org/10.18653/v1/2021.acl-long.477
https://doi.org/10.18653/v1/2021.acl-long.477
https://doi.org/10.18653/v1/2021.acl-long.477
https://doi.org/10.18653/v1/2021.acl-long.477
https://doi.org/10.18653/v1/2021.acl-long.477

MS MARCO Dev Set

Model MRR@10 R@50 R@1000
(s) BM25 18.7 59.2 85.7
(s) UniCOIL (Lin and Ma, 2021) 35.2 80.7 95.8
(d) MARCO BM25 A 17.3 56.3 83.1
(d) MARCO UniCOIL A 34.1 82.1 97.0
(d) ANCE (Xiong et al., 2021) 33.0 79.1 95.9
(d) TCT-ColBERT (Lin et al., 2021b) 35.9 ; 97.0
(d) RocketQA (Qu et al., 2021) 37.0 84.7 97.7
(h) ANCE + BM25 34.7 81.6 96.9
(h) RocketQA + BM25 38.1 85.9 98.0
(h) ANCE + UniCOIL 37.5 84.8 97.6
(h) RocketQA + UniCOIL 38.8 86.5 97.3
(d) SPAR (ANCE + A=MARCO BM25) 344 81.5 97.1
(d) SPAR (RocketQA + A=MARCO BM25) 37.9 85.7 98.0
(d) SPAR (ANCE + A=MARCO UniCOIL) 36.9 84.6 98.1
(d) SPAR (RocketQA + A=MARCO UniCOIL) 38.6 86.3 98.5
Cross-dataset model generalization

(d) Wiki BM25 A 15.8 50.8 78.8
(d) SPAR (ANCE + A=Wiki BM25) 34.4 81.5 97.0
(d) SPAR (RocketQA + A=Wiki BM25) 37.7 85.3 98.0

Table 9: SPAR results on MS MARCO passage retrieval. We consider several options for A, trained with different
objectives (BM25 and UniCOIL) and different corpora (MSMARCO and Wikipedia). For ANCE and RocketQA,
we use the released checkpoints and our evaluation scripts. We matched public numbers in most cases, but we
were unable to reproduce the R@50 and R@ 1000 reported by RocketQA.

A Complete Results for MS MARCO Passage Retrieval

Table 9 shows the full results on MS MARCO, with an additional column reporting R@50 in addition to
MRR @10 and R@1000. In Table 9, two state-of-the-art dense retrievers are considered in SPAR, namely
ANCE and RocketQA. The conclusions drawn for RocketQA in Table 4 in the main paper stays the same
for ANCE, further strengthening the generality of our approach.

B Implementation Details

For the Wiki training queries for A, we randomly sample sentences from each passage (following the DPR
passage split of Wikipedia) following a pseudo-exponential distribution while guaranteeing at least one
sentence is sampled from each passage. The pseudo-exponential distribution would select more sentences
in the first few passages of each Wikipedia document, as they tend to contain more answers, resulting in
a collection of 37 million sentences (queries) out of 22M passages. However, early experiment showed
that sampling uniformly worked almost equally well. For the MS MARCO passage collection, we use all
sentences as training queries without sampling, leading to a total of 28M queries out of 9M passages.

We train A for 3 days on 64 GPUs with a per-GPU batch size of 32 and a learning rate of 3e—>5 (roughly
20 epochs for Wiki A and MARCO A, and 10 epochs for PAQ A). The remaining hyper-parameters are
the same as in DPR, including the BERT-base encoder and the learning rate scheduler. For Wiki and
PAQ A, we use NQ dev as the validation queries, and MS MARCO dev for MARCO A. For the dense
retrievers used in SPAR, we directly take the publicly released checkpoints without re-training to combine
with A. We use Pyserini (Lin et al., 2021a) for all sparse models used in this work including BM25 and
UniCOIL.

11

For tuning the concatenation weights p, we do a grid search on [0.1, 1.0] (step size 0.1) as well as their
reciprocals, resulting in a total of 19 candidates ranging from 0.1 to 10. The best p is selected using the
best R@100 for ODQA (§5.1) and MRR @10 for MS MARCO (§5.2) on the development set for each
experiment.

12

