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Abstract—In response to the threat of adversarial examples,
adversarial training provides an attractive option for enhancing
the model robustness by training models on online-augmented
adversarial examples. However, most of the existing adversarial
training methods focus on improving the robust accuracy by
strengthening the adversarial examples but neglecting the in-
creasing shift between natural data and adversarial examples,
leading to a decrease in natural accuracy. To maintain the
trade-off between natural and robust accuracy, we alleviate
the shift from the perspective of feature adaption and propose
a Feature Adaptive Adversarial Training (FAAT) optimizing
the class-conditional feature adaption across natural data and
adversarial examples. Specifically, we propose to incorporate a
class-conditional discriminator to encourage the features become
(1) class-discriminative and (2) invariant to the change of adver-
sarial attacks. The novel FAAT framework enables the trade-off
between natural and robust accuracy by generating features with
similar distribution across natural and adversarial data within
the same class, and achieves higher overall robustness benefited
from the class-discriminative feature characteristics. Experiments
on various datasets demonstrate that FAAT produces more
discriminative features and performs favorably against state-of-
the-art methods.

Index Terms—Adversarial example, adversarial training,
model robustness, feature adaption

I. INTRODUCTION

Deep feed-forward networks have brought great advances to
the state-of-the-art across various machine-learning tasks and
applications. However, these advances in performance can be
dramatically degraded when faced with maliciously crafted
perturbations, i.e., adversarial examples. This phenomenon
has raised growing concerns over the safety and reliability
of deep feed-forward networks and significantly hinders the
deployment of these state-of-the-art architectures in practi-
cal [1]–[6].

In response to the threat of adversarial attacks, learning
to increase model robustness by augmenting training data
with adversarial examples is known as adversarial training.
A number of approaches to adversarial training has been
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Fig. 1. Illustration for our method. (a) Shift between natural and adversarial
data. Note that the adversarial examples are generated by adding imper-
ceptible perturbations over the natural data. Human are not sensitive to the
perturbations but CNN models can be easily affected as there is a clear shift
between natural and adversarial feature distributions. (b) The comparison of
previous methods and ours. Previous methods focus on minimizing the feature
discrepancy between natural data and adversarial examples. Our method take
class-level information into consideration for fine-grained feature adaption.

suggested in a formulation of min-max optimization, e.g.,
generating online adversarial examples that maximize the
model loss, and then the model is trained on these adversarial
examples to minimize the loss, so that the model can prefer
robust features when given adversarial data. The appeal of
adversarial training approaches is to encourage the model to
learn the distributions of adversarial data. This strategy can
effectively improve the model robustness and has become
the most popular way to defend adversarial examples. At the
same time, however, these improvements of robustness against
adversarial examples typically come at the cost of decreased
natural data accuracy as there is a shift between adversarial
and natural data distribution, as shown in Fig. 1. Especially
when previous works [7], [8] focus on maximizing the attack
strength of online generated adversarial examples to improve
robustness, these methods work poorly on natural data (i.e.,
drop at least 5% on CIFAR-100 dataset), as reported in Table I.

In this paper, we propose to alleviate the shift between
natural and adversarial data distribution. There have been
some pioneering works trying to address this problem. Kan-
nan et al. [10] proposed adversarial logit pairing (ALP) method
to encourage the logits from original inputs and adversarial
examples in the CNN model to be similar. Zhang et al. [9]
provided a regularizer, namely TRADES, to minimize the
KL-divergence between the features of original inputs and
adversarial examples. Cui et al. [11] proposed to parallelly
train two models using original input and adversarial examples
separately while the natural model is used to guide the training
of robust model. Despite the improvements, these methods
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TABLE I
COMPARISON OF PREVIOUS METHODS AND OUR METHOD UNDER PGD-20/CW-20 ATTACK FOR WIDERESNET-34-10 ON MNIST, CIFAR-10, AND

CIFAR-100, RESPECTIVELY. WE HIGHLIGHT THE HIGHER ACCURACY IN BLUE AND THE LOWER IN RED COMPARED TO THE STANDARD ADVERSARIAL
TRAINING.

Denfese Method Trade-off term
MNIST CIFAR-10 CIFAR-100

Natural PGD-20 CW-20 Natural PGD-20 CW-20 Natural PGD-20 CW-20
Natural training % 99.50 0.07 0.00 95.80 0.00 0.00 78.76 0.00 0.00
Standard (PGD-10) [7] % 99.41 96.01 95.87 85.23 48.93 48.74 60.29 26.84 26.25
+ATTA [8] % 99.60 98.20 97.72 83.30 54.33 54.25 55.09 23.23 22.85
+TRADES (λ = 3) [9] ! 99.48 96.50 95.79 85.98 54.86 54.02 62.37 25.31 24.53
+ALP [10] ! 99.27 97.80 97.26 84.01 54.96 54.71 55.60 28.28 24.40
+Ours ! 99.70 98.53 97.89 86.74 55.18 54.79 62.58 30.22 30.58

have two major issues. First, these methods generally employ
arbitrary point-to-point metrics to evaluate the distribution
discrepancy which does not guarantee the well distribution
alignment. Second, there exist many feature points near the
decision boundary, they may overfit the natural data but are
less discrminative for the adversarial examples, as shown in
Figure 1.

unlike the previsous methods, we proposed to alleviate the
shift from the per Unlike the previous methods, we propose to
alleviate the shift from the perspective of feature adaption. To
address the above issues, we focus on learning features that
are both class-level discriminative and invariant to the change
of adversarial attacks, i.e., learning the same or very similar
distributions across the natural and adversarial data with same
class. In this way, the obtained network can maintain the accu-
racy on both natural and adversarial domains. It is conceptually
similar to the problem of domain adaption [12]–[14], which
aims to alleviate the domain shift problem by aligning the
feature distributions of different domains. Recent success in
domain adaption lies in the incorporation of a discriminator to
model the feature distribution, where the discriminator aims
to distinguish the features from different domains while the
trained network tries to fool the discriminator, so the features
become domain-invariant.

