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ABSTRACT

To support daily human tasks, robots need to tackle intricate, long-term tasks and
continuously acquire new skills to handle new problems. Deep reinforcement
learning (DRL) offers potential for learning fine-grained skills but relies heavily
on human-defined rewards and faces challenges with long-horizon tasks. Task and
Motion Planning (TAMP) are adept at handling long-horizon tasks but often need
tailored domain-specific skills, resulting in practical limitations and inefficiencies.
To address these challenges, we developed LEAGUE++, a framework that lever-
ages Large Language Models (LLMs) to harmoniously integrate TAMP and DRL
for continuous skill learning in long-horizon tasks. Our framework achieves auto-
matic task decomposition, operator creation, and dense reward generation for ef-
ficiently acquiring the desired skills. To facilitate new skill learning, LEAGUE++
maintains a symbolic skill library and utilizes the existing model from semantic-
related skill to warm start the training. Our method, LEAGUE++, demonstrates
superior performance compared to baselines across four challenging simulated
task domains. Furthermore, we demonstrate the ability to reuse learned skills to
expedite learning in new task domains.

1 INTRODUCTION

For robots to aid in daily human tasks, they need to tackle intricate long-term challenges and adapt
to unfamiliar situations. While modern deep reinforcement learning (RL) techniques are promising
for complete autonomous learning, they often fall short in achieving extended objectives in vast set-
tings. Conversely, Task and Motion Planning (TAMP) methods are adept at addressing and adapting
to long-term tasks due to their robust state and action abstracts. However, their reliance on predeter-
mined skills restricts their practical use in real-world scenarios.

In an effort to overcome the constraints of both TAMP and RL, LEAGUE Cheng & Xu (2023)
presents a comprehensive integration of the two methodologies. The core aim of LEAGUE is to
equip robots with the proficiency to manage complex long-horizon tasks and to reuse their acquired
skills in a wide range of situations. Nevertheless, the present methodology necessitates substantial
prior knowledge input from humans. Specifically, humans are required to delineate certain symbolic
operators for task planning and establish reward functions for the RL training process. While this
approach has shown promise in enabling continuous skill acquisition efficiently, the time-intensive
nature of designing symbolic operators and reward functions, along with the task-specific manual
crafting of these functions, presents significant limitations. These constraints hinder the scalability
of skill learning, particularly in real-world scenarios where robots regularly encounter new chal-
lenges, necessitating the continuous and automatic acquisition of skills through lifelong learning.

Recent studies, including those by Ahn et al. (2022); Singh et al. (2022); Driess et al. (2023); Wang
et al. (2023); Ma et al. (2023), have sought to utilize Large Language Models (LLMs) to reduce
human effort in the development of task designs and reward functions, aiming to achieve partial
automation within their frameworks. However, the majority of these studies have employed an
offline, one-shot approach, which necessitates the foundational model to generate reward function
codes in a freeform manner. These methods heavily rely on the syntactic and semantic correctness
of the outputs from large language models (LLMs). Unfortunately, generating content freely from
LLMs is frequently prone to inaccuracies Huang et al. (2023a), and these papers do not consider
acquiring skills in the context of long-horizon tasks. Moreover, the offline nature of these methods
hampers the potential for achieving continuous skill learning within their frameworks. Given these
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constraints, using Large Language Models (LLMs) for code generation in lifelong learning becomes
challenging.
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Figure 1: The overall framework of the LEAGUE++. We present a framework that utilizes LLMs
to guide continual learning. We integrated LLMs to handle task decomposition and operator creation
for TAMP, and generate dense rewards for RL skill learning, which can achieve online autonomous
learning for long-horizon tasks. We also use a semantic skills library to enhance learning efficiency
for new skills.
To overcome the limitations of previous works, we introduce LEAGUE++ (depicted in Fig. 1). This
enhanced framework combines the strengths of LLMs for task decomposition, TAMP for defining
skill boundaries and abstract environment state, and RL for skill learning, thereby overcoming the
limitations of previous approaches. LEAGUE++ automates the breakdown of complex tasks by
leveraging TAMP for abstracting the environment’s state and defining skill limits, and then utiliz-
ing LLMs for detailed planning within those limits, significantly enhancing skills’ accuracy and
reusability. Each skill outlined in the plan is utilized as curriculum during training sessions, with an
LLM-based reward generator providing dense rewards for each to boost efficiency. Furthermore, to
prevent hallucinations by LLMs, LEAGUE++ employs metric functions for reward generation. This
approach simplifies a complex coding challenge into an easily manageable selection task, thereby
increasing generation accuracy. Lastly, LEAGUE++ features a symbolic skill library designed for
efficient skill retrieval, facilitating skill reuse during training. With these advancements, we enhance
the system’s capability to continually expand its skill set across different problem domains.

