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Abstract001

In-Context Learning (ICL) has become a pow-002
erful paradigm that enables LLMs to perform a003
wide range of tasks without task-specific fine-004
tuning. However, the effectiveness of ICL heav-005
ily depends on the quality of exemplar selec-006
tion. In particular, for structured prediction007
tasks such as semantic parsing, existing ICL008
selection strategies often overlook structural009
alignment, leading to suboptimal performance010
and poor generalization. To address this is-011
sue, we propose a novel two-stage exemplar se-012
lection strategy that achieves a strong balance013
between efficiency, generalizability, and perfor-014
mance. First, we fine-tune a BERT-based re-015
triever using structure-aware supervision, guid-016
ing it to select exemplars that are both seman-017
tically relevant and structurally aligned. Then,018
we enhance the retriever with a plug-in mod-019
ule, which amplifies syntactically meaningful020
information in the hidden representations. This021
plug-in is model-agnostic, requires minimal022
overhead, and can be seamlessly integrated into023
existing pipelines. Experiments on four bench-024
marks spanning three semantic parsing tasks025
demonstrate that our method consistently out-026
performs existing baselines with multiple re-027
cent LLMs as inference-time models.028

1 Introduction029

Large language models (LLMs) have demonstrated030

remarkable few-shot capabilities by leveraging in-031

context learning (ICL) to perform a new task with-032

out parameter updates (Brown et al., 2020). De-033

spite its effectiveness, prior work has shown that034

ICL performance is highly sensitive to the choice035

of exemplars (Liu et al., 2022; Rubin et al., 2022;036

Li and Qiu, 2023). Therefore, how to select mean-037

ingful exemplars becomes an active research area.038

Exemplar selection methods can be broadly cate-039

gorized into two aspects: proxy-task-based (Rubin040

et al., 2022; Shi et al., 2022; Li et al., 2023; Ye et al.,041

2023) and similarity-based approaches (Das et al.,042

Figure 1: Comparison between semantic-only and
structure-aware similarity based one-shot prompting
with LLaMA3-8B.

2021; Hu et al., 2022; An et al., 2023). Proxy-task- 043

based methods extensively query a proxy LLM 044

to evaluate exemplar effectiveness. While effec- 045

tive, they tend to be computationally expensive and 046

often lack generalizability across different mod- 047

els. Similarity-based methods, by contrast, rely on 048

embedding-based metrics to select exemplars that 049

closely match the query instance. However, they 050

typically neglect essential structural information 051

required for precise compositional generalization. 052

As a result, existing strategies are suboptimal for 053

structure-intensive tasks such as semantic parsing, 054

which involves translating natural language utter- 055

ances into structured, machine-executable forms, 056

such as logical queries or database commands 057

(Zelle and Mooney, 1996). These tasks require 058

not only semantic coherence but also precise struc- 059

tural compatibility between exemplars and queries, 060

as illustrated in Figure 1. 061

Meanwhile, many existing exemplar selection 062

methods implicitly rely on the assumption that the 063

model’s learned representations are sufficient for 064
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assessing exemplar utility. However, recent inter-065

