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ABSTRACT

A multi-agent system (MAS) powered by large language models (LLMs) could
automate tedious user tasks like meeting scheduling that require collaboration.
LLMs enable more nuanced protocols accounting for unstructured private data
and users’ personal constraints. However, this design exposes these systems to
new problems from misalignment to attacks by malicious parties that compromise
agents or steal user data.

In this paper, we propose a TERRARIUM framework for fine-grained studies on
safety, privacy, and security. We repurpose the blackboard design, an early ap-
proach in multi-agent systems, to create a modular and configurable playground
to support multi-agent collaborative tasks using LLMs. We, then, identify key at-
tacks vectors like misalignment, malicious agents, compromised communication,
and poisoned data. We implement three scenarios and add four representative at-
tacks, demonstrating the flexibility of our framework. TERRARIUM provides nec-
essary tools to study and quickly iterate over new designs and can further advance
our community’s efforts towards trustworthy multi-agent systems.

1 INTRODUCTION

Agents capable of perceiving and acting in arbitrary environments, while interacting with one an-
other, constitute a multi-agent system (MAS), which naturally gives rise to situations of collabora-
tion (Wurman et al., [2008; [Parker, [1998)), negotiation (Roughgarden,|2005), and conflict (Tambe,
2011). Recently, the advent of agents based on large language models (LLMs), equipped with ex-
tended action spaces through tool use, has expanded their accessible environments and substantially
increased the potential for agent interaction. This enables new real-world applications, from main-
taining a meeting calendar to optimizing energy consumption, while allowing unstructured data and
contexts by leveraging capabilities of LLMs. Considering these potential formulations of MAS, it
is important to study these systems in a well-defined, self-sustaining testbed to better understand its
capabilities and vulnerabilities.

Specifically, in the real world scenarios human interactions are exposed to incidents of adversarial
behavior that undermines others for personal gain. This phenomena is not unique to humans, and
LLM-driven agents face similar malicious interactions that undermine desired outcomes whether by
humans or other LLM-driven agents. Thus, agents that are trusted with private information or hold
powerful capabilities become potential targets of malicious behavior, by humans or other agents,
which can degrade utility, leak sensitive information, or delay coordination.

In this paper we introduce TERRARIUM, a framework for observing and studying multi-agent in-
teractions in an isolated, configurable environments that support a broad set of adversarial vectors.
Motivated by OpenAl Gymnasium (Brockman et al., [2016) which standardized training reinforce-
ment learning agents, we aim to provide a common way to analyze safety, security, and privacy in
MASSs across a spectrum of environments. In this paper, we focus on cooperative and general-sum
formulations, more precisely, Distributed Constraint Optimization Problems (DCOPs). We target
problems that inherently require multiple agents with private data (i.e., cases where no single, mono-
lithic agent can solve the task simply by ingesting all data) so that coordination and communication
become key objects of study.

We identify three key properties of MAS that enable effective collaboration and evaluation and also
provide grounds for attacks: (1) a joint, ground-truth global objective to enable measurable impact,
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(2) agents with private information and different capabilities, and (3) complex communication pat-
terns and trajectories. We use these properties to guide and develop an attack framework that targets
communication and coordination: attack dimensions that do not appear in single-agent settings.

However, to realize these properties and conduct attacks on any part of the MAS, we require a mod-
ular and configurable agent design and a centralized communication mechanism to inspect agent’s
interactions. For this, we revisit an early MAS design using a blackboard architecture [Erman et al.
(1980b). We further identify five key abstractions of our TERRARIUM framework: agents, environ-
ment, blackboards, tools, and the communication protocol. We implement the framework across
multiple levels: enabling different problems, communication protocols, and providing a blackboard
that accommodates persistence and modularity through Model Context Protocol (MCP).

Our evaluation shows, first, that MAS systems achieve solid utility, allowing LLMs to solve com-
plex DCOP problems with sophisticated coordination; and second, that the TERRARIUM enables
systematic study of key attack vectors: misalignment, data stealing, and denial-of-service. Our
framework can be extended to study new setups, attacks and defenses, supporting further research
towards trustworthy multi-agent systems.