With comprehensive experiments, LEAGUE++ has shown to outperform its predecessor LEAGUE
and other leading RL-based methods in four intricate table-top manipulation tasks. Our ablation
studies further validate LEAGUE++’s capability to generate rewards for long-horizon tasks ef-
fectively, showcasing its reliability for continuous learning and its potential for lifelong learning.
To summarize, our key contributions include: 1) employing LLMs to facilitate continuous learn-
ing through automating task planning, skills creating, and dense reward generation; 2) Refining
LLMs’ generation by giving them structured optional context and limiting their responses rather
than freeform code generation; 3) Improving the acquisition of new skills by utilizing a symbolic
skills library to reuse learned skills during training. With these advancements in League++, we
have significantly increased the framework’s scalability across various problem domains, enabling
continuous skill learning in long-horizon tasks.

2 RELATED WORK

2.1 LANGUAGE GUIDED REWARD DESIGN

In RL, the concept of LLM-guided reward design has emerged as a key method, utilizing lan-
guage instructions and LLMs to boost agent performance and efficiency. Early efforts Goyal et al.
(2019a;b) showcased the potential of using natural language to guide reward shaping, improving task
completion rates in complex environments like the Atari Learning Environment. Then, the advent of
frameworks like Yu et al. (2023); Anonymous (2024); Ma et al. (2023) marked a pivotal shift towards
automating the generation of reward function codes using LLMs which outperform expert-crafted
rewards in various domains. However, LLM-based reward generators may not suit long-horizon
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tasks and lifelong learning due to potential syntax errors and irrelevant content creation. Methods
like EUREKA Ma et al. (2023) require a significant amount of time to develop rewards for individ-
ual skills. This process becomes increasingly prone to errors as tasks grow more complex. To solve
these limitations, we propose to use LLMs to select metric functions from a human-designed func-
tions library, streamlining reward function creation and reducing errors for these complex problem
domains.

2.2 LLMS FOR PLANNING AND DECISION MAKING

LLMs have significantly transformed how robots plan and make decisions, driven by key research
Ahn et al. (2022); Rana et al. (2023); Singh et al. (2022); Huang et al. (2023b). These studies
demonstrate LLMs’ ability to understand intricate commands, create action plans, and convert nat-
ural language into executable actions, thereby improving robot autonomy. Innovations such as dy-
namic replanning and corrective strategies Joublin et al. (2023), coordination in collaborative tasks
Chen et al. (2023), and the merger of perception with language models for instant task modifica-
tions Skreta et al. (2024) underscore LLMs’ transformative effect on robotics. Our research aims to
leverage LLMs to generate the necessary skills and plans for each task, advancing the creativity of
LLMs to enable the scalability of our framework across problem domains.

2.3 TAMP AND LEARNING FOR TAMP

Task and Motion Planning (TAMP) Kaelbling & Lozano-Pérez (2011; 2013); Garrett et al. (2021)
offers a robust framework for tackling intricate manipulation activities across broad time frames. In
detail, TAMP breaks down complex planning challenges into a sequence of symbolic-continuous
subtasks, which simplifies the problem-solving process. However, the successful deployment of
TAMP solutions requires skills that necessitate extensive expert domain knowledge in design. To
address these limitations, recent efforts have been made to combine TAMP with involved models ac-
quired by identifying skill preconditions and outcomes Konidaris et al. (2018); Liang et al. (2022);
Silver et al. (2022). For example, Konidaris et al. (2018) generates symbolic models via exper-
imental iterations, whereas Liang et al. (2022) utilizes graph neural networks for understanding
skill impacts. However, such methods still depend on the manual creation of detailed skill sets de-
signed to accomplish the task. To address these problems, the methodologies proposed by Silver
et al. (2022) and Cheng & Xu (2023) enhance TAMP systems through learned skill policies and
also leverage TAMP system for state action abstraction. This synthesis allows TAMP to serve as
a curriculum guiding DRL learning and simultaneously incorporates DRL-learned skills as atomic
components within TAMP’s planning process which significantly improves its ability to tackle con-
textually complex tasks.