pretability studies suggest that LLM hidden states066

often encode richer, task-relevant signals than what067

is directly expressed in their outputs, revealing a068

gap between internal model knowledge and observ-069

able behavior (Wang et al., 2020; Kadavath et al.,070

2022; Burns et al., 2024).071

To address these gaps, we propose STructure-072

Aware Retrieval of Exemplars (STARE), a retrieval073

framework designed for semantic parsing under074

the ICL paradigm. The framework comprises two075

key components: 1) a structure-aware retriever that076

jointly captures both semantic and structural char-077

acteristics, and 2) a lightweight plug-in module,078

Middle-Layer Injection (MLI), that enhances hid-079

den representations with syntactically informative080

directions. MLI uses linguistic probes and singu-081

lar value decomposition to identify and amplify082

syntactic and structural properties in intermediate083

layers, thereby enhancing the quality of exemplar084

retrieval. Additionally, the modular design of MLI085

allows it to be integrated with existing few-shot086

retrievers, which enables it to enhance semantic087

parsing performance across diverse scenarios.088

To the best of our knowledge, few prior meth-089

ods for semantic parsing under ICL explicitly in-090

corporate linguistic structure into the retriever’s091

representations to guide exemplar selection. Ex-092

perimental results on four diverse semantic parsing093

benchmarks demonstrate that STARE consistently094

outperforms existing proxy-based and similarity-095

based methods, while maintaining lower training096

costs and exhibiting strong generalizability.097

Our contributions can be summarized as follows:098

• We propose STARE, a structure-aware exem-099

plar selection framework for semantic parsing100

that integrates both semantic and structural101

criteria.102

• We introduce Middle-Layer Injection (MLI),103

a lightweight, modular, and model-agnostic104

technique to enhance hidden representations105

for improved retrieval.106

• The modular design of MLI allows easy in-107

tegration with diverse retrieval frameworks,108

thereby improving the generalizability across109

tasks and models.110

• Extensive experiments across four bench-111

marks demonstrate strong performance with112

lower training costs compared to proxy-task-113

based methods.114

2 Related Work 115

ICL for Semantic Parsing Early work on se- 116

mantic parsing with pre-trained models relied 117

on encoder-decoder architectures augmented with 118

schema-aware modules or constrained decoding 119

to ensure well-formed outputs (Lin et al., 2020; 120

Scholak et al., 2021; Qi et al., 2022). With the 121

advent of stronger models, ICL-based methods 122

emerged. Shin et al. (2021) showed that few-shot 123

prompting with controlled rephrasings could guide 124

models toward canonical forms before parsing, 125

while Pasupat et al. (2021) introduced retrieval- 126

augmented ICL. Later, Shin and Van Durme (2022) 127

demonstrated that instruction-tuned models can 128

perform direct mappings from natural language to 129

structured forms, shifting the research focus toward 130

improving exemplar selection within ICL setups. 131

Exemplar Selection for ICL Exemplar selection 132

for ICL generally falls into two categories: unsu- 133

pervised similarity-based and supervised learning- 134

based methods. Unsupervised methods rely on pre- 135

defined similarity metrics or static retrieval mod- 136

els without task-specific supervision. Common 137

approaches used BM25 or sentence encoders like 138

SBERT to compute semantic similarity between 139

queries and candidate exemplars (Liu et al., 2022; 140

Agrawal et al., 2023). Skill-KNN enhanced this by 141

extracting task-relevant features to identify skill- 142

overlapping exemplars (An et al., 2023). Wu et al. 143

(2023) proposed a self-adaptive selection frame- 144

work minimizing entropy under the MDL principle. 145

Supervised methods use explicit training signals. 146

Some defined task-specific metrics such as logical- 147

form alignment (Das et al., 2021), slot transitions 148

(Hu et al., 2022), or sparse SQL keyword encoding 149

(Nan et al., 2023). Others trained retrievers with 150

proxy LLM feedback: Efficient Prompt Retrieval 151

(EPR) used binary labels (Rubin et al., 2022), while 152

Unified Demonstration Retriever (UDR) incorpo- 153

rated ranking and hard negative mining (Li et al., 154

2023). Ye et al. (2023) modeled exemplar selec- 155

tion as subset selection via Determinantal Point 156

Processes (DPPs). 157

Probing and Representation Intervention 158

Probing is a common technique in LLM inter- 159

pretability that trains diagnostic classifiers on 160

hidden states to identify encoded linguistic proper- 161

ties and analyze their effects on generation (Adi 162

et al., 2017; Conneau et al., 2018; Liu et al., 2019). 163

A more advanced form, causal probing, intervenes 164
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Figure 2: Overview of our proposed framework STARE. The backbone retriever is trained via contrastive learning
using semantic and structural similarity signals. The MLI module injects linguistic directions into intermediate
hidden states to enhance syntactic awareness.

in hidden representations to create counterfactuals165

and assess causal influence (Elazar et al., 2021;166

Ravfogel et al., 2021). While initially designed for167

analysis, such techniques have increasingly been168

repurposed to steer model behavior. Interventions169

on hidden states can affect grammatical agreement170

(Tucker et al., 2021), reduce bias (Levy et al.,171

2023), and enable semantic manipulations via172

vector arithmetic (Subramani et al., 2022). Li et al.173

(2024) introduced Inference-Time Intervention174

(ITI), which adjusts attention head activations to175

promote truthful generation. These findings under-176

score the potential of hidden-state interventions as177

a powerful tool for behavior control.178

3 Methods179

In this section, we introduce the overall methodol-180

ogy of our proposed framework, STructure-Aware181

Retrieval of Exemplars (STARE). The overview182

of STARE is illustrated in Figure 2. We begin by183

formulating the task in Section 3.1. Section 3.2184

describes the backbone component of our frame-185

work, a finetuned retriever that jointly models se-186

mantic and structural similarity. Section 3.3 then187

introduces Middle-Layer Injection (MLI), a mod-188

ule that enhances the retriever’s syntactic sensitivity189

by modifying internal representations.190

3.1 Task Formulation191

ICL enables LLMs to perform semantic pars-192

ing by conditioning on a set of exemplars E =193

{(xi, yi)}ki=1, where each xi is an input query and194

yi its corresponding gold parse. Given a test input 195

xtest, the model predicts an output ŷtest by maximiz- 196

ing the conditional probability: 197

ŷtest = argmax
y

P (y | xtest, E ; θ), (1) 198

where θ denotes the frozen model parameters. 199

Since ICL performance is sensitive to the exemplar 200

set E , our goal is to optimize its selection. 201

We aim to construct an effective retriever ϕ that 202

captures both semantic similarity and structural 203

alignment. For each test query xtest and candidate 204

xi from the training set Dtrain, we compute embed- 205

dings ϕ(xtest), ϕ(xi) ∈ Rd, and select the top-k 206

exemplars based on cosine similarity: 207

E = TopK
(
cos(ϕ(xtest), ϕ(xi))

)
. (2) 208

3.2 Structure-Aware Retriever 209

In semantic parsing, both semantic context and 210

structural form carry useful signals for exemplar 211

selection. Semantically related exemplars help 212

an LLM recall the appropriate domain knowledge 213

and surface realizations of a parse, whereas struc- 214

tural correspondence provides the most direct guid- 215

ance for generating a correct and executable output. 216

Consequently, a two-stage strategy is adopted to 217

construct contrastive pairs for retriever training: a 218

coarse semantic bucketing step first collects a high- 219

recall pool of candidates semantically relevant to 220

the anchor exemplar, followed by an evaluation 221
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to distinguish structurally aligned exemplars from222

misaligned ones within the pool.223

3.2.1 Semantic Bucketing224

We compute semantic similarity between parsed225

outputs rather than input utterances, as logical226

forms and SQL queries more directly reflect compo-227

sitional meaning. Since conventional off-the-shelf228

encoders are poorly suited to formal representa-229

tions, a hashing-based strategy is adopted to group230

parses into semantically similar candidate pools.231

In practice, each parse x is converted into a232

set of discrete features (e.g., normalized tokens,233

keywords, argument labels), denoted as F (x),234

from which compact MinHash sketches (Broder,235

1997) are generated, providing efficient and order-236

invariant approximations of Jaccard similarity.237

These signatures are stored in a Locality-Sensitive238

Hashing (LSH) index that enables sublinear re-239

trieval of high-similarity candidates by hashing into240

multiple overlapping buckets. At query time, the241

anchor parse’s signature is looked up in the LSH in-242

dex to retrieve all parses with high approximate Jac-243

card similarity, avoiding exhaustive comparisons244

against the entire training set.245

The LSH index is parameterized by a similarity246

threshold τ , which defines the target Jaccard simi-247

larity above which two parses are likely to collide248

in at least one bucket. Concretely, given a training249

instance’s semantic parse p and its corresponding250

feature set F (p), we aim to retrieve q such that251

Jaccard(F (p), F (q)) =
|F (p) ∩ F (q)|
|F (p) ∪ F (q)|

≥ τ.