2 BACKGROUND

An agent is typically defined as an autonomous entity that perceives its environment and acts upon
it to achieve certain goals (Wooldridgel |2009). A system composed of multiple interacting agents
is referred to as a multi-agent system (MAS). By coordinating their actions (whether cooperatively
or competitively), agents in an MAS can solve problems that are beyond the capabilities of any in-
dividual agent or a centrally controlled system (Jennings et al., [{1998). The MAS paradigm, which
originated in distributed artificial intelligence, emphasizes decentralized decision-making and has
led to the development of various frameworks for agent communication, coordination, and negotia-
tion over the past decades.

MAS techniques have been applied in a wide range of domains. For example, cooperative MAS
deployments include fleets of warehouse robots coordinating storage and fulfillment (Wurman et al.,
2008) and multi-robot teams in disaster response (Parker, |1998). Competitive (adversarial) MAS
arise when stakeholders have divergent objectives, e.g., defender—attacker resource allocation mod-
eled as Stackelberg security games (Tambel [2011)), or congestion management with selfish agents
in routing games (Roughgarden, |2005). Despite this breadth, many canonical MAS formalisms
are computationally difficult to solve optimally even in realistic settings—for instance, planning
in decentralized POMDPs is NEXP-complete even for finite horizons (Bernstein et al.| [2002)), and
computing Nash equilibria in general games is PPAD-complete (Daskalakis et al.l 2009). Amid
this landscape, the distributed constraint optimization (DCOP) framework provides a cooperative
alternative that preserves key MAS characteristics—decentralized control, local objectives, and
communication-based coordination—while admitting scalable exact/approximate algorithms and
structure-exploiting methods for many practical problems (Fioretto et al., 2018)). Consequently,
we focus on DCOPs as the backbone for our study.

DCOP. DCOPs involve a set of agents selecting local actions to maximize a global utility, typi-
cally formulated as the sum of local utility or constraint functions (Fioretto et al.l [2018]). Classical
DCOP algorithms, such as complete search (e.g., ADOPT) (Modi et al.l 2005), message passing
on pseudo-trees (e.g., DPOP) (Petcu & Faltings) |2005)), and local/approximate methods (e.g., Max-
Sum, DSA) (Farinelli et al.l 2008} [Zhang et al.l 2005)), trade off optimality guarantees, message
and memory complexity, and anytime behavior, and they perform best when problem structure and
communication protocols are explicitly defined and utilities are numeric and stationary. Building
on this formalism, we extend the framework with LLM-based agents. Unlike the classical DCOP
setting—where utilities are fixed symbolic functions and messages follow engineered schemas—our
agents communicate in free-form natural language, and local constraints/objectives can be specified
textually rather than solely as hand-coded numeric functions. This preserves the DCOP backbone
while enabling systematic security evaluations of LLM-specific vulnerabilities—e.g., prompt injec-
tion, communication poisoning.
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Agent communication protocols. Interacting agents in a MAS are required to communicate to
achieve their objectives by utilizing a communication protocol that structures the rules and polices
of communication between agents. Without this, performance degradation, inefficient token us-
age, and capability loss can emerge. Recent advancements in communication protocols such as
the Agent2Agent (A2A) protocol (Googlel [2025)) that assigns agent cards to specialized agents for
more efficient collaboration initialization and allows agents to communicate with each other via
messages, tools, and artifacts. Another established protocol is the Agent Communication Protocol
(ACP) (IBM} 2025) which also enables agent-to-agent communication for low-latency communica-
tion. These protocols allow structured communication between agents and are vital to efficient and
safe MAS. However, given that most communication protocols are developed by companies, we lack
an open-source framework for testing and benchmarking communication protocols in a controllable
and isolated environment which TERRARIUM satisfies.