2.4 CURRICULUM FOR RL

Curriculum Learning significantly enhances Reinforcement Learning (RL) by systematically assist-
ing agents in skill acquisition, aiming for the mastery of complex final goals Narvekar et al. (2020).
Previous research, such as Fang et al. (2021); Dong et al. (2021); Asselmeier et al. (2023), designs
various curricula as different environment setups to improve model robustness. Other studies, like
Sharma et al. (2021); Uchendu et al. (2023), focus on identifying specific subgoals. For instance,
JumpStart Uchendu et al. (2023) employs a strategy that leverages pre-learned skills to accelerate
the mastery of new tasks. Approaches such as Cheng & Xu (2023) utilize task planners to break
down long-horizon tasks into atomic tasks, with each atomic task serving as a learning curriculum.
Similar to Cheng & Xu (2023), our method utilizes a task planner to decompose long-horizon tasks
into skill curricula, enabling their flexible combination and potential reuse in future curricula.

3 METHODS

To address the need for excessive domain-specific knowledge in creating symbolic operators and
dense rewards, League++ employs LLMs’ innate common sense to generate solutions with respect to
different problem domains. At the same time, to enhance the LLMs generator’s output for planning
and dense reward generation, League++ incorporates structure information of the TAMP to constrain
the generation by providing a closed-set context. Furthermore, to improve skill reusability and skill
learning efficiency across different problem domains, League++ maintains a library of all learned
symbolic skills to warm-start the training. With advancements in League++, we have enhanced the
scalability of the framework for continuous skill learning in long-horizon tasks. We present the
technical details in the following sections. The diagram of our framework is shown in Fig. 1
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3.1 BACKGROUND

TAMP. To regularize the generation of LLMs models for both plans and rewards, we have adopted
the symbolic planning interface ⟨O,Λ,Ψ,Ω⟩ from Task and Motion Planning (TAMP). Each ob-
ject o ∈ O within the environment (for example, hole1), possesses a specific type λ ∈ Λ
(such as hole) and a tuple of dim(λ)-dimensional features containing information such as pose
and size. The symbolic definition of each skill restricts the state representation to be skill-related:
x̂ ∈ Rdim(type(o)). Predicate ψ ∈ Ψ defines a propositional spatial relationship between objects and
between objects and the robot. A predicate ψ, such as In(?object:peg,?object:hole),
holding(?object:peg), is defined by a tuple of object types (λ1, . . . , λm) and a binary clas-
sifier cψ : X × Om → {True, False}. This classifier determines whether the relationship holds,
with each substitute entity oi ∈ O constrained to have a type λi ∈ Λ.

MDP. The motion of any generated symbolic skills can be represented as a Markov Decision Pro-
cess (MDP) denoted by ⟨X,A,R(x, a), T (x′|x, a), p(x(0)), γ⟩. With Continuous State Space X ,
Continuous Action Space A, Reward Function R, Environment Transition Model T , Distribution
of Initial States p(x(0)), Discount Factor γ. The objective for DRL training is to maximize the ex-
pected total reward J of the policy π(a|x) that the agent employs to interact with the environment:
J = Ex(0),x(1),...,x(H)∼π,p(x(0))

[∑
t γ

tR(x(t))
]
.

3.2 LLM-BASED TASK DECOMPOSITION AND SKILL CREATION

To reduce the domain knowledge required to design valid skills for TAMP, we propose leveraging
the web-scale, rich semantic knowledge from LLMs to decompose the task and create reusable,
atomic skills. LLMs have proven to excel at task understanding and semantic reasoning, as explored
in previous work Huang et al. (2022a;b). However, they face challenges with hallucination - their
generated task plans often disregard the constraints between adjacent skills and may “hallucinate”
impossible action effects, leading to non-executable task plans.