(3)252

This yields a high-recall candidate pool Cp =253

{q|Jaccard(F (p), F (q)) ≥ τ} for each parse p that254

is much smaller than the full dataset, and serves as255

a strong base for contrastive pair construction in256

the next stage.257

3.2.2 Structure-Based Pair Filtering258

Building on the candidate pool, contrastive pairs259

are next extracted by measuring structural corre-260

spondence between parses. The goal is to quan-261

tify how closely two compositional representations262

align in their tree topology.263

To this end, each semantic parse is converted into264

a labeled tree and the normalized Zhang–Shasha265

tree edit distance (TED) (Zhang and Shasha, 1989)266

is computed. The way to construct tree structure267

for semantic parses is detailed in Appendix C.268

Formally, let T (p) and T (q) be the trees for 269

parses p and q. We compute TED(T (p), T (q)) us- 270

ing unit edit costs. This distance is then normalized 271

and converted into a similarity score: 272

simstruct(p, q) = 1− TED(T (p), T (q))

max
(
|T (p)|, |T (q)|

) ∈ [0, 1]

(4) 273

Higher values indicate closer structural alignment. 274

For each anchor p with its corresponding can- 275

didate pool Cp, the candidate with the highest 276

simstruct to the anchor is designated as the posi- 277

tive example, while the least structurally similar 278

candidates within the pool are selected as hard neg- 279

atives. Additional negatives are randomly sampled 280

from outside the candidate pool. This allows a 281

combination of structure-aware positives and pro- 282

gressively challenging negatives for the contrastive 283

pairs collected. 284

3.2.3 Training 285

With the structure-aware contrastive pairs, a BERT 286

is fine-tuned as the exemplar retriever. The model 287

is optimized to bring structurally aligned exem- 288

plar–query pairs closer in the representation space, 289

while pushing apart structurally divergent or seman- 290

tically irrelevant ones. We adopt a contrastive learn- 291

ing objective based on the InfoNCE loss (van den 292

Oord et al., 2019), where each anchor is paired with 293

one positive and multiple negatives. Sentence-level 294

representations are obtained via mean pooling over 295

the final hidden states of the encoder. 296

3.3 Middle-Layer Injection (MLI) 297

Recent studies have shown that certain knowledge 298

and properties tend to be attenuated or forgotten 299

as representations progress through deeper layers 300

(Wallat et al., 2021). This raises a critical challenge 301

in exemplar retrieval: while the retriever is fine- 302

tuned using contrastive learning to align with a pre- 303

defined similarity metric, it is not guaranteed that 304

the final-layer representations optimally encode the 305

most informative signals for exemplar selection. 306

Probing techniques offer a diagnostic tool for 307

uncovering what features are encoded in interme- 308

diate representations, typically by training linear 309

classifiers to predict certain properties from hidden 310

states (Tenney et al., 2019; Hewitt and Manning, 311

2019). Prior work has explored using probing to 312

identify task-relevant directions in the latent space, 313

for example, directions associated with truthfulness 314

or gender sensitivity. By intervening along these 315
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directions, either reinforcing or suppressing them,316

researchers have been able to increase a model’s317

likelihood of generating truthful responses or re-318

duce biased behavior (Levy et al., 2023; Li et al.,319

2024).320

Inspired by this, we introduce Middle-Layer In-321

jection (MLI), a method that intervenes in the in-322

ternal representations of the retriever to amplify323

task-relevant linguistic abstractions, as illustrated324

in Figure 3. In the absence of ground-truth utility325

labels for exemplars, we instead extract directions326

in the model’s latent space corresponding to well-327

established linguistic properties and inject these328

directions into intermediate layers. By enhancing329

the retriever’s internal encoding of syntactic distinc-330

tions, MLI improves the alignment between latent331

representations and linguistic structure, ultimately332

leading to more effective exemplar selection.333

Concretely, we focus on three widely studied lin-334

guistic properties: 1) Part-of-Speech (POS) Tags,335

which identify the syntactic category of each token336

(e.g., noun, verb), 2) Dependency Labels (DEPS),337

which define grammatical relationships between338

words (e.g., subject, object), and 3) Phrase Types339

(PT), which describe constituent structures (e.g.,340

noun phrase, verb phrase). These properties are341

chosen because they span fine-grained lexical roles342

(POS), functional relations (DEPS), and higher-343

order syntactic structure (PT). Together, they reflect344

multiple levels of compositional meaning in natural345

language, making them particularly suitable for en-346

hancing representations used in semantic parsing.347

To extract directional signals, auxiliary datasets348

annotated with the relevant labels are leveraged349

to train linear probes (logistic regression classi-350

fiers) on hidden representations at a chosen layer351

N . Denote the representation for token w at352

layer N as hN ∈ Rd, a linear probe ftask for353

task ∈ {POS,DEPS,PT} is obtained by minimiz-354

ing L(y, ŷ), where ŷ = ftask(hN ) = WtaskhN355

and y is the ground-truth label for token w. L is356

the cross-entropy loss function. After training, we357

denote Ŵtask ∈ Rk×d as the final weight matrix358

of the classifier, where k is the number of labels.359

Singular Value Decomposition (SVD) is then360

performed on Ŵtask: Ŵtask = UΣV ⊤. The first361

right singular vector V1 from V is selected as the362

dominant direction uprop encoding the linguistic363

property: uprop = V1.364

To amplify this information in the model, the365

direction uprop is injected at the N -th layer of the366

retriever by adjusting each token’s hidden represen-367

What is the weather

like in Charlotte

Encoder N+1

Encoder N

  ...

  ...

Auxiliary Task

The cat chased

the mouse...

Reps. 

space

Apply injection 

at layer N

probing

Encoder 1

Main Task

Figure 3: Illustration of Middle-Layer Injection (MLI).
The vectors WA, WB , and WC are rows of the probe
weight matrix W . u⃗prop is the principal direction ex-
tracted from W via SVD.

tation h: 368

h′ = h+ λuprop (5) 369

where λ controls the intensity of the injection. 370

The injection layer N , augmentation task (POS, 371

DEPS, or PT), and intensity λ are hyperparameters. 372

The best configuration is selected by evaluating dif- 373

ferent combinations on a development set, ensuring 374

that the enhancement provides tangible benefits to 375

retrieval performance. 376

4 Experiments 377

4.1 Tasks 378

Our method is evaluated across four semantic pars- 379

ing tasks, which span from intent and slot fill- 380

ing (MTop (Li et al., 2021)), task-oriented dia- 381

logue parsing (SMCalFlow (Andreas et al., 2020), 382

TreeDST (Cheng et al., 2021)) and text-to-SQL 383

(Spider(Yu et al., 2018)). Following standard prac- 384

tice, the training sets of these datasets are used as 385

exemplar banks. Appendix A provides an overview 386

of data splits and examples along with detailed 387

dataset descriptions. 388

4.2 Baselines 389

Our method is compared against five recent ex- 390

emplar selection baselines: Efficient Prompt Re- 391
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Method MTOP SMCalFlow TreeDST
LLaMA3 4o-mini DS-V3 LLaMA3 4o-mini DS-V3 LLaMA3 4o-mini DS-V3

