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Abstract
Current approaches for fixing systematic prob-001
lems in NLP models (e.g., regex patches, fine-002
tuning on more data) are either brittle, or003
labor-intensive and liable to shortcuts. In con-004
trast, humans often provide corrections to each005
other through natural language. Taking inspi-006
ration from this, we explore natural language007
patches—declarative statements that allow de-008
velopers to provide corrective feedback at the009
right level of abstraction, either overriding the010
model (“if a review gives 2 stars, the sentiment011
is negative”) or providing additional informa-012
tion the model may lack (“if something is de-013
scribed as the bomb, then it is good”). We014
model the task of determining if a patch applies015
separately from the task of integrating patch in-016
formation, and show that with a small amount017
of synthetic data, we can teach models to ef-018
fectively use real patches on real data —1 to019
7 patches improve accuracy by ~1-4 accuracy020
points on different slices of a sentiment anal-021
ysis dataset, and F1 by 7 points on a relation022
extraction dataset. Finally, we show that fine-023
tuning on as many as 100 labeled examples024
may be needed to match the performance of a025
small set of language patches.026

1 Introduction027

Natural language enables humans to communicate028

a lot at once with shared abstractions. For example,029

in teaching someone about the colloquial use of030

the term “bomb” we might say describing food as031

‘bomb means it is very good, while saying someone032

bombed means it was disappointing. This simple033

sentence uses various abstractions (e.g., “food”) to034

provide context-dependent information, making it035

easy for humans to generalize and understand sen-036

tences such as “The tacos were bomb” or “The chef037

bombed” without ever having seen such examples.038

There is a growing body of research focused on039

using language to give instructions, supervision040

and even inductive biases to models instead of rely-041

ing exclusively on labeled examples e.g., building042

neural representations from language descriptions 043

(Andreas et al., 2018; Murty et al., 2020; Mu et al., 044

2020), or language / prompt-based zero-shot learn- 045

ing (Brown et al., 2020; Hanjie et al., 2022; Chen 046

et al., 2021). However, language is yet to be suc- 047

cessfully applied for corrective purposes, where the 048

user interacts with an existing model to improve 049

it. As shown in Fig. 1, if a developer discovers 050

that a model contains bugs (i.e., systematic errors; 051

Ribeiro et al., 2020), common fixes are either brit- 052

tle regex-based patches (e.g., Fig. 1 left, where 053

patches either override predictions or replace the 054

word “bomb” with the word “good”), or collecting 055

hundreds of additional datapoints for finetuning, 056

a tedious and computationally demanding process 057

that can still lead to shortcuts such as assuming 058

the word “bomb” is always positive (e.g., if the 059

additional finetuning data mostly has the word in 060

its colloquial sense). Instead, we envision a set- 061

ting where developers provide corrective feedback 062

through a Natural Language Patch – a concise state- 063

ment such as “If food is described as bomb, then 064

food is good”. Language makes it easy for de- 065

velopers to express feedback at the right level of 066

abstraction without having to specify exactly how 067

the condition is applied. The patching system is re- 068

sponsible for applying the patch and integrating the 069

information appropriately e.g., applying it to “The 070

tacos were the bomb” but not to “The authorities 071

found a bomb in the restaurant”. 072

In this work, we present an approach for patch- 073

ing neural models with natural language. Any 074

patching system has to determine when a patch 075