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ABSTRACT

A continual learning (CL) algorithm learns from a non-stationary data stream. The
non-stationarity is modeled by some schedule that determines how data is presented
over time. Most current methods make strong assumptions on the schedule and have
unpredictable performance when such requirements are not met. A key challenge
in CL is thus to design methods robust against arbitrary schedules over the same
underlying data, since in real-world scenarios schedules are often unknown and
dynamic. In this work, we introduce the notion of schedule-robustness for CL
and a novel approach satisfying this desirable property in the challenging online
class-incremental setting. We also present a new perspective on CL, as the process
of learning a schedule-robust predictor, followed by adapting the predictor using
only replay data. Empirically, we demonstrate that our approach outperforms
existing methods on CL benchmarks for image classification by a large margin.

1 INTRODUCTION

A hallmark of natural intelligence is its ability to continually absorb new knowledge while retaining
and updating existing one. Achieving this objective in machines is the goal of continual learning (CL).
Ideally, CL algorithms learn online from a never-ending and non-stationary stream of data, without
catastrophic forgetting (McCloskey & Cohen, 1989; Ratcliff, 1990; French, 1999).

The non-stationarity of the data stream is modeled by some schedule that defines what data arrives
and how its distribution evolves over time. Two family of schedules commonly investigated are
task-based (De Lange et al., 2021) and task-free (Aljundi et al., 2019b). The task-based setting
assumes that new data arrives one task at a time and data distribution is stationary for each task. Many
CL algorithms (e.g., Buzzega et al., 2020; Kirkpatrick et al., 2017; Hou et al., 2019) thus train offline,
with multiple passes and shuffles over task data. The task-free setting does not assume the existence
of separate tasks but instead expects CL algorithms to learn online from streaming data, with evolving
sample distribution (Caccia et al., 2022; Shanahan et al., 2021). In this work, we tackle the task-free
setting with focus on class-incremental learning, where novel classes are observed incrementally and
a single predictor is trained to discriminate all of them (Rebuffi et al., 2017).

Existing works are typically designed for specific schedules, since explicitly modeling and evaluating
across all possible data schedules is intractable. Consequently, methods have often unpredictable
performance when scheduling assumptions fail to hold (Farquhar & Gal, 2018; Mundt et al., 2022;
Yoon et al., 2020). This is a considerable issue for practical applications, where the actual schedule
is either unknown or may differ from what these methods were designed for. This challenge calls
for an ideal notion of schedule-robustness: CL methods should behave consistently when trained on
different schedules over the same underlying data.

To achieve schedule-robustness, we introduce a new strategy based on a two-stage approach: 1)
learning online a schedule-robust predictor, followed by 2) adapting the predictor using only data from
experience replay (ER) (Chaudhry et al., 2019b). We will show that both stages are robust to diverse
data schedules, making the whole algorithm schedule-robust. We refer to it as SChedule-Robust
Online continuaL Learning (SCROLL). Specifically, we propose two online predictors that by design
are robust against arbitrary data schedules and catastrophic forgetting. To learn appropriate priors
for these predictors, we present a meta-learning perspective (Finn et al., 2017; Wang et al., 2021)
and connect it to the pre-training strategies in CL (Mehta et al., 2021). We show that pre-training
offers an alternative and efficient procedure for learning predictor priors instead of directly solving
the meta-learning formulation. This makes our method computationally competitive and at the same
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Figure 1: Left. Illustration of a classification dataset D streamed according to different schedules (dashed
vertical lines identify separate batches). Right. Pre-training + the two stages of SCROLL: 1) online learning and
store replay samples from data stream, 2) adapting the predictor using the replay buffer (green indicates whether
the representation ψ is being updated).

time offers a clear justification for adopting pre-training in CL. Finally, we present effective routines
for adapting the predictors from the first stage. We show that using only ER data for this step is key
to preserving schedule-robustness, and discuss how to mitigate overfitting when ER data is limited.

Contributions. 1) We introduce the novel concept of schedule-robustness for CL, an important
property that lacks in existing methods. 2) We propose a novel online strategy that satisfies schedule-
robustness, along with practical algorithms. 3) Theoretically, we connect CL to standard meta-learning
methods via schedule-robustness. This justifies the use of pre-trained models as a knowledge-prior
for CL. We further show that multi-class classification is an efficient and principled procedure for
learning such priors in CL. 4) Empirically, we show that SCROLL outperforms state-of-the-art
methods by a large margin (over a 20% improvement in accuracy in many settings). This further
supports the focus of this work on schedule-robustness and our strategy to achieve it in practice.

2 PRELIMINARIES AND RELATED WORKS

We formalize CL as learning from non-stationary data sequences. A data sequence consists of a
dataset D = {(xi, yi)}Ni=1 regulated by a schedule S = (σ, β). Applying the schedule S to D is
denoted by S(D) ≜ β(σ(D)), where σ(D) is a specific ordering of D, and β(σ(D)) = {Bt}Tt=1

splits the sequence σ(D) into T batches of samples Bt = {(xσ(i), yσ(i))}
kt+1

i=kt
, with kt the batch

boundaries. Intuitively, σ determines the order in which (x, y) ∈ D are observed, while β determines
how many samples are observed at a time. Fig. 1 (Left) illustrates how the same dataset D could be
streamed according to different schedules. For example, S1(D) in Fig. 1 (Left) depicts the standard
schedule to split and stream D in batches of C classes at the time (C = 2).

2.1 CONTINUAL LEARNING

A CL algorithm learns from S(D) one batch Bt at a time, iteratively training a predictor ft : X → Y
to fit the observed data. Some formulations assume access to a fixed-size replay buffer M , which
mitigates forgetting by storing and reusing samples for future training. Given an initial predictor f0
and an initial buffer M0, we define the update rule of a CL algorithm Alg(·) at step t as

(ft, Mt) = Alg(Bt, ft−1,Mt−1), (1)

where the algorithm learns from the current batch Bt and updates both the replay buffer Mt−1 and
predictor ft−1 from the previous iteration.

At test time, the performance of the algorithm is evaluated on a distribution πD that samples (x, y)
sharing the same labels with the samples in D. The generalization error is denoted by

L(S(D), f0,Alg) = E(x,y)∼πD
ℓ(fT (x), y) (2)
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where the final predictor fT is recursively obtained from (1) and f0.1 In the following, we review
existing approaches for updating ft and Mt, and strategies for initializing f0.

Predictor Update (ft). Most CL methods learn ft by solving an optimization problem of the form:

ft = argmin
f

α1 ·
∑

(x,y)∈Bt

ℓ(f(x), y)

︸ ︷︷ ︸
current batch loss

+ α2 ·
∑

(x,y)∈Mt−1

ℓ(f(x), y)

︸ ︷︷ ︸
replay loss

+ α3 · R(f, ft−1)︸ ︷︷ ︸
regularization loss

(3)

where α1,2,3 are prescribed non-negative weights, ℓ a loss function, and R a regularizer. This general
formulation for updating ft recovers replay-based methods such as iCarl (Rebuffi et al., 2017) and
DER (Buzzega et al., 2020) for specific choices of ℓ and R. Moreover, if Mt=∅ ∀t (or we set α2=0),
the replay loss is omitted and we recover regularization-based methods (e.g Kirkpatrick et al., 2017;
Li & Hoiem, 2017; Yu et al., 2020) that update selective parameters of ft−1 to prevent forgetting.