Motivated by this, we take advantage of such a discriminator
in coming up with a novel adversarial training framework:
Feature Adaptive Adversarial Training (FAAT), where a dis-
criminator is incorporated to encourage the similar distribution
of across natural data and adversarial examples. However, the
simple discriminator only encourages distribution similarity
across domains but neglects the underlying class structures. To
make the features near the decision boundary more discrimina-
tive, the feature discrepancy among classes should be further
ensured. Inspired by [12], we propose to directly encode
class knowledge into the discriminator and encourage class-
level fine-grained feature adaption of adversarial features.
Specifically, the output of discriminator is transferred from
binary domain label into class-conditional domain label. Such
class-conditional discriminator can well assist the fine-grained
feature adaption across natural data and adversarial examples
according to their corresponding classes. In summary, the
proposed FAAT has the following advantages:

• FAAT can effectively maintain the trade-off between nat-
ural and robust accuracy by encouraging feature adaption

across natural data and adversarial examples.
• FAAT can significantly improve the overall robustness of

adversarial training by incorporating class knowledge into
feature adaption.

• FAAT provides an universal framework for adversarial
training which can be easily combined with other meth-
ods.

We conducted extensive experiments on diverse datasets.
The experimental results show that the proposed method
achieves impressive improvements. For example, as can be
seen in Table I, our proposed method improves the natural
and PGD-20 robust accuracy of model trained with standard
adversarial training from 60.29% to 62.58% and 26.84% to
30.22% on CIFAR-100 dataset. Our contributions in this work
can be concluded as:

• We propose to alleviate the increasing shift between nat-
ural and adversarial examples in adversarial training from
the perspective of feature adaption, which we believe
could guide new thought-provoking directions for future
work.

• We present a Feature Adaptive Adversarial Train-
ing (FAAT) framework which incorporates a class-
conditional discriminator into the adversarial training for
encouraging features to be both class-discriminative and
invariant to the adversarial attacks.

• We analyze our proposed FAAT by conducting extensive
experiments on CIFAR-10, CIFAR-100, and TinyIma-
geNet datasets, and show that FAAT substantially im-
proves the trade-off between the natural and robustness
accuracy with relatively light computational burden.

The rest of this paper is organized as follows. Section II
provides a survey of previous adversarial attack and defense
methods; Section III describes the proposed class-conditional
FAAT in details; Section IV conducts a sequence of exper-
iments to validate both effectiveness and efficiency of our
FAAT; and Section V draws conclusions of this work.

II. RELATED WORK

A. Adversarial attacks

An adversarial example refers to a maliciously crafted input
that is imperceptible to humans but can fool the machine-
learning models. It is typically generated by adding a pertur-
bation δ subject on constraint S to the original input x, i.e.,
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xadv = x + δ, δ ∈ S . Szegedy et al. [15] first observed the
existence of adversarial examples and used a box-constrained
L-BFGS method to generate δ. Goodfellow et al. [16] in-
vestigated the linear nature of networks and proposed the
fast gradient sign method (FGSM) to generate more effective
adversarial examples. Following this work, various attacks are
proposed to generate stronger δ that can maximize the model
training loss. Specifically, Madry et al. [7] divided one-step
FGSM into multiple small steps to iteratively enhance the
attack strength, known as Projected Gradient Descent (PGD)
attack. Carlini et al. [17] proposed CW attack based on the
margin loss to enhance the attack. Croce et al. [18] ensemble
multiple attacks into a more powerful attack, namely Auto-
Attack (AA), which is known as the strongest attack so far.

An intriguing property of adversarial examples is that
they can be transferred to attack different network architec-
tures [16], [19]. Liu et al. [20] first analyzed the transferability
of adversarial examples and used ensemble-based methods to
generate adversarial examples for attacking unknown models.
Huang et al. [21] proposed to enhance the transferability
of adversarial examples by increasing its perturbation on a
pre-specified layer of the source model. Dong et al. [22],
Xie et al. [23], Wu et al. [24] and Wang et al. [25] further
boosted the transferability of adversarial examples via gradi-
ent momentum, diverse input patterns, attention scheme and
invariance tuning, respectively, making the adversarial defense
more challenging.

