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Abstract

In-Context Learning (ICL) enables large lan-
guage models (LLMs) to achieve rapid task
adaptation by learning from demonstrations.
With the increase in available context length
of LLMs, recent experiments have shown that
the performance of ICL does not necessarily
scale well in many-shot (demonstration) set-
tings. We theoretically and experimentally con-
firm that the reason lies in more demonstrations
dispersing the model attention from the query,
hindering its understanding of key content. In-
spired by how humans learn from examples,
we propose a training-free method FOCUSICL,
which conducts triviality filtering to avoid atten-
tion being diverted by unimportant contents at
token-level and operates hierarchical attention
to further ensure sufficient attention towards
current query at demonstration-level. We also
design an efficient hyperparameter searching
strategy for FOCUSICL based on model per-
plexity of demonstrations. Comprehensive ex-
periments validate that FOCUSICL achieves
an average performance improvement of 5.2%
over vanilla ICL and scales well with many-
shot demonstrations.

1 Introduction

The rapid development of large language models
(LLMs) has facilitated the emergence and enhance-
ment of their In-Context Learning (ICL) abilities
(Wei et al., 2022; Dong et al., 2023). As a training-
free method, ICL can achieve fast model adapta-
tion on specific tasks based on several demonstra-
tions prefixed to the query, formally denoted as
ICL(response|demos, query). Intuitively, more
demonstrations can help LLMs better understand
the task and increase the likelihood of finding
demonstrations that aid in responding queries, thus
leading to better performance. Theoretically, a sim-
ilar conclusion can be drawn. Previous studies
(Dai et al., 2023; Irie et al., 2022; von Oswald
et al., 2023; Akyiirek et al., 2023) have theoreti-
cally inferred that ICL can be viewed as an implicit
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Figure 1: The average model attention for query is dis-
persed by the increased number of demonstrations, caus-
ing inadequate understanding of query.

finetuning process, with demonstrations analogous
to training samples. On this basis, as finetuning
has been validated to comply with the scaling law
(Hernandez et al., 2021) where performance in-
creases with the number of training samples, the
performance of ICL should also positively corre-
lates with the number of demonstrations, which has
been experimentally verified by previous studies
(Bertsch et al., 2024; Duan et al., 2023).

However, with the increase in available context
length of LLMs (Reid et al., 2024), some stud-
ies (Zhao et al., 2023; Agarwal et al., 2024) ob-
serve counterexamples when scaling the demonstra-
tion numbers from few-shot to many-shot. Agar-
wal et al. (2024) finds that the optimal number
of demonstrations for six out of eleven bench-
marks is not the maximum number they have tested.
Our experimental results (Figure 5) also indicate
that the model performance might decline with
increased demonstrations when applying ICL, ex-
hibiting an inverse-scaling phenomenon (McKen-
zie et al., 2023). These findings indicate that LLMs
are not stable many-shot learners.

To understand this gap, we revisit the derivation
of Dai et al. (2023) that formally equates ICL with



finetuning and identify that their approximation of
standard attention operation as linear attention op-
eration will ignore the competition for attention
between demonstrations and the query when gen-
erating the response. Since this approximation is
key to the equivalence of ICL and finetuning, we
hypothesize that the reason why ICL does not ad-
here to the scaling law like finetuning is that more
demonstrations can divert attention away from the
query. Inadequate attention and understanding of
the query can naturally lead to inferior response. To
verify our hypothesis, we first conduct experiments
confirming that increasing the number of demon-
strations does lead to a decrease in model attention
towards queries (Figure 1). We further experiment
by adding blank spaces within the demonstrations
and confirm that: the more blank spaces added, the
more attention towards queries distracted by blanks,
resulting in lower response accuracy (Figure 2).

Inspired by the way humans benefit from ignor-
ing irrelevant contents and integrating insights from
multiple examples when solving problems, we pro-
pose FOCUSICL to avoid the attention dispersion
issue faced by ICL. Specifically, at the token-level,
FocUSICL conducts triviality filtering by adap-
tively masking unimportant tokens of demonstra-
tions based on attention distribution, allocating
the attention to more important contents. At the
demonstration-level, FOCUSICL performs hierar-
chical attention mechanism by dividing demonstra-
tions into multiple batches and respectively con-
ducting intra-batch and inter-batch attention oper-
ations. The limited demonstration number within
each batch ensures sufficient attention to the query,
while inter-batch attention integrates the benefits
from a larger number of demonstrations. We fur-
ther introduce an efficient hyperparameter search-
ing strategy for FOCUSICL according to model
perplexity of demonstrations.