Replay Buffer Update (Mt). In replay-based methods, Alg(·) must also define a buffering strategy
that decides what samples to store in Mt for future reuse, and which ones to discard from a full buffer.
Common strategies include exemplar selection (Rebuffi et al., 2017) and random reservoir sam-
pling (Vitter, 1985), with more sophisticated methods like gradient-based sample selection (Aljundi
et al., 2019c) and meta-ER (Riemer et al., 2019). As in (3), replay-based methods typically mix the
current data with replay data for predictor update (e.g Aljundi et al., 2019c; Riemer et al., 2019;
Caccia et al., 2022). In contrast, Prabhu et al. (2020) learns the predictor using only replay data. We
will adopt a similar strategy and discuss how it is crucial for achieving schedule-robustness.

Predictor Initialization (f0). The initial predictor f0 in (2) represents the prior knowledge available
to CL algorithms, before learning from sequence S(D). Most methods are designed for randomly
initialized f0 with no prior knowledge (e.g., Rebuffi et al., 2017; Gupta et al., 2020; Prabhu et al.,
2020; Kirkpatrick et al., 2017). However, this assumption may be overly restrictive for several
applications (e.g., vision-based tasks like image classification), where available domain knowledge
and data can endow CL algorithms with more informative priors than random initialization. We
review two strategies for predictor initialization relevant to this work.

Initialization by Pre-training. One way for initializing f0 is to pre-train a representation on data related
to the CL task (e.g., ImageNet for vision-based tasks) via either self-supervised learning (Shanahan
et al., 2021) or multi-class classification (Mehta et al., 2021; Wang et al., 2022; Wu et al., 2022).
Boschini et al. (2022) observed that while pre-training mitigates forgetting, model updates quickly
drift the current ft away from f0, diminishing the benefits of prior knowledge as CL algorithms
continuously learn from more data. To mitigate this, Shanahan et al. (2021); Wang et al. (2022)
keep the pre-trained representation fixed while introducing additional parameters for learning the
sequence. In contrast, we will offer effective routines for updating the pre-trained representation and
significantly improve test performance.

Initialization by Meta-Learning. Another approach for initializing f0 is meta-learning (Hospedales
et al., 2021). Given the CL generalization error in (2), we may learn f0 by solving the meta-CL
problem below,

f0 = argmin
f

E(D,S)∼T L(S(D), f,Alg) (4)

where T is a meta-distribution over datasets D and schedules S. For instance, Javed & White
(2019) set Alg(·) to be MAML (Finn et al., 2017) and observed that the learned f0 encodes sparse
representation to mitigate forgetting. However, directly optimizing (4) is computationally expensive
since the cost of gradient computation scales with the size of D. To overcome this, we will leverage
Wang et al. (2021) to show that meta-learning f0 is analogous to pre-training for certain predictors,
which provides a much more efficient procedure to learn f0 without directly solving (4).

2.2 SCHEDULE-INVARIANCE AND SCHEDULE-ROBUSTNESS

The majority of CL methods depend significantly on the specific data schedule. This typically
leads to unpredictable behaviors when considering different schedules (See e.g. Farquhar & Gal,
2018; Yoon et al., 2020; Mundt et al., 2022, or our experiments in Sec. 4.1). To address this issue,

1We omitted the initial memory buffer M0 since it is typically empty.

3



Under review as a conference paper at ICLR 2023

we first introduce the ideal notion of schedule-invariance for CL. We say that a CL algorithm is
schedule-invariant if

L(S1(D), f0,Alg) = L(S2(D), f0,Alg), ∀S1, S2 schedules, ∀D dataset. (5)

Eq. (5) captures the idea that CL algorithms should perform identically for all data schedules. In
practice, however, inherent randomness of learning algorithms often leads to similar but not identical
performance. We thus further introduce schedule-robustness as a relaxation of schedule-invariance:

L(S1(D), f0,Alg) ≈ L(S2(D), f0,Alg), ∀S1, S2 schedules, ∀D dataset, (6)

where the ≈ symbol loosely captures potentially small differences in performance2. We argue that
achieving schedule-robustness is a key challenge in real-world scenarios, where data schedules are
often unknown and possibly dynamic. CL algorithms should carefully satisfy (5) for safe deployment.

We note that schedule-robustness is a more general and stronger notion than order-robustness from
Yoon et al. (2020). Our definition applies to online task-free CL while order-robustness only considers
offline task-based setting. We also allow arbitrary ordering for individual samples instead of task-level
ordering. In the following, we will present our method and show how it achieves schedule-robustness.

3 METHOD

We present SChedule-Robust Online continuaL Learning (SCROLL) as a two-stage process: 1)
learning online a schedule-robust predictor for CL, followed by 2) adapting the predictor using only
replay data. In the first stage, we consider two schedule-robust predictors and discuss how to initialize
them, motivated by the meta-CL perspective introduced in (4). In the second stage, we tackle how
to adapt the predictors from the first stage with ER and the buffering strategy. We will show that
SCROLL satisfies schedule-robustness by construction, given that optimizing a CL algorithm against
all possible schedules as formulated in (5) is clearly intractable.

3.1 SCHEDULE-INVARIANT ONLINE PREDICTOR

We model the predictors introduced in (1) as the composition f = ϕ ◦ ψ of a feature extractor
ψ : X → Rm and a classifier ϕ : Rm → Y . In line with recent meta-learning strategies (e.g.
Bertinetto et al., 2019; Raghu et al., 2020), we keep ψ fixed during our method’s first stage while
only adapting the classifier ϕ to learn from data streams. We will discuss how to learn ψ in Sec. 3.2.

A key observation is that some choices of ϕ, such as Nearest Centroid Classifier (NCC) (Salakhutdinov
& Hinton, 2007) and Ridge Regression (Kailath et al., 2000), are schedule-invariant by design.

Nearest Centroid Classifier (NCC). NCC classifies a sample x by comparing it to the learned
“prototypes” cy for each class Xy ≜ {x|(x, y) ∈ D} in the dataset,

f(x) = argmin
y

∥ψ(x)− cy∥22 where cy =
1

n

∑
x∈Xy

ψ(x). (7)

The prototypes cy can be learned online: given a new (x, y), we update only the corresponding cy as

cnew
y =

ny · cold
y + ψ(x)

ny + 1
, (8)

where ny is the number of observed samples for class y so far. We note that the prototype for each
class is invariant to any ordering of D once the dataset has been fully observed. Since ψ is fixed, the
resulting predictor in (7) is schedule-invariant and online. Further, f is unaffected by catastrophic
forgetting by construction, as keeping ψ fixed prevents forgetting while learning each prototype
independently mitigates cross-class interference (Hou et al., 2019).

Ridge Regression. Ridge Regression enjoys the same desirable properties of NCC, being schedule-
invariant and unaffected by forgetting (see Appendix A for a full derivation). Let OneHot(y) denote

2A formal definition is possible but outside the scope of the current work (see Appendix E for more details).
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the one-hot encoding of class y, we obtain the predictor f as the one-vs-all classifier

f(x) = argmax
y

w⊤
y ψ(x), where

W ∗ = [w1 . . . wK ] = argmin
W

1

|D|
∑

(x,y)∈D

∥∥W⊤ψ(x)− OneHot(y)
∥∥2 + λ ∥W∥2 .