B. Adversarial defenses

Various defense methods against adversarial attacks have
been proposed over the recent years, including detection-based
methods [26]–[29], input transformation-based methods [30],
and training-based methods [7], [8], [16], [31]–[36]. Here we
focus on the most related and effective one: adversarial train-
ing methods. Adversarial training performs online defending
which aims to minimize the loss of model on online generated
adversarial examples that maximize the model loss at each
training epoch. This process can be described as:

min
θ

E(x,y)∼X [max
δ∈S
L(x+ δ, y; θ)], (1)

where (x, y) is a training pair in dataset X , S denotes the
region within the ϵ perturbation range under the ℓ∞ threat
model for each example, i.e., S = {δ : ∥δ∥∞ ≤ ϵ}, where
the adversary can change input coordinate xi by at most ϵ. It
formulates a game between adversarial examples and model
training. The stronger adversarial examples are generated;
more robust model can be achieved.

Thus existing adversarial training focus on maximizing the
attack strength of adversarial training. Madry et al. [7] used
PGD to approximate the adversarial attack for adversarial
training. Cai et al. [35] and Zhang et al. [34] further in-
corporated curriculum attack generation and early stopping
into the PGD adversarial training to make it more efficient
and practical. On the other hand, Tramer et al. [33] proposed
ensemble adversarial training where the adversarial examples
are generated by multiple ensemble models to enhance the at-
tack strength. Several methods are proposed to further promote

the diversity in the ensemble models, including output logits
diversification [37], gradient direction minimization [38], and
vulnerability diversity maximization [39]. These methods can
effectively improve the robustness of models but generally
have the limitation of a decrease of natural accuracy due to
the ignorance of the shift between natural and adversarial data
distribution.

C. Trade-off between natural and robust accuracy

Besides simply pursuing the improvement over robustness,
a recent line of work investigates the trade-off between natural
and robust accuracy [9]–[11], [40]–[43]. Based on the theo-
retical insight [10], most works follow the path of shortening
the distance of natural data and the corresponding adversarial
examples in the CNN models. Progress has been achieved by
adversarial logit pairing (ALP) in [10], KL-divergence based
TRADES in [9]. Furthermore, Wang et al. [40] explicitly
differentiates the misclassified and correctly classified exam-
ples during the training and minimize the KL-divergence for
misclassified examples. Cui et al. [11] proposed to parallelly
train two models using original input and adversarial examples
separately while the natural model is used to guide the
training of robust model. Although the ideas behind these
methods are intuitive for encouraging the same representation
of original inputs and adversarial examples in CNN models,
these regularizations arbitrarily used point-to-point metrics and
do not in practice align well with learning feature distributions.
Wang et al. [42] took the trade-off parameter into the learning
process to calibrate a trained model in-situ. However, directly
considering trade-off as a learning process lacks explicit
feature generation guidance, thus leads to unsatisfied results.
A co-current work is [44], they directly incorporate domain
adaption into adversarial training without considering the
class-level alignment. A fine-grained feature adaption scheme
is still lacking.

III. METHODOLOGY

Given a CNN model G trained on dataset X for K-class
classification, We denote a natural data pair (x, y) ∈ X where
y ∈ {0, ...,K − 1}. Adversarial examples are generated by
adding a perturbation over x, i.e., xadv = x + δ, which can
lead to G(xadv) ̸= y. The goal of our work is to learn a
model G which could achieve a low expected risk on both
x and xadv . We discuss the FAAT in the context of feature
generation in CNN models. For more clear illustration, we
divide the model G into a feature extractor F and a multi-
class classifier C, where G = F ◦ C. In the following, we
first introduce the class-conditional feature adaption scheme
and then discuss the objective and training procedure of our
FAAT framework.

A. Class-conditional feature adaption

Recent success in domain adaption [12]–[14] reveal that
feature distribution captured by a discriminator can be used to
better measure the feature discrepancy between two domains.
In these frameworks, a discriminator is usually equipped to
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Fig. 2. Overview of the proposed FAAT. Left: The training process of FAAT. We adopt a discriminator D in the adversarial training framework to distinguish
the feature distribution across natural data and adversarial examples, while the network G is trained to generate invariant features against adversarial attacks.
Here we divide G into a feature extractor F and a classifier C for clear illustration, where G = F ◦ C. Right: The class-conditional discriminator. We
change the traditional discriminator which uses binary domain label into a class-conditional discriminator with multiple output to encourage the fine-grained
class-level feature adaption.

model distribution P (a | f) ∈ [0, 1] given feature f , where a
denotes the data domain. By learning features that can confuse
the discriminator, i.e., expecting P (a = 0 | f) ≈ P (a = 1 | f)
where 0 and 1 stands for different domains, the features can
be domain-invariant.

Inspired by this, Bashivan et al. [45] first proposed to adopt
such a discriminator to encourage the invariant feature gener-
ation against the change of adversarial attacks. Specifically,
the discriminator is trained to model distribution with the
objective of P (a = 0 | f) = 1 and P (a = 1 | fadv) = 1,
where a = 0 and 1 denote attributes of natural data and
adversarial examples, respectively, f and fadv denotes the
features of natural data and adversarial examples. Then the
CNN model can be trained to fool the discriminator, i.e.,
expecting P (a = 0 | fadv) = 1. The F in G is encouraged to
generate the domain-invariant features by solving:

min
F
Lfa = −

n∑
i=1

logD(F (xi + δi))

= −
n∑

i=1

logP (a = 0 | F (xi + δi)),

(2)

where n is the number of data pairs in dataset X , and δ is the
adversarial perturbation which can be optimized with PGD [7]
subjected to ∥δi∥∞ ≤ ϵ. By minimizing Lfa, the features
generated from adversarial examples are globally similar to
the features from natural data, i.e., fadv ≈ f .

