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ABSTRACT

Reinforcement learning (RL) methods for discrete action spaces like DQNs are
being widely used in tasks such as Atari games. However, they encounter diffi-
culties when addressing continuous control tasks, since discretizing continuous
action space incurs the curse-of-dimensionality. To tackle continuous control tasks
via discretized actions, we propose a decomposed discrete policy-critic (D2PC)
architecture, which was inspired by multi-agent RL (MARL) and associates with
each action dimension a discrete policy, while leveraging a single critic network to
provide a shared evaluation. Building on D2PC, we advocate soft stochastic D2PC
(SD2PC) and deterministic D2PC (D3PC) methods with a discrete stochastic or
deterministic policy, which show comparable or superior training performances rel-
ative to even continuous actor-critic methods. Additionally, we design a mechanism
that allows D3PC to interact with continuous actor-critic methods, contributing
to the Q-policy-critic (QPC) algorithm, which inherits the training efficiency of
discrete RL and the near-optimal final performance of continuous RL algorithms.
Substantial experimental results on several continuous benchmark tasks validate
our claims.

1 INTRODUCTION

Reinforcement learning (RL) Sutton & Barto (2018) is a class of machine learning methods that train
models using interactions with the environment. RL can be divided into discrete RL with a discrete
action space that contains limited actions, and continuous RL with a continuous action space having
infinite actions. Actor-critic Konda & Tsitsiklis (1999), a structure that uses a policy network to learn
a state-action value function, is commonly used to address continuous RL tasks such as continuous
control, but it is demonstrated to be fragile and sensitive to hyperparameters Haarnoja et al. (2018a).

Employing discrete RL algorithms for continuous control via action discretization is a feasible
way to improve the training efficiency Pazis & Lagoudakis (2009), since discrete RL algorithms
including Q-learning Watkins & Dayan (1992) and deep Q network (DQN) Mnih et al. (2013; 2015)
have low complexity and exhibit stable training behavior. But for continuous control tasks with
high-dimensional continuous action spaces Levine et al. (2016), naive action discretization would
lead to the dimension explosion problem. For example, if the continuous action space contains
M dimensions and each dimension is discretized to N fractions, there will be MN actions for the
discrete RL algorithm.

As a remedy, a possible way to address this problem is to discretize independently each action
dimension of the high-dimensional continuous action space, so that the total number of discrete
actions MN grows linear instead of exponential in dimension M . Nonetheless, this procedure
may lead to the low sample-efficiency problem, because one can only take on-policy iterations to
collaboratively learn the relationship between different action dimensions’ policies. To integrate
the discrete action space and off-policy iterations in a continuous RL algorithm, we propose a
decomposed discrete policy-critic (D2PC) architecture inspired by multi-agent actor-critic methods,
by viewing each action dimension as an independent agent and assigning a uni-dimensional policy
which is optimized by referencing a centralized critic network.
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Based on D2PC, we propose two algorithms which can effectively address continuous control
tasks via discrete policy and experience replay. The first algorithm is soft D2PC (SD2PC), which
takes maximum-entropy value iterations and optimizes softmax stochastic policies for each action
dimension; and the second called determined D2PC (D3PC), which assigns an independent Q function
for each action dimension fitting the critic’s value function by supervised learning. Experiments show
that the two algorithms exhibit high training efficiencies and markedly outperform state-of-the-art
actor-critic algorithms like twin delayed deep deterministic policy gradients (TD3) Fujimoto et al.
(2018) or soft actor-critic (SAC) Haarnoja et al. (2018a).

Though algorithms with D2PC trains fast, we observe from experiments that they may be limited
in achieving the best performance finally, namely getting stuck in locally optimal solutions. Since
D2PC and standard actor-critic methods share the same critic structure, this motivates us to combine
the best of the two methods, by developing the Q-policy-critic (QPC) algorithm. Our QPC uses a
discrete-continuous hybrid policy, co-trains a continuous actor along with D2PC, and dynamically
exploits the discrete and continuous actors to improve the critic network. Substantial numerical tests
over continuous control tasks demonstrate that QPC achieves significant improvement in convergence,
stability, and rewards compared with both D3PC and continuous actor-critic methods.