BM25 60.6 55.0 72.2 82.6 70.9 61.9 58.1 42.2 34.4
BERT 60.5 53.3 73.9 82.0 73.2 61.9 60.1 45.4 33.9
MLSM 63.6 56.9 73.3 83.0 74.5 61.0 58.1 41.9 33.5
EPR 67.0 58.3 73.3 82.9 73.5 63.5 60.3 45.5 36.1
CEIL 68.3 58.8 75.7 84.3 73.8 63.7 60.8 44.7 35.9
STARE 69.5 59.4 78.8 86.9 74.8 61.9 62.1 45.5 37.1

Table 1: Exact Match accuracy on MTop, SMCalFlow and TreeDST across different exemplar retrievers and
inference models.

Method 3.5-turbo 4o-mini DS-V3
EX EM EX EM EX EM

Zero Shot 71.2 12.1 73.0 19.1 77.0 11.7
Random 73.8 38.6 74.6 50.1 81.7 60.4
BERT 75.5 54.4 74.2 58.4 82.3 70.5
EPR 73.4 48.4 74.7 55.9 82.5 67.0
CEIL 75.9 42.0 74.8 50.4 82.4 66.4
MLSM 75.3 41.6 75.2 59.9 83.4 69.4
Skill-KNN (cons.) 76.3 42.6 75.4 50.3 82.5 66.3
Skill-KNN (dist.) 76.8 43.0 72.9 49.1 82.2 63.2
Similarity-Div. 75.1 42.8 76.2 51.0 82.7 65.3
STARE 77.0 60.3 76.9 65.4 84.5 74.0

Table 2: Execution (EX) and Exact Match (EM) ac-
curacy on the Spider dataset across different exemplar
retrievers and inference models.

triever (EPR) (Rubin et al., 2022), Compositional392

Exemplars for In-context Learning (CEIL) (Ye393

et al., 2023), Multi-level Similarity Maximization394

(MLSM) (Liu et al., 2024), Skill-KNN (An et al.,395

2023), and Similarity-Diversity (Nan et al., 2023).396

EPR and CEIL utilize proxy tasks that incorpo-397

rate LLM feedback to assess the utility of exem-398

plars. MLSM aggregates similarity signals across399

BERT layers as expert representations. Skill-KNN400

and Similarity-Diversity are tailored for text-to-401

SQL tasks. In addition, unsupervised retrieval base-402

lines such as BM25 and BERT-based dense retriev-403

ers are included. Detailed descriptions and imple-404

mentation details are provided in Appendix B.405

4.3 Experimental Settings406

Backbone Retriever A BERT encoder1 is fine-407

tuned with InfoNCE loss (temperature 0.07) for at408

most three epochs using AdamW. For each anchor,409

we construct one positive pair, three hard negative410

pairs, and two random negative pairs.411

Middle-Layer Injection For the auxiliary412

datasets, we use the English Universal Dependen-413

cies (UD) Treebank (McDonald et al., 2013) for414

part-of-speech (POS) and syntactic dependency415

1https://huggingface.co/bert-base-uncased

(DEPS) labels, and the Penn Treebank (Marcus 416

et al., 1993) for constituency parsing (Phrase Type, 417

PT) labels. To mitigate overfitting, fine-grained 418

labels are merged into broader categories; the 419

final label sets are summarized in Table 6 in Ap- 420

pendix D. The selected properties and intensities 421

under different settings are listed in Appendix G. 422

Inference LLMs For MTop, SMCalFlow, and 423

TreeDST, LLaMA3-8B (Grattafiori et al., 2024), 424

GPT-4o-mini (OpenAI, 2024), and DeepSeek-V3 425

(DeepSeek-AI et al., 2025) are used as inference 426

models. For Spider, the same setting is used except 427

that LLaMA3-8B is replaced with GPT-3.5-turbo 428

(OpenAI, 2023). Detailed settings are provided in 429

Appendix E. 430

Prompt Construction Following existing work, 431

we use 20 exemplars for MTop, 5 for SMCalFlow, 432

10 for TreeDST, and 5 for Spider, ordered by as- 433

cending similarity to the test query. The prompts 434

used for Spider incorporate schema linking in the 435

format proposed by Nan et al. (2023), and adopt 436

the system prompt from Lee et al. (2025). Full 437

prompt templates and examples are provided in 438

Appendix F. 439

Evaluation Exact Match (EM) is reported for 440

all tasks, while Execution Accuracy (EX) is addi- 441

tionally reported for Spider, following the official 442

evaluation script2. 443

5 Results 444

5.1 Main Results 445

We report the main ICL performance of our pro- 446

posed framework STARE across the four seman- 447

tic parsing benchmarks. Results for MTop, SM- 448

CalFlow, and TreeDST are summarized in Table 1, 449

2https://github.com/taoyds/
test-suite-sql-eval.
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Method MTOP SMCalFlow TreeDST
LLaMA3 4o-mini DS-V3 LLaMA3 4o-mini DS-V3 LLaMA3 4o-mini DS-V3

STARE (w/o MLI) 67.8 57.5 74.5 84.3 71.6 63.0 61.0 43.8 36.2
STARE 69.5 59.4 78.8 86.9 74.8 61.9 62.1 45.5 37.1
∆ (MLI Gain) +1.7 +1.9 +4.3 +2.6 +3.2 -1.1 +1.1 +1.7 +0.9
BERT 60.5 53.3 73.9 82.0 73.2 61.9 60.1 45.4 33.9
BERT + MLI 64.4 58.7 76.2 87.5 73.9 62.2 61.6 46.1 35.7
∆ (MLI Gain) +3.9 +5.4 +2.3 +5.5 +0.7 +0.3 +1.5 +0.7 +1.8
EPR 67.0 58.3 73.3 82.9 73.5 63.5 60.3 45.5 36.1
EPR + MLI 67.4 60.6 75.7 86.3 75.2 62.5 60.6 46.3 40.0
∆ (MLI Gain) +0.4 +2.3 +2.4 +3.4 +1.7 -1.0 +0.3 +0.8 +3.9

Table 3: Effect of MLI on Exact Match accuracy across different exemplar retrievers and inference models on MTop,
SMCalFlow and TreeDST.