Our experiments across three LLMs on five
benchmarks confirm that FOCUSICL achieves an
average performance improvement of 5.2% over
ICL by avoiding attention dispersion, with lower
inference overhead. This demonstrates the effec-
tiveness, efficiency, and generalizability of FOCU-
SICL. Furthermore, we observe that FOCUSICL
achieves performance scaling with the number of
demonstrations by maintaining attention on criti-
cal parts, making demonstration number a possible
scaling direction for LLM-based AGI. Finally, we
propose a unified perspective to understand the di-

vergent phenomena observed in previous studies,
where more demonstrations lead to either improved
(Bertsch et al., 2024) or deteriorated (Agarwal et al.,
2024) performance in ICL. Based on experimen-
tal results, we conclude that the performance of
ICL initially benefits but subsequently suffers from
more demonstrations. The weaker the model and
the closer the relationship between samples, the
later the sweet spot for the number of demonstra-
tions occurs.
Our contributions are summarized as follows:

1. We analyze that the reason more demonstra-
tions may lead to a decline in ICL perfor-
mance is that they degrade the model under-
standing of query by dispersing its attention.

2. We propose FOCUSICL to achieve rational
attention allocation via triviality filtering op-
eration and hierarchical attention mechanism,
making LLMs stable many-shot learners.

3. We conduct comprehensive experiments and
analyses to validate the effectiveness, effi-
ciency, generalizability and scalability of FoO-
cUsICL.

2 Background

Formalization of ICL. We follow (Dong et al.,
2023) to define the general ICL paradigm. Given an
LLM M and a query g, we choose N demonstra-
tions from a candidate set Sgemos = {(qi, ) ﬁl

to attain the response 7 from M as follows:

r = Sampling(M(Cat|qo;To;...;qn;TN;q])) (1)
N—_——

demos

where Sampling(-) denotes certain sampling
strategy and Cat[-] denotes the operation of con-
catenation.

Scaling Demonstration Number Due to restric-
tions on context window (2048 ~ 4096), early
studies (Brown et al., 2020; Lu et al., 2022) on ICL
are limited to few-shot scenarios where they gener-
ally observe gains from more demonstrations. As
the context window expands recently, counterex-
amples occur. Agarwal et al. (2024) finds that the
best performance of Gemini 1.5 Pro is achieved
under settings where demonstration number is not
the maximum one tested in over half of the bench-
marks. Zhao et al. (2023) discoveries that increas-
ing the number of demonstrations does not nec-
essarily improve model performance across five
LLMs. We observe similar phenomena in Figure 5.



3 Revisiting

In this section, we explore what impedes LLMs
from becoming stable many-shot learners.

3.1 Approximating ICL as Finetuning

Since Dai et al. (2023) derives that ICL is formally
equivalent to finetuning, with demonstrations anal-
ogous to training samples, we decide to revisit their
derivation process below to explore why finetun-
ing satisfies scaling laws (Hernandez et al., 2021)
while ICL does not.

Finetuning Let Wy, AW ppr € RdoutXdin pe
the initialized parameter matrix and the update ma-
trix, and & € R%~ be the input representation. The
output of certain linear layer optimized by gradient
descent can be formulated as follows:

T =aWo+xAWrer )

ICL For each attention head of M, let h; €
R%n» be the representation of the ith input to-
ken, W, W, W, be the projection matrices
for computing the queries, keys and values. We
denote hiGdemoku, hiGdemosz’ hiEqu’
hicqW, as Dy, D,, Q,., Q,, respectively. To
generate r, the output of h,. can be derived below:

h,
=Att(hr W, Cat[Dy; Q,], Cat[Dy; Q,])
~ LinAtt(h,.W 4, Cat[Dy; Q,], Cat[D,; Q,])
D, ] (3)
Q,
=h,W,Q,Q, + h.W,D,D/
=h.Wzsr + hn AW ic1,