2 RELATED WORK

As pointed out in Tavakoli et al. (2018), it is possible for discrete RL algorithms to address continuous
action spaces, by regarding the multi-dimensional continuous action space as fully cooperative multi-
agent reinforcement learning between dimensions, that is, each action dimension as an independent
agent. Several attempts have been made by splitting a multi-dimensional continuous policy into
single-dimensional discrete policies. For example, Metz et al. (2017) proposed a next-step prediction
model to learn each dimension’s discrete Q value sequentially; Tang & Agrawal (2020) integrated
single-dimensional discrete policies with ordinal parameterization to encode the natural ordering
between discrete actions; see also Jaśkowski et al. (2018) and Andrychowicz et al. (2020). It is
worth remarking that these methods either cannot exploit experience replay or cannot deal with
high-dimensional continuous action spaces, rendering them typically less effective than actor-critic
methods for continuous control.

Our proposed D2PC structure, in some way, can be seen as a variant of multi-agent actor-critic,
which relies on a centralized critic network to optimize each action dimension’s discrete policy.
Since the seminal contribution of deterministic policy gradients Silver et al. (2014) in 2014, off-
policy actor-critic methods have arguably become the most effective way in dealing with continuous
control tasks, thanks to their appropriate structure to deal with continuous actions and higher data
efficiency compared with on-policy algorithms, e.g., proximal policy optimization (PPO, Schulman
et al. (2015)), trust-region policy optimization Schulman et al. (2015); Wu et al. (2017), among many
others. Off-policy actor-critic methods can be grouped into two categories: deterministic algorithms
including e.g., the celebrated DDPG Lillicrap et al. (2015), D4PG Barth-Maron et al. (2018), TD3,
and stochastic algorithms such as SQL Haarnoja et al. (2017), and SAC Haarnoja et al. (2018a).
DDPG uses the Bellman equation Bellman (1966) with the temporal difference method to iteratively
update the critic network, in which the loss function is given by

JQ(θQ) =
[
Q(s(t), a(t); θQ)−

(
rt + γQ(s(t+ 1), µ(s(t+ 1); θµ′); θ′Q)

)]2
(1)

where s(t) represents the state, , a(t) the action, rt the reward, and γ is the discounting factor; θQ and
θ′Q denote the parameters of the critic network and the target critic network; θµ and θµ′ denote the
parameters of the current and the target deterministic policy networks. The critic network in DDPG
provides evaluations of the actions to optimize the policy of the actor network by minimizing the
following loss function

Jµ(θµ) = −Q(s(t), µ(s(t); θµ); θQ) (2)

For SAC with a stochastic policy, they developed soft RL, which introduces entropy into value and
policy iterations. SAC’s critic network is trained using optimizing the following loss function

JQ(θQ) =
[
Q(s(t), a(t); θQ)−

(
rt + γQ(s(t+ 1), a′; θQ′) + αH

)]2
(3)
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(a) Distributed discrete policy network (b) Decomposed discrete policy network

Figure 1: Network comparison between distributed and decomposed discrete policy networks.

where the entropyH := − log π(a′|s(t+ 1); θπ) with a′ ∼ π(a′|s(t+ 1); θπ) is sampled from the
stochastic policy π, and α is a ‘temperature hyperparameter’ which controls the exploration rate of
the algorithm and can be automatically turned Haarnoja et al. (2018b). SAC’s policy loss function is
given by

Jπ(θπ) = −
(
αH+Q(s(t), a; θQ)

)
(4)

whereH = − log π(a|s(t); θπ) with a ∼ π(a|s(t); θπ). The loss function of our SD2PC algorithm
is based on SAC, which generalized its value and policy iterations to decomposed, fully cooperative
multi-agent settings.

Although our D2PC structure is inspired by the framework of multi-agent actor-critic RL, we
make considerable simplifications to reduce the computational complexity. In previous works like
MADDPG Lowe et al. (2017), they set an actor and a critic for each agent, or COMA Foerster et al.
(2018) which uses recurrent neural networks such as long-short term memory (LSTM) Hochreiter
& Schmidhuber (1997) or gated recurrent units (GRUs) Chung et al. (2014) to encode the partially
observed states. Our framework can be viewed as dealing with observable states and fully cooperative
agents. Therefore, we can capitalize on a single critic for all action dimensions instead of one for
each and every action dimension. Imitating the multi-agent actor-critic RL, we allocate a policy
network (actor) for each action dimension like the structure in Figure (1a). This structure, however,
requires to optimize M sets of policy network parameters for a task, which still incurs relatively high
computational complexity. To further reduce the complexity, we advocate a centralized decomposed
discrete policy network shown in Figure (1b), which can output all the action-dimensional agents’
policies simultaneously, markedly improving the algorithm’s efficiency.