However, it is not precise to only focus on feature invariance
but neglect the underlying class-level structure difference. To
take class discrimination into account, we propose to ex-
pand the discriminator to model class conditional distribution
according to [12]. Specifically, the output of discriminator
is changed from binary channels into multiple channels as
P (a, c | f) ∈ [0, 1], where c ∈ {0, ...,K − 1} denotes the
class label, and P (a | f) =

∑K−1
c=0 P (a, c | f). With this

design, the predicted probability for domains is represented as
a probability over different classes in specific domain, which
enables the class-discriminative but domain-invariant feature

generation. Thus the equation in Eq. (2) becomes:

min
F
Lfa = −

n∑
i=1

logD(F (xi + δi))

= −
n∑

i=1

K−1∑
k=0

di,k logP (a = 0, c = k | F (xi + δi)),

(3)
where di,k represents the class knowledge, di,k = 1 when xi

belongs to the k-th class, otherwise di,k = 0. The expectation
is to push P (a = 0, c = k | fadv) = 1, meaning that the
feature distribution of adversarial examples belonging to k-th
class are expected to be similar with natural data belonging to
k-th class.

B. Adversarial training with feature adaption

We propose to incorporate the class-conditional feature
adaptive objective in Eq. (3) into the adversarial training
process to induce the trade-off between natural and robust
accuracy. The overall training framework is illustrated in the
left part of Fig. 2. Since our training method relies on a
discriminator to align the features, we conduct the training
process by alternatively optimizing the trained model and
discriminator as follows:

Step 1: The discriminator D is first trained to model the
distribution of features from different domains. This can be
achieved by:

min
D

E(x)∼px,c
logD(F (x))

+ E(xadv)∼p
xadv,c

[1− logD(F (xadv))],
(4)

where D(F (x)) = logP (a, c | F (x)). Note that F is fixed
during the optimization of D. The goal of discriminator D
is to distinguish the features of natural data and adversarial
examples in class-level.

Step 2: The model G is trained with the task loss on the
adversarial examples and the feature adaption loss output from
the class-conditional discriminator. The task loss is used to
train discriminative features for classification. Here we use
most popular classification loss, i.e., cross-entropy loss Lce
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Algorithm 1: Feature Adaptive Adversarial Training (FAAT)
Input : Training data D = {X,Y } , perturbation bound ϵ, training epoch N , batch size B, learning rate lr.
Output: Trained model G, D with parameter θg and θd.
Initialize model G and D randomly or with pre-trained configuration.
Initialize δ from uniform (−ϵ, ϵ).
for epoch = 1 ... N do

for i = 1 ... B do
δi ← α · sign(∇δi ;L(G(xi + δi), yi)); // Generation of perturbation using PGD-10
δi ← max(min(δi, ϵ),−ϵ));
xadv
i ← xi + δi; // Generation of perturbation

Compute Ld based on Eq. (4);
θd ← θd − lr∇θd

∂Ld

∂θd
; // Update D

Compute Lce and Lfa based on Eq. (3) and (5) ;
θg ← θg − lr∇θg

∂(Lce+Lfa)
∂θg

; // Update G

end
end
return model G.

for classification. The feature adaption loss is used to push the
model to generate class-conditional invariant features that can
fool the discriminator. The overall objective can be represented
as:

min
G

E(x,y)∼X [Lce(G(x+ δ), y) + λLfa], (5)

where λ is the weighting factor which is set as 0.0015 in our
experiments. More adjustments to this factor are illustrated in
Sec. IV-E.

The objective in Eq. (5) can be understood as adding a
feature alignment constraint into adversarial training process.
However, our method is fundamentally different from other
trade-off methods. In our method, we employ a adversarial
framework where a discriminator is equipped to model the
feature distribution, which is more guaranteed than the MSE-
based metric in ALP [10] or KL distance-based metric in
TRADES [9] and MART [40]. Moreover, our method should
also be distinguished from that of [44] and [46], which
only focus on generating globally similar representations of
natural data and adversarial examples, neglecting the class-
level structure difference which is native in classification tasks.
In our method, we propose to directly incorporate the class
knowledge into the discriminator and ask for more fine-grained
feature adaption. This procedure simultaneously minimizes
the feature discrepancy between natural data and adversarial
examples, and maximizes the discrimination among different
classes, so that helps the model capture more discriminative
features. The entire training process of FAAT is elaborated in
Sec. III-D.

C. Discriminator architecture

In our FAAT framework, the discriminator is used to dis-
tinguish the feature distribution belongings in a class level.
Since the traditional discriminator only consider binary clas-
sification, we need a special design for the class-conditional
discriminator here. We consider the design of our discriminator
from two aspects: (1) model architecture; and (2) multi-class
label encoding. For the model architecture, since the input of

Conv+LeakyReLu Fully Conv

f

f adv
Output

Fig. 3. Illustration of the multi-class discriminator architecture in our FAAT
framework.

the discriminator is the deep features generated by the target
trained model, we can design the discriminator with a simple
architecture. We adopt the discriminator architecture in [12],
which comprises two 3 × 3 convolutional layers followed by
LeakyReLU activation function, and then two fully connected
layers are applied to predict the class-conditional possibility
over natural and adversarial domain, respectively. An overview
of the discriminator architecture is shown in Fig. 3.