W, CatlD1i QT |

Dai et al. (2023) approximate the standard atten-
tion to linear attention by removing the softmax
operation for ease of qualitative analysis. Since
h,,WquQg is the attention result in the zero-
shot learning (ZSL) setting and h,. WqDUD; is
the extra outcome from demonstrations, they are
denoted as h,. W zg1, and h,. AW ;¢ respectively.
Comparing Eq. (3) with Eq. (2), we can understand
ICL as finetuning by treating the AW ;o1 gener-
ated from demonstrations as the AW pr generated
from training samples.

3.2 Ignorance of Attention Competition

From Eq. (3) we can further derive as follows:

h,
~LinAtt (h, W, Q,, Q,) + LinAtt(h, W ,, Dy, D,)

outcome from g outcome from demos

(C))

which means that the existence of demonstrations
does not affect the outcome from ¢q. However, when
we no longer approximate standard attention as lin-
ear attention, we arrive at the opposite conclusion:

h,
= Att(h. W, Cat[Dy; Q,], Cat[D.; Q,])
D, }
Q,
=(1 - A(h+)) softmax(hquQz)Qu

= softmax(h, W, Cat[Dy; Q,] ") [

" 5)
+ A(h,) softmax(h-W D, )D,
=(1 = A(hr)) Att (e W4, Q;, Q,)
outcome from g
+ Mhy) Att (he W, Dy, D),
outcome from demos
where:
Ak >, exp (heW,Dy),
" exp (heW D), + 3 exp (hTWqQkT)j
(6)

With the existence of A(h,.) in Eq. (5), an increase
in the number of demonstrations will lead to a
larger A(h,.), thereby decreasing the model atten-
tion towards q. At the same time, ICL does not
necessarily adhere to the scaling law as it is no
longer formally equivalent to finetuning. There-
fore, we hypothesize that more demonstrations
can divert model attention from the key con-
tents (query), leading to possible performance
decrease.

3.3 Experimental Evidence for Hypothesis

To validate our hypothesis, we first investigate
whether the model attention towards the query de-
creases with the increase of demonstration num-
ber. To avoid potentially unreliable results caused
by data contamination (Jiang et al., 2024), our ex-
ploratory experiments are conducted with longchat-
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Figure 2: Accuracy and attention of LONGCHAT-7B-
v1.5-32K with varying number of spaces added per
demonstration. Demonstration number is set as 100.
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Figure 3: Overall illustration of FOCUSICL.

7b-v1.5 (Dacheng Li* and Zhang, 2023) (32k con-
text window) on the proposed COUNTA bench-
mark (See details in §), which requires the model
to Count the number of character ‘A’ in the five
candidates. As shown in Figure 1, the average at-
tention weight of model towards each token in the
query decreases by scaling up the demonstration
number, corresponding to Eq. (5).

We further explore how the model’s lack of at-
tention towards the query affects the quality of the
response. Specifically, we add several blank spaces
at the end of each demonstration. This format main-
tains the ICL paradigm and the meaningless blank
spaces will not introduce additional information.
As shown in Figure 2, we find that more blank
spaces disperse the model attention towards the
query similar to the demonstrations, which in turn
leads to a decline in accuracy. Based on the experi-
ments above, we have confirmed our hypothesis.

4 Methodology

To mitigate the impact of LLMs’ attention being
dispersed by many-shot demonstrations, we pro-
pose FOCUSICL. The core idea behind FOCUSICL
is to allocate model attention to more important
contents at token-level by triviality filtering (§4.1)
and at demonstration-level by hierarchical attention
(§4.2), as shown in Figure 3.