Method 3.5-turbo 4o-mini DS 3
EX EM EX EM EX EM

STARE (w/o MLI) 76.5 57.0 76.8 60.7 83.0 72.1
STARE 77.0 60.3 76.9 65.4 84.5 74.0
∆ (MLI Gain) +0.5 +3.3 +0.1 +4.7 +1.5 +1.9
BERT 75.5 54.4 74.2 58.4 82.3 70.5
BERT + MLI 75.6 56.3 74.3 61.1 83.9 72.0
∆ (MLI Gain) +0.1 +1.9 +0.1 +2.7 +1.6 +1.5
EPR 73.4 48.4 74.7 55.9 82.5 67.0
EPR + MLI 76.6 57.1 75.5 60.7 83.8 73.0
∆ (MLI Gain) +3.2 +8.7 +0.8 +4.8 +1.3 +6.0

Table 4: Effect of MLI on Execution (EX) and Exact
Match (EM) accuracy across different exemplar retriev-
ers and inference models on the Spider dataset.

while Table 2 presents Execution accuracy (EX)450

and Exact Match (EM) on the Spider dataset.451

Our method STARE consistently outperforms452

all baselines, including proxy-task-based methods453

such as EPR and CEIL, except on SMCalFlow un-454

der DeepSeek-V3. On average, STARE yields a455

1.35% gain over the strongest competing baseline456

across the first three tasks. On Spider, STARE457

achieves the best EX and EM across all inference458

models, improving over the best baseline by 0.9%459

(EX) and 5.0% (EM).460

In contrast to EPR and CEIL, which depend on461

intensive LLM interactions to derive training su-462

pervision, STARE avoids reliance on the inference463

model during training. This not only improves effi-464

ciency, but also mitigates overfitting to biases intro-465

duced by the proxy model, which can compromise466

generalization to stronger inference models.467

5.2 MLI as a Plug-in468

To assess the contribution of Middle-Layer Injec-469

tion (MLI) within our STARE framework, we first470

compare STARE with and without MLI to isolate471

the effect of linguistic augmentation. Furthermore,472

to examine the generalizability of MLI beyond473

our framework, MLI is applied as a plug-in mod- 474

ule to two representative baselines: an unsuper- 475

vised BERT retriever and the supervised Efficient 476

Prompt Retriever (EPR). Results are shown in Ta- 477

ble 3 (MTop, SMCalFlow, TreeDST) and Table 4 478

(Spider). MLI configuration details are listed in 479

Appendix G. 480

Experimental results across MTop, SMCalFlow, 481

and TreeDST show that MLI enhances STARE 482

performance under all three inference LLMs, with 483

an average improvement of 2.2%. The only ex- 484

ception is SMCalFlow when using DeepSeek-V3, 485

where performance slightly declines. On the Spider 486

dataset, MLI provides an average gain of 0.7% in 487

execution accuracy and 3.3% in exact match. 488

Notably, MLI also improves retrieval perfor- 489

mance when integrated with both BERT and EPR 490

retrievers. In some cases, MLI enables a non-fine- 491

tuned BERT retriever to achieve performance com- 492

parable to fully supervised retrievers, for example, 493

on SMCalFlow with LLaMA3-8B and TreeDST 494

with GPT-4o-mini. On the Spider dataset, MLI 495

achieves up to an 8.7% boost in exact match when 496

combined with EPR under GPT-3.5-turbo. 497

These results underscore MLI’s versatility as a 498

modular plug-in. It can be applied to both unsu- 499

pervised and supervised retrievers and is especially 500

useful in low-resource scenarios where retriever 501

training is infeasible. 502

6 Ablation Study 503

To investigate how the choice of injection layer, 504

the augmented linguistic property, and the augmen- 505

tation intensity λ affect performance, a series of 506

ablation studies are conducted by systematically 507

varying these factors and analyzing their impact. 508

Injection Layer Injecting MLI into all 12 BERT 509

layers is computationally costly and often redun- 510

7



Figure 4: ICL performance on the dev sets of MTop, SMCalFlow, and TreeDST (reported as Exact Match accuracy),
and Spider (reported as Execution accuracy), under varying MLI injection intensities λ for each linguistic property,
using DeepSeek-V3 as the inference model.

Figure 5: Effect of applying MLI at different injection
layers on MTop performance, using DeepSeek-V3 as
the inference model.

dant due to high inter-layer similarity from resid-511

ual connections. To reduce overhead, we draw on512

BERTology findings that different layers capture513

distinct linguistic patterns: lower layers (1–4) en-514

code lexical features, middle layers (5–9) capture515

syntax, and upper layers (10–12) model semantics516

and task-specific abstractions (Ethayarajh, 2019;517

Tenney et al., 2019; Jawahar et al., 2019). Based518

on this, Layers 4, 8, and 12 are pre-selected as519

injection candidates.520

For each layer, we apply property-specific injec-521

tions (POS, DEPS, PT) across a range of intensity522

values (λ = 1, 2, 3, 4, 5), and record the maximum523

performance gain. Figure 5 shows the results on524

MTop using DeepSeek-V3.525

The injection at Layer 8 consistently achieves526

the highest gains across all properties. We attribute527

this to its intermediary position, allowing injected528

signals to propagate effectively while still bene-529

fiting from well-encoded linguistic features. In530

contrast, early injection may dilute the signal, and531

late injection may limit downstream utilization.532

MLI Configurations To determine the most ef- 533

fective linguistic property for injection and the op- 534

timal intensity λ, controlled experiments are con- 535

ducted on the development set. For each of the 536

three properties (POS, DEPS, and PT), we sweep 537

over a range of λ values and observe the resulting 538

ICL performance. Figure 4 illustrates this tuning 539

process when DeepSeek-V3 is used as the infer- 540

ence model3. The dashed line represents the per- 541

formance of our backbone retriever without MLI. 542

Typically, we observe that the characteristic trend 543

of contributing properties is an initial increase fol- 544

lowed by a decline as λ grows. We select the con- 545

figuration that achieves the highest development 546

performance for each task and apply it in test-time 547

evaluation. 548

The observed trend indicates that there is an opti- 549

mal injection strength. A small λ may fail to mean- 550

ingfully influence the representation, while overly 551

aggressive injection risks disrupting the structural 552

integrity of the latent space. 553

7 Conclusion 554

We present Structure-Aware Retrieval of Exem- 555

plars (STARE), a novel framework for in-context 556

learning exemplar retrieval for semantic parsing. 557

STARE combines a backbone retriever based 558

on semantic hashing and dependency tree repre- 559

sentations with a modular enhancement strategy, 560

Middle-Layer Injection (MLI). MLI serves as a 561

lightweight yet effective augmentation mechanism, 562

which can also be integrated into various retrieval 563

pipelines. Our method achieves state-of-the-art per- 564

formance across multiple semantic parsing bench- 565

marks, while maintaining low training costs and 566

demonstrating strong generalizability. 567

3For optimal presentation, we omit results for those λ
falling out of the range in the figure
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Limitations568