(9)

Ridge Regression admits online updates via recursive least squares (Kailath et al., 2000): given (x, y),

wz = (Anew + λI)−1cnew
z ∀z ∈ Y, where

Anew = Aold + ψ(x)ψ(x)⊤ and cnewz =

{
cold
z + ψ(x) if z = y

cold
z otherwise.

(10)

Here, A denotes the covariance matrix of all the samples observed so far during a schedule, while cz
is the sum of the embeddings ψ(x) of samples x in class z.

3.2 PREDICTOR INITIALIZATION

Within our formulation, initializing f0 consists of learning a suitable feature representation ψ. As
discussed in Sec. 2, we could learn f0 = ϕ0 ◦ ψ by solving the meta-CL problem in (4) (with ϕ0 a
classifier for the meta-training data to be discarded after initialization, see Fig. 1 (Right)). As shown
in Sec. 3.1, if we set Alg(·) in (4) to be the online versions of NCC or Ridge Regression, the resulting
predictor fT becomes invariant to any schedule over D. This implies that the meta-CL problem is
equivalent to a standard meta-learning one where all data in D are observed at once, namely

f0 = argmin
f

ED∼T E(x,y)∼πD
ℓ(fD(x), y) where fD = Alg(D, f). (11)

For example, setting Alg(·) to NCC recovers exactly the well-known ProtoNet (Snell et al., 2017).

Meta-learning and pre-training. Meta-learning methods for solving (11) are mostly designed for
low data regimes with small D while in contrast, CL has to tackle long sequences (i.e. D is large).
In these settings, directly optimizing (11) quickly becomes prohibitive since the cost of computing
gradients scales linearly with the size of D. Alternatively, recent works in meta-learning strongly
support learning f0 via standard multi-class classification (Tian et al., 2020; Wang et al., 2021). In
particular, Wang et al. (2021) showed that the cross-entropy loss in multi-class classification is an
upper bound to meta-learning f0 in (11). Classification thus offers a theoretically sound estimator for
meta-learning. As a direct consequence, our meta-learning perspective on initializing f0 provides a
principled justification for exploiting pre-training in CL. Pre-training is computationally efficient,
since gradients can be computed on small batches rather than the entire D in (11). Extensive evidence
also suggests that pre-training often yields more robust f0 than meta-learning (El Baz et al., 2022).

Learning f0 in SCROLL. Given the reasoning above, we propose to not tackle (11) directly but
rather learn f0 by multi-class classification. Following the standard practices from meta-learning, we
ensure the meta-training data to be disjoint from the sequences we run the CL algorithm on, such that
Alg(·) is indeed learning novel data during CL. For instance, in Sec. 4.1 we will use f0 trained on
Meta-Dataset (Triantafillou et al., 2019) to perform CL on CIFAR datasets, which do not overlap.

3.3 PREDICTOR ADAPTATION WITH EXPERIENCE REPLAY

The predictor fT obtained via online learning is schedule-invariant and readily available for classifi-
cation. However, it shares the same feature extractor ψ with f0 and may therefore suffer from the
distribution shift between the pre-training data and D. We thus propose to further adapt fT into a f∗
using Experience Replay (ER). Our key insight is to consider buffering strategies that yield similar
replay buffers, regardless of the schedule over D, hence keeping f∗ schedule-robust.

Buffering strategy. We adopt the exemplar buffering from Rebuffi et al. (2017). The method
uses greedy moment matching to select the same number of samples for each class independently,
according to how well the mean embedding (via ψ) of the selected samples approximates the mean
embedding of all points in the class. The greedy selection provides a total ordering for all points in
each class, which is used to determine which samples to store or discard. This step filters out outliers
and ensures that MT contains representative samples from each class.
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This process aims to keep each Mt balanced class-wise, hence the final MT attains a similar class
distribution after D is fully observed, irrespective of the specific schedule. In particular, it is easy to
show that MT is schedule-invariant if the data schedule present one entire class at a time (namely no
Xy is split across multiple batches), since the replay exemplars selected for each class is deterministic
for such schedules. More generally, adapting fT with MT yields a schedule-robust f∗. We will
further discuss schedule-robustness with respect to smaller batch sizes in Appendix B.4. Below we
consider two adaptation strategies.

Small buffer size: residual adapters. When M has limited capacity (e.g., 200 or 500 in our
experiments), there may be insufficient data for adapting all parameters in fT . To avoid overfitting,
we introduce residual adapters inspired by task-specific adapters (Li et al., 2022). Concretely, we
insert residual layers (e.g. residual convolutions) to each level of ψ. Then, while keeping ψ fixed, we
jointly optimize the new layers and the classifier ϕ using a cross-entropy loss (see Fig. 1 (Right)).

Large buffer size: model tuning. For larger buffers, we empirically observed that updating all
parameters of fT is more effective. This is not surprising given the added representational power
from the full model. We will also demonstrate that the threshold for switching from residual adapters
to full-model tuning appears consistent and may be determined a priori.

3.4 PRACTICAL ALGORITHM

Algorithm 1 SCROLL

Input: Pre-trained ψ, CL sequence S(D),
Buffer M0 = ∅, buffer max size m.

fT ,MT = ONLINE-CL(ψ, S(D),M0)
If |MT | ≤ m:
f∗ = ResidualAdapt(fT ,MT )

Else:
f∗ = FullAdapt(fT ,MT )

return f∗

def ONLINE-CL (ψ, S(D),M0)
For Bt in S(D):

Update Mt (exemplar strategy, Sec. 3.3)
Update statistics cy, A using (8) or (10).

Compute the classifier ϕt via (7) or (10).
return fT = ϕT ◦ ψ and MT

We present the complete algorithm in Alg. 1 (see
also Fig. 1): We first pre-train ψ via multi-class
classification using the cross-entropy loss (Sec. 3.2)
and initialize f0 with the pre-trained ψ. As we
receive data online from the sequence S(D), we
update the replay buffer Mt (Sec. 3.3) and the nec-
essary statistics for computing the classifier ϕt (via
e.g. NCC or Ridge). At each step t we can output
the intermediate model ft = ϕt ◦ψ (Sec. 3.1). The
final model f∗ is obtained by adapting fT using
MT via cross-entropy loss (Sec. 3.3).

We highlight several properties of SCROLL: 1) it
is schedule-robust since we have shown in Sec. 3.1
that fT is schedule-invariant, and in Sec. 3.3 that
adapting it to f∗ is schedule-robust. Therefore our
overall algorithm combining the two components
is schedule-robust. 2) it is class-incremental with a single classifier for all observed classes; 3) it
meets the definition of online CL (Chaudhry et al., 2019a; Mai et al., 2022), where the data stream is
observed once, and only the replay data is reused.

Memory-free SCROLL. We note that the fT returned by the Online-CL routine in Alg. 1, is already
a valid and deterministic predictor for D. Hence, if we have constraints (e.g., privacy concerns Shokri
& Shmatikov (2015)) or memory limitations, SCROLL can be memory-free by not using ER. We
empirically investigate such strategy in our ablation studies Sec. 4.3 and Appendix B.2.

4 EXPERIMENTS

We consider class-incremental learning and compare SCROLL primarily to online CL methods,
including GDumb (Prabhu et al., 2020), MIR (Aljundi et al., 2019a), ER-ACE and ER-AML (Caccia
et al., 2022), and SSIL (Ahn et al., 2021). As shown by (Buzzega et al., 2020), online methods
often perform poorly due to the limited number of model updates. To disentangle forgetting from
underfitting in the online setting, we further compare to recent offline methods for completeness,
including ER (Riemer et al., 2019), BIC (Wu et al., 2019), DER and DER++ (Buzzega et al., 2020).
We recall that the conventional offline setting allows multiple passes and shuffles over data for
each task (De Lange et al., 2021). We differentiate our method by the classifier used, namely
SCROLL (NCC) and SCROLL (Ridge).