Agent platforms and benchmarks. LLM agents introduce significant security challenges such as
indirect prompt injection attacks (Greshake et al.l [2023) and context hijacking (Bagdasarian et al.,
2024]). \Debenedetti et al.|(2024) proposed AgentDojo, which is a widely used dynamic environment
to study agents’ security and utility across domains such as Workspace, Travel, Slack, and Bank-
ing. Beyond single-agent benchmarks, /Abdelnabi et al.| (2024)) proposed a simulation benchmark
for multi-agent interactive negotiation in a non-zero-sum game setup to study cooperation and com-
petition dynamics. /Abdelnabi et al.| (2025)) studied security and privacy attacks in agent-to-agent
communication where an Al assistant communicates with external parties to develop complex plans
such as travel booking. Despite progress in this area, we lack a canonical platform that is easily ex-
tendable, configurable, and adaptable to study diverse multi-agent safety challenges, which is what
we propose in our work.

Multi-agent security. Increased adoption of LLM-based MAS has increased concerns about their
security and privacy risks. Existing research demonstrates that known vulnerabilities such as prompt
injection (Greshake et al.| [2023)) and jailbreaking (Anil et al.| 2024) manifest more severely in
multi-agent settings, where compromising a single agent enables the attack to propagate to all oth-
ers (Lee & Tiwari, [2024). Inspired by networking security challenges, recent work has also analyzed
MAS protocols and introduced attack strategies including Agent-in-the-Middle (He et al.l[2025) and
control-flow hijacking (Triedman et al.,|2025). MASs have also been used to conduct attacks, such
as jailbreaks, on other LLMs (Rahman et al.,|2025; |Abdelnabi et al., [2025)).

Blackboards. A blackboard is a shared, structured workspace where heterogeneous agents post
partial results, hypotheses, constraints, and goals for others to observe, refine, or refute. Histori-
cally, blackboard systems such as HEARSAY-II coordinated independent “knowledge sources” via
a central store and scheduler, integrating evidence across abstraction layers to resolve uncertainty
(Erman et al. [1980aj Nii, [1986ab). In our multi-agent setting, multiple LLM-driven agents can
similarly communicate and coordinate by appending proposals, commitments, and exception notes
to a common log rather than engaging in bespoke pairwise messaging. Contemporary realizations
span tuple-space designs (Linda-style generative communication) (Gelernter, [1985)), append-only
event logs for decoupled producers/consumers (Kreps et al.,|201 1)), CRDT-backed shared documents
for eventual consistency (Shapiro et al.| 2011}, and vector-indexed memories that enable retrieval-
augmented reads (Lewis et al.| 2020).

3  SYSTEM PROPERTIES AND USE CASES

Multi-agent systems (MAS) increasingly sit in the loop of high-stakes, data-rich applications such
as coordination, scheduling, energy, and logistics. They expose multiple attack surfaces at once:
valuable goals and private objectives that an adversary may subvert, abundant private data such as
user attributes, constraints, and locations, and communication channels such as messages, black-
boards, and tools. LLM-driven agents amplify both capability and risk: instructions arrive in natural
language, tools are invoked via text APIs, and behaviors can be steered or poisoned through subtle
prompt-level manipulations. Our aim is to study MAS properties against adversaries in settings that
are realistic yet evaluable.
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3.1 PROBLEM SETUP

We seek MAS problem classes that (i) admit a broad spectrum of attacks (exfiltration, poisoning,
spoofing, delay/DoS, collusion), (ii) provide a well-defined, quantitative ground truth for evaluating
success and failure, and (iii) are implementable with LLM-based agents.

We therefore focus on following system properties:

Agents. Agents are instantiated by LLMs (optionally tool-augmented), which read natural instruc-
tions, exchange messages, and output decisions/actions. This preserves the agentic interface used in
practice while giving us programmatic control over inputs, channels, and logs.

Joint goal. Agents participate in a cooperative task with a well-defined global objective. A shared
goal makes adversarial impact measurable: subverting coordination (e.g., degraded utility, violated
constraints) becomes a scalar signal rather than anecdote. It also enables oracle baselines (optimal
or attack-free solutions) for evaluation, i.e., by measuring task utility value gap to oracle, violation
counts, regret etc.