4.1 Triviality Filtering

Humans benefit from selectively ignoring irrele-
vant parts (trivialities) of demonstrations to avoid
attention dispersion. In contrast, the standard at-
tention mechanism of LLMs fails to completely
ignore (assign zero attention weight to) trivialities

and leverage the prior that the tokens of query are
generally important, for which we propose triviality
filtering operation. To predict response r for given
query g, in each attention layer, we first calculate
the attention scores s as follows:

s = h,W,Cat|Dy; Q,]" (7

Instead of directly applying softmax on s like
standard attention operation, we filter the trivial-
ities in the demonstrations according to a pre-set
threshold p in advance as follows:

index = arg{index|count(s < Singex) = p X |8|}

—INF, 8; < Singex and i € demos
mask(s) = 0, else
b

h, = softmax(s + mask(s)) Cat[D,; Q,]

®
where A, is the outcome of h,.. By applying triv-
iality filtering operation, useless parts of demon-
strations are assigned zero attention weights thus
LLMs can focus on leveraging relevant contents
of the demonstrations to solve the current query.
To achieve a broad impact, apart from r, we also
apply triviality filtering operation on tokens be-
long to responses of demonstrations by autoregres-
sively treating {(q;,7;)}"= as demonstrations of
(qu rk‘)? ke [2’ N]

4.2 Hierarchical Attention

When there are numerous examples, humans draw
inspirations for problem-solving from different ex-
amples separately and then integrate the insights to
avoid distracting attention by focusing on too many
examples simultaneously. Motivated by this, we in-
troduce hierarchical attention mechanism for LLMs
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Figure 4: Input details of FOCUSICL.

to learn from many-shot demonstrations while fo-
cusing on current query. We first split the demon-
strations into 7" batches, where each one comprises
B consecutive demonstrations. Without editing
the token order, we change the position indexes to
ensure that each batch is logically adjacent to the
query (Figure 4). To ensure that batches are mutu-
ally invisible to each other, we use a mask matrix,
allowing us to parallelly apply intra-batch attention
within each batch ¢ and query as follows:

ili, st = TrivialityFiltering Att(Rjcpatch;uq)

By controlling the batch size B, we can ensure
that the model maintains enough attention towards
the query within each batch. To further integrate
insights from different batches, we conduct inter-
batch attention as follows:

) T o5t

h, = hi x — 10

Z:Z SRy, et 1

The sum of the attention scores for all tokens within
each batch can reflect the amount of useful infor-
mation contained in that batch for the current query.
Based on this, we calculate the weighted sum of
iLi to attain the final output of the attention layer.

4.3 Hyperparameter Searching

To efficiently find suitable values of filtering thresh-
old p and batch size B for different LLMs and
tasks, we propose a hyperparameter searching strat-
egy as shown in Algorithm 1. By treating ¢; as
current query and Si.;—1 as demonstrations, the
model perplexity ! (ppl) of r; can reflect the LLMs’
capability when demonstration number is 7 — 1
(lower ppl indicates better performance). Thus, we
choose the p that yields the lowest average ppl and
B that first leads an increasing trend in ppl as our
hyperparameter choices. We generally set S, as
[0,0.1,0.2,0.3,0.4] and run each setting 5 times
to stabilize the results, resulting in a total of 25
inference overhead for hyperparameter searching,
which is relatively low compared with the thou-
sands of evaluation samples.

'We don’t use accuracy because the accuracy obtained un-
der teacher forcing will overestimate the model performance.

Algorithm 1 Hyperparameter Searching.

Require: Candidate filtering threshold set S, LLM M
Demonstration set Sgemos, Demonstration number N
Ensure: Suitable filtering threshold p and batch size B
1: D(p,i) < Oforp € Sp,i € [0, N —1]
2: forp € S, do:
3: for i < 1,5 do:

4 81:.N < RandomSelect(Sdemos, V)

5: # calculate average ppl of responses in S1.n

6: ppli:n < M(ICLFormat(Si:n))

7 D(p,j—1) < D(p,j—1)+ppl; for j € [1, N]
8 end for

N

D(p,i) + D(p,i) + D(p,i+1) fori € [0, N — 2]
10: D(p,i) < D(p,i) — D(p,i — 2) fori € 2, N — 2]
11: end for

12: p + argmin(p|sum(D(p)))

13: B <+ argmin(i|D(p,i) > 0)

5 Experiments

Centered around FOCUSICL, we will empirically
demonstrate its performance on different LLMs
and tasks in §5.2, verify whether it can help LLMs
scale well with demonstration number in §5.3, and
delve into its working mechanism in §5.4. We
also investigate the choice of hyperparameters in
Appendix §A.1.

