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Abstract
In-Context Learning (ICL) enables large lan-001
guage models (LLMs) to achieve rapid task002
adaptation by learning from demonstrations.003
With the increase in available context length004
of LLMs, recent experiments have shown that005
the performance of ICL does not necessarily006
scale well in many-shot (demonstration) set-007
tings. We theoretically and experimentally con-008
firm that the reason lies in more demonstrations009
dispersing the model attention from the query,010
hindering its understanding of key content. In-011
spired by how humans learn from examples,012
we propose a training-free method FOCUSICL,013
which conducts triviality filtering to avoid atten-014
tion being diverted by unimportant contents at015
token-level and operates hierarchical attention016
to further ensure sufficient attention towards017
current query at demonstration-level. We also018
design an efficient hyperparameter searching019
strategy for FOCUSICL based on model per-020
plexity of demonstrations. Comprehensive ex-021
periments validate that FOCUSICL achieves022
an average performance improvement of 5.2%023
over vanilla ICL and scales well with many-024
shot demonstrations.025

1 Introduction026

The rapid development of large language models027

(LLMs) has facilitated the emergence and enhance-028

ment of their In-Context Learning (ICL) abilities029

(Wei et al., 2022; Dong et al., 2023). As a training-030

free method, ICL can achieve fast model adapta-031

tion on specific tasks based on several demonstra-032

tions prefixed to the query, formally denoted as033

ICL(response|demos, query). Intuitively, more034

demonstrations can help LLMs better understand035

the task and increase the likelihood of finding036

demonstrations that aid in responding queries, thus037

leading to better performance. Theoretically, a sim-038

ilar conclusion can be drawn. Previous studies039

(Dai et al., 2023; Irie et al., 2022; von Oswald040

et al., 2023; Akyürek et al., 2023) have theoreti-041

cally inferred that ICL can be viewed as an implicit042
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Figure 1: The average model attention for query is dis-
persed by the increased number of demonstrations, caus-
ing inadequate understanding of query.

finetuning process, with demonstrations analogous 043

to training samples. On this basis, as finetuning 044

has been validated to comply with the scaling law 045

(Hernandez et al., 2021) where performance in- 046

creases with the number of training samples, the 047

performance of ICL should also positively corre- 048

lates with the number of demonstrations, which has 049

been experimentally verified by previous studies 050

(Bertsch et al., 2024; Duan et al., 2023). 051

However, with the increase in available context 052

length of LLMs (Reid et al., 2024), some stud- 053

ies (Zhao et al., 2023; Agarwal et al., 2024) ob- 054

serve counterexamples when scaling the demonstra- 055

tion numbers from few-shot to many-shot. Agar- 056

wal et al. (2024) finds that the optimal number 057

of demonstrations for six out of eleven bench- 058

marks is not the maximum number they have tested. 059

Our experimental results (Figure 5) also indicate 060

that the model performance might decline with 061

increased demonstrations when applying ICL, ex- 062

hibiting an inverse-scaling phenomenon (McKen- 063

zie et al., 2023). These findings indicate that LLMs 064

are not stable many-shot learners. 065

To understand this gap, we revisit the derivation 066

of Dai et al. (2023) that formally equates ICL with 067
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finetuning and identify that their approximation of068