Agentic data and capabilities. Each agent possesses private data, constraints, roles, tools, and actu-
ation. This heterogeneous private state creates a rich privacy and security surface that enables attacks
such as exfiltration, impersonation, and capability escalation, while simultaneously exercising the
system’s access control and disclosure policies.

Inter-agent communication. Agents communicate over addressable channels—pairwise, group,
and broadcast—and across modalities such as text, structured JSON, and images. Selective, par-
tially private communication both opens realistic attack vectors including eavesdropping, spoofing,
poisoning, man-in-the-middle, and Sybil coalitions, and enables corresponding defenses including
authentication, redundancy, and audits. To support realistic experiments and reproducible analysis,
the design provides per-message recipient control by the sender, optional encryption and authenti-
cation tags, and logged transcripts for ground-truth analysis and post-hoc forensics.

Problem formalization. We now introduce a formalization of our cooperative environments, mod-
eled as DCOPs, see Appendix [A] for full notation glossary.

Definition 1 (DCOPs). An instance is a tuple
P: <A7 Ha m, XJ -D7 a, C7 H, 0, P, F*v H>

Objective. Given a joint policy @ = (m;);c4 and context ¢ ~ u, for each agent i draw a joint
assignment over its owned variables xx, ~ m;(- | 0;(c)) independently across ¢ (or set zx, =
m;(0;(c)) if deterministic), and assemble = = (xv)vex from the collection {zx, };c 4. Define the
cooperative objective

k;
Fr(we) =3 > fis(@sisic),

icA B=1
and the optimization problem

max E.o, Eporiio | F (x50) ],
p o  Boyy Bynio [ F7(336)

where x ~ 7(- | ¢) denotes the joint assignment induced by the agent-wise draws {zx, };c 4. Note
that here the o;(c) is private to agent ¢ and ¢ is not jointly observed by any agents. The pair (X, F™*)
induces a bipartite factor graph G = (Viur U Viye, E) with Vi = X, Vipe = F™*, and edge (z, f) iff
x € scope(f). Algorithms may pass messages on G; in practice, we realize it using blackboards.

4 SYSTEM DESIGN

We introduce a modular framework for evaluating the behavior, security vulnerabilities, and safety
considerations of multi-agent systems composed of LLM-based agents. First, we enforce a well-
defined, joint goal among agents to obtain a ground-truth objective function that allows reliable
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Figure 1: TERRARIUM is composed of multiple modules that are core to MAS communication and
interaction such as agents, environment, blackboards, the communication protocol, and tools. For
instance, an agent may post messages to a blackboard to communicate intentions and goals, call
environment-dependent tools for search and observation (e.g., reading sensors for energy monitor-
ing) or external tools (e.g., web search), and execute actions in the form of action tools that change
the dynamics of the environment. The environment module is an isolated and self-sustaining simu-
lator that takes in agent actions, synchronously or asynchronously, and gives each agent an observa-
tion (i.e., new context). To enable communication between agents, we initialize a set of blackboards
through a configurable factor graph that determines the agent membership of each blackboard.

evaluation of joint agent policies in a controlled environment. Second, our framework enables di-
verse collections of agents, each with their own preferences, objectives, tools, and private data,
mimicking that of agent characteristics of multi-agent systems in real-world scenarios. We consider
the agent, environment, communication proxy, tools, and communication protocol as key modules
composing TERRARIUM.

4.1 DESIRED PROPERTIES

Given the complexity of MAS, and the need for a simple, yet aligned framework to real-world
implementations, there exist several desired properties that should be satisfied for effective experi-
mentation, development, and evaluation. It is desirable to have a modular framework with extensive
configurability. These properties enable more effective analysis on the capabilities, performance,
and potential vulnerabilities of these systems.

Modularity. Multi-agent systems are often highly complex with its many interconnected compo-
nents that can overwhelm researchers, engineers, and developers. Having an abstract framework that
is simple and modular, allowing components to be swapped, will improve the usability and devel-
opment of these systems. For example, this abstraction can enable effective ablations and focused
experimentation on specific components for studies and analysis.