3 DECOMPOSED DISCRETE POLICY-CRITIC STRUCTURE

In this work, we focus on addressing continuous control tasks by discrete actions, where a continuous
action space A := {a ∈ RM} with M dimensions is discretized into countable discrete actions.
Without loss of generality, we assume that each continuous action is restricted as am ∈ [−1, 1], so
that one can discretize each continuous action dimension m into N fractions. The resulting discrete
action space Adm for the m-th dimension is denoted by

Adm :=
{
adm,1, a

d
m,2, ..., a

d
m,N

}
, for m ∈ [M ] := {1, 2, . . . ,M} (5)

where adm,n represents the n-th discrete action corresponding to the action dimension m. The
discretization above operates on a single action dimension. The discretized action space for A
is obtained by combining all possible MN combinations of the discrete actions, namely, Ad :=
{adm,n}m∈[m],n∈[N ] where [N ] := {1, 2, . . . , N}. Instead of setting up an output neuron for each
element in Ad, we construct for each dimension m an independent discrete policy covering all the
discrete actions in Adm.

In previous works, there are mainly two types of methods which are compatible with experience replay,
that is, DQN and actor-critic methods. We first consider using DQN to train a deterministic policy for
each action dimension, given its simple structure and low computational overhead. Nevertheless, we
found it is problematic to utilize DQN for each action dimension while using experience replay. The
reason is as follows. Consider the Markov decision process (MDP) over the discretized action space
Ad, described as {S,Ad, p, r} in which S is the state space, p is the transition probability function,
and r is the reward function. In RL algorithms using TD(0) and experience replay, the experiences
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{s(t), a(t), rt, s(t+1)} obey the transition probability distribution function p(s(t+1)|s(t), a(t)), so
they can be judiciously exploited to train the state-action value function. When updating each action
dimension’s policy independently, the MDP will degenerate into a single-action MDP {S,Adm, pm, r}
with action space Adm. As for the remaining dimensions, their polices can be viewed as fixed since
independent updates are assumed across dimensions. Hence, the remaining policies can be accounted
for by defining a marginal transition probability function as follows

pm(s(t+ 1)|s(t), am(t)) := Eam(t)

[
p(s(t+ 1)|s(t), am(t), am(t))

]
, where (6)

am(t) = [a1(t), . . . , am−1(t), am+1(t), . . . , aM (t)] with ai(t) ∼ πi(ai(t)|s(t)).
In order to accommodate the technique of experience replay in our single-dimensional action’s
update, the experiences which used to replay must obey the transition probability function pm.
Nonetheless, the actions am(t) of experiences in the replay buffer are not sampled by the current
policy πm(ai(t)|s(t)), but by some πoldm (am(t)|s(t)), so the experiences sampled in the past do
not obey the transition probability function pm. That is, one cannot readily use TD(0) along with
experience replay to train the per-action-dimension policy.

Concerning the issues above, we turn to the actor-critic structure with experience replay, by means
of adopting a centralized critic network Q(s(t), a(t); θQ) to evaluate all the actions and distributed
policy networks {πm(am(t)|s(t); θπm)}Mm=1 instead of one-dimensional value functions for each
action dimension. The critic network’s value function can be updated by using experience replay,
as it provides critic values for all M action dimensions and its updating process is based on the
MDP instead of independent single-action MDPs. As to the policy networks associated with action
dimensions, they can be updated by using policy gradients with critic values provided by the
centralized critic network. Each action dimension’s policy loss can be given by

J(θπm) = Eπm,πm
[
πm(am(t)|s(t); θπm)Q(s(t), am(t), am(t); θQ)

]
(7)

where, with slight abuse of notation, we write a(t) = {am(t)}Mm=1 = {am(t), am(t)} yielding
Q(s(t), am(t), am(t); θQ) = Q(s(t), a(t); θQ) for any m ∈ [M ]. Overall, corresponding to equa-
tion 7, the considered network structure with centralized critic and distributed policies is described
in Figure 1(a). However, this structure has a limitation, which has M groups of policy network
parameters {θ1

π, ..., θ
M
π }, leading to high computational complexity. In order to improve the train-

ing efficiency, we design a decomposed global policy network π = {πi}m∈[M ] : S → RM×N
parameterized by θπ. Rather than outputting each action dimension’s policy by multiple individual
networks, the decomposed policy network outputs a policy matrix. Each row of the matrix stands
for a discretized action dimension’s policy distribution. The decomposed discrete policy network’s
structure is shown in Figure 1(b).