5.1 Experimental Settings

Benchmarks We conduct experiments on the fol-
lowing benchmarks:

* CSQA (Talmor et al., 2019) is a high-quality
benchmark for commonsense reasoning task.

¢ PIQA (Bisk et al., 2020) concentrates on test-
ing physical commonsense answering ability.

* CountA is our proposed benchmark to avoid
the impact of data contamination (Jiang et al.,
2024), making experimental results more com-
prehensive and reliable. It requires the model
to count the number of character A’ in the five
candidates.

* ARC (Clark et al., 2018) includes questions
that require extensive knowledge and reason-
ing to answer.

* GSMS8K (Cobbe et al., 2021) serves as a
testbed for evaluating multi-step mathematical
reasoning ability.

We evaluate the LLMs on the test set of the datasets
above and use the training set as the demonstration
candidate set Sgemos-

Baselines

e ICL. We use a unified ICL (Brown et al.,
2020) input format for all the methods for fair
comparisons, as shown in Appendix §C.



Method ~ CSQA PIQA CountA ARC GSMSK Avg. Method  CSQA PIQA CountA ARC GSMSK Avg.
ICL 47.58 5742 79.04 6243 993 51.28 ICL 74.90 75.86 98.10 90.00 66.64 81.10
EARLYSTOP 47.89 57.44 8128 6243 11.14 5204  EARLYSTOP 7554 77.09 98.10 90.47 7121 82.48
STRUCTICL 50.25 59.02 86.77 64.05 11.25 54.27 STRUCTICL 75.12 77.05 98.16 90.70 69.43 82.09
TRIVIALITY 48.97 5865 85.68 63.13 1100 53.49  TRIVIALITY 7525 7638 98.22 90.40 68.03 81.56
FocUSICL 50.70 60.83 91.94 64.55 1228 56.06 FOCUSICL 76.00 78.29 98.34 91.02 71.89 83.11

Table 1: Accuracy (%) of LONGCHAT-7B-V1.5-32K
with compared methods across benchmarks.

Method CSQA PIQA CountA ARC GSMSK Avg.

ICL 60.72 60.09

EARLYSTOP 61.36 60.20
STRUCTICL 61.44 61.81

TRIVIALITY 61.51 61.03
FocusICL 62.57 67.88

Table 2: Accuracy (%) of VICUNA-7B-V1.5-16K with
compared methods across benchmarks.

e EARLYSTOP. Zhao et al. (2023) proposes
to pick the optimal demonstration number ac-
cording to the performance on a validation set.

¢ STRUCTICL. Hao et al. (2022) share a similar
idea with us of dividing demonstrations into
batches. Differently, their designs focus on
extending available context length.

Details We conduct experiments with three
widely used long-context LLMs: LONGCHAT-
7B-v1.5-32K (Dacheng Li* and Zhang, 2023),
VICUNA-7B-V1.5-16K (Zheng et al., 2023) and
LLAMA-3-8B-INSTRUCT (AIl@Meta, 2024). We
choose the maximum available number of demon-
strations for evaluation based on the 40 GB memory
of the A100 GPU (Table 7). The hyper parameter
searching results are listed in Table 8. We use
random sampling decoding strategy (T=0.1) and re-
port the outcomes averaged over 5 runs (randomly
selecting demonstrations) for credible results.

5.2 Main Results

Our main experimental results are presented in Ta-
bles 1, 2, and 3. The compared methods exhibit
similar performance trends across different LLMs.

Baselines Under most settings, EARLYSTOP out-
performs ICL, consistent with the observations of
Agarwal et al. (2024) and Zhao et al. (2023) that
more demonstrations does not necessarily lead to
better performance. Compared to EARLYSTOP
which avoids the negative impact of attention dis-
persion by not introducing more demonstrations,

Table 3: Accuracy (%) of LLAMA-3-8B-INSTRUCT
with compared methods across benchmarks.

STRUCTICL leverages all the given demonstra-
tions through structured input to achieve slightly
better performance.