Another problem we are facing with the incorporation of
discriminator is the encoding of multi-class labels. The labels
for training a traditional discriminator are binary, namely
[1,0] and [0,1], for the natural and adversarial data domain
respectively. To incorporate the class knowledge into the
discriminator, we first transform the labels into [d; 0] and [0;d],
where d ∈ RK×1 denotes the class knowledge, and 0 ∈ RK×1

is an all-zero vector. In our task, the labels of adversarial
examples are known so we can directly use one-hot labels
for generating d. Specifically, to obtain better generalization
of trained models, we use soft labels instead of hard labels as
follows:

dk =

{
1− α if k is the target label

α
K−1 otherwise

, (6)

where dk denotes the k-th entry of soft label logits, and α is
a temperature to encourage soft probability distribution over
non-target classes, which can be empirically set as 0.1.
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TABLE II
ROBUSTNESS OF MODELS TRAINED WITH DIFFERENT ADVERSARIAL TRAINING METHODS ON CIFAR-10 AND CIFAR-100 DATASETS. ALL STATISTICS

ARE EVALUATED AGAINST PGD/CW ATTACKS WITH 20/100 ITERATIONS AND A RANDOM RESTART FOR ϵ = 8/255.

Dataset Defense method Trade-off term Natural PGD-20 PGD-100 CW-20 CW-∞ AA

CIFAR-10

Standard [7] % 85.23 48.93 45.74 48.74 46.75 44.27
+FREE (m=8) [31] % 85.75 45.76 45.52 44.95 44.45 43.22
+ATTA-1 [8] % 83.36 50.05 49.90 49.02 48.75 45.21
+ATTA-10 [8] % 84.43 54.65 53.54 54.25 52.15 50.09
+CCG [47] % 88.32 54.71 52.79 54.34 52.98 51.00
+ALP [10] ! 86.45 53.12 52.59 52.85 52.74 44.96
+TRADES(λ = 3) [9] ! 85.98 54.86 53.97 54.02 53.58 51.05
+Ours ✓ 86.74 55.18 54.26 54.79 54.45 52.13

CIFAR-100

Standard [7] % 60.29 26.84 25.21 26.44 25.43 22.48
+FREE (m=8) [43] % 60.11 26.79 22.66 25.69 25.60 22.83
+ATTA-1 [8] % 59.07 21.58 22.82 21.14 20.92 18.23
+ATTA-10 [8] % 55.09 23.23 21.59 22.85 21.81 20.11
+CCG [47] % 60.74 27.27 25.83 26.04 25.39 23.22
+ALP [10] ! 59.65 28.28 27.97 27.14 27.01 22.60
+TRADES(λ = 3) [9] ! 62.37 25.31 24.89 24.53 24.19 22.24
+Ours ✓ 62.58 30.22 30.12 30.58 30.09 27.87

Tiny-ImageNet

Standard [7] % 43.27 19.19 19.11 18.21 17.05 11.21
+CCG [47] % 47.43 22.34 22.19 20.03 18.95 16.66
+TRADES(λ = 3) [9] ! 42.74 17.84 17.68 14.36 13.65 13.26
+Ours ! 45.59 22.58 22.73 21.42 20.21 18.64

D. Training routine

Algorithm 1 shows the pseudo-code of our proposed FAAT
training routine. We first randomly initialize the weights of
discriminator D and the target CNN model G. Then for
each batch of training data during the training phase, a PGD
optimization is first applied on training data to generate the
corresponding adversarial examples. To distinguish the feature
distribution of natural data and adversarial examples within
class level, the discriminator is first updated based on Eq. (4).
Next, we use the updated discriminator to compute the feature
adaptive loss based on Eq. (3) to encourage the generation
of class-conditional invariant features. The model G is then
updated based on the feature adaptive loss combined with
original task loss, as described in Eq. (5). This training routine
can effectively minimize the discrepancy between natural data
and adversarial examples while maximizing the class-level
discrepancy. Consequently, the overall robustness and natural
accuracy of the trained model can be improved. Note that
during the inference phase, the equipped multi-class discrimi-
nator can be removed, and the trained model can be robust to
adversarial examples.

IV. EXPERIMENTS

In this section, we present the experimental results of our
proposed FAAT for improving the model robustness. We first
describe the experimental settings including training details
and compared baselines used in the experiments in Sec. IV-A.
Then the comparison with state-of-the-art AT methods in
terms of both clean and robust accuracy is presented in
Sec. IV-B, with a visualization of feature distribution for a

more intuitive comparison in Sec. IV-C. We also conduct the
efficiency analysis to demonstrate the high potential for social
impact of FAAT in Sec. IV-D. To identify the core components
of our FAAT, Sec. IV-E gives two variants of FAAT and reports
the quantitative results.