standard attention operation as linear attention op-069

eration will ignore the competition for attention070

between demonstrations and the query when gen-071

erating the response. Since this approximation is072

key to the equivalence of ICL and finetuning, we073

hypothesize that the reason why ICL does not ad-074

here to the scaling law like finetuning is that more075

demonstrations can divert attention away from the076

query. Inadequate attention and understanding of077

the query can naturally lead to inferior response. To078

verify our hypothesis, we first conduct experiments079

confirming that increasing the number of demon-080

strations does lead to a decrease in model attention081

towards queries (Figure 1). We further experiment082

by adding blank spaces within the demonstrations083

and confirm that: the more blank spaces added, the084

more attention towards queries distracted by blanks,085

resulting in lower response accuracy (Figure 2).086

Inspired by the way humans benefit from ignor-087

ing irrelevant contents and integrating insights from088

multiple examples when solving problems, we pro-089

pose FOCUSICL to avoid the attention dispersion090

issue faced by ICL. Specifically, at the token-level,091

FOCUSICL conducts triviality filtering by adap-092

tively masking unimportant tokens of demonstra-093

tions based on attention distribution, allocating094

the attention to more important contents. At the095

demonstration-level, FOCUSICL performs hierar-096

chical attention mechanism by dividing demonstra-097

tions into multiple batches and respectively con-098

ducting intra-batch and inter-batch attention oper-099

ations. The limited demonstration number within100

each batch ensures sufficient attention to the query,101

while inter-batch attention integrates the benefits102

from a larger number of demonstrations. We fur-103

ther introduce an efficient hyperparameter search-104

ing strategy for FOCUSICL according to model105

perplexity of demonstrations.106

Our experiments across three LLMs on five107

benchmarks confirm that FOCUSICL achieves an108

average performance improvement of 5.2% over109

ICL by avoiding attention dispersion, with lower110

inference overhead. This demonstrates the effec-111

tiveness, efficiency, and generalizability of FOCU-112

SICL. Furthermore, we observe that FOCUSICL113

achieves performance scaling with the number of114

demonstrations by maintaining attention on criti-115

cal parts, making demonstration number a possible116

scaling direction for LLM-based AGI. Finally, we117

propose a unified perspective to understand the di-118

vergent phenomena observed in previous studies, 119

where more demonstrations lead to either improved 120

(Bertsch et al., 2024) or deteriorated (Agarwal et al., 121

2024) performance in ICL. Based on experimen- 122

tal results, we conclude that the performance of 123

ICL initially benefits but subsequently suffers from 124

more demonstrations. The weaker the model and 125

the closer the relationship between samples, the 126

later the sweet spot for the number of demonstra- 127

tions occurs. 128

Our contributions are summarized as follows: 129

1. We analyze that the reason more demonstra- 130

tions may lead to a decline in ICL perfor- 131

mance is that they degrade the model under- 132

standing of query by dispersing its attention. 133

2. We propose FOCUSICL to achieve rational 134

attention allocation via triviality filtering op- 135

eration and hierarchical attention mechanism, 136

making LLMs stable many-shot learners. 137

3. We conduct comprehensive experiments and 138

analyses to validate the effectiveness, effi- 139

ciency, generalizability and scalability of FO- 140

CUSICL. 141

2 Background 142

Formalization of ICL We follow (Dong et al., 143

2023) to define the general ICL paradigm. Given an 144

LLM M and a query q, we choose N demonstra- 145

tions from a candidate set Sdemos = {(qi, ri)}Mi=1 146

to attain the response r from M as follows: 147

r = Sampling(M(Cat[q0; r0; ...; qN ; rN︸ ︷︷ ︸
demos

; q])) (1) 148

where Sampling(·) denotes certain sampling 149

strategy and Cat[·] denotes the operation of con- 150

catenation. 151

Scaling Demonstration Number Due to restric- 152

tions on context window (2048 ∼ 4096), early 153

studies (Brown et al., 2020; Lu et al., 2022) on ICL 154

are limited to few-shot scenarios where they gener- 155

ally observe gains from more demonstrations. As 156

the context window expands recently, counterex- 157

amples occur. Agarwal et al. (2024) finds that the 158

best performance of Gemini 1.5 Pro is achieved 159

under settings where demonstration number is not 160

the maximum one tested in over half of the bench- 161

marks. Zhao et al. (2023) discoveries that increas- 162

ing the number of demonstrations does not nec- 163

essarily improve model performance across five 164

LLMs. We observe similar phenomena in Figure 5. 165
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3 Revisiting166

In this section, we explore what impedes LLMs167

from becoming stable many-shot learners.168

3.1 Approximating ICL as Finetuning169

Since Dai et al. (2023) derives that ICL is formally170

equivalent to finetuning, with demonstrations anal-171

ogous to training samples, we decide to revisit their172

derivation process below to explore why finetun-173

ing satisfies scaling laws (Hernandez et al., 2021)174

while ICL does not.175

Finetuning Let W 0,∆W FT ∈ Rdout×din be176

the initialized parameter matrix and the update ma-177

trix, and x ∈ Rdin be the input representation. The178

output of certain linear layer optimized by gradient179

descent can be formulated as follows:180

x̂ = xW 0 + x∆W FT (2)181

ICL For each attention head of M, let hi ∈182

Rdin be the representation of the ith input to-183

ken, W q,W k,W v be the projection matrices184

for computing the queries, keys and values. We185

denote hi∈demosW k, hi∈demosW v, hi∈qW k,186

hi∈qW v as Dk, Dv, Qk, Qv, respectively. To187

generate r, the output of hr can be derived below:188

ĥr

=Att(hrW q,Cat[Dk;Qk],Cat[Dv;Qv])

≈LinAtt(hrW q,Cat[Dk;Qk],Cat[Dv;Qv])