Our Middle-Layer Injection (MLI) method as-569

sumes a linear mechanism of injecting linguistic570

properties, treating each direction independently571

in the hidden space. This simplification may over-572

look potential nonlinear interactions, such as those573

between part-of-speech tags and syntactic depen-574

dencies, which may be important in certain retrieval575

scenarios and warrant further investigation in fu-576

ture work. In addition, our evaluation focuses577

solely on exemplar selection, without compar-578

isons to reasoning-centric methods such as chain-579

of-thought prompting or to fine-tuning-based ap-580

proaches, which may limit the scope of our current581

analysis to retrieval-specific settings.582
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A Datasets857

Table 5 presents the data splits and example in-858

stances for each dataset. Detailed descriptions are859

provided below.860

MTop MTop (Li et al., 2021) is a multilingual861

task-oriented semantic parsing dataset spanning862

diverse user intents and domains. We focus on863

the English subset. We use the full training set864

and sample 1K examples each from the original865

validation and test sets to form our splits.866

SMCalFlow SMCalFlow (Andreas et al., 2020)867

is a conversational semantic parsing dataset seri-868

alized in a LISP-style format (Lispress). Its struc-869

tured representation enforces well-formedness and870

supports generalization in low-data settings, mak-871

ing it ideal for testing compositional generalization872

in dialogue. We sample 5K/1K/1K examples from873

its original training, validation and test datasets as874

our splits.875

TreeDST TreeDST (Cheng et al., 2021) is a task-876

oriented dialogue dataset representing dialogue877

states as hierarchical trees. We use its Lispress seri-878

alization version (Platanios et al., 2021), which cap-879

tures compositional dependencies across intents,880

domains, and slots, better reflecting real-world di-881

alogue complexity. We sample 5K/1K/1K exam-882

ples from its original training, validation and test883

datasets as our splits.884

Spider Spider (Yu et al., 2018) is a large-scale885

text-to-SQL dataset. It covers a wide range of do-886

mains and compositional SQL structures, providing887

a rigorous testbed for text-to-SQL exemplar selec-888

tion methods. Its different splits do not share any889

databases. Following standard practice, we evalu-890

ate on the development set since the test set is not891

publicly released.892

B Baselines893

Efficient Prompt Retriever (EPR) EPR (Rubin894

et al., 2022) constructs contrastive training pairs895

by applying one-shot prompting to every training896

instance, using a proxy LLM to approximate ex-897

emplar utility. Specifically, a simple retriever is898

first used to retrieve a candidate pool, and top-K899

and bottom-K candidates are selected based on900

proxy model scores. A BERT-based retriever is901

then fine-tuned via contrastive learning. Following902

the original setup, we use GPT-Neo (2.7B) as the903

proxy model. We then retrieve 15 candidates for904

each training instance using BM25, and set K = 5 905

for pair construction. 906

Compositional Exemplars for In-context Learn- 907

ing (CEIL) CEIL (Ye et al., 2023) builds on the 908

EPR framework but improves selection granular- 909

ity by modeling exemplar interactions. Instead of 910

scoring one-shot prompts individually, it adopts 911

Determinantal Point Processes (DPP) to select ex- 912

emplar subsets that jointly maximize compositional 913

contribution. As with EPR, we use BM25 for candi- 914

date pre-selection, GPT-Neo (2.7B) as the scoring 915

model, and score 10 randomly sampled subsets of 916

16 examples for each training instance. 917

Multi-level Similarity Maximization (MLSM) 918

MLSM (Liu et al., 2024) proposes to leverage dif- 919

ferent abstraction levels captured across BERT lay- 920

ers for exemplar selection. Redundant layers are 921

first filtered using CKA-based clustering, and each 922

selected layer acts as an expert capturing similarity 923

at a distinct level. For each query, MLSM aggre- 924

gates similarity scores from multiple layers with 925

learned weights, optimizing for agreement across 926

experts. The method is fully unsupervised and 927

designed to enhance task-agnostic generalization 928

without relying on task-specific labels. 929

Skill-KNN Skill-KNN (An et al., 2023) proposes 930

a two-stage retrieve framework for text-to-SQL in- 931

context learning. First, for each query, a frozen 932

LLM is prompted to rewrite the input into a skill- 933

based description that captures task-relevant fea- 934

tures in natural language. These rewritten skills 935

are then embedded with an off-the-shelf encoder, 936

and examples with similar skills are retrieved. To 937

address the sensitivity of rewriting to prompt order, 938

two variants are proposed: a consistency-based 939

variant, which aggregates multiple rewrites via 940

mean pooling, and a distinctiveness-based variant, 941

which selects based on the most distinctive match. 942

In our experiments, we use GPT-4o-mini to gener- 943

ate 5 candidate skill descriptions per input and eval- 944

uate both variants. We use bert-base-uncased as 945

the off-the-shelf encoder for embedding the skill 946

descriptions. 947

Similarity-Diversity Similarity-Diversity (Nan 948

et al., 2023) proposes selecting exemplars by bal- 949

ancing similarity and diversity among demonstra- 950

tions. First, candidates are filtered by retrieving 951

examples with similar SQL structure complexity, 952

using the difficulty-level categorization from the 953

Spider dataset. Then, to promote diversity, a sparse 954
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Dataset Train/Dev/Test Example
MTop 15,567/1,000/1,000 Sentence: Whats weather forecast for tomorrow?