To address these issues, we propose utilizing readily available structural information from the TAMP
system. Specifically, the LLMs planner starts by receiving the objects o ∈ O, the initial state ψinit ∈
Ψ and the end goal ψgoal ∈ Ψ of the task, and is designed to generate a sequence of atomic symbolic
skills ω ∈ ΩLLM specifically tailored to achieve the task’s end goals from the initial state. Each
symbolic skill is defined by the tuple ⟨Obj,Pre,Eff⟩, where Obj refers to the object with which
the skill interacts, Pre denotes the precondition specifying the minimum conditions necessary for
the skill’s execution, and Eff represents the set of predicates describing the skill’s objective and the
expected effects resulting from the successful execution of the skill.

To enhance the accuracy of
planning, we have incorporated
an A* plan checker to confirm
the correctness of the symbolic
skill plan output. This method
detects two types of errors: ei-
ther the current set of symbolic
skills is insufficient for achiev-
ing the task’s end goal, or the
order of the symbolic skills is
incorrect. If the verification
process fails, corresponding er-
ror feedback is given to the
LLMs planner for the regener-
ation of the plan.

Algorithm 1 LLM Planning Algorithm

1: Input:
2: ψinit ▷ Task Initial State
3: ψgoal ▷ Task End Goal
4: Ψ ▷ Set of all predicates
5: Start:
6: Ω̄LLM, is valid, error feedback← [], False,None
7: ▷ Initialize LLM plan and error feedback
8: while not is valid do
9: Ω̄LLM = LLM Planner(ψinit, ψgoal,Ψ, error feedback)

10: is valid, error feedback = A* planner checker(Ω̄LLM)
11: end while
12: return Ω̄LLM

As such, our LLMs planner relaxes the need for expert domain knowledge by leveraging the innova-
tive capabilities of LLMs. At the same time, it provides a closed-set context to the LLMs and guides
its generation with the logical and physical constraints of the environment by utilizing the structured
information defined in the TAMP. Additionally, by integrating an A* plan checker to ensure the cor-
rectness of the final plan, we significantly minimize the chances of our LLMs planner producing an
incorrect plan.
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3.3 LLM-BASED REWARD GENERATION

Dense rewards are crucial for reinforcement learning, providing immediate feedback to shape an
agent’s behavior. However, traditional human-crafted dense rewards are typically tailored to spe-
cific problems and require considerable effort, presenting challenges for continuous and lifelong
learning scenarios where agents are constantly exposed to diverse new tasks. To solve this problem,
some LLM-based reward generators have been introduced Anonymous (2024); Ma et al. (2023).
However, LLM-based generation methods like Eureka Ma et al. (2023) suffer from inefficiency, as
it utilize evolutionary search that samples several independent outputs from the LLMs, which de-
mands excessive in-context feedback for iteration. Moreover, these methods, primarily used for code
generation, can lead to incorrect or unfeasible code, especially when complex, long-horizon tasks
result in lengthy outputs. We therefore propose utilizing metric functions to tackle these challenges.

Metric Function µ ∈ M defines a quantitative spatial relationship between objects and between
objects and the robot. These relationships are defined by a tuple of object types (λ1, . . . , λm) and a
continuous function cψ : X ×Om → [0, 1]. This normalized continuous function reflects the quan-
titative value of the relationship. For example, dis to obj(?object : object) defines the distance
between the gripper and the object. More metric functions are shown in Table. 6.2

Metric functions offer numerous advantages in our context. Instead of generating code from scratch,
we simplify this problem by letting LLMs to choose metric functions and their weights to populate
the dense rewards. This strategy enhances success rates of generating usable reward functions by
constraining the solution space of LLMs, thus avoiding irrelevant outputs that may not pertain to the
task. Additionally, the semantic information derived from the metric functions’ code aids the LLMs
in composing reward function that aligns well with task objectives. We assume a finite set of metric
functions to describe object interactions as the common relationships and attributes of objects in
daily tasks Krishna et al. (2017) can be treated as limited.

To better harness the LLMs’ proficiency in code interpretation and task comprehension, we in-
put the source code of metric functions, along with skill headers ⟨Obj,Pre,Eff⟩, into the LLMs
Generator. As an example, the metric function dis to obj with its corresponding code provides
semantic information that helps the LLMs understand its purpose is to move the gripper closer to an
object. Subsequently, the reward generator is tasked with generating dense rewards by carefully se-
lecting relevant metric functionsMLLMs = {µ1, µ2, ..., µn} ⊆M and assigning appropriate weights
WLLMs = {w1, w2, ..., wn} where

∑n
i=1 wi = 1 to indicate their significance to the sparse reward

Eff.