=hrW q Cat[Dk;Qk]
⊤
[

Dv

Qv

]
=hrW qQvQ

⊤
k + hrW qDvD

⊤
k

=hrWZSL + hr∆W ICL

(3)189

Dai et al. (2023) approximate the standard atten-190

tion to linear attention by removing the softmax191

operation for ease of qualitative analysis. Since192

hrW qQvQ
⊤
k is the attention result in the zero-193

shot learning (ZSL) setting and hrW qDvD
⊤
k is194

the extra outcome from demonstrations, they are195

denoted as hrW ZSL and hr∆W ICL respectively.196

Comparing Eq. (3) with Eq. (2), we can understand197

ICL as finetuning by treating the ∆W ICL gener-198

ated from demonstrations as the ∆W FT generated199

from training samples.200

3.2 Ignorance of Attention Competition201

From Eq. (3) we can further derive as follows:202

ĥr

≈LinAtt (hrW q,Qk,Qv)︸ ︷︷ ︸
outcome from q

+LinAtt(hrW q,Dk,Dv︸ ︷︷ ︸
outcome from demos

)

(4)

203

which means that the existence of demonstrations 204

does not affect the outcome from q. However, when 205

we no longer approximate standard attention as lin- 206

ear attention, we arrive at the opposite conclusion: 207

ĥr

=Att(hrW q,Cat[Dk;Qk],Cat[Dv;Qv])

= softmax(hrW q Cat[Dk;Qk]
⊤)

[
Dv

Qv

]
=(1− λ(hr)) softmax(hrW qQ

⊤
k )Qv

+ λ(hr) softmax(hrW qD
⊤
k )Dv

=(1− λ(hr))Att (hrW q,Qk,Qv)︸ ︷︷ ︸
outcome from q

+ λ(hr)Att (hrW q,Dk,Dv)︸ ︷︷ ︸
outcome from demos

,

(5) 208

where: 209

λ(hr) =

∑
i exp

(
hrW qD

⊤
k

)
i∑

i exp
(
hrW qD

⊤
k

)
i
+

∑
j exp

(
hrW qQ

⊤
k

)
j

(6) 210

With the existence of λ(hr) in Eq. (5), an increase 211

in the number of demonstrations will lead to a 212

larger λ(hr), thereby decreasing the model atten- 213

tion towards q. At the same time, ICL does not 214

necessarily adhere to the scaling law as it is no 215

longer formally equivalent to finetuning. There- 216

fore, we hypothesize that more demonstrations 217

can divert model attention from the key con- 218

tents (query), leading to possible performance 219

decrease. 220

3.3 Experimental Evidence for Hypothesis 221

To validate our hypothesis, we first investigate 222

whether the model attention towards the query de- 223

creases with the increase of demonstration num- 224

ber. To avoid potentially unreliable results caused 225

by data contamination (Jiang et al., 2024), our ex- 226

ploratory experiments are conducted with longchat- 227
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Figure 2: Accuracy and attention of LONGCHAT-7B-
V1.5-32K with varying number of spaces added per
demonstration. Demonstration number is set as 100.
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Figure 3: Overall illustration of FOCUSICL.