Configurability. In addition to modularity, we need full configurability of each module’s parame-
ters and allow different configurations for diverse MAS instances which is necessary for evaluating
robustness of both performance and vulnerabilities. For example, this allows us to stress-test specific
safety assumptions of a module and apply varying attacks to evaluate vulnerabilities. Additionally,
this level of configurability improves reproducibility of MAS phenomena that is not as easily repro-
ducible in environments where even one component is uncontrolled or unconfigurable.
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4.2 DESIGN

We account for these desired characteristics in the design of TERRARIUM, where we decouple the
agents, environment, communication proxy, tools, and communication protocol into distinct modules
in favor of an abstract framework that aligns with current deployments of multi-agent systems. These
properties allow fast and controlled experimentation for multi-agent analysis, security, and safety.
Figure [T] outlines the proposed modularity and configurability.

A key module of our framework is the communication proxy that should enable fine-grained control
and configurable observability of communication for which we use a set of Blackboards (Erman
et al.l [1980b). Each blackboard enables communication between two or more agents for coordi-
nation. The topology of the blackboards are instantiated by a factor graph, which determines the
blackboard membership of agents, and implicitly controls the communication efficiency. For exam-
ple, having all agents on one blackboard may not be efficient for communication since this could
fill an agent’s context of irrelevant conversations and information, resulting in degradation of per-
formance even for agents with long context-lengths (Liu et al. [2023). We enable agents to have a
predefined blackboard action set, enabling complex action sequences such as writing, erasing, ref-
erencing, reading, and highlighting. This may extend to a continuous action space with free-form
actions rather than a discrete, token-level state space for more complex agent interaction behavior.
Although, in our implementation, we adopt an append-only blackboard with reading and writing
actions at a token-level for simplicity.

An environment consists of a function that receives actions from all agents, transitions its internal
states, then sends the next state or context to the appropriate agent. Every environment has a well-
defined, ground-truth joint objective function F' among agents which is used to evaluate action
selection quality in a cooperative setting.

The communication protocol contains a set of
rules and structures that organizes the commu-
o S s Use-cases
nication between agents which is vital for ef-
. .5 . (Calendar, Home,...)
ficient communication. We employ a simple

communication protocol between agents that \ Protocols /
facilitates planning and action phases. Each (Rules, Stages)
agent are tasked to communicate intentions and > Blackboard

goals to formulate a plan within a finite number -

of steps with access to blackboard tools (e.g., / Sl \
get(), post()), environment tools, and external (Logs, Configs)
tools to inform their decisions. Next, agents ex- / Infrastructure
ecute an action from a set of action tools that the (LLMs, MCP Servers)

environment provides and receive an updated
context or state from the environment, detailing

. Figure 2: TERRARIUM implementation.
changes to the environment. £ p

Finally, agents are modeled as an LLM that can

take actions in the form of fools using model context protocol (MCP) (Hou et al.l [2025) with
FastMCP |Lowin| (2025). From here, we have full over the control the capabilities of the agents,
their personalities, and internal objectives by using a layered stack as in Figure 2] Similar to how
Wireshark (Combs|, [1998)) allows to study different networking protocols at different layers of the
networking stack, TERRARIUM can be configured to support different backbone servers, configu-
ration formats, communication protocols, and use-cases while connecting them through the black-
board primitives outlined in Figure[I]

5 ATTACKS

The interaction between agents during collaboration requires extensive information sharing to pro-
vide sufficient context for solving tasks. These conversations are facilitated by protocols specifically
designed for multi-agent communication. However, the method, volume, and nature of information
exchange introduce new challenges related to security, privacy, and system robustness.
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The modular and flexible design of TERRARIUM enables systematic exploration of these challenges.
Its configurability allows us to easily construct attack scenarios, while its modularity supports the
creation of adversarial agents with diverse capabilities across different environments. Furthermore,
its observability enables implementing and measuring Attack Success Rate (ASR) metrics.