Setup. We first consider sequential CIFAR-10 and sequential CIFAR-100 benchmarks. We use a
ResNet18 initial predictor trained on Meta-Dataset using multi-class classification (Li et al., 2021).
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CIFAR-10 5-split CIFAR-100 10-split

Joint Training (i.i.d.) 94.2 ±1.6 79.3 ±0.4

CL Algorithm |M | = 200 |M | = 500 |M | = 2000 |M | = 200 |M | = 500 |M | = 2000
O

FF
L

IN
E ER 67.9 ±1.1 77.3 ±0.4 86.8 ±0.4 22.9 ±0.6 33.2 ±0.6 53.1 ±0.3

BIC 77.4 ±2.2 88.6 ±5.3 90.4 ±0.5 34.9 ±1.6 45.2 ±1.9 57.5 ±0.7

DER 69.7 ±1.7 78.2 ±0.8 86.6 ±0.7 26.2 ±0.8 38.1 ±2.1 55.3 ±0.6

DER++ 76.8 ±1.7 81.6 ±2.2 86.8 ±0.8 28.5 ±0.7 42.7 ±1.1 59.1 ±0.5

O
N

L
IN

E

GDumb 73.6 ±1.9 81.2 ±0.9 87.3 ±0.3 21.9 ±1.3 39.0 ±1.0 59.8 ±0.2

ER-ACE 77.8 ±0.9 81.4 ±0.6 84.7 ±0.8 40.3 ±1.2 49.0 ±0.9 56.5 ±1.0

ER-AML 69.9 ±2.9 75.3 ±0.7 80.6 ±0.6 32.4 ±0.5 41.9 ±1.0 51.0 ±1.2

SSIL 68.9 ±1.4 70.8 ±1.4 73.2 ±1.7 46.6 ±1.0 53.9 ±0.6 59.2 ±0.5

MIR 55.2 ±1.5 68.7 ±1.3 82.0 ±1.0 23.2 ±0.8 31.9 ±0.5 47.5 ±1.1

(O
ur

s)

SCROLL (NCC) fT 65.3 ±0 40.4 ±0

SCROLL (NCC) fT → f∗ 81.5 ±0.1 84.6 ±0.1 88.4 ±0.1 48.3 ±0.1 56.4 ±0.2 66.6 ±0.2

SCROLL (Ridge) fT 81.7 ±0 57.1 ±0

SCROLL (Ridge) fT → f∗ 84.0 ±0.2 86.3 ±0.2 89.4 ±0.2 59.9 ±0.1 61.5 ±0.1 68.0 ±0.2

Table 1: Class-incremental classification accuracy on sequential CIFAR-10 / 100. Joint training accuracy
obtained by training on all classes with standard supervised learning. Best online/offline methods in bold.

Following the convention of meta-learning, Meta-Dataset has no class overlap with CIFAR datasets.
This ensures that CL algorithms must learn about the new classes during CL. We also evaluate
SCROLL on miniIMAGENET as another sequential learning task to highlight that even a weakly
initialized f0 is very beneficial. Following Javed & White (2019), all methods are allowed to learn an
initial predictor using the meta-training set of miniIMAGENET (38400 samples over 64 classes), and
perform CL on the meta-testing set (20 novel classes). A ResNet12 is used on miniIMAGENET.

Baseline methods. For fairness, all baseline methods use the same pre-trained feature extractor. We
also performed extensive hyper-parameter tuning for all baseline methods such that they perform well
with pre-training (see Appendix D). Lastly, we standardize that buffer size reported in all experiments
as the total buffer for all classes, not buffer per class.

4.1 CLASS-INCREMENTAL LEARNING ON CIFAR DATASETS

For CIFAR datasets, we first follow a standard schedule from Buzzega et al. (2020); Wu et al. (2019):
CIFAR-10 is divided into 5 splits of 2 classes each while CIFAR-100 into 10 splits of 10 classes each.
At each split, this schedule abruptly changes from one data distribution to another.

Tab. 1 shows that SCROLL (Ridge) outperforms all baselines by large margins on CIFAR-100 for
all buffer sizes. For CIFAR-10, SCROLL only lags behind BIC for buffer sizes 500 and 2000 while
outperforming the rest. However, we emphasize that BIC is an offline method and not directly
comparable to ours. In addition, we will demonstrate next that the baseline methods including BIC
have unreliable performance when the schedule changes.

Varying Schedules. We now consider the effect of using schedules for CIFAR-100 with splits
presenting 20 / 10 / 4 / 2 classes at a time (respectively 5 / 10 / 25 / 50-splits). Fig. 2, evaluates the
best performing baselines from Tab. 1 under these schedules. We observe that SCROLL performs
consistently across all settings and outperforms all baselines by a large margin, with BIC performing
competitively only under the 5-split. Additionally, we clearly see that the accuracy of both online
and offline methods drops drastically as the dataset split increases. This further validates Yoon et al.
(2020); Mundt et al. (2022) who observed that existing methods are brittle to schedule variations. The
only exception is GDumb, which only uses replay data and is thus (mostly) robust against schedule
changes, according to our discussion in Sec. 3.3. We note, however, that GDumb performs poorly in
some “worst-case” regimes (see Appendix B.3). Additional results are reported in Appendices B.1
and B.2. including a comparison with (Shanahan et al., 2021) who introduces an ensemble CL
method to tackle schedules variations, and a challenging Gaussian schedule for empirical evaluation.
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Figure 2: Robustness of SCROLL (Ridge) vs offline/online baselines to different schedules of CIFAR-100.

4.2 CLASS-INCREMENTAL LEARNING ON miniIMAGENET
miniIMAGENET 10-split

Joint Training (i.i.d.) 89.2 ±0.4

CL Algorithm |M | = 200 |M | = 500

O
FF

L
IN

E BIC 64.6 ±3.3 73.4 ±1.6

ER 63.7 ±1.0 73.6 ±0.6

DER 67.3 ±1.1 75.2 ±0.8

DER++ 68.8 ±1.0 78.0 ±0.6

O
N

L
IN

E

GDumb 65.6 ±1.3 74.5 ±0.5

ER-ACE 57.5 ±1.4 64.4 ±0.6

ER-AML 52.4 ±2.2 58.4 ±1.7

SSIL 57.0 ±1.5 63.3 ±1.6

MIR 48.4 ±2.8 67.3 ±2.9

(o
ur

s) SCROLL (NCC) 72.8 ±0.2 76.0 ±0.1

SCROLL (Ridge) 80.9 ±0.1 82.0 ±0.1

Table 2: Classification accuracy on sequential
miniIMAGENET 10-split.

In Tab. 2, qe evaluate SCROLL on miniIMAGENET
10-split following the setup described earlier. We
stress that all methods perform pre-training on the
small meta-training set and then carry out CL on
the meta-test set. We note that SCROLL (Ridge)
outperforms all baseline methods with noticeable
improvements. This suggests that our method does
not require pre-training on massive datasets and
could work well with limited data. Further, Ridge
Regression classifier clearly outperforms NCC clas-
sifier. We further investigate this phenomenon in
the ablation studies.