Parsing: [IN:GET_WEATHER [SL:DATE_TIME for tomorrow]]
SMCalFlow 50,000/1,000/1,000 Sentence: What does my schedule look like on Thursday?

Parsing: (Yield (FindEventWrapperWithDefaults
(EventOnDate (NextDOW (Thursday)) (ˆ(Event) EmptyStructConstraint))))

TreeDST 50,000/1,000/1,000 Sentence: Hi my assistant, where is the Westin hotel?
Parsing: (plan (ˆ(Hotel) Find :focus

(Hotel.location_? (ˆ(String) always)) :object (Hotel.hotelName_? (?= "Westin"))))
Spider 7,000/1,000/1,034 Sentence: How many available features are there in total?

Parsing: SELECT count(*) FROM Other_Available_Features

Table 5: Overview of datasets used for semantic parsing experiments.

encoding of the predicted SQL query is computed,955

and k-means clustering is applied over the discrete956

representations to select diverse exemplars. In the957

original setup, an approximate SQL prediction by958

baseline text-to-SQL models is used for difficulty959

categorization and sparse encoding. To avoid in-960

troducing noise from imperfect preliminary mod-961

els, we instead use the ground-truth SQL queries962

for encoding in our experiments, representing an963

upper-bound variant of this method.964

BM25 Retriever BM25 (Robertson and965

Zaragoza, 2009) is a sparse retrieval baseline966

that scores exemplar candidates by computing967

lexical similarity with the test query. Specifically,968

it compares each candidate’s input utterance to969

the test query using term frequency and inverse970

document frequency, and selects the Top-K971

highest-scoring candidates.972

BERT Retriever The BERT retriever encodes973

both exemplars and test queries using a pre-trained974

BERT model and selects those with the highest co-975

sine similarity in embedding space. Despite being976

unsupervised, it captures richer semantic signals977

than token-level matching methods like BM25, and978

serves as a lightweight neural baseline for retrieval.979

C Tree Construction980

To enable structure-based similarity computation,981

we convert each semantic parse into a labeled tree.982

For MTop, SMCalFlow and TreeDST, we use a983

bracket-based parser to recursively construct trees,984

where each non-terminal label becomes a parent985

node, and its enclosed spans are attached as chil-986

dren. The resulting tree captures the hierarchical987

structure of the parse.988

For SQL Queries (Spider), we parse SQL queries989

into Abstract Syntax Trees (ASTs) using sqlglot,990

and prune them by retaining only clause-level991

Property Final Merged Labels
POS ADJ, ADP, ADV, AUX, CCONJ, DET, INTJ,

NOUN, NUM, PART, PRON, PROPN, PUNCT,
SCONJ, SYM, VERB, X

DEPS ACL, ACL:RELCL, ADVMOD, AUX, CASE,
COMP, COMPOUND, CONJ, CSUBJ, DEP,
DET, EXPL, GOESWITH, LIST, MARK, MOD,
NMOD, NSUBJ, OBJ, OBL, ORPHAN, PUNCT,
REPARANDUM, ROOT, VOCATIVE

PT SBAR, UCP, ADVP, O, WHADVP, NAC, INTJ,
NX, CONJP, QP, SBARQ, S, ADJP, FRAG, SQ,
LST, PRT, PP, X-HLN, VP, X, WHADJP, WHPP,
NP, WHNP, SINV, PRN

Table 6: Final label sets used for linguistic probing after
merging fine-grained categories.

nodes and essential fields to form a structural skele- 992

ton. 993

In both cases, each node’s label corresponds to 994

its operator or clause type, and children reflect its 995

compositional arguments. 996

D Final Merged Labels of Auxiliary 997

Datasets 998

Table 6 shows the merged linguistic labels for the 999

three properties in the auxiliary datasets. Specifi- 1000

cally, the POS and DEPS labels are derived from 1001

the UD Treebank (McDonald et al., 2013), which 1002

contains 207,230 tokens, while the PT labels are 1003

sourced from the Penn Treebank (Marcus et al., 1004

1993), comprising 100,676 tokens. 1005

E Inference Settings 1006

For all experiments, we use greedy decoding, with 1007

the temperature set to 0.0 to ensure determinis- 1008

tic generation. The maximum generation length 1009

is capped at 200 new tokens, excluding the input 1010

prompt. To ensure robustness, each experiment is 1011

run with three different random seeds. The final re- 1012

ported results are obtained by averaging over these 1013

three runs. 1014
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F Prompt Examples1015

F.1 Prompt Example for MTop, SMCalFlow, TreeDST1016

(Same prompt template is used for MTop, SMCalFlow and TreeDST while the following example is1017

instantiated with MTop)1018

1019

Below are examples of converting user utterances into MTop semantic parses:1020

Example 11021

User: Remind me about shopping for school on tax free weekend.1022

Parse: [IN:CREATE_REMINDER [SL:PERSON_REMINDED me ] [SL:TODO shopping for school ]1023

[SL:DATE_TIME on tax free weekend ] ]1024

Example 21025

User: Remind me to bake cookies tomorrow night for the bake sale1026

Parse: [IN:CREATE_REMINDER [SL:PERSON_REMINDED me ] [SL:TODO [IN:GET_TODO1027

[SL:TODO bake cookies ] [SL:DATE_TIME tomorrow night ] [SL:TODO the bake sale ] ] ] ]1028

Example 31029

User: Remind me to tell Angie I am bringing the salad for bible study on Friday1030

Parse: [IN:CREATE_REMINDER [SL:PERSON_REMINDED me ] [SL:TODO tell Angie I am bringing1031

the salad for bible study ] [SL:DATE_TIME on Friday ] ]1032

. . .1033

Example 191034

User: Remind me to make chicken dip for the watch party tomorrow.1035

Parse: [IN:CREATE_REMINDER [SL:PERSON_REMINDED me ] [SL:TODO make chicken dip for1036

the watch party ] [SL:DATE_TIME tomorrow ] ]1037

Example 201038

User: Remind me to make the cookies for the bake sale.1039

Parse: [IN:CREATE_REMINDER [SL:PERSON_REMINDED me ] [SL:TODO make the cookies for the1040

bake sale ] ]1041

Query1042

User: Remind me to make bars for the picnic on Sunday.1043

Parse:1044
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F.2 Prompt Example for Spider 1045

Below are examples of database schema and text-to-SQL generation for Spider: 1046