A. Experimental setup

1) Training details: We implement all our experiments
using PyTorch on an Intel Core i9 with 48GB of memory
and an NVIDIA RTX A6000 GPU. In our experiments, we
alternatively update the discriminator and CNN model in each
epoch. For the hyper-parameters setting, we generally follow
the settings suggested by previous works [9], [11]. Specifically,
we use PGD-10 algorithm to generate adversarial examples in
each training epoch, where perturbation constraint ϵ = 8/255,
step size is set as 2ϵ/10. We train the discriminator and CNN
model for 100 epochs using stochastic gradient descent (SGD)
optimizer with an initial learning rate as 0.1 and it is decay
by a factor of 0.1 at 50% and 75% of the total epoch.

2) Compared methods: We compare the performance of
our method with various counterparts, including standard
adversarial training method [7] which uses PGD-10 to generate
online adversarial examples; methods focusing on maximizing
the strength of adversarial examples for improving robust
accuracy: ATTA [8] and CCG [47]; and methods focusing
on achieving trade-off between natural accuracy and robust
accuracy: ALP [10] and TRADES [9]. For TRADES, we set
λ = 4 for comparison. Following previous works, we use
WideResNet-34-10 as the trained CNN model architecture for
CIFAR-10 and CIFAR-100 datasets, and PreActResNet-18 for
TinyImageNet throughout all our experiments.
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TABLE III
NATURAL AND ROBUST ACCURACY(%) OF WIDERESNET-34-10 TRAINED WITH l∞ OF ϵ = 8/255 BOUNDARY AGAINST UNSEEN ATTACKS ON

CIFAR-10 DATASET. FOR UNSEEN ATTACKS, WE USE PGD-50 UNDER DIFFERENT SIZED l∞ BALLS, AND OTHER TYPES OF NORM BALL, E.G., l2 , l1 .

Dataset Method
l∞ l2 l1

4/255 16/255 150/255 300/255 2000/255 4000/255

CIFAR-10

Standard 67.92 21.52 52.49 24.93 67.36 46.99
+Ours 73.26 22.68 58.25 25.61 70.59 50.16
ALP [40] 72.76 22.98 56.96 24.70 69.53 48.77
+Ours 71.49 26.44 59.96 30.10 69.56 52.71
TRADES (λ = 4) [9] 72.25 24.12 58.71 27.96 69.41 51.18
+Ours 71.21 24.81 58.73 28.99 69.51 52.01
CCG [47] 73.46 23.86 58.13 28.98 72.81 54.16
+Ours 73.55 22.97 58.83 25.84 71.17 50.45

CIFAR-100

Standard 40.67 9.96 30.69 12.99 42.43 28.24
+Ours 46.01 11.70 35.35 15.55 46.64 31.87
ALP [10] 46.58 15.34 36.51 18.43 45.94 33.07
+Ours 46.11 17.25 38.33 21.43 45.74 34.88
TRADES (λ = 6) [9] 42.49 12.97 31.94 14.78 42.00 28.22
+Ours 43.01 16.99 35.42 19.84 42.54 31.80
CCG [47] 42.47 9.37 32.63 13.54 45.09 30.85
+Ours 46.51 11.96 35.75 14.93 46.50 31.60

TABLE IV
NATURAL AND ROBUST ACCURACY (%) OF WIDERESNET34-10 MODELS TRAINED ON CIFAR-100 DATASET AGAINST BLACK-BOX TRANSFER

ATTACK.WE CHOOSE l∞ THREAT MODEL WITH ϵ = 8/255 FOR PGD. SPECIALLY, FOR CW2 , ϵ IS FIXED TO 160/255.

Method Natural PGD-50 CW∞ FGSM-ILA [21] CW∞-ILA [21]
Standard 60.29 42.13 56.55 43.08 55.18
+ATTA [8] 55.09 39.79 50.74 40.86 49.86
+CCG [47] 60.74 46.74 58.92 46.84 56.55
+ALP [10] 59.75 45.79 56.94 46.12 55.85
+TRADES(λ = 6) [9] 62.37 42.09 53.86 42.64 53.00
+Ours 62.58 44.65 59.47 45.50 58.13

TABLE V
NATURAL AND ADVERSARIAL ROBUST ACCURACY (%) OF THE
WIDERESNET34-10 MODELS TRAINED BY COMBINATIONS OF

ADVERSARIAL TRAINING METHODS.

Method
CIFAR-10 CIFAR-100

Natural PGD-20 Natural PGD-20
ATTA 84.43 54.65 55.09 23.23
ATTA+Ours 87.33 53.84 59.01 25.32
TRADES(λ = 6) 85.05 51.20 62.37 25.31
TRADES+Ours 87.29 55.77 60.51 28.18
ALP 86.45 53.12 59.65 28.28
ALP+Ours 84.20 56.33 61.35 29.58
CCG 88.32 54.71 60.74 27.27
CCG+Ours 87.31 55.14 63.69 30.95

B. Main results

1) White-box attacks: We first evaluate the robustness of
our proposed method under white-box attacks where the
adversarial examples are generated by the known model.
Here we use three attack methodologies: Common attacks
including PGD-k and CW-k, and stronger attack AA. We
also generate adversarial examples with more strong attack,
Auto-Attack (AA), which is known as the strongest attack
by far. As we can see in Table II, focusing on strengthening
the adversarial attack in ATTA can significantly improve the

robustness accuracy but also lead to a decrease in natural
accuracy on CIFAR-10 dataset. CCG uses specific designed
data augmentation to increase the data diversity so it achieves
higher natural and robust accuracy in CIFAR-10 dataset. How-
ever, both the ATTA and CCG methods degrade in CIFAR-
100 dataset. For the methods designed for trade-off terms,
adding TRADES or ALP into the standard adversarial training
can somewhat maintain the trade-off between natural accuracy
and robust accuracy, but neither of them can achieve overall
improvements over the standard training. Instead, our method
focus on class-conditional feature adaption across natural data
and adversarial examples, and can effectively enhance both
natural and robustness accuracy, especially for CIFAR-100 and
TinyImageNet datasets with more classes, as the natural and
robust accuracy against AA on CIFAR-100 dataset achieves
62.58% and 27.87%, respectively, surpassing baselines with a
large margin.