The structure of the decomposed discrete policy network allows us to update its parameters simply by
the stochastic policy gradient method, which samples an action ã(t) and updates the policy of all the
M action dimensions simultaneously as follows

ãm(t) ∼ πm(ãm(t)|s(t); θπ), where ã(t) = {ã1(t), ..., ãM (t)}, (8)

θπ ←− θπ + λQ(s(t), ã(t); θπ)∇θπ
[ M∏
m=1

πm(ãm(t)|s(t); θπ)
]

(9)

where λ > 0 is the learning rate.

4 STOCHASTIC SOFT DECOMPOSED DISCRETE POLICY-CRITIC

Due the high variance of stochastically sampled critic values and the lack of exploration strategies,
updating the discrete policy with the stochastic policy gradients in equation 9 may not be effective. To
improve the training efficiency of D2PC, we consider introducing soft RL and a dimension-wise value
expectation technique into D2PC, which lead to our effective SD2PC algorithm. In the following,
we begin by using a soft Q function with entropy H := −

∑M
m=1 log πm(ãm(t + 1)|s(t + 1); θ′π)

generated by the decomposed discrete policy, to update the D2PC’s critic network, leading to a value
loss function similar to that of the SAC algorithm in equation 3

JQ(θQ) =
[
Q(s(t), a(t); θQ)− (rt + γQ(s(t+ 1), ã(t+ 1); θ′Q) + αH)

]2
(10)
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Figure 2: The computation flow of evaluating the loss function Jπ1,1(θπ) in SD2PC, while all
Jπm,n(θπ)’s can be evaluated simultaneously in a minibatch to improve computational efficiency.

where ã(t + 1) = {ã1(t + 1), . . . , ãM (t + 1)} is a global action sampled by the target policies
{ãm(t+ 1) ∼ πm(ãm(t+ 1)|s(t); θ′π)}m∈[M ] sharing a single target policy network θ′π. As far as
the policy update, we employ the loss function proposed in Christodoulou (2019) for discrete SAC
methods based on policy gradient updates

Jπ(θπ) = Eã(t)∼π

[
α

M∑
m=1

log πm(ãm(t)|s(t); θπ)−Q(s(t), ã(t); θQ)

]
. (11)

In practice however, it is impossible to evaluate the expectation involving high-dimensional random
actions in equation 11, while requires us to cover the entire global discrete action space Ad. On the
other hand, if we simply draw one action ã(t) and rely on the instantaneous loss to approximate
the expected one Jπ(θπ), the resulting stochastic policy gradients will certainly have high variance.
Nonetheless, we observe that the expectation of the loss function per dimension m can be efficiently
evaluated in closed-form. Therefore, to mitigate the high variance of stochastic sampling as well as the
high computational complexity of covering Ad, we compute a surrogate of equation 11 by changing
the order of the expectation and summation, resulting a sum of expectations across dimensions, for
which one only need to cover each Adm efficiently

Jπ(θπ) =
1

M

M∑
m=1

Eãm(t)∼πm

[
α log πm(ãm(t)|s(t); θπ)− (1/M)Q(s(t), {ãm(t), ãm(t)}; θQ)

]
.

(12)
The key idea behind equation 12 is to regard each action dimension as an independent agent, in
that way we can first sample a global action ã(t), then cover each and every action dimension’s
action space Adm to obtain the averaged sample loss. Meanwhile, the remaining dimensions’ actions
collectively denoted by ãm(t) are viewed deterministic and replaced with their sampled values
when generating the Q value Q(s(t), {ãm(t), ãm(t)}; θQ) for ãm(t). Further, equation 12 can be
equivalently rewritten as follows

Jπ(θπ) =
1

M

M∑
m=1

N∑
n=1

Jπm,n(θπ) (13)

Jπm,n(θπ) = πm(adm,n|s(t); θπ)
[
α log πm(adm,n|s(t); θπ)− (1/M)Q(s(t), {adm,n, ãm(t)}; θQ)

]
.