We also define sparse rewards generated by predicates (i.e., the agent receives 1.0 when all predi-
cates that characterize the desired effect of the skill are satisfied) to complement the dense reward
constructed by LLMs. This approach facilitates more robust learning for the agent, enabling the
acquisition of nuanced behaviors and the attainment of the expected effects of each skill. Finally,
the task reward at any given time t is determined by:

RLLMs(x
(t)) =Max[RD, RS ]

where:

RD =
∑
i

wi · µi(x(t)) ∀µi ∈MLLMs,∀wi ∈WLLMs

RS =

{
1 if

∧
j ψj(x

(t)) for ψj ∈ Eff
0 otherwise

Where RD is dense reward, and RS is sparse reward.

The figure of this section is shown in Fig. 5

Skill Learning. With the LLMs generated reward function, we can then optimize the policy
corresponding to each symbolic skill with RL by maximizing the expected total reward: J =
Ex(0),x(1),...,x(H)∼π,p(x(0))

[∑
t γ

tRLLMs(x
(t)) + αH(π(·|x̂(t)))

]
. We adopt SAC Haarnoja et al.

(2018) to optimize the skill policy, where H(·) is the entropy term. A skill example is shown in
Table. 6.1

5



Under review as a conference paper at ICLR 2024

3.4 ACCELERATE LEARNING WITH SYMBOLIC SKILL LIBRARY

So far, we have described how to leverage the rich semantic knowledge from LLMs to guide task
decomposition and skill optimization. Another important requirement for lifelong learning is to
effectively reuse existing knowledge to accelerate the learning of new tasks in new domains. Our
idea is that the semantically-similar skill operators should share low-level behaviors as well. For
example, opening a refrigerator and opening a door may require similar behaviors and interactions.
Therefore, the policy models for existing skills should provide good initialization to warm-start the
learning of new skills in novel domains.

Based on this, we propose a novel storage solution — symbolic skill library. Each element in
our symbolic skill library is a pair of symbolic operator ω ≜ ⟨Obj,Pre,Eff⟩ and a correspond-
ing neural network weight. To utilize the skills stored in our library, for any new skills that need
to be acquired, we first obtain their feature representation by extracting the LLMs embeddings of
their symbolic description (i.e., ⟨Obj,Pre,Eff⟩), we then identify the most similar (In our im-
plementation, we use cosine similarity) existing skills and use its weights to initialize the new skill
policy as a warm start for training. For every skill learned, LEAGUE++ stores its skill definition
⟨Obj,Pre,Eff⟩ and its weight in the symbolic skills library. The diagram of the section can be
founded in Fig. 1

4 EXPERIMENT

In this section, we aim to evaluate the performance of our framework LEAGUE++. We will compare
our framework with previous baselines in four different tasks. Furthermore, we will verify the
feasibility of our reward generator for enhancing continuous learning through ablation studies.

4.1 EXPERIMENTAL SETUP

We conduct experiments in four simulated domains. We devise tasks that require multi-step reason-
ing, contact-rich manipulation, and long-horizon interactions. The initial state and final state of the
tasks are shown in Fig. 2

PegInHole

StackAtTarget

      Initial State       Goal State

      Initial State       Goal State

StowHammer

      Initial State       Goal State

      Initial State       Goal State

ServeCoffee

Figure 2: Environment Setup Four simulated
domains for four tasks that require multi-step
reasoning, contact-rich manipulation, and long-
horizon interactions. They are StackAtTarget,
StowHammer, PegInHole, and ServeHammer. .

StackAtTarget is to stack two cubes on a
tight target region with a specific order. Since
the cubes are randomly placed in the scene, the
LLMs planner needs to make different skills to
accomplish this task according to different ini-
tial states. For instance, if the second cube al-
ready occupies the target position initially, the
robot must relocate it away from the target be-
fore sequentially stacking both cubes in the tar-
get area. This task serves to demonstrate the
adaptability of our LLMs Planner in formulat-
ing plans that accommodate diverse initial con-
ditions.

StowHammer is to stow two hammers into two closed cabinets. In this task, the LLMs Planner
needs to make four different skills Pick, Place, OpenCabinet, and CloseCabinet and
arrange them in the correct order to put the two hammers into the cabinets. Since this long-horizon
task contains 8 steps, this task can well verify the accuracy of our planning system.