4.3 ABLATION STUDIES

Effects of classifier initialization. In our formulation of ER, the role of NCC or Ridge Regression is
to initialize the classifier ϕ at fT before adapting fT towards f∗. In principle, one could skip this
online learning step (i.e. Online-CL routine in Alg. 1), initialize ϕ in fT randomly, and adapt fT .
Tab. 3 compares these options for initializing the classifier3.

CIFAR-100 10-split miniIMAGENET 10-split

ϕ Init fT → f∗ fT → f∗

Random 1.2 ±0.3 49.0 ±0.2 4.9 ±0.3 75.3 ±0.8

NCC 40.4 ±0 56.4 ±0.2 65.3 ±0 76.0 ±0.1

Ridge 57.1 ±0 61.5 ±0.1 80.6 ±0.2 82.0 ±0.1

Table 3: Classification accuracy with different
classifier initialization for |M | = 500.

The results suggest that how classifier ϕ is initial-
ized at fT drastically affect the performance of final
predictor f∗. In particular, the performance of fT cor-
relates strongly with the performance of f∗: Ridge
Regression has the best predictor both before and
after adaptation. In contrast, randomly initialized ϕ
does not learn from data streams, and the resulting f∗
falls short of the other two initializers. Crucially, the
results suggest that online learning described in Sec. 3.1 is vital for fully exploiting the pre-training.
We also remark that while randomly initialized ϕ resembles GDumb, there are still crucial differences
between them, including buffering strategy, model architecture and training routine. In particular, we
study in depth the role of the buffering strategy in Appendix B.3.

Effects of replay buffer size. We study the impact of changing replay buffer capacity for SCROLL.
We focus on SCROLL (Ridge), given its better performance over the NCC variant. Tab. 4 reports
how buffer capacity affect model performance using either residual adapters or full-model tuning.

We first observe that ER contributes significantly to final performance. Using Ridge Regression, the
memory-free fT only obtains 57% for CIFAR-100 using Ridge Regression. Even with a limited
buffer of 200 (i.e. 2 samples per class), ER adds about 3% to the final accuracy. When M = 2000,
ER adds more than 10%. The results suggest that updating the pre-trained representation and the
associated classifier is important. When combined with the effects from classifier initialization, the
results suggest that all components in our method are important for learning robust predictors.

3We will discuss in Appendix C how to implement (7) as a standard linear layer
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CIFAR-10 CIFAR-100

fT Accuracy 81.7 ± 0 57.1 ± 0

Adaptation Routine |M | = 200 |M | = 500 |M | = 2000 |M | = 200 |M | = 500 |M | = 2000

Residual Adapter 84 ± 0.2 86.3 ± 0.2 89.0 ± 0.1 59.9 ± 0.1 61.5 ± 0.1 64.7 ± 0.2
Full-model tuning 81.5 ± 0.03 84.1 ± 0.4 89.4 ± 0.2 56.5 ± 0.3 61.1 ± 0.2 68.0 ± 0.2

Table 4: Classification accuracy of different adaptation routines for SCROLL (Ridge).

Tab. 4 also suggests that full-model tuning causes overfitting when replay data is limited. At
|M | = 200, the final predictor f∗ consistently underperforms fT . As the buffer size increases,
full-model tuning becomes more effective compared to residual adapters. For CIFAR-100, full-model
tuning is over 3% higher at |M | = 2000. We also stress that the residual adapters are still usable with
high buffer capacity, improving nearly 8% from fT . For both datasets, we set the threshold m = 500
for the practical algorithm to switch from residual adapters to full-model tuning.

5 DISCUSSION

In this work, we introduced the notion of schedule-robustness in CL, which requires algorithms
to perform consistently across different data streams. We argued that such property is key to CL
applications, where the schedule is often unknown a priori. However, most existing methods disregard
this aspect and are designed around specific schedules. We empirically demonstrated that this severely
degrades their performance when a different schedule is used. To tackle these issues, we proposed
SCROLL and formulated CL as learning online a schedule-robust classifier, followed by predictor
adaptation using only replay data. SCROLL is schedule-robust by design and outperforms existing
methods across all evaluated schedules. We now focus on two key aspects that emerged from this
work, which we believe provide useful insights for CL:

Pre-training and CL. The results from our experiments show that pre-training is broadly beneficial
for all evaluated methods (see our Tab. 1 vs Tab. 2 in Buzzega et al. (2020)). We believe that this
observation should call for greater focus on how to exploit pre-training to develop robust CL methods:
our choice to pre-train the feature extractor ψ in SCROLL and combining it with linear online methods
such as incremental Ridge Regression, is a principled decision derived from our meta-learning-based
perspective, which also helps to mitigate forgetting. In contrast, most previous CL methods adopting
pre-training see it as a preliminary phase rather than an integral component of their methods (Wang
et al., 2022; Shanahan et al., 2021; Wu et al., 2022). This approach often leads to sub-optimal design
decisions and potentially less effective techniques for leveraging pre-training as previously observed
in Mehta et al. (2021) and further highlighted by our experiments (see also Appendix B.2 where
SCROLL (Ridge) outperforms the more sophisticated ensemble model Shanahan et al. (2021)).

Pre-training is also a realistic assumption. We have argued that application domains (e.g., computer
vision and natural language understanding) have vast amounts of curated data and increasingly
available pre-trained models that CL algorithms could readily exploit. Additionally, we demonstrated
in Sec. 4.2 that pre-training with even a modest dataset is very beneficial, which is a promising result
for applying this strategy to other domains. In particular, we note these settings are analogous to
initializing a CL algorithm with a random model but then having a large first batch (i.e., containing
samples from several classes), a schedule that is gaining increasing traction in the literature (Hou
et al., 2019; Mittal et al., 2021). Our strategy extends naturally to these settings if we allow offline
training on the first batch to replace pre-training.

Class-independent Online Learning and On-demand Adaptation. We believe that SCROLL
provides a new general practice to approach CL problems. In particular, the strategy of first learning
online a coarse-yet-robust model for each individual class and then adapting it on-demand on data of
interest grants flexibility as well as consistency to CL algorithms. The online step focuses on learning
each class independently, which prevents inter-class interference (Hou et al., 2019) by construction.
This single-class learning process is open-ended (i.e. one-vs-all for each class) with any new classes
easily assimilated. We have demonstrated that the predictor fT resulting from this first step, is already
competitive with most previous CL algorithms. Then, at any moment T in time (not necessarily at
the end of the sequence), we can adapt fT to a f∗ specializing to all the observed classes so far. This
step is performed with a cross-entropy loss, which enforces interaction among classes and ultimately
leads to improved performance. SCROLL’s robust performance offer strong support to adopting this
strategy more broadly in CL.
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Limitation and Future Works. We close by discussing some limitations of our work and future
research directions. Firstly, while model adaptation works well in practice, most previously observed
data are omitted from directly updating the feature extractor. One key direction we plan to investigate
is how to perform the periodic update of the feature extractor during CL, to improve data efficiency
while preserving schedule-robustness. Secondly, we note that the residual adapters in our model are
specific to convolutional networks. We will extend our method to more powerful architectures like
transformers.