7b-v1.5 (Dacheng Li* and Zhang, 2023) (32k con-228

text window) on the proposed COUNTA bench-229

mark (See details in §), which requires the model230

to Count the number of character ‘A’ in the five231

candidates. As shown in Figure 1, the average at-232

tention weight of model towards each token in the233

query decreases by scaling up the demonstration234

number, corresponding to Eq. (5).235

We further explore how the model’s lack of at-236

tention towards the query affects the quality of the237

response. Specifically, we add several blank spaces238

at the end of each demonstration. This format main-239

tains the ICL paradigm and the meaningless blank240

spaces will not introduce additional information.241

As shown in Figure 2, we find that more blank242

spaces disperse the model attention towards the243

query similar to the demonstrations, which in turn244

leads to a decline in accuracy. Based on the experi-245

ments above, we have confirmed our hypothesis.246

4 Methodology247

To mitigate the impact of LLMs’ attention being248

dispersed by many-shot demonstrations, we pro-249

pose FOCUSICL. The core idea behind FOCUSICL250

is to allocate model attention to more important251

contents at token-level by triviality filtering (§4.1)252

and at demonstration-level by hierarchical attention253

(§4.2), as shown in Figure 3.254

4.1 Triviality Filtering255

Humans benefit from selectively ignoring irrele-256

vant parts (trivialities) of demonstrations to avoid257

attention dispersion. In contrast, the standard at-258

tention mechanism of LLMs fails to completely259

ignore (assign zero attention weight to) trivialities260

and leverage the prior that the tokens of query are 261

generally important, for which we propose triviality 262

filtering operation. To predict response r for given 263

query q, in each attention layer, we first calculate 264

the attention scores s as follows: 265

s = hrW q Cat[Dk;Qk]
⊤ (7) 266

Instead of directly applying softmax on s like 267

standard attention operation, we filter the trivial- 268

ities in the demonstrations according to a pre-set 269

threshold p in advance as follows: 270

index = arg{index|count(s ≤ sindex) = p× |s|}

mask(s) =

{
−INF, si ≤ sindex and i ∈ demos

0, else

ĥr = softmax(s+ mask(s))Cat[Dv;Qv]
(8) 271

where ĥr is the outcome of hr. By applying triv- 272

iality filtering operation, useless parts of demon- 273

strations are assigned zero attention weights thus 274

LLMs can focus on leveraging relevant contents 275

of the demonstrations to solve the current query. 276

To achieve a broad impact, apart from r, we also 277

apply triviality filtering operation on tokens be- 278

long to responses of demonstrations by autoregres- 279

sively treating {(qi, ri)}k−1
i=1 as demonstrations of 280

(qk, rk), k ∈ [2, N ]. 281

4.2 Hierarchical Attention 282

When there are numerous examples, humans draw 283

inspirations for problem-solving from different ex- 284

amples separately and then integrate the insights to 285

avoid distracting attention by focusing on too many 286

examples simultaneously. Motivated by this, we in- 287

troduce hierarchical attention mechanism for LLMs 288
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Figure 4: Input details of FOCUSICL.

to learn from many-shot demonstrations while fo-289

cusing on current query. We first split the demon-290

strations into T batches, where each one comprises291

B consecutive demonstrations. Without editing292

the token order, we change the position indexes to293

ensure that each batch is logically adjacent to the294

query (Figure 4). To ensure that batches are mutu-295

ally invisible to each other, we use a mask matrix,296

allowing us to parallelly apply intra-batch attention297

within each batch i and query as follows:298

ĥi
r, s

i = TrivialityFiltering Att(hj∈batchi∪q)
(9)299

By controlling the batch size B, we can ensure300

that the model maintains enough attention towards301

the query within each batch. To further integrate302

insights from different batches, we conduct inter-303

batch attention as follows:304

ĥr =

T∑
i=1

ĥi
r ×

∑
j e

sij∑
k

∑
j e

skj
(10)305

The sum of the attention scores for all tokens within306

each batch can reflect the amount of useful infor-307

mation contained in that batch for the current query.308

Based on this, we calculate the weighted sum of309

ĥi
r to attain the final output of the attention layer.310

4.3 Hyperparameter Searching311

To efficiently find suitable values of filtering thresh-312

old p and batch size B for different LLMs and313

tasks, we propose a hyperparameter searching strat-314

egy as shown in Algorithm 1. By treating qi as315

current query and S1:i−1 as demonstrations, the316

model perplexity 1 (ppl) of ri can reflect the LLMs’317

capability when demonstration number is i − 1318

(lower ppl indicates better performance). Thus, we319

choose the p that yields the lowest average ppl and320

B that first leads an increasing trend in ppl as our321

hyperparameter choices. We generally set Sp as322

[0, 0.1, 0.2, 0.3, 0.4] and run each setting 5 times323

to stabilize the results, resulting in a total of 25324

inference overhead for hyperparameter searching,325

which is relatively low compared with the thou-326

sands of evaluation samples.327

1We don’t use accuracy because the accuracy obtained un-
der teacher forcing will overestimate the model performance.

Algorithm 1 Hyperparameter Searching.
Require: Candidate filtering threshold set Sp, LLM M

Demonstration set Sdemos, Demonstration number N
Ensure: Suitable filtering threshold p and batch size B
1: D(p, i)← 0 for p ∈ Sp, i ∈ [0, N − 1]
2: for p ∈ Sp do:
3: for i← 1, 5 do:
4: S1:N ← RandomSelect(Sdemos, N )
5: # calculate average ppl of responses in S1:N
6: ppl1:N ←M(ICLFormat(S1:N ))
7: D(p, j−1)← D(p, j−1)+pplj for j ∈ [1, N ]
8: end for
9: D(p, i)← D(p, i) +D(p, i+ 1) for i ∈ [0, N − 2]

10: D̄(p, i)← D(p, i)−D(p, i− 2) for i ∈ [2, N − 2]
11: end for
12: p← argmin(p|sum(D(p)))
13: B ← argmin(i|D̄(p, i) > 0)