2) Unseen adversaries: We consider a wide range of
unforeseen adversaries, e.g., robustness on different attack
threat radii ϵ, or even on different norm constraints (e.g.,
l2 and l1), in order to further measure the robustness of
trained models against multiple perturbation. The results are
reported in Table III. As we can see, incorporating FAAT into
adversarial training can remarkably improve the robustness
against unseen attacks. CCG improves the model robustness
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(d) (e)(b) (c)(a) 

Fig. 4. Visualization of feature distribution in WideResNet-34-10 model trained with different methods on CIFAR-10 dataset. The upper row denotes the
natural examples and the bottom row denotes the adversarial examples. Feature distribution in model trained with: (a) Natural training; (b) standard adversarial
training; (c) ALP; (d) TRADES; and (e) our FAAT.

(a) (b)

Mean Mean

Standard
Natural

Ours
Standard
Natural

Ours

Fig. 5. CCD analysis of the feature distributions produced by models trained on CIFAR-10 dataset. We show the CCD value using Eq. (7) for each class
and overall mean value on (a) natural data and (b) adversarial examples.

via augmenting additional data to increase the diversity of the
dataset. As our FAAT encourages similar distribution across
natural data and adversarial examples, it will weaken the
augmentation strength, thus leading to a slight decrease under
some attack conditions on CIFAR-10 dataset. Fortunately,
we take the class knowledge into consideration in FAAT,
which comes to play an important role when the the scale of
dataset becomes larger. For CIFAR-100 dataset, with the class-
conditional feature adaption scheme, our proposed FAAT can
significantly help the existing methods improve the adversarial
robustness against unseen attacks. Especially for CCG method,
the CCG+Ours outperforms CCG under every attack scenario,
which makes us believe the proposed FAAT has more potential
for model robustness improvements on large-scale datasets
which exist in more practical applications. Although ALP and
TRADES methods share the same motivation with us that
encourages the similar distribution of natural and adversarial
data, incorporating FAAT still brings improvements under
most attack scenarios which is benefited from the fine-grained
feature adaption.

3) Black-box transfer attacks: To evaluate the effectiveness
of our proposed FAAT in more practical defense scenarios, we
test the model under black-box transfer attacks, where adver-

sarial examples are generated from a source model and then
transfer to the target model. In this experiment, adversarial
examples are crafted from PreActResNet18 (source model)
trained with standard adversarial training (PGD-10), and we
use PGD-50 and CW∞ as black-box adversaries. Furthermore,
we also evaluate the defense performance against enhanced
black-box attacks by applying [21] with intermediate level
attack (ILA). The results are shown in Table IV. It is obvious
that the black-box attacks are weaker than white-box attacks,
as the robust accuracy denoted in Table IV are double times
higher than that against white-box attacks in Table II on the
same dataset. From the comparison with other methods, we
can see that our method can achieve comparable results with
CCG which applied data augmentation in their method on
both common and enhanced black-box attacks. In addition,
our method shows consistent improvement in natural accuracy
by taking trade-off between natural and robust accuracy into
consideration.

4) Combing with other methods: Our FAAT provides an
universal framework for adversarial training. To verify the
flexibility of our method, we combine various methods with
our FAAT framework. The evaluation is under the white-box
attack following the same setting in Sec. III-D. The results



SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 9

TABLE VI
TRAINING TIME (S) IN EACH EPOCH FOR DIFFERENT ADVERSARIAL TRAINING METHODS.

Dataset Standard ATTA [8] CCG [47] ALP [10] TRADES [9] Ours
CIFAR-10 1235.10 1425.79 3556.23 2033.20 2199.24 1440.12
CIFAR-100 1234.11 1429.49 3567.37 2042.35 2205.41 1445.24

are summarized in Table V. On CIFAR-10 dataset, using
our FAAT framework can effectively improve the existing
adversarial methods on the trade-off between natural and
robust accuracy. For ATTA which focuses on enhancing attack
strength, equipped with our FAAT framework, the ATTA
method can improve the natural accuracy by 3%. For TRADES
and ALP, incorporating FAAT can improve the robustness
accuracy while getting rid of a severe decrease in natural
accuracy. On CIFAR-100 dataset, FAAT framework can help
the existing methods improve the overall performance by
incorporating the class-conditional feature adaption into the
training process. Particularly, our FAAT framework improves
CCG by 3% in both natural and robust accuracy, which creates
new SOTA on CIFAR-100 dataset.