Ours However, due to the lack of insights into the
reasons behind performance degradation of ICL
with more demonstrations, the baselines fail to
maintain the model attention on critical input parts
while fully leveraging all demonstrations. In con-
trast, by introducing triviality filtering operation
and hierarchical attention mechanism to achieve
the above vision, FOCUSICL outperforms the com-
pared baselines, achieving an average of 5.2% (3.31
points) performance improvement over ICL across
three LLMs. This validates the effectiveness and
generalizability of FOCUSICL.

Ablations We also report the performance of
only performing triviality filtering operation as an
ablation study. The results show that FOCUSICL
benefits 1.29 points improvement from the trivial-
ity filtering operation and 2.02 points improvement
from the hierarchical attention mechanism.

Efficiency By performing hierarchical attention
mechanism, demonstrations between different
batches does not need direct interactions, which
can save a significant amount of inference overhead.
Assuming each demonstration has an average of L
tokens, the overhead of attention operation between
N demonstrations for ICL is:

Costicr, = N’L? x A (11)

where A denotes a computational cost unit. The
overhead for FOCUSICL with batch size as B is:

N 2
CostrocusicL = — (BL)* x A
OSTFocusICL B( ) (12)

= NBL?> x A

Therefore, the overhead ratio of FOCUSICL to ICL
in encoding demonstrations is B : N (IV is gener-
ally several times larger than B), while the over-
head in other aspects is roughly the same. This
demonstrates the efficiency of FOCUSICL.
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Figure 5: FOCUSICL helps different LLMs scale well with many-shot demonstrations compared with ICL.

5.3 Scaling with More Demonstrations

The recent significant advancements in LLMs
mainly stem from scaling up in dimensions of
model size and training data size. However, given
the limitations of computation resource and data
production speed, we are in eager need of exploring
other potential scaling dimensions to continuously
enhance the performance of LLMs. As shown in
Figure 5, the demonstration number is not a stable
scaling dimension when applying ICL, as the per-
formance can sometimes exhibit an inverse-scaling
phenomenon with more demonstrations. In con-
trast, FOCUSICL enables LLMs to become stable
many-shot learners by directing their attention to
important contents, thereby achieving good scala-
bility in the dimension of demonstration number.

It should be noted that we find the advantage
of FOCUSICL over ICL continues to grow as the
number of demonstrations increases. This means
that if we have more resources to conduct experi-
ments with more demonstrations, the advantage of
FocUsICL over ICL can be larger.

5.4 Working Mechanism of FOCUSICL

To gain a deeper understanding of the working
mechanism of FOCUSICL, we explore it from as-
pects of attention and hidden state distributions,
following the experimental settings in §3.3.
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with varying demonstration numbers.

Attention Distribution The primary purpose of
FocUsICL is to prevent the model attention from
being scattered by the increased demonstrations,
thereby ensuring a proper understanding of key con-
tents. Therefore, we observe the attention weights
allocated by the model towards the query as the
number of demonstrations increases. As shown
in Figure 6, by ignoring unimportant parts of the
demonstrations and introducing the hierarchical at-
tention mechanism, FOCUSICL consistently main-
tains sufficient attention towards the query.

Hidden States Distribution We further investi-
gate the distribution of the hidden states of the last
input token at the penultimate model layer through
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of ICL (above) and FOCUSICL (below) with varying
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Principal Component Analysis (PCA). Intuitively,
the distribution of the hidden states of the last to-
ken mainly depends on the current problem to be
solved and should be independent of the demonstra-
tion number. However, as shown in Figure 7, we
find that the hidden states of ICL change systemati-
cally with an increasing number of demonstrations,
whereas FOCUSICL does not exhibit such behav-
ior. We think that the systematic decline in atten-
tion towards the query in ICL with an increasing
number of demonstrations continuously affects the
hidden states during response generation, thereby
impacting the quality of the generated response. In
contrast, FOCUSICL avoids this issue by maintain-
ing sufficient attention to the query as shown above,
ultimately benefiting from more demonstrations.