5 Experiments 328

Centered around FOCUSICL, we will empirically 329

demonstrate its performance on different LLMs 330

and tasks in §5.2, verify whether it can help LLMs 331

scale well with demonstration number in §5.3, and 332

delve into its working mechanism in §5.4. We 333

also investigate the choice of hyperparameters in 334

Appendix §A.1. 335

5.1 Experimental Settings 336

Benchmarks We conduct experiments on the fol- 337

lowing benchmarks: 338

• CSQA (Talmor et al., 2019) is a high-quality 339

benchmark for commonsense reasoning task. 340

• PIQA (Bisk et al., 2020) concentrates on test- 341

ing physical commonsense answering ability. 342

• CountA is our proposed benchmark to avoid 343

the impact of data contamination (Jiang et al., 344

2024), making experimental results more com- 345

prehensive and reliable. It requires the model 346

to count the number of character ’A’ in the five 347

candidates. 348

• ARC (Clark et al., 2018) includes questions 349

that require extensive knowledge and reason- 350

ing to answer. 351

• GSM8K (Cobbe et al., 2021) serves as a 352

testbed for evaluating multi-step mathematical 353

reasoning ability. 354

We evaluate the LLMs on the test set of the datasets 355

above and use the training set as the demonstration 356

candidate set Sdemos. 357

Baselines 358

• ICL. We use a unified ICL (Brown et al., 359

2020) input format for all the methods for fair 360

comparisons, as shown in Appendix §C. 361
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Method CSQA PIQA CountA ARC GSM8K Avg.

ICL 47.58 57.42 79.04 62.43 9.93 51.28
EARLYSTOP 47.89 57.44 81.28 62.43 11.14 52.04
STRUCTICL 50.25 59.02 86.77 64.05 11.25 54.27
TRIVIALITY 48.97 58.65 85.68 63.13 11.00 53.49
FOCUSICL 50.70 60.83 91.94 64.55 12.28 56.06

Table 1: Accuracy (%) of LONGCHAT-7B-V1.5-32K
with compared methods across benchmarks.

Method CSQA PIQA CountA ARC GSM8K Avg.

ICL 60.72 60.09 82.20 77.11 16.30 59.23
EARLYSTOP 61.36 60.20 82.20 78.14 17.44 59.87
STRUCTICL 61.44 61.81 84.78 78.05 17.12 60.64
TRIVIALITY 61.51 61.03 84.43 77.78 17.36 60.42
FOCUSICL 62.57 67.88 85.13 78.51 17.74 62.37

Table 2: Accuracy (%) of VICUNA-7B-V1.5-16K with
compared methods across benchmarks.

• EARLYSTOP. Zhao et al. (2023) proposes362

to pick the optimal demonstration number ac-363

cording to the performance on a validation set.364

• STRUCTICL. Hao et al. (2022) share a similar365

idea with us of dividing demonstrations into366

batches. Differently, their designs focus on367

extending available context length.368

Details We conduct experiments with three369

widely used long-context LLMs: LONGCHAT-370

7B-V1.5-32K (Dacheng Li* and Zhang, 2023),371

VICUNA-7B-V1.5-16K (Zheng et al., 2023) and372

LLAMA-3-8B-INSTRUCT (AI@Meta, 2024). We373

choose the maximum available number of demon-374

strations for evaluation based on the 40 GB memory375

of the A100 GPU (Table 7). The hyper parameter376

searching results are listed in Table 8. We use377

random sampling decoding strategy (T=0.1) and re-378

port the outcomes averaged over 5 runs (randomly379

selecting demonstrations) for credible results.380

5.2 Main Results381

Our main experimental results are presented in Ta-382

bles 1, 2, and 3. The compared methods exhibit383

similar performance trends across different LLMs.384

Baselines Under most settings, EARLYSTOP out-385

performs ICL, consistent with the observations of386

Agarwal et al. (2024) and Zhao et al. (2023) that387

more demonstrations does not necessarily lead to388

better performance. Compared to EARLYSTOP389

which avoids the negative impact of attention dis-390

persion by not introducing more demonstrations,391

Method CSQA PIQA CountA ARC GSM8K Avg.

ICL 74.90 75.86 98.10 90.00 66.64 81.10
EARLYSTOP 75.54 77.09 98.10 90.47 71.21 82.48
STRUCTICL 75.12 77.05 98.16 90.70 69.43 82.09
TRIVIALITY 75.25 76.38 98.22 90.40 68.03 81.56
FOCUSICL 76.00 78.29 98.34 91.02 71.89 83.11

Table 3: Accuracy (%) of LLAMA-3-8B-INSTRUCT
with compared methods across benchmarks.