The evaluation of each Jπm,n(θπ) is illustrated in Figure 2, wherem = n = 1. For each Jπm,n(θπ), one
needs to propagate over the critic network once. Fortunately, the loss evaluations can be performed in
parallel across both dimensions m and discrete actions n per dimension, thus accelerating the training
process. In addition, the discrete policy of SD2PC can also be updated by minimizing a policy loss
based on KL divergence, which is different from equation 13 but shows the same effect. We presents
the details of our KL divergence policy loss of SD2PC in Appendix A.5, which can be an optional
substitute of equation 13.

In terms of the exploration strategy for SD2PC, we implement the automatic temperature adjustment
strategy, which was presented in the second version of SAC in Haarnoja et al. (2018b). With a
prescribed target entropyH, SD2PC can automatically adjust the temperature hyperparameter α to
control the algorithm’s exploration rate. WhenH > H, i.e., the exploration rate is excessive, SD2PC
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will decrease α, and increase α otherwise, by means of minimizing the following temperature loss
function using gradient descent

J(α) =
1

M

M∑
m=1

Eãm(t)∼πm

[
− α log πm(ãm(t)|s(t); θπ)− αH

]
. (14)

Similarly to equation 12, the expectation can be approximately evaluated using

J(α) =
1

M

M∑
m=1

[
− αH−

N∑
n=1

απi(a
d
m,n|s(t); θπ) log πi(adm,n|s(t); θπ)

]
. (15)

We would like to remark that the target entropy H in SD2PC is set for each action dimension’s
policy, while SAC sets a target entropy for the global policy. That is, one can interpret that Sd2PC
as a scale-free hyperparameterH, which does not vary with the number of action dimensions M in
changing tasks. Nevertheless, in discrete action settings, the proper target entropyH is relevant to the
quantity N of discretized actions, which rendersH hard to adjust. To address this issue, we propose
an action probability transfer trick, by transferring the discrete probabilities into probability densities.
With this trick, in all the baseline environments considered in Section 7, we set H = −1.5. More
details about the trick are provided in Appendix E.2.

5 DETERMINISTIC DECOMPOSED DISCRETE POLICY-CRITIC

Although the proposed SD2PC method in Section 4 can tackle continuous control tasks via discrete
stochastic policies, it is problematic to address continuous action space via discrete deterministic
policies. When dealing with discrete deterministic settings, nether can one update the policy by
optimizing the policy distribution nor adjust the action by deterministic policy gradients like DDPG
Lillicrap et al. (2015), because the policy distribution is deterministic, and the discrete actions are
fixed during discretization.

In order to address continuous RL via discrete deterministic policies, we further put forward a
decomposed deep Q network to replace the decomposed stochastic policy network in D2PC. Instead
of outputting a policy distribution matrix, the decomposed deep Q network outputs a Q value matrix,
in which each row of the matrix stands for the discrete Q values Qd of all the discrete actions
associated with one action dimension. Let us use Qd to denote the state-action value of s(t) and
discrete action adm,n, while the other dimensions’ actions are generated by the current policy

Qd(s(t), a
d
m,n) := Eµm,µm

[ ∞∑
k=0

γkrt

]
, where ã(t+ k) = {am(t+ k), ãm(t+ k)} (16)

ãm(t) = adm,n

ãm(t+ k) = µm(s(t+ k)) for k > 0

ãm(t+ k) = µm(s(t+ k)) for k ≥ 0

s(t+ k) ∼ p( • |s(t+ k − 1), ã(t+ k − 1))

in which µm represents the m-th action dimension’s greedy policy, which relies on the Q value matrix
generated by the decomposed deep Q network, i.e., by selecting the action having the maximum Qd
value in the m-row of Q value matrix as follows

am(t) = µm(s(t)) := arg max
adm,n∈Adm

Qd(s(t), a
d
m,n). (17)

Let us write µ(s(t)) = {µ1(s(t)), . . . , µM (s(t))} = {µm(s(t)), µm(s(t))} to be the global policy.
If the policy µm(s(t+ k)) is fixed, then Qd(s(t), adm,n) = Q(s(t), {adm,n, ãm(t)}), where ãm(t) =
µm(s(t + k)). So, for a decomposed deep Q network with parameters θd, we can update its
deterministic greedy policy through minimizing the difference between each discrete action’s Q value
in the matrix and the corresponding Q value by the critic network

Jdm,n(θd) =
(
Qd(s(t), a

d
m,n; θd)−Q(s(t), {adm,n, µm(s(t); θd)}; θQ)

)2

. (18)
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Figure 3: The computation flow of evaluating the partial loss function Jd1,1(θd) in D3PC. Similarly,
all Jdm,n(θd)’s can be obtained in parallel using mini-batches.