PegInHole is to pick up and insert two pegs into two horizontal holes. The planner needs to make
two skills Pick and Insert to accomplish this task. Considering that insertion is a complex
skill, this task can validate the capability of the LLM reward generator to successfully produce
high-quality dense rewards, thereby completing the training process with great efficiency.

MakeCoffee is to pick up a coffee pod from a closed cabinet, insert it into the holder of the coffee
machine, and finally close both the lid and the cabinet. In this experiment, we will use many skills
used in previous tasks, such as OpenCabinet, CloseCabinet, Pick, and Place. This task
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can verify that our method can select reusable skills from the symbolic skills library and improve
the training efficiency.

The environments are built on the Robosuite Zhu et al. (2022) simulator. We use a Franka Emika
Panda robot arm that is controlled at 20Hz with an operational space controller (OSC), which has 5
degrees of freedom: end-effector position, yaw angle, and the position of the gripper.

4.2 QUANTITATIVE EVALUATION

In this section, we aim to evaluate our framework with the previous work LEAGUE and some
other SOTA baseline methods. We will introduce those baseline methods and share the quantitative
evaluation results:

• RL (SAC): We utilize Soft Actor-Critic (SAC) Haarnoja et al. (2018) as a robust baseline
for reinforcement learning. For an equitable comparison, we enhance the basic task re-
ward function within SAC by incorporating staged rewards, guided by an oracle task plan.
This modification ensures that the reward at each step reflects the total of rewards for all
completed subgoals, in addition to the reward for the ongoing subgoal. This approach is
represented as sac in Figure 3.

• Curriculum RL (CRL): We apply advanced curriculum RL strategies Sharma et al.
(2021); Uchendu et al. (2023), starting with initial states near success and gradually shifting
to actual starting conditions. Initial states are chosen in reverse from an oracle task plan’s
subgoals. We use the staged reward system mentioned earlier in SAC. This approach is
labeled as crl in Figure 3.

• Hierarchical RL (HRL): This baseline utilizes recent HRL frameworks Dalal et al. (2021);
Nasiriany et al. (2022), training a meta-controller to combine skill primitives and atomic
actions, based on MAPLE Nasiriany et al. (2022). This approach is labeled as maple in
Figure 3.

• LEAGUE: The previous version of our framework Cheng & Xu (2023). Plans, Skill, and
Reward Functions in this framework are designed and implemented by human experts,
whereas those components are generated by LLMs in our framework. This approach is
labeled as league in Fig. 3

• Symb+RL: An ablation baseline of LEAGUE Cheng & Xu (2023) that removes the state
abstraction and retains all other features including the symbolic plan-based curriculum.
This approach is labeled as league w/o sa in Fig. 3

For the evaluation, we adopt task progress as our metric, which is defined as the summed reward of
all task stages and normalized to [0, 1]. Below we discuss the main findings based on Fig. 3.

Figure 3: Quantitative Evaluation We compare our framework with other baselines in three task
domains. The plot shows the average task progress during evaluation throughout training, which is
measured as the summation of achieved rewards of each successfully executed skill in the task plan
and normalized to 1. The standard deviation is shown as the shaded area.

Our framework can handle different long-horizon table-top manipulation tasks autonomously,
which provides the possibility for potential lifelong learning. By inputting the environment and
specific predicates of different tasks as illustrated in Figure 2, and as detailed in Sections 3.3 and 3.2,
our framework autonomously executes skill generation, planning, and reward structuring. Through
intensive experiments with long-horizon tasks such as StackAtTarget and StowHammer, we have
validated the efficiency and accuracy of our framework’s planning and skill acquisition capabilities.
Our experiments reveal the framework’s adeptness in dynamically adapting to various initial states
in StackAtTarget, where it successfully generates appropriate skills for task completion. Similarly,
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in the StowHammer task, our LLMs planner demonstrated its proficiency in planning and executing
a sequence of eight steps, which highlights the system’s flexibility and adaptability in long-horizon
tasks. Those capabilities definitely enhance the capability for continuous learning.