5.5 Further Discussion

Based on our existing insights and experimental
results, we attempt to understand the divergent phe-
nomena of ICL observed in previous studies where
more demonstrations sometimes lead to better per-
formance, while sometimes the opposite occurs.
We think the main reason leading to the above phe-
nomena comes from the double-edged sword effect

of learning from more demonstrations: on the one
hand, they can help the model better understand
the task and increase the likelihood of finding use-
ful knowledge; on the other hand, they might also
distract the model, leading to insufficient attention
and understanding of current query. We consider
that two aspects can influence the balance between
the two effects:

Weak models require more demonstrations to
understand the task. As shown in Figure 5, we
observe that the optimal number of demonstrations
for LONGCHAT-7B-V1.5-32K is greater compared
to the other two models across most benchmarks.
Considering that its performance is also the worst,
we believe the reason for the aforementioned situa-
tion is that weaker models require more demonstra-
tions to help them better understand the task.

More demonstrations are needed when they
have a closer relationship. We also notice that
the LLMs are more demonstration-hungry on
CountA compared to other benchmarks as shown
in Figure 5. We analyze that the correlation be-
tween samples in other benchmarks is relatively
weak, and even a single demonstration is sufficient
to clarify the task format. In contrast, the demon-
strations in CountA are closely related, collectively
determining what the task definition is. In this
scenario, LLMs cannot discern the complete task
information if only given a few demonstrations. To
sum up, when the samples are closely related, the
model needs more demonstrations to analyze the
correlations among them, so as to better understand
and complete the task.

6 Conclusions

Noticing that the performance of LLMs under
many-shot ICL does not consistently improve with
more demonstrations, we analyze and validate the
underlying reason as follows: more demonstrations
can disperse the model attention to critical con-
tents, resulting in an insufficient understanding of
the query. Inspired by how humans learn from ex-
amples, we propose a training-free method FOCU-
SICL, which conducts triviality filtering at token-
level and hierarchical attention at demonstration-
level to rationally allocate model attention in each
layer. Comprehensive experiments indicate that fo-
cused LLMs are stable many-shot learners, making
demonstration number a possible scaling dimen-
sion for LLM-based AGI.



Limitations

From an objective perspective , we think there are
two main limitations of this paper:

1. Although we have extended the demonstra-
tion number to nearly or even beyond 100,
due to computational resource limitations, we
are unable to conduct experiments with larger
demonstration numbers. We will further ver-
ify the applicability of FOCUSICL with larger
demonstration numbers in the future.

2. This work primarily discusses LLMs that ap-
ply the standard transformer decoder architec-
ture. We look forward to further exploring
the scaling performance with the demonstra-
tion number and the applicability of FOCU-
SICL on other variants of LLMs, such as the
encoder-decoder architecture and sliding win-
dow attention, in the future.

Ethics Statement

All of the datasets used in this study were publicly
available, and no annotators were employed for our
data collection. We confirm that the datasets we
used did not contain any harmful content and was
consistent with their intended use (research). We
have cited the datasets and relevant works used in
this study.
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A Additional Experimental Results
A.1 Hyperparameters

To investigate the influence of hyperparameters, we
report the results of LONGCHAT-7B-V1.5-32K on
GSMS8K benchmark with varying hyperparameter
settings.

Filtering Threshold As shown in Table 4, with
the increase of filtering threshold p, the model’s per-
formance first improves and then declines. This is
because, when p is relatively small, the model ben-
efits from ignoring unimportant content and focus-
ing its attention on more beneficial parts. However,
when p becomes larger, the model might overlook
potentially useful information in the demonstra-
tions, leading to a decrease in performance.

Batch Size As shown in Table 5, a similar in-
verted U-shaped curve phenomenon occurs when
scaling the batch size while maintaining the over-
all demonstration number fixed. As the batch size
decreases from 80, the model attention to the query
continues to increase, which can lead to a certain
improvement in model performance. However,
when the batch size is too small, the model may
fail to fully understand the task definition due to
excessive lack of interaction between demonstra-
tions, consistent with the findings of Bertsch et al.
(2024).

Luckily, through our proposed hyperparameter
searching strategy, we can efficiently attain suitable
hyperparameters for the given tasks and LLMs.