STRUCTICL leverages all the given demonstra- 392

tions through structured input to achieve slightly 393

better performance. 394

Ours However, due to the lack of insights into the 395

reasons behind performance degradation of ICL 396

with more demonstrations, the baselines fail to 397

maintain the model attention on critical input parts 398

while fully leveraging all demonstrations. In con- 399

trast, by introducing triviality filtering operation 400

and hierarchical attention mechanism to achieve 401

the above vision, FOCUSICL outperforms the com- 402

pared baselines, achieving an average of 5.2% (3.31 403

points) performance improvement over ICL across 404

three LLMs. This validates the effectiveness and 405

generalizability of FOCUSICL. 406

Ablations We also report the performance of 407

only performing triviality filtering operation as an 408

ablation study. The results show that FOCUSICL 409

benefits 1.29 points improvement from the trivial- 410

ity filtering operation and 2.02 points improvement 411

from the hierarchical attention mechanism. 412

Efficiency By performing hierarchical attention 413

mechanism, demonstrations between different 414

batches does not need direct interactions, which 415

can save a significant amount of inference overhead. 416

Assuming each demonstration has an average of L 417

tokens, the overhead of attention operation between 418

N demonstrations for ICL is: 419

CostICL = N2L2 ×∆ (11) 420

where ∆ denotes a computational cost unit. The 421

overhead for FOCUSICL with batch size as B is: 422

CostFOCUSICL =
N

B
(BL)2 ×∆

= NBL2 ×∆

(12) 423

Therefore, the overhead ratio of FOCUSICL to ICL 424

in encoding demonstrations is B : N (N is gener- 425

ally several times larger than B), while the over- 426

head in other aspects is roughly the same. This 427

demonstrates the efficiency of FOCUSICL. 428
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Figure 5: FOCUSICL helps different LLMs scale well with many-shot demonstrations compared with ICL.

5.3 Scaling with More Demonstrations429

The recent significant advancements in LLMs430

mainly stem from scaling up in dimensions of431

model size and training data size. However, given432

the limitations of computation resource and data433

production speed, we are in eager need of exploring434

other potential scaling dimensions to continuously435

enhance the performance of LLMs. As shown in436

Figure 5, the demonstration number is not a stable437

scaling dimension when applying ICL, as the per-438

formance can sometimes exhibit an inverse-scaling439

phenomenon with more demonstrations. In con-440

trast, FOCUSICL enables LLMs to become stable441

many-shot learners by directing their attention to442

important contents, thereby achieving good scala-443

bility in the dimension of demonstration number.444

It should be noted that we find the advantage445

of FOCUSICL over ICL continues to grow as the446

number of demonstrations increases. This means447

that if we have more resources to conduct experi-448

ments with more demonstrations, the advantage of449

FOCUSICL over ICL can be larger.450

5.4 Working Mechanism of FOCUSICL451

To gain a deeper understanding of the working452

mechanism of FOCUSICL, we explore it from as-453

pects of attention and hidden state distributions,454

following the experimental settings in §3.3.455
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Figure 6: Average model attention towards token of q
with varying demonstration numbers.

Attention Distribution The primary purpose of 456

FOCUSICL is to prevent the model attention from 457

being scattered by the increased demonstrations, 458

thereby ensuring a proper understanding of key con- 459

tents. Therefore, we observe the attention weights 460

allocated by the model towards the query as the 461

number of demonstrations increases. As shown 462

in Figure 6, by ignoring unimportant parts of the 463

demonstrations and introducing the hierarchical at- 464

tention mechanism, FOCUSICL consistently main- 465

tains sufficient attention towards the query. 466

Hidden States Distribution We further investi- 467

gate the distribution of the hidden states of the last 468

input token at the penultimate model layer through 469

7



50 25 0 25 50 75 100 125
Principal Component 1

30

20

10

0

10

20

30

40
Pr

in
cip

al
 C

om
po

ne
nt

 2

50

100

150

200

250

300

350

400

450

De
m

on
st

ra
tio

n 
Nu

m
be

r

75 50 25 0 25 50 75 100
Principal Component 1

40

20

0

20

40

60

Pr
in

cip
al

 C
om

po
ne

nt
 2

50

100

150

200

250

300

350

400

450

De
m

on
st

ra
tio

n 
Nu

m
be

r

Figure 7: The PCA distribution results of the hidden
states of the last input token from the penultimate layer
of ICL (above) and FOCUSICL (below) with varying
numbers of demonstrations.