Our reward generator enables stable and efficient policy learning in long-horizon manipula-
tion tasks. As shown in Fig. 3, our framework outperforms LEAGUE and other baseline methods in
the longest-horizon manipulation task StowHammer, which requires 8 skills to achieve the final task
goal. Since the reward of human design often cannot be combined with the TAMP structure, it will
lead to a misalignment between the outcomes of learned skills and the preconditions for subsequent
skills. In this case, LEAGUE will spend a lot of time retraining the previous skill after learning the
later skills. Our framework can dynamically generate sparse rewards that cater to the skill effects
EFF. Because the sparse rewards are the same as the skill effects EFF in the TAMP structure, this
integration ensures that rewards are directly tied to the specific effects of the current skill and the
initial conditions for the next skill. This strategy enhances training efficiency and efficacy compared
to traditional, human-designed reward structures. This strategic advantage underscores the superior
performance of our LLM-generated rewards in long-horizon manipulation tasks, which enhance the
capability of continuous learning.

LLMs generated reward can outperform human-designed reward in contact-rich manipula-
tion tasks. As shown in Fig. 3, our framework outperforms LEAGUE and other baseline methods
in the contact-rich manipulation task PegInHole. Detailed in Sec. 3.3, our framework can let LLM
select appropriate weights for each metric function. The advantage of using LLMs to select op-
timal weights for metric functions becomes particularly clear when comparing its performance to
traditional human-designed weighting approaches. In the skill Insert in task PegInHole, hu-
mans might assign equal importance to metric functions such as ”para dis”, ”penp dis”, and
”ori diff” without considering the unique demands of the task at hand. Our findings suggest that
improving the weight of the metric function ”ori diff” in the PegInHole task can improve
training efficiency. The LLMs’ ability to discern and apply the optimal weights for these ‘metric
can enhance the performance of our framework, which showcases a significant improvement over
human-devised rewards as shown in Fig. 3.

This superiority stems from the LLMs’ comprehensive understanding of the task’s dynamics and
the intricate interactions involved in contact-rich environments. By analyzing vast amounts of data
and learning from varied task executions, the LLMs can identify patterns and priorities that may not
be immediately apparent to human designers. This deep, data-driven insight allows the LLMs to
optimize reward functions directly aligned with the specific objectives of each task, which leads to
a more effective and efficient learning process.

Symbolic skills library enhances training ef-
ficiency for new long-horizon manipulation
tasks. We also set up an experiment to
evaluate the feasibility of speeding up policy
learning in novel domains by reusing previ-
ously acquired skills as warm-start. In the
task MakeCoffee shown in Fig. 4, LLMs se-
lected skills OpenCabinet, CloseCabinet
from the StowHammer, and selected skills Pick
and Place from StackAtTarget as pre-trained
weights from the symbolic skill library for pol-
icy initialiazation. This strategy of reusing pre-
trained skills for fine-tuning significantly en-
hances training efficiency, the time to reach profi-
ciency in the MakeCoffee task was reduced a lot.

Figure 4: Quantitative Evaluation We com-
pare the training efficiency of our framework
with reused pre-trained skills in our symbolic li-
brary with our framework learning from scrath.

As we continue to expand our symbolic skills library, each new skill added becomes a potential
catalyst for more rapid training in future tasks. It supports continuous learning in robotic systems.
4.3 ABLATION STUDY

In this part, we compare two design choices for using LLMs for generating dense rewards:

• LEAGUE++ In our framework, we add the metrics inspector as a part of the input in the
reward generator. It can read the code of all metric functions along with the comments and
variable names in the codes.
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• LEAGUE++ w/o MI In this ablation, we changed the input from the metrics inspector to
only the metric function’s header.

We use the StowHammer task to quantitatively evaluate different LLM-based reward generators,
where the reward function of each skill for the tasks needs to be generated. We check whether the
reward function can be executed correctly or not. Same as Anonymous (2024), we classify them
into four error types: Class attributes misuse — chooses the wrong objects for the metric function;
Attributes hallucination — refers to attributes that do not exist; Syntax/shape error — generates
incorrect dictionary; Wrong package — selects incorrect metric functions. We test StowHammer
25 times and count the probability of each error. Also, we counted the success rate of generating
reward functions for each skill Pick, Place, Open, and Close, totaling one hundred times.