Reproducibility Statement. As per ICLR 2023 guidelines4, we will make sample code available
to AC and reviewers via private message on OpenReview.net once the discussion forum will be
opened. The code reproduces our results on CIFAR-100 for |M | = 500 and |M | = 2000, and on
miniIMAGENET for |M | = 500. See README in the code for the setup guide.
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APPENDIX

This appendix is organized in the following manner:

• In Appendix A we comment on the schedule-robustness property of Ridge Regression;

• In Appendix B we present additional empirical investigation on the behavior of SCROLL
and its main components;

• In Appendix C we report the implementation details of SCROLL used in our experiments;

• In Appendix D we provide more information on model tuning and baseline methods.

• In Appendix E we discuss in more detail the definition of schedule-robustness introduced in
Sec. 2.2 providing a more formal definition of this notion.

A RIDGE REGRESSION AND SCHEDULE-ROBUSTNESS

We show that Ridge Regression is schedule-robust and mitigates forgetting. From Sec. 3.1, the Ridge
Regression classifier is defined as f(x) = argmaxy w

⊤
y ψ(x), where

W ∗ = [w1 . . . wK ] = argmin
W

1

|D|
∑

(x,y)∈D

∥∥W⊤ψ(x)− OneHot(y)
∥∥2 + λ ∥W∥2 , (12)

with ψ as a feature extractor. The closed-form solution for W is

W ∗ = (X⊤X + λI)−1X⊤Y where (13)

X = [ψ(x1) . . . ψ(xN )]⊤ and Y = [OneHot(y1) . . .OneHot(yN )]⊤. (14)
Substituting (14) into (13), we have

X⊤X =

N∑
i=1

ψ(xi)ψ(xi)
⊤ and X⊤Y = [c1 . . . cK ], (15)

where ci =
∑

x∈Xi ψ(x) is the sum of embeddings from class Xi, and K is the total number of
classes in the dataset D.

From (15), it is clear that both X⊤X and X⊤Y , as summations, are invariant to the ordering of
samples in D. Therefore computing W ∗ is also invariant to sample ordering in D and may be
performed online using (10). We thus conclude that Ridge Regression is schedule-invariant. Since
Ridge Regression learns each wi independently, it also mitigates catastrophic forgetting caused by
class interference.

We note that while Ridge regression with a fixed feature representation resembles streaming linear
discriminant analysis with deep models Hayes & Kanan (2020), a key difference is that the former
guarantees schedule-invariance while the latter is sensitive to sample ordering..

B ADDITIONAL EXPERIMENTS

B.1 ADDITIONAL RESULTS ON DIFFERENT SPLITS FOR CIFAR DATASETS

We compare SCROLL with the baseline methods on CIFAR-10 10-split and CIFAR-100 50-split
respectively. The classification accuracies are reported in Tab. 5.

SCROLL (Ridge) outperforms all baselines in Tab. 5. We observe that most baseline methods’
performance drop drastically compared to Tab. 1 except GDumb, suggesting worse forgetting with
more dynamic schedules, even though the underlying data remains unchanged. In contrast, SCROLL
is able to perform consistently due to its schedule-robust design. The drop in baselines performance
is also consistent with Boschini et al. (2022): most existing methods are not designed to effectively
exploit pre-training. When the same dataset is split into more tasks (or batches), the later ones benefit
less from the prior knowledge encoded in the initial predictor f0.
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CIFAR-10 10-split CIFAR-100 50-split

Joint Training (i.i.d.) 94.2 ±1.6 79.3 ±0.4

CL Algorithm |M | = 200 |M | = 500 |M | = 2000 |M | = 200 |M | = 500 |M | = 2000

O
FF

L
IN

E ER 54.8 ±1.8 71.5 ±1.1 85.8 ±0.1 15.1 ±2.1 28.5 ±1.1 50.3 ±0.4

BIC 64.9 ±2.0 78.8 ±0.5 87.5 ±0.6 16.1 ±4.1 25.7 ±0.6 36.8 ±2.7

DER 54.4 ±5.2 63.2 ±2.1 75.4 ±7.4 15.7 ±1.7 29.6 ±2.0 48.2 ±1.4

DER++ 62.9 ±3.1 68.8 ±2.6 77.4 ±5.8 18.2 ±1.4 33.2 ±2.0 53.1 ±0.9

O
N

L
IN

E

GDumb 73.0 ±1.7 81.1 ±0.3 87.1 ±0.1 22.8 ±1.9 37.1 ±1.1 58.9 ±0.4

ER-ACE 69.8 ±1.8 77.3 ±0.8 81.7 ±1.2 26.8 ±0.9 35.1 ±0.9 47.2 ±0.5

ER-AML 72.8 ±1.7 80.0 ±0.3 85.2 ±0.6 13.2 ±1.1 24.4 ±1.8 41.1 ±1.1

SSIL 65.1 ±1.6 70.7 ±0.4 74.2 ±1.0 32.9 ±0.6 40.1 ±0.9 52.2 ±0.9

MIR 52.6 ±2.5 63.8 ±1.5 72.5 ±1.7 7.9 ±0.7 17.1 ±0.7 41.1 ±0.5

(o
ur

s) SCROLL (NCC) 81.5 ±0.1 84.6 ±0.1 88.4 ±0.1 48.3 ±0.1 56.4 ±0.2 66.6 ±0.2

SCROLL (Ridge) 84 ±0.2 86.3 ±0.2 89.4 ±0.2 59.9 ±0.1 61.5 ±0.1 68.0 ±0.2

Table 5: Class-incremental classification accuracy on CIFAR-100 50-split and CIFAR-10 10-split.

B.2 COMPARISON WITH ENSEMBLE METHOD

We also compare SCROLL to ENS (Shanahan et al., 2021), which is designed to tackle different
schedules, including a Gaussian schedule introduced in the same paper (see Fig. 3). Specifically, ENS
keeps the pre-trained feature extractor fixed and learns an ensemble of classifiers for the novel classes.
For ENS, we keep its original design for pre-training: using ResNet50 via self-supervised learning on
ImageNet 5. We also include the memory-free variant of SCROLL (Ridge) in the comparison, since
ENS does not use ER.

CIFAR-10 CIFAR-100

CL Algorithms 5-split 10-split Gaussian schd 20-split 100-split Gaussian Schd

ENS (ResNet50) 79.0 ±0.4 78.3 ±0.4 50.1 ±9.5 55.3 ±0.4 54.1 ±0.5 39.0 ±1.4

SCROLL (ResNet50, |M | = 0) 88.1 ±0 67.2 ±0

SCROLL (ResNet18, |M | = 0) 81.7 ±0 57.1 ±0

SCROLL (Resnet18, |M | = 500) 86.3 ±0.2 61.5 ±0.1

Table 6: Classification accuracy comparison SCROLL (Ridge) vs. Ensemble.

In Tab. 6, we observe that the ResNet50 provided by ENS is substantially more powerful than the
ResNet18 used in our main experiments. In addition, memory-free SCROLL returns deterministic
predictors fT for all possible schedules, while the performance of ENS degrades on the Gaussian
schedule, despite its robustness in handling different splits. The results further validates that it
is intractable to optimize CL algorithms against all schedules, and schedule-robustness should be
considered as part of algorithm design. Lastly, we note that SCROLL has the additional advantage of
using ER to further improve performance, compared to the lack of ER in ENS.
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Figure 3: Example of Gaussian schedule. Figure originally from Shanahan et al. (2021). The schedule proposes
to sample a class with a Gaussian probability, where each class peaks at a different time. There are no class
boundaries, and the probability of sampling each class evolves smoothly over time.