Principal Component Analysis (PCA). Intuitively,470

the distribution of the hidden states of the last to-471

ken mainly depends on the current problem to be472

solved and should be independent of the demonstra-473

tion number. However, as shown in Figure 7, we474

find that the hidden states of ICL change systemati-475

cally with an increasing number of demonstrations,476

whereas FOCUSICL does not exhibit such behav-477

ior. We think that the systematic decline in atten-478

tion towards the query in ICL with an increasing479

number of demonstrations continuously affects the480

hidden states during response generation, thereby481

impacting the quality of the generated response. In482

contrast, FOCUSICL avoids this issue by maintain-483

ing sufficient attention to the query as shown above,484

ultimately benefiting from more demonstrations.485

5.5 Further Discussion486

Based on our existing insights and experimental487

results, we attempt to understand the divergent phe-488

nomena of ICL observed in previous studies where489

more demonstrations sometimes lead to better per-490

formance, while sometimes the opposite occurs.491

We think the main reason leading to the above phe-492

nomena comes from the double-edged sword effect493

of learning from more demonstrations: on the one 494

hand, they can help the model better understand 495

the task and increase the likelihood of finding use- 496

ful knowledge; on the other hand, they might also 497

distract the model, leading to insufficient attention 498

and understanding of current query. We consider 499

that two aspects can influence the balance between 500

the two effects: 501

Weak models require more demonstrations to 502

understand the task. As shown in Figure 5, we 503

observe that the optimal number of demonstrations 504

for LONGCHAT-7B-V1.5-32K is greater compared 505

to the other two models across most benchmarks. 506

Considering that its performance is also the worst, 507

we believe the reason for the aforementioned situa- 508

tion is that weaker models require more demonstra- 509

tions to help them better understand the task. 510

More demonstrations are needed when they 511

have a closer relationship. We also notice that 512

the LLMs are more demonstration-hungry on 513

CountA compared to other benchmarks as shown 514

in Figure 5. We analyze that the correlation be- 515

tween samples in other benchmarks is relatively 516

weak, and even a single demonstration is sufficient 517

to clarify the task format. In contrast, the demon- 518

strations in CountA are closely related, collectively 519

determining what the task definition is. In this 520

scenario, LLMs cannot discern the complete task 521

information if only given a few demonstrations. To 522

sum up, when the samples are closely related, the 523

model needs more demonstrations to analyze the 524

correlations among them, so as to better understand 525

and complete the task. 526

6 Conclusions 527

Noticing that the performance of LLMs under 528

many-shot ICL does not consistently improve with 529

more demonstrations, we analyze and validate the 530

underlying reason as follows: more demonstrations 531

can disperse the model attention to critical con- 532

tents, resulting in an insufficient understanding of 533

the query. Inspired by how humans learn from ex- 534

amples, we propose a training-free method FOCU- 535

SICL, which conducts triviality filtering at token- 536

level and hierarchical attention at demonstration- 537

level to rationally allocate model attention in each 538

layer. Comprehensive experiments indicate that fo- 539

cused LLMs are stable many-shot learners, making 540

demonstration number a possible scaling dimen- 541

sion for LLM-based AGI. 542
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Limitations543

From an objective perspective , we think there are544

two main limitations of this paper:545

1. Although we have extended the demonstra-546

tion number to nearly or even beyond 100,547

due to computational resource limitations, we548

are unable to conduct experiments with larger549

demonstration numbers. We will further ver-550

ify the applicability of FOCUSICL with larger551

demonstration numbers in the future.552

2. This work primarily discusses LLMs that ap-553

ply the standard transformer decoder architec-554

ture. We look forward to further exploring555

the scaling performance with the demonstra-556

tion number and the applicability of FOCU-557

SICL on other variants of LLMs, such as the558

encoder-decoder architecture and sliding win-559

dow attention, in the future.560

Ethics Statement561

All of the datasets used in this study were publicly562

available, and no annotators were employed for our563

data collection. We confirm that the datasets we564

used did not contain any harmful content and was565

consistent with their intended use (research). We566

have cited the datasets and relevant works used in567

this study.568
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A Additional Experimental Results744

A.1 Hyperparameters745

To investigate the influence of hyperparameters, we746

report the results of LONGCHAT-7B-V1.5-32K on747

GSM8K benchmark with varying hyperparameter748

settings.749

Filtering Threshold As shown in Table 4, with750

the increase of filtering threshold p, the model’s per-751

formance first improves and then declines. This is752

because, when p is relatively small, the model ben-753

efits from ignoring unimportant content and focus-754

ing its attention on more beneficial parts. However,755

when p becomes larger, the model might overlook756

potentially useful information in the demonstra-757

tions, leading to a decrease in performance.758

Batch Size As shown in Table 5, a similar in-759

verted U-shaped curve phenomenon occurs when760

scaling the batch size while maintaining the over-761

all demonstration number fixed. As the batch size762

decreases from 80, the model attention to the query763

continues to increase, which can lead to a certain764

improvement in model performance. However,765

when the batch size is too small, the model may766

fail to fully understand the task definition due to767

excessive lack of interaction between demonstra-768

tions, consistent with the findings of Bertsch et al.769

(2024).770

Luckily, through our proposed hyperparameter771

searching strategy, we can efficiently attain suitable772

hyperparameters for the given tasks and LLMs.773

A.2 Inverse-scaling Phenomena with Gemini774

Due to the limitations of computational resources775

and the unavailability of closed-source models, our776

experiments are primarily conducted on 7-8B open777

source LLMs. However, by utilizing APIs, we addi-778

tionally explore the performance changes of more779

powerful models as the number of demonstrations780

increased, further validating the generalizability781

of the argument that LLMs are not stable many-782

shot learners. We choose to experiment with GEM-783

INI 1.5 PRO for its long available context window784

(1M tokens). We test GEMINI 1.5 PRO on MATH785

benchmark (Hendrycks et al., 2021), which con-786

tains 7 subsets with 5 difficulty levels that can thor-787

oughly evaluating the math reasoning abilities of788

LLMs. We use greedy searching decoding strategy789

with and report the outcomes averaged over 5 runs790

for credible results. As shown in Figure 8, obvious791

inverse-scaling phenomenon appears in 5 out of 7792

Filtering Threshold 0.0 0.1 0.2 0.3 0.4

FOCUSICL 11.90 12.28 12.03 12.05 11.88

Table 4: Accuracy (%) of LONGCHAT-7B-V1.5-32K
when applying FOCUSICL with varying filtering thresh-
old and batch size as 8.