/* Given the following database schema: */ 1047

CREATE TABLE IF NOT EXISTS "flight" ( "flno" text, "origin" text, "destination" text, 1048

"distance" text, "departure_date" text, "arrival_date" text, "price" text, "aid" 1049

text, PRIMARY KEY ("flno"), FOREIGN KEY ("aid") REFERENCES "aircraft"("aid") ); 1050

CREATE TABLE IF NOT EXISTS "aircraft" ( "aid" text, "name" text, "distance" text, 1051

PRIMARY KEY ("aid") ); 1052

CREATE TABLE IF NOT EXISTS "employee" ( "eid" text, "name" text, "salary" text, 1053

PRIMARY KEY ("eid") ); 1054

CREATE TABLE IF NOT EXISTS "certificate" ( "eid" text, "aid" text, PRIMARY KEY ("eid"), 1055

FOREIGN KEY ("aid") REFERENCES "aircraft"("aid"), FOREIGN KEY ("eid") REFERENCES 1056

"employee"("eid") ); 1057

/* Answer the following: How many employees do we have? */ 1058

SQL Query: SELECT count(*) FROM employee; 1059

/* Given the following database schema: */ 1060

CREATE TABLE IF NOT EXISTS "Activity" ( "actid" text, "activity_name" text, PRIMARY 1061

KEY ("actid") ); 1062

CREATE TABLE IF NOT EXISTS "Participates_in" ( "stuid" text, "actid" text, FOREIGN 1063

KEY ("actid") REFERENCES "Activity"("actid"), FOREIGN KEY ("stuid") REFERENCES 1064

"Student"("StuID") ); 1065

CREATE TABLE IF NOT EXISTS "Faculty_Participates_in" ( "FacID" text, "actid" 1066

text, FOREIGN KEY ("actid") REFERENCES "Activity"("actid"), FOREIGN KEY ("FacID") 1067

REFERENCES "Faculty"("FacID") ); 1068

CREATE TABLE IF NOT EXISTS "Student" ( "StuID" text, "LName" text, "Fname" text, 1069

"Age" text, "Sex" text, "Major" text, "Advisor" text, "city_code" text, PRIMARY KEY 1070

("StuID") ); 1071

CREATE TABLE IF NOT EXISTS "Faculty" ( "FacID" text, "Lname" text, "Fname" text, 1072

"Rank" text, "Sex" text, "Phone" text, "Room" text, "Building" text, PRIMARY KEY 1073

("FacID") ); 1074

/* Answer the following: How many faculty do we have? */ 1075

SQL Query: SELECT count(*) FROM Faculty; 1076

. . . 1077

/* Given the following database schema: */ 1078

CREATE TABLE IF NOT EXISTS "artist" ( "Artist_ID" text, "Name" text, "Country" text, 1079

"Year_Join" text, "Age" text, PRIMARY KEY ("Artist_ID") ); 1080

CREATE TABLE IF NOT EXISTS "exhibition" ( "Exhibition_ID" text, "Year" text, "Theme" 1081

text, "Artist_ID" text, "Ticket_Price" text, PRIMARY KEY ("Exhibition_ID"), FOREIGN 1082

KEY ("Artist_ID") REFERENCES "artist"("Artist_ID") ); 1083

CREATE TABLE IF NOT EXISTS "exhibition_record" ( "Exhibition_ID" text, "Date" text, 1084

"Attendance" text, PRIMARY KEY ("Exhibition_ID"), FOREIGN KEY ("Exhibition_ID") 1085

REFERENCES "exhibition"("Exhibition_ID") ); 1086

/* Answer the following: How many artists do we have? */ 1087

SQL Query: SELECT count(*) FROM artist; 1088

/* Given the following database schema: */ 1089

CREATE TABLE IF NOT EXISTS "stadium" ( "Stadium_ID" text, "Location" text, "Name" 1090

text, "Capacity" text, "Highest" text, "Lowest" text, "Average" text, PRIMARY KEY 1091
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("Stadium_ID") );1092

CREATE TABLE IF NOT EXISTS "singer" ( "Singer_ID" text, "Name" text, "Country" text,1093

"Song_Name" text, "Song_release_year" text, "Age" text, "Is_male" text, PRIMARY KEY1094

("Singer_ID") );1095

CREATE TABLE IF NOT EXISTS "concert" ( "concert_ID" text, "concert_Name" text,1096

"Theme" text, "Stadium_ID" text, "Year" text, PRIMARY KEY ("concert_ID"), FOREIGN1097

KEY ("Stadium_ID") REFERENCES "stadium"("Stadium_ID") );1098

CREATE TABLE IF NOT EXISTS "singer_in_concert" ( "concert_ID" text, "Singer_ID"1099

text, PRIMARY KEY ("concert_ID"), FOREIGN KEY ("Singer_ID") REFERENCES1100

"singer"("Singer_ID"), FOREIGN KEY ("concert_ID") REFERENCES "concert"("concert_ID")1101

);1102

/* Answer the following: How many singers do we have? */1103

SQL Query:1104
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Inference Model Method + MLI MTOP SMCalFlow TreeDST Spider

LLaMA3-8B
STARE PT-5 DEPS-4 DEPS-1.5 –
BERT + MLI POS-5 PT-1.5 DEPS-1.5 –
EPR + MLI POS-6 PT-4 DEPS-4 –

GPT-3.5-turbo
STARE – – – POS-5
BERT + MLI – – – POS-5
EPR + MLI – – – POS-5

GPT-4o-mini
STARE POS-6 PT-2.5 PT-0.5 POS-5
BERT + MLI POS-5 DEPS-3 DEPS-1.5 POS-5
EPR + MLI DEPS-6 DEPS-3 DEPS-1.5 POS-5

DeepSeek-V3
STARE POS-4 PT-2 PT-3 POS-6
BERT + MLI POS-5 PT-0.5 PT-2 POS-5
EPR + MLI DEPS-6 PT-2 PT-2 POS-5

Table 7: MLI configurations (property - intensity) for each inference model across datasets. “–” indicates the method
is not evaluated for that task-model pair.

G MLI Configuration 1105

Table 7 details the MLI configurations (linguistic property and injection intensity) applied to different 1106

exemplar selection methods for each dataset under various inference models. Configurations marked with 1107

“–” indicate settings that were not evaluated. All injections are applied at Layer 8 of the base retriever. 1108
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