5ResNet50 checkpoint available at https://github.com/deepmind/deepmind-research/
tree/master/byol
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B.3 THE EFFECTS OF BUFFERING STRATEGY

In this section, we study different buffering strategies used in ER. We consider both exemplar
selection (Rebuffi et al., 2017) and random reservoir sampling (Vitter, 1985), which are commonly
used in existing works. We also introduce two simple variants to exemplar selection, including
selecting samples nearest to the mean representation of each class (Nearest Selection), or selecting
samples furthest to the mean representation of each class (Outlier Selection).

CIFAR-10 CIFAR-100

Buffering strategy |M | = 500 |M | = 2000 |M | = 500 |M | = 2000

Exemplar 86.3 ±0.2 89.4 ±0.2 61.5 ±0.1 68.0 ±0.2

Random 84.5 ±0.2 88.8 ±0.1 61.1 ±0.1 65.4 ±0.1

Nearest 72.3 ±0.1 82.2 ±0.1 55.6 ±0.1 57.0 ±0.2

Outlier 72.6 ±0.4 82.1 ±0.3 55.5 ±0.1 57.0 ±0.3

Table 7: Classification accuracy with different buffering strategy

We report the effects of different buffering strategies in Tab. 7. The exemplar strategy clearly
performs the best, followed by random reservoir sampling. Both nearest and outlier selection perform
drastically worse. From the results, we hypothesize that an ideal buffering strategy should store
representative samples of each class (e.g., still tracking the mean representation of each class as in
exemplar selection), while maintaining sufficient sample diversity (e.g., avoid nearest selection). We
remark that the results in Tab. 7 are obtained using a fixed feature extractor ψ. We leave it to future
work to investigate the setting where ψ is continuously updated during CL.

The results have several implications for CL algorithms. While random reservoir sampling performs
well on average, it can perform poorly in the worst cases, such as when the random sampling happens
to coincide with either nearest or outlier selection. Therefore, it appears helpful to rank the samples
observed during CL and maintain representative yet diverse samples. On the other hand, the results
show that GDumb (Prabhu et al., 2020) is not fully schedule-robust, since random reservoir sampling
would perform poorly in worst cases.

B.4 BUFFERING STRATEGY AND SCHEDULE-ROBUSTNESS

As discussed in Sec. 3.3, exemplar selection yields a deterministic replay buffer when one or more
classes are presented in a single batch. In this section, we further investigate its behaviors under
schedules with smaller batches, where data from a class is spread out in a sequence. We use random
reservoir sampling as a baseline for comparison.

In this experiment, we consider each class separately, since both exemplar strategy and random
sampling select samples from each class independently. We thus use buffer size b1 and batch size
b2 on a per-class basis here. Batch size refers to the number of samples in a batch for a single class,
while buffer size refers to the allowed buffer capacity per class.

We use the ℓ2 distance
∥∥µ̂y − µ∗

y

∥∥ as the metric to measure how well the stored samples in the last
replay buffer MT approximates the population mean of each class, where µ̂y is the mean of the points
in MT belonging to class y ∈ Y and µ∗

y the mean of Xy, namely all points belonging to class y in
the dataset D.

We consider 4 scenarios: 1) b1 = 20, b2 = 20; 2) b1 = 20, b2 = 80; 3) b1 = 90, b2 = 10; 4)
b1 = 50, b2 = 50. We also note that b1 = 20 represents one of the worst possible scenario for
CIFAR-10, since it implies a total buffer size of 200 and no class is allowed to temporarily borrow
capacity from other classes. All scenarios are run with 100 random shuffling of the class data to
simulate various schedules.

Fig. 4 shows that the exemplar strategy is much better at approximating the population mean of
each class for all scenarios, compared to random sampling. This corroborates our results from
Appendix B.3 that exemplar selection selects more representative samples and thus performs better
during ER. In addition, we note that exemplar selection achieves drastically lower variance for all
settings, suggesting that the selected samples at MT form similar distributions and make SCROLL
schedule-robust.
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Figure 4: Effects of buffer size and batch size on selected samples in MT . Exemplar selection vs. Random
Sampling. Lower distance and variance are better. Distance denotes how well the selected samples approximates
the population mean. Lower variance suggests similar distribution at MT .

The experiment also suggests practical ways to ensure schedule-robustness. We first observe that
the exemplar strategy decide on what samples to keep based on the current batch and the current
buffer Mt. Therefore its behavior is predominantly determined by the combined size of b1 and
b2. Consequently, simply use a large buffer (e.g. b1 = 90 in scenario 4) will yield a MT closely
approximating the desired population mean, even when the batch size b2 = 10 is very small and
generally considered as challenging for CL.

B.5 GENERALIZATION PERFORMANCE OF INTERMEDIATE PREDICTORS

Existing CL methods can produce intermediate predictors for partial sequences, such as after observ-
ing each class. SCROLL can similarly do so on demand: whenever a predictor is required, SCROLL
could compute the current predictor ft = ϕt · ψ with the stored statistics, followed by adapting ft on
the current buffer Mt. The key difference from existing methods is that we will always begin the
adaptation from the initial ψ to preserve schedule-robustness.

In Fig. 5, we compare SCROLL (Ridge) to existing baselines with respect to the generalization
performance of intermediate predictors. We note that the improved generalization performance
directly implies reduced forgetting. The results show that SCROLL achieves performance similar to
the baselines when the number of observed classes are low. However, SCROLL clearly outperforms
the baselines with increasing number of observed classes. This clearly indicates that the proposed
method is more robust in mitigating forgetting and achieves better generalization performance.

C MODEL DETAILS

For CIFAR datasets, we use a ResNet18 backbone pre-trained on the Meta-Dataset (Triantafillou et al.,
2019). The model definition and pre-trained representation can be found here6. For miniIMAGENET,
we use a ResNet-12 backbone as commonly adopted in existing meta-learning works (Lee et al., 2019;
Oreshkin et al., 2018; Ravichandran et al., 2019; Tian et al., 2020), and use the default architecture
from the official implementation of Tian et al. (2020). Please refer to the accompanying source code
for more details.

Following Tian et al. (2020), we find it beneficial to normalize the embedding ψ(x) to unit length
before classification. The normalization is implemented in predictor ft as a non-linearity layer.

6https://github.com/VICO-UoE/URL
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Figure 5: Intermediate predictors’ performance on CIFAR-100 10-split schedule: SCROLL (Ridge) vs baselines.

Adapting NCC with Experience Replay. Since we normalize sample embedding, NCC can be
implemented as a standard linear layer. Recall that NCC is

f(x) = argmin
y

∥ψ(x)− cy∥22 s.t. cy =
1

n

∑
x∈Xy

ψ(x). (16)

When ψ(x) is unit-length,

argmin
y

∥ψ(x)− cy∥22 = argmin
y

ψ(x)⊤ψ(x)− ψ(x)⊤cy + c⊤y cy (17)

= argmin
y

1− ψ(x)⊤cy + c⊤y cy (18)

= argmax
y

ψ(x)⊤cy − c⊤y cy. (19)

We thus use cy and −c⊤y cy to initialize the weights and bias for class y respectively. Adapting NCC
with ER therefore treats NCC as a standard linear layer as described above.

Optimizer. Following Li et al. (2022), we use AdaDelta (Zeiler, 2012) for model adaptation with ER.

ER Hyper-parameters. We list the hyper-parameters for ER in Tab. 8 and state the values used in
our grid search.