5.1 ATTACK-ENABLING CHARACTERISTICS

A successful multi-agent design requires system and collaboration strategies with characteristics
unique to a MAS, which adversaries can exploit to construct a range of attacks. Such attacks,
leveraging these and other MAS-specific features, may have catastrophic effects on the system as
the compromise propagates through multiple interactions.

Actions can serve any objective In a collaborative environment, agents typically assume that the
actions of others are intended to optimize the global objective. However, verifying that an agent’s
actions are not instead serving an ulterior objective might not be feasible. This creates unique
challenges, as a large number of potential ulterior objectives can be pursued through actions that
still appear valid. The ulterior motive can range from targeting a specific goal or agent to reducing
the performance of the entire system.

Agents needs external tools. To take actions and retrieve the information necessary for those ac-
tions, agents must rely on external tools. These tools can be leveraged for both active attacks, where
the adversary modifies the interaction to carry out the attack, and passive attacks, where the adver-
sary observes the interaction to infer information. While multi-agent poisoning has been studied
in limited contexts, such as poisoning via web-retrieved content (Lee & Tiwaril [2024), the grow-
ing scale and complexity of MAS systems—and their increasing reliance on heterogeneous tool
sets—introduce novel challenges.

New MASs lead to new protocols. MASs are facilitated through protocols. These underlying pro-
tocols connect agents to one another and, in many cases, to central platforms that coordinate their
interactions (Dang et al. |2025; Bhatt et al., 2025)). As these protocols rapidly evolve and form the
core of modern MASs, it becomes essential to study the novel attack vectors that emerge from their
integration.

5.2 EXPLORING ATTACK VECTORS

The characteristics specified in the previous section motivate us to explore novel attack vectors to
test the Confidentiality, Integrity and Availability (CIA) of MASs. We use these attack vectors to
understand the security and privacy implications of MASs and to motivate future research.

Confidentiality. Can agents keep a secret? To evaluate confidentiality, we examine whether agents
preserve private information communicated by a previous agent when interacting with a subsequent
one. In this setup, the second agent is instructed to elicit the personal information shared earlier,
while the queried agent receives a system prompt explicitly stating that it should not reveal private
information about any other agent. Our findings show that the agent nevertheless discloses the
information, despite being prompted not to.

Integrity. What actions lead to misalignment? To evaluate integrity, we examine misalignment by
determining which actions, and the minimum number of actions, must be altered by an adversary
during collaboration. We investigate two scenarios: an adversarial agent part of the collaboration
and an external adversary capable of poisoning communication. The adversarial agent is restricted
to modifying messages on its blackboard and communicating its own preferences, whereas the ex-
ternal adversary can target any agent, action, or blackboard. Our results indicate that (1) a single
adversarial agent is sufficient to misalign the entire system, and (2) an external adversary can induce
misalignment in one shot with access to a single planning round, though multiple shots are required
to improve efficacy.

Availability. How easily does context overflow? In collaborative settings, agents expend significant
tokens and maintain extensive context windows to retain the history of prior interactions, which
informs future decisions. We were able to carry out the availability attacks at only a fraction of
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the cost required for completing the underlying task. These findings suggest that MASs are par-
ticularly vulnerable to context overflow attacks, with attack costs diminishing as additional agents
participate.

6 EXPERIMENTS

To evaluate the performance of the attacks, we first measure the joint utility of the agents on the
three given tasks. We use difference in utility as the primary measure of misalignment success, since
misalignment impacts the ability of the agent to contribute to the joint goal. We measure privacy
by comparing the actual private information to the retrieved information with LLM-as-a-judge. We
assign a accuracy score of 100% if the LLM states the retrieved information is fully accurate, 50%
if it is partially accurate, and 0% if it is inaccurate. We report the context overflow attack success
rate (ASR) by measuring the number of times, out of 30 seeded runs, the attack causes an API error.