C. Feature distribution

To verify whether incorporating such a discriminator in
adversarial training can improve the feature learning of CNN
models, we design an experiment to investigate the feature
distribution before and after our FAAT. We intuitively show
the feature distribution of natural data and adversarial ex-
amples in models trained with different approaches using t-
SNE embedding [14] on CIFAR-10 dataset in Fig. 4. Here we
generate the adversarial examples by PGD-20 attack, and the
features are extracted from the last convolution layer before
normalization. As we can observe, in natural training of Fig. 4
(a), the adversarial data reside in the same region which is
hard to distinguish, thus leading to a very low robustness
accuracy. By taking adversarial training, both natural and
adversarial data distribution learned by ALP has much larger
intra-class distance and small inter-class distance, which will
lead to lower accuracy in natural and adversarial data, as
shown in Fig. 4 (b). ALP and TRADES enlarge the inter-
class distance and make the decision boundary easier to
decide. As we incorporate the class knowledge into trade-
off balance, our proposed FAAT demonstrates the highest
intra-class compactness and largest inter-class margin, as can
be seen in Fig. 4 (e). Moreover, the features from natural
data and adversarial examples have similar distributions. This
suggests that our FAAT can generate more class-discriminative
but invariant features against adversarial attacks, which is
consistent with our motivation and the results in Table II.

Moreover, we use the Class Center Distance (CCD) sug-
gested in [12] as a metric to evaluate the feature distribution by
computing intra-class compactness over inter-class distance.
The CCD for class k can be represented as:

CCD(k) =
1

K − 1

K−1∑
i=1,i̸=k

1
|Sk|

∑
f∈Sk

∥f − µi∥2

∥µk − µi∥2
, (7)

where µk is the class center of class k, and Sk denotes the

Natural accuracy

PerformancePGD-20

AA

CIFAR-10 CIFAR-100

Natural accuracy

PerformancePGD-20

AA

Standard ATTA CCG ALP Trades Ours

Fig. 6. Illustration of natural accuracy, robust accuracy against PGD-
20, robust accuracy against AA, and performance trade-offs using different
adversarial training methods.

set of all features belonging to class k. Note that a lower
CCD value suggests a more densely clustering. The results are
provided in Fig. 5. As expected, our FAAT achieves a much
lower CCD on most classes and the lowest mean CCD value
on both natural data and adversarial examples. It indicates that
FAAT can achieve better class-level feature adaption across
natural data and adversarial examples.

D. Efficiency analysis

A bottleneck of adversarial training is the expensive training
time due to the online data augmentation process. In this part,
we analyze the efficiency of our proposed FAAT. Compared to
standard adversarial training, our FAAT additionally equips a
discriminator. Since we use the feature extractor in the target
model to extract features thus the discriminator architecture
is simple, and training such a discriminator only takes trivial
additional consumption cost. We report the training time for
each epoch of different methods in Table VI. As we can see,
the training of FAAT is faster than TRADES or ALP, and
much faster than CCG which needs to deliberately augment
additional training data.

To better understand the trade-offs among natural accuracy,
robust accuracy, and efficiency, Fig. 6 demonstrates a four-
dimensional radar plot with natural accuracy, robust accuracy
against PGD-20, robust accuracy against AA, and performance
on four axes. Note that we plot the negative of the running
time for each training epoch on the performance axis. Thus,
the ideal adversarial training method exhibits highly rhombus-
shape quadrangle. We find that our FAAT (denoted by the
black solid quadrangle) gives a better trade-off on efficiency
and effectiveness on adversarial training. Hence, we believe
the FAAT can provide an universal and efficient framework
for adversarial training while free of burden.
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nator in FAAT. We use WideResNet-34-10 as the task model trained on (a)
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Fig. 8. The curve of natural accuracy and robust accuracy of WideResNet-
34-10 trained on CIFAR-10 dataset using FAAT with different values of λ.

E. Ablation studies

1) Effect of class knowledge encoding: We compare FAAT
using the class-conditional discriminator with that uses the
traditional binary discriminator, to verify the merits of in-
troducing class-level knowledge in adversarial training. The
robustness performance of model trained on CIFAR-10 and
CIFAR-100 datasets are shown in Fig. 7. It is obvious that
incorporating the class-level knowledge into feature adaption
can effectively improve the adversarial training performance,
especially for CIFAR-100 dataset with more classes. We
believe the reason is that the incorporation of class-level
clustering helps improve the overall performance in model
robustness.

2) Hyper-parameter sensitivity: We study the sensitivity
of FAAT to the balance weight λ on CIFAR-10 dataset.
Generally, we follow the setting in [12] to initialize λ = 0.001
and test the values floating up or down. The results are
provided in Fig. 8. As λ gets larger, the overall accuracy
steadily increases before decreasing. We set λ = 0.0015
throughout the experiments as the setting denotes the best
performance.

V. CONCLUSION

In this paper, we focus on maintaining the trade-off between
natural accuracy and robust accuracy in adversarial training
by proposing a class-conditional feature adaptive adversarial
training framework. A class-conditional discriminator is incor-
porated in adversarial training to guide the feature adaption
across natural data and adversarial examples. Comprehensive
experiments and analysis validate the effectiveness of our
FAAT, where our method achieves the best robust accuracy
in AA while maintaining the natural accuracy.
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