Task/Skill LEAGUE++ w/o MI
StowHammer 92% 20%
Pick 96% 40%
Place 96% 36%
Open 100% 44%
Close 100% 48%
Skill Average 98% 42%

Table 1: Quantitative Evaluation This
table shares the success rates for correct
executions of generated rewards in the
task StowHammer and its corresponding
skills. This table compares our proposal
LEAGUE++ with the corresponding abla-
tion LEAGUE++ without Metrics Inspec-
tor (w/o MI)

LEAGUE++

w/o MI

0% 25% 50% 75% 100%

Class Attribute Misuse Attribute Hallucination
Syntax/shape Error Wrong Package Correct

Table 2: Error breakdown This figure
shares the error rates/success rates for reward
generation with the task StowHammer. This
figure compares our proposal LEAGUE++
with the corresponding ablation LEAGUE++
without Metrics Inspector (w/o MI).

According to the results shown in Table. 1, we find that our method can reach 92% success rate
for generating reward functions for all skills in the task. Specifically, the success rates for indi-
vidual skills—Pick and Place at 96% each, with Open and Close achieving perfect scores of
100%—culminate in an overall success rate of 98%. Therefore, we demonstrate that our method ex-
hibits a low incidence of errors, which demonstrates the reliability of this method for long-horizon
tasks and the potential of using it for lifelong learning.

As Table 2 shows, it’s important to highlight that LEAGUE++ addresses two significant issues that
arise LLMs generate code: the invention of nonexistent attributes and the production of syntax er-
rors. In contrast to previous LLM reward generators Ma et al. (2023); Anonymous (2024), the prob-
lems of selecting incorrect class attributes or packages in LEAGUE++ are more likely to be resolved
through improved prompts and the input of more detailed metric functions. Table 1 showcases the
metrics inspector’s effectiveness in drastically reducing the error rate from 80% to a mere 8% in
generating incorrect class attributes and wrong packages. It signifies that the LLMs can accurately
identify and select the appropriate metric functions for each skill by inspecting the mertic functions’
code. These findings suggest that our current errors are likely to improve with the provision of more
detailed input, offering a promising pathway towards achieving potential lifelong learning.

5 CONCLUSION, LIMITATION, AND FUTURE WORK

Our paper presents LEAGUE++, a framework that synergizes LLM-guided skill learning with
TAMP, enhancing RL’s exploration and autonomous learning for continuous learning across diverse
tasks. We demonstrate that LEAGUE++ outperforms traditional methods by using LLMs for reward
generation and a semantic skills library for efficient skill acquisition. In ablation, our results also in-
dicate high success rates in generating executable rewards, suggesting the framework’s viability for
lifelong learning. Although LEAGUE++ reduces the need for extensive planning and reward engi-
neering, it inherits TAMP’s assumptions regarding access to shared predicates and metric functions
for domain construction and evaluation. Future work will consider advances in object relationship
modeling Krishna et al. (2017) and predicate learning Migimatsu & Bohg (2022) to further mitigate
these assumptions.
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6 APPENDIX

6.1 SKILL OPERATOR DEFINITION

We show the symbolic definition of the Insert skill example.

Insert(?object,?hole)
Obj: [?object:peg,?hole:hole]
Pre: {Holding(?object),

IsClear(?hole)}
Eff: {Holding(?object),
Anti(All(IsClear(?hole))),
Anti(All(Holding(?object))),
In(?object,?hole)}

6.2 METRIC FUNCTIONS

We show some exemples of the Metrics Functions.

Metrics Function Definition
dis to obj Distance between the gripper and the object
parallel dis Distance between two objects’ shadows on a parallel plane

perpendicular dis Distance between two objects along the normal line
orientation diff Angle difference between object and hole

open Distance between the handle and cabinet is large enough or not.

6.3 REWARD GENERATION

We show the reward generation process of our method in Fig. 5.

Symbolic Skill to learn

LLM Dense reward 
Generator

RLLM 

Insert
OBJ: {peg0 …}
PRE: {holding, IsClear, …} 
EFF: {In, HandEmpty, …}

…

Metrics Functions

dis_to_obj parallel_dis

perpendicular_dis
Insert Dense Reward
Reward_Dict = {
 "dis_to_obj": 0.0,
 "parallel_dis": 0.25,
 "perpendicular_dis": 0.25,
 "Orientation_diff": 0.5 }

Insert Sparse Reward
EFF= {
        Anti(Holding(?object)),
        Anti(IsClear(?hole)),
        In(?object,?hole)}

MAX

Figure 5: The reward generator takes in the skills header, outputs the dense reward for the skill.
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