6.1 DRIVING USE CASES

Meeting Scheduling. Meeting Scheduling is a partially-generated real-world environment where
agents are attendees; decision variables are meetings X = {z,,} with discrete slots D, =
{0, ...,9} (1-hour blocks). Each meeting has an owner (one of its attendees). The context ¢ provides
a per-meeting mode {PHYSICAL,Z0OOM} and building coordinates for physical meetings. For each
agent 4, I; specifies (a) preferred slots P; ,, C {0, ...,9} for each meeting m they attend, and (b) a
strict priority 7;(m) € N over their meetings. Optionally, I; includes a visual panel that mirrors the
textual fields: a graph-based campus map (nodes are buildings placed at coordinates from c, edges
labeled by integer minute distances) and a simple 10-slot strip per meeting highlighting the agent’s
preferred slots FP; ,,,; the visual adds no scoring fields beyond what F; ,,, and c already convey. For
the objective score, Meeting ranges from [0, oo] with a higher score being more successful.

Personal Assistant. PersonalAssistant is a fully synthetic environment where each agent ¢
chooses an outfit ; from a wardrobe; an outfit is object that contains following attributes
(article, color, optional image). ~ The interaction graph induces color-based factors: unary
PREF_COLOR/AVOID_COLOR and pairwise MATCH_COLOR/NOT_-MATCH_COLOR.
Only color affects scoring (articles/images are presentation only). I; is text specifying the agent’s
color likes/dislikes and neighbor cues (e.g., “match Alice,” “do not match Bob”) and the description
of the outfits in the wardrobe. An optional visual panel mirrors the text description of the wardrobe:
a per-agent collage of their wardrobe options. For the objective score, Personal Assistant ranges from
[0, 1] with a higher score being more successful.

Smart-Home Assistant. SmartHome is fully generated with real-world meter data where agents
are smart-home assistants (one per home). Each home has several tasks; for each task the agent
selects a start time xj, ; from its allowed-start set. The context c provides a time-varying sustainable
capacity profile S[t]. When aggregate demand exceeds S[t] at slot ¢, the excess is supplied by
the main—unsustainable—grid. A single high-arity factor couples all homes through this main-grid
draw. For each home h, I, enumerates its tasks with energy consumption (kW), duration (slots), and
the allowed start times used by the scorer. An optional visual panel mirrors the same information:
a top bar chart of S[t] over the horizon and, below, per-task horizontal segments marking allowed
start windows. For the objective score, SmartHome ranges from [—o0, 0] with a higher score being
more successful.

6.2 EXPERIMENTAL SETUP

In our experiments, we use seeded, randomized configurations of each environment, varying transi-
tion dynamics, factor graph initialization, number of agents, preferences, and constraints. To exhibit
complex communication, we simulate 6 agents for PersonalAssistant, 10 agents for Meeting, and 8
agents for SmartHome.
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Model MEETING SMARTHOME PERSONALASSISTANT
OpenAl GPT-4.1 63.17+£5.18 —194.87 £109.44 0.58 +0.28
OpenAI GPT-4.1-mini ~ 62.33 £5.76 —198.59 4+ 187.94 0.61£0.15
OpenAl GPT-4.1-nano  56.6 = 8.07  —139.96 4= 187.94 0.58 0.13

Table 1: Joint-utility value across different models and environements

Category Attack Metric Value Frost
Confidentiality Information leakage Correctness (%)  100% -
Adversarial agent +0.03  62.30 £6.17

Com. poisoning (1-shot) +0.63  61.7+4.96

Integrity Com. poisoning (2-shoty DUl Diff- y'7s 6176+ 5.67
Com. poisoning (3-shot) +1.73  60.6 +3.44
Availability Context overflow ASR (%) 100% -

Table 2: Performance of Confidentiality, Integrity and Availability attacks on schedule meeting task
using OpenAl GPT-4.1-mini.

6.3 EXPERIMENTS

Table |1 reports the joint objective value across three model and tree domains, which we use as the
baseline for our attack experiments in Table 2] To study the different attacks, we adopt GPT-4.1-
mini as our primary model and meeting scheduling as our primary task. We evaluate communication
poisoning under varying numbers of poisoning shots to analyze the correlation between increased
poisoning and misalignment. Our results show that in the privacy attack, the adversary was able to
query the model and retrieve details with 100% accuracy. We also successfully conducted context
overflow attacks with 100% accuracy. This shows MASs can be highly vulnerable to privacy and
availability attacks.