The flow for computing the partial loss Jdm,n in equation 18 is demonstrated in Figure 10 for
m = n = 1. Similarly to SD2PC, for every action in the discrete action space, we can compute a
local loss function that contributes to the global loss as follows

Jd(θd) =

M∑
m=1

N∑
n=1

Jdm,n(θd). (19)

The update of the critic network can be done using TD(0) learning, which is similar to equation 3 in
DDPG, but the target actions are generated by our proposed decomposed discrete policy. We also
deploy a target policy network parameterized by θ′d to stabilize the target policy. The loss function
for D3PC’s critic can is given as follows

JQ(θQ) =
[
Q(s(t), a(t); θQ)−

(
rt + γQ(s(t+ 1), µ(s(t+ 1); θ′d); θ

′
Q)
)]2

. (20)

For D3PC, we design a novel ε-Gaussian exploration strategy πεG(a(t)|s(t); θd) to promote explo-
ration over the action space. Our ε-Gaussian strategy first relies on ε-greedy to select a discrete action
and subsequently maps it back to the continuous action space, which, combined with a Gaussian
exploration noise N (0, σ2), is used to interact with the environment. We compared different explo-
ration strategies in Appendix E.3, which show that our ε-Gaussian outperforms both the ε-greedy
and the plain-vanilla Gaussian exploration strategies. In D3PC, we also employ soft target updates
and TD3’s double critic network Fujimoto et al. (2018). The pseudo-code of the D3PC algorithm is
provided in Appendix B.

6 ACTOR-CRITIC WITH DISCRETE-CONTINUOUS HYBRID POLICY

In our experiments, we found that D3PC outperforms in training efficiency, but may sacrifice the
final performance when comparing with continuous actor-critic algorithms, such as TD3, in baseline
environments like Humanoid-v2. This observation has motivated us to combine the best of the
two worlds, namely the training efficiency of discrete RL and the outstanding final performance of
continuous RL algorithms. To this aim, we realize that D3PC and DDPG are only different in their
policy networks, with their critic networks being the same. It is thus natural to question whether we
can use the D3PC’s critic network to train a continuous actor, or use the DDPG’s critic network to
train a decomposed discrete Q network?

Concerning the fact that we can update an actor if there is a well-trained critic network, we propose
two conceptual algorithms as a manner to explore the common behind D3PC and DDPG. The first
algorithm, which we call 1.D3PC-CA, trains an additional continuous actor network along with
D3PC using the same critic network, but the new actor does not contribute to the D3PC’s value
iterations; and, the second algorithm is 2.TD3-DQ, that adds a decomposed discrete Q network
in TD3 (a variant of DDPG), and trains the Q network using TD3’s critic free from TD3’s value
iterations. Further details can be found in Appendix C. Experimental results of the two algorithms
several benchmark tasks are depicted in Figure 4. Obviously, D3PC-CA’s continuous policy performs
much better than TD3-DQ in terms of final reward performances.

According to the conclusions above, we consider improving D3PC’s performance by intertwining
with a continuous policy. Practically, we can start by using D3PC at the beginning of the training
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Figure 4: Total averaged rewards of DCQ-AC and TD3-CQ over 5 seeds.

Figure 5: Critic’s updates in QPC, whose target Q value is the weighted average of the Q values
generated by the decomposed Q network and by the policy network.

process, then gradually shifting to an algorithm hybridizing D3PC’s and TD3’s policies, which is
expected to inherit the initial training efficiency of D3PC as well as the final performance of TD3.
Following this idea, we develop the Q-policy-critic (QPC) algorithm, which is composed of three
networks, with Q representing a decomposed deep Q network µ(s(t); θd), P representing a continuous
policy network µp(s(t); θp), and C representing a critic network Q(s(t), a(t); θQ). While training
QPC, the continuous policy θp is updated using deterministic policy gradients in equation 2, and the
decomposed Q network updated by equation 19. As for the critic’s update, it performs TD(0) iterations
with a TD target obtained by averaging two target Q values: Q′d = Q(s(t+ 1), µ(s(t+ 1), θ′d); θ

′
Q)

with target action generated by the Q network’s policy, and Q′p = Q(s(t+ 1), µp(s(t+ 1), θ′p); θ
′
Q)

whose target action is generated by the continuous target actor. The way of computing the TD target
in QPC is summarized in Figure 5, with the following value loss function