A.2 Inverse-scaling Phenomena with Gemini

Due to the limitations of computational resources
and the unavailability of closed-source models, our
experiments are primarily conducted on 7-8B open
source LLMs. However, by utilizing APIs, we addi-
tionally explore the performance changes of more
powerful models as the number of demonstrations
increased, further validating the generalizability
of the argument that LLMs are not stable many-
shot learners. We choose to experiment with GEM-
INT 1.5 PRO for its long available context window
(IM tokens). We test GEMINI 1.5 PRO on MATH
benchmark (Hendrycks et al., 2021), which con-
tains 7 subsets with 5 difficulty levels that can thor-
oughly evaluating the math reasoning abilities of
LLMs. We use greedy searching decoding strategy
with and report the outcomes averaged over 5 runs
for credible results. As shown in Figure 8, obvious
inverse-scaling phenomenon appears in 5 out of 7
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Filtering Threshold 0.0 0.1 0.2 03 04

FocusICL 11.90 12.28 12.03 12.05 11.88

Table 4: Accuracy (%) of LONGCHAT-7B-V1.5-32K
when applying FOCUSICL with varying filtering thresh-
old and batch size as 8.

Batch Size 2 4 8 16 80

FocUsICL 10.46 10.99 12.28 11.45 11.00

Table 5: Accuracy (%) of LONGCHAT-7B-V1.5-32K
when applying FOCUSICL with varying batch sizes and
filtering threshold as 0.1. It should be noted that the
overall demonstration number is fixed as 80.

subsets, with Precalculus and Intermediate Algebra
as exceptions. This validates the generalizability of
the argument that LL.Ms are not stable many-shot
learners. Meanwhile, we observe that across dif-
ferent difficulty levels, GEMINT 1.5 PRO presents
similar performance changing trends. Figure ??
clearly shows such phenomenon. This indicates
that the task difficulty does not affects the optimal
demonstration number of certain task.

Method CSQA PIQA CountA ARC GSMSK

N 128 96 448 108 80

Table 6: The total demonstration number N of different
benchmarks in our experiments.

B Derivation Details

The derivation details of Equation (5) are as fol-
lows:

output
= Att(h. W, Cat[Dy; Q,], Cat[D.; Q,))
= softmax(h,W, Cat[Dy; Q,] ") [ g“ }
) 3, exp (e WoQ)),
S X exp (heWoD[), + 3 exp (heW,Q)),

x softmax(h. W ,Q; )Q,

>, exp (hTWquT)i

+ > exp (heWDJ) + 3 exp (h-W,Q))

x softmax(h, W ,D, D,
=(1 — A(h,)) softmax(h. W ,Q, )Q,

+ A(h.) softmax(h,. W D} ) D,
=(1 = A(hr)) Att (Re W4, Q, Q,)

outcome from g

+ )\(hr)Att (h’r‘quDkaU),

J

outcome from demos
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Figure 8: Performance of Gemini on different subset of MATH with varying demonstration numbers.

where: C Prompt Template

The following is a template ICL input format when
demonstration number is 2.

>, exp (W D)), ### Human: I'm getting warm because 1
= e (W, D), + 5, exp (heW,Q)), increased the thermostat in my bedroom.
(14) What might I be doing soon? Answer

A(hr)
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Method CSQA PIQA CountA ARC GSMSK

Training size 9741 16113 3000 2241 7473
Testing size 1221 1838 1000 567 1319

Table 7: Benchmark Statistics.

LONGCHAT-7B VICUNA-7B LLAMA-3-8B
-V1.5-32K -V1.5-16K -INSTRUCT

Params p B p B P B

Model

CSQA 0.1 32 0.2 16 04 32
PIQA 0.1 32 0.1 8 0.4 2
CountA 0.4 112 04 224 04 112
ARC 04 16 04 01 04 12
GSMS8K 0.1 8 0.1 8 0.4 8

Table 8: The results of hyperparameter searching strat-
egy across varing tasks and LLMs.

Choices: (a) feeling comfortable (b)
overheat (c) increase of temperature (d)
pleasure (e) starting fire

### Assistant: A

### Human: Where might I hear
and see information on current events?
Answer Choices: (a) internet (b) televi-
sion (c) newspaper (d) book (e) radio

### Assistant: B

### Human: If somebody buys
something and gives it to me as a
free gift, what is the cost status of the
gift? Answer Choices: (a) deadly (b)
imprisoned (c) paid for (d) expensive (e)
in prison

### Assistant:
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