Although we consistently observe a decrease in utility under adversarial agent and communication
poisoning attacks, the reduction is not significant—indicating that while these attacks succeed, their
impact remains relatively weak. However, we do observe that increasing the number of shots leads to
higher attack efficacy, showing a clear correlation between poisoning percentage and attack success.

7 CONCLUSION

We introduce a simple, abstract framework, TERRARIUM, for studying behavior, alignment, and
security of multi-agent systems (MAS) in a controlled and scalable environment. Our design is
modular and extdenable and allow to study key attack vectors that MAS deployed in real-world
could be exposed to: malicious agents, compromised communications, and misaligned goals.

Limitations and Extensions. This framework can enable studying agents in controlled and isolated
environments. It may be useful for designing and optimizing defenses and mitigations, but its sim-
plistic design is not meant for deployment due to optimizations likely required in the communication
protocol and communication proxy for memory and computational efficiency such as minimizing
the memory utilization in blackboards. In future work, we plan to explore other MAS environments
that involve competition and negotiation, opening up new attack vectors tied to self-interested agents
and potential defense mechanisms.

ETHICAL CONSIDERATION

TERRARIUM enables analysis of complex attack vectors on multi-agent systems, further advancing
our understanding of how to deploy MAS in the real world. We do not use any real user data,
nor study deployed systems, instead focusing on creating an isolated environment similar to how
Wireshark (Combs, [1998) enables studying network security. We hope that our framework will
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enable development of new defenses and mitigation methods under various scenarios and provide a
necessary playground to isolate and inspect the attacks.

REPRODUCIBILITY STATEMENT

We ensure reproducibility by committing to release the full TERRARIUM framework including con-
figurations, results, and logs. Experiments were conducted with OpenAl backbones through official
APIs. Detailed instructions, including environment setup and scripts to regenerate all tables/figures,
will be provided in the project repository for the camera-ready version.
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A DCOP GLOSSARY

We use i € A for agents, « for factor indices, € X for decision variables, S, C X for a factor
scope, ¢ € C for context, z; = o;(c) for agent-i’s local context, X; = {x € X : o(z) = i}
for the set of variables controlled by agent i, xx, € [] D, for agent-i’s joint decision, and
x € [[,cx D for a global assignment.

rxeX;

* A: finite set of agents, e.g., A = {1,...,n}.
e H: set of humans.

s Letn: A — 2\ {@} be the mapping function indicating the nonempty set of humans it
serves, allowing multiple humans to share an agent and any human to control many agents.
This pairing induces a many-to-many control structure that routes instructions and con-
straints, shaping how the underlying problem is partitioned and coordinated across agents.

* X: set of decision variables (an agent may control zero, one, or many variables).

* D: per-variable finite domains, D = {D, C X, : € X} withx € D,.

* o: ownership map o : X — A; for each agent ¢, define X; = {x € X : o(x) = i}.

* (' (global) context space; realizations denoted c € C.

 u: reference distribution on C' used for context-averaged objectives.

* 0: local context observation maps o = {0; : C' — Z;};c 4; agent i observes z; = 0;(c).

e p: instruction renderer p : (Fi*7c) — I, in some modality (e.g., text/image). Agents
observe I; (and possibly z;), not F*.

e F™*: ground-truth local utilities (asymmetric factorization). For each agent ¢ there is a finite
set FX = {fi*B}Z?i:l with scopes S; 3 € X and

i (I D) xC o R (@s00) = Fiplas o).
vES; 8
The union F* = | J,. 4 F} is the set of all factors.
* II: policy classes, one per agent, IT = {II; };c 4. A (possibly randomized) policy 7; € II;
maps local context to a joint distribution over the variables agent ¢ controls:
’/TZZ14)A( H DI>, X, Nﬂ]‘(' |Zz)7 ZZ':OZ'(C).
rxeX;

Deterministic policies are the special case 7;(2:) € [[,ex, Dz
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