Hyper-parameter Description Possible values
l1 learning rate for classifier ϕ [0.5, 0.1, 0.01, 0.001]
l2 learning rate for feature extractor ψ [0.02, 0.01, 0.002, 0.001]
τ temperature for cross-entropy loss [1, 2, 4, 5]
b batch size from ER [50, 100]

Table 8: ER Hyper-parameters in the proposed method and their values used in the grid search.

D MODEL TUNING FOR BASELINE METHODS

D.1 CIFAR-10 / 100

Dataset. We resize the input images to 84× 84, both at training and test time, to be compatible with
the pre-trained representation from Li et al. (2021). During training, we apply random cropping and
horizontal flipping as standard data augmentations.

Hyperparameters. Starting from the exhaustive search in Buzzega et al. (2020), we tuned all the
baselines by testing different learning rates and method-specific hyperparameters using the official
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repository7. We used a vanilla SGD optimizer without momentum and batch size of 32, training for
50 epochs per task for all offline algorithms. We found that a good trade-off between preserving and
updating the knowledge in the pre-trained representation is given by learning rates of 0.01 and 0.03.
For small buffer sizes, typically lr = 0.01 achieves a lower standard deviation across different random
seeds at the cost of slightly lower average performance, while lr = 0.03 works well with larger
memory. Other empirical works also recommend updating the model parameters with lower learning
rates by studying the training dynamics of CL algorithms (Mirzadeh et al., 2020). For ER and BIC Wu
et al. (2019), we used lr = 0.01 (no other hyperparameters are present). For DER/DER++ (Buzzega
et al., 2020), we tested different values of replay loss coefficients α, β ∈ {0.1, 0.3, 0.5, 1.0}, defined
in Eq.6 of the original paper. While for small buffer sizes (200, 500), no clear winner emerges, we
found that larger buffer sizes (2000) benefit from larger coefficients. Assuming that the actual data
schedule is not known in advance, safe choices for α are 0.5 or 0.3, confirming the original paper
suggestion. DER++ usually requires β ≥ 0.5 and is less sensitive to the choice of α. For CIFAR-100
10-split we used lr = 0.01, α = 0.5, β = 0.5, while for the 50-split lr = 0.03 works best.

All online baselines use a single epoch for training. For GDumb (Prabhu et al., 2020), we decay
lr to 5× 10−4 with Cosine annealing and modify the original training recipe by removing CutMix
regularization (Yun et al., 2019) as we found it not to be compatible with the pre-trained representation.
For other online methods, we follow the official implementation8 of ER-AML and ER-ACE (Caccia
et al., 2022) and tunes the learning rate of each method. We observe similarly that lr = 0.01 works
well for all. Loss coefficients are set using the recommended values in the original implementation.

Moreover, our experiments confirm that, if an algorithm is not schedule-robust, its hyper-parameters
should be tuned independently for each schedule. However, this is infeasible as the actual schedule is
generally unknown, further motivating the necessity of designing schedule-robust CL algorithms.

D.2 miniIMAGENET

Dataset. For miniIMAGENET, we used the 64 classes of the meta-training split for pre-training the
representation. Then, we train and test all CL algorithms on the 20 meta-test classes, by splitting
the dataset in 10 sequential binary tasks. During training, we apply random cropping and horizontal
flipping as standard data augmentations. Input images have shape 84× 84× 3.

Hyperparameters. Similarly as for CIFAR-10/100, we search for the best hyperparameters of the
baseline methods. We train all algorithms with SGD optimizer without momentum and batch size of
32. We found that for buffer size |M | = 200, training for 10 epochs is enough, while for |M | = 500,
better performance are obtained with 20 epochs. Best hyperparameters are reported below.

Buffer size |M | = 200 (10 epochs)

• ER: lr = 0.01

• BIC: lr = 0.01

• DER: lr = 0.03, α = 1.0

• DER++: lr = 0.03, α = 1, β = 1.0

Buffer size |M | = 500 (20 epochs)

• ER: lr = 0.01

• BIC: lr = 0.01

• DER: lr = 0.05, α = 1.0

• DER++: lr = 0.05, α = 0.5, β = 1.0

Buffer size |M | = 200 and |M | = 500 (1 epochs, online methods)

• GDumb: lr = 0.03 decayed to 5 × 10−4 with Cosine annealing, ER epoch E = 10, No
Cutmix.

7https://github.com/aimagelab/mammoth
8https://github.com/pclucas14/aml
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• ER-ACE: lr = 0.01

• ER-AML: lr = 0.01, supercon temperature τ = 0.2

• SSIL: lr = 0.01, distillation coefficient α = 1

• MIR: lr = 0.01, sub-sampling rate r = 50.

Buffer size |M | = 500 (1 epochs, online methods)

• GDumb: lr = 0.03 decayed to 5 × 10−4 with Cosine annealing, ER epoch E = 20. No
Cutmix.

• ER-ACE: lr = 0.01

• ER-AML: lr = 0.01, supercon temperature τ = 0.2

• SSIL: lr = 0.01, distillation coefficient α = 1

• MIR: lr = 0.01, sub-sampling rate r = 50.

E FORMAL DEFINITION OF SCHEDULE-ROBUSTNESS

In Sec. 2.2, we introduced the notions of schedule invariance and robustness. In particular, we said
that a CL algorithm is schedule-robust if its performance across different schedules does not vary
dramatically. We captured this intuition in (6) as

L(S1(D), f0, alg) ≈ L(S2(D), f0,Alg), ∀S1, S2 schedules, ∀D dataset,

where the symbol ≈ loosely implies that small discrepancies between generalization errors are
allowed. This definition is however not formal, but rather conveying the general intuition and goal of
this work, which is to design CL algorithms that are as robust as possible to changes in the schedule.

We can however introduce a more formal definition of schedule-robustness: we say that a CL
algorithm is ϵ-schedule-robust (where ϵ > 0 is a given constant), if∣∣∣L(S1(D), f0,Alg)− L(S2(D), f0,Alg)

∣∣∣ ≤ ϵ, (20)

holds for any dataset D and any two schedules S1 and S2 over it. This definition can be weakened to
the form

ED∼D ES1,S2∼S

∣∣∣L(S1(D), f0,Alg)− L(S2(D), f0,Alg)
∣∣∣ ≤ ϵ, (21)

namely, considering schedule-robustness in expectation with respect to a family of datasetsD sampled
from a dataset-generating distribution D, and of sequences S1, S2 sampled (independently) from
a sequence-generating distribution S. The latter would capture settings where not all datasets and
sequences are possible, but we have prior-knowledge of what kind of sequences and data the CL
algorithm might encounter.

While the two above are more rigorous definitions of schedule-robustness, in the present work,
we preferred focusing on the more intuitive perspective on the problem, loosely captured by the
approximation in (6) with the symbol ≈. This is because precisely quantifying the the ϵ error incurred
by SCROLL would require substantial theoretical analysis of the effects of experience replay (a
problem akin to algorithmic stability, see e.g. Bousquet & Elisseeff (2002)), which is outside the
scope of this work and would not add to our overall take-home-message. We care to point out,
however, that our experiments in Sec. 4 show that SCROLL is -schedule-robust with a small ϵ,
according to the above definition (at least on k-split schedules and Gaussian schedules). This is
particularly evident from Fig. 2. Our method is also provably invariant to the set of schedules when
all samples from one or more classes is observed together (see discussion in Sec. 3.3). SCROLL’s
performance does not change as we change the schedule, in contrast to previous methods.
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