Batch Size 2 4 8 16 80

FOCUSICL 10.46 10.99 12.28 11.45 11.00

Table 5: Accuracy (%) of LONGCHAT-7B-V1.5-32K
when applying FOCUSICL with varying batch sizes and
filtering threshold as 0.1. It should be noted that the
overall demonstration number is fixed as 80.

subsets, with Precalculus and Intermediate Algebra 793

as exceptions. This validates the generalizability of 794

the argument that LLMs are not stable many-shot 795

learners. Meanwhile, we observe that across dif- 796

ferent difficulty levels, GEMINI 1.5 PRO presents 797

similar performance changing trends. Figure ?? 798

clearly shows such phenomenon. This indicates 799

that the task difficulty does not affects the optimal 800

demonstration number of certain task. 801

Method CSQA PIQA CountA ARC GSM8K

N 128 96 448 108 80

Table 6: The total demonstration number N of different
benchmarks in our experiments.

B Derivation Details 802

The derivation details of Equation (5) are as fol- 803

lows: 804

output
=Att(hrW q,Cat[Dk;Qk],Cat[Dv;Qv])

= softmax(hrW q Cat[Dk;Qk]
⊤)

[
Dv

Qv

]
=

∑
j exp

(
hrW qQ

⊤
k

)
j∑

i exp
(
hrW qD

⊤
k

)
i
+

∑
j exp

(
hrW qQ

⊤
k

)
j

× softmax(hrW qQ
⊤
k )Qv

+

∑
i exp

(
hrW qD

⊤
k

)
i∑

i exp
(
hrW qD

⊤
k

)
i
+

∑
j exp

(
hrW qQ

⊤
k

)
j

× softmax(hrW qD
⊤
k )Dv

=(1− λ(hr)) softmax(hrW qQ
⊤
k )Qv

+ λ(hr) softmax(hrW qD
⊤
k )Dv

=(1− λ(hr))Att (hrW q,Qk,Qv)︸ ︷︷ ︸
outcome from q

+ λ(hr)Att (hrW q,Dk,Dv)︸ ︷︷ ︸
outcome from demos

,

(13) 805
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(c) Counting and Probability
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(d) Geometry
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(e) Intermediate Algebra
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(f) Number Theory
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(g) Precalculus
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Figure 8: Performance of Gemini on different subset of MATH with varying demonstration numbers.

where:806

λ(hr) =

∑
i exp

(
hrW qD

⊤
k

)
i∑

i exp
(
hrW qD

⊤
k

)
i
+

∑
j exp

(
hrW qQ

⊤
k

)
j

(14)807

C Prompt Template 808

The following is a template ICL input format when 809

demonstration number is 2. 810

### Human: I’m getting warm because I 811

increased the thermostat in my bedroom. 812

What might I be doing soon? Answer 813

12



Method CSQA PIQA CountA ARC GSM8K

Training size 9741 16113 3000 2241 7473
Testing size 1221 1838 1000 567 1319

Table 7: Benchmark Statistics.

Model
LONGCHAT-7B VICUNA-7B LLAMA-3-8B

-V1.5-32K -V1.5-16K -INSTRUCT
Params p B p B p B

CSQA 0.1 32 0.2 16 0.4 32
PIQA 0.1 32 0.1 8 0.4 2
CountA 0.4 112 0.4 224 0.4 112
ARC 0.4 16 0.4 0.1 0.4 12
GSM8K 0.1 8 0.1 8 0.4 8

Table 8: The results of hyperparameter searching strat-
egy across varing tasks and LLMs.

Choices: (a) feeling comfortable (b)814

overheat (c) increase of temperature (d)815

pleasure (e) starting fire816

817

### Assistant: A818

819

### Human: Where might I hear820

and see information on current events?821

Answer Choices: (a) internet (b) televi-822

sion (c) newspaper (d) book (e) radio823

824

### Assistant: B825

826

### Human: If somebody buys827

something and gives it to me as a828

free gift, what is the cost status of the829

gift? Answer Choices: (a) deadly (b)830

imprisoned (c) paid for (d) expensive (e)831

in prison832

833

### Assistant:834

13
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