Q′dp = βQ′v + (1− β)Q′p (21a)

JQ(θQ) =
[
Q(s(t), a(t); θQ)−

(
rt + γQ′dp

)]2
(21b)

where β ∈ [0, 1] is a hyperparameter balancing between the continuous RL and the discrete RL.
Typically, one can start the training by setting β = 1 for the first Tβ = 1× 105 steps to fully exploit
the training efficiency of D3PC. Afterwards, a decay rate of β− = 1 − 5 × 10−6 is used, until a
minimum of βmin = 0.5 is reached and kept fixed. Additionally, QPC uses a discrete-continuous
hybrid policy to interact with the environment, which is found by averaging the discrete action and
the continuous action as follows

a(t) = βµ(s(t), θd) + (1− β)µp(s(t), θp). (22)

7 EXPERIMENTS

The objective of our experimental evaluation is to understand how effective and efficient our proposed
discrete RL methods can handle challenging continuous control tasks from the OpenAI gym Brock-
man et al. (2016) benchmark suite based on MuJoCo Todorov et al. (2012) environments, including
Hopper-v2, Walker2d-v2, Ant-v2, Halfcheetah-v2, Humanoid-v2, and InvertedDoublePendulum-v2.
Details of the baseline environments are provided in Appendix D.
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Figure 6: Training curves for the proposed algorithms, and the baselines on benchmark tasks, averaged
over 5 random seeds.

We compared our SD2PC, D3PC, and QPC algorithm to the most commonly used off-policy actor-
critic algorithms, including SAC Haarnoja et al. (2018b), TD3 Fujimoto et al. (2018), and DDPG
Lillicrap et al. (2015). For the three baseline algorithms, we used their author-provided implementa-
tions with the original hyperparameters, except for TD3 with Gaussian exploration noise σ = 0.05
in Humanoid-v2 to avoid training failures. All of the tasks have continuous actions clipped to
[−1, 1], while we discretize each action dimension into N = 20 actions. We set the target entropy
hyperparameterH = −1.5 for SD2PC, and ε = σ = 0.05 for the exploration strategies in D3PC and
QPC. Hyperparameters for the algorithms and additional network details are listed in Appendices A,
B, and C. All the algorithms are realized in PyTorch Paszke et al. (2019), and evaluated on PC with
one NVIDIA GPU. For each task in our experiments, we train the algorithms with Adam Kingma &
Ba (2014) as optimizers, and report experimental results averaged over 5 random seeds. During the
training process, every 5,000 steps (except for 500 for InvertedDoublePendulum-v2), we evaluate
performances of the algorithms over five episodes by turning off the exploration strategy.

The experimental results are shown in Figure 6, in which the total average reward curves are smoothed
for visual clarity. Surprisingly, the proposed methods using discrete policies exhibit similar and
oftentimes competitive training performance relative to the baseline continuous RL methods in all
the benchmark environments. In contrast, as observed in Tavakoli et al. (2018), existing discrete
RL methods cannot even compete with the DDPG method Lillicrap et al. (2015). To the best of
our knowledge, for the first time, our discrete RL methods can achieve improved performance
over continuous RL methods in such challenging tasks. However, D3PC may have drawbacks in
final performance, especially when dealing with complicated tasks such as Ant-v2 and Humanoid.
As a remedy for D3PC, QPC fixes the drawback by mixing the discrete and continuous methods.
Additionally, we made some ablation studies on the exploration policies and hyperparameters for our
algorithms. Due to space limitations, these results are deferred to Appendix D.

8 CONCLUSIONS

This paper has considered addressing high-dimensional continuous RL tasks using discrete policies.
Toward this objective, we put forth a decomposed discrete policy-critic framework, building on which
three algorithms are developed: SD2PC for discrete stochastic policies, D3PC for deterministic
discrete policies, and QPC for discrete-continuous hybrid policies. Substantial experimental results
on benchmark tasks corroborate the efficiency of the proposed discrete RL algorithms relative to
competing continuous RL alternatives including SAC, TD3, and DDPG. Despite their promising
performance, we point out several directions in which the proposed methods could be improved. For
example, generating the discrete action’s Q values through linear interpolation instead of the critic
network can reduce the computational complexity, and incorporating strategies such as including
the prioritized experience replay Schaul et al. (2015), distributional value functions Bellemare et al.
(2017), and multi-step temporal-difference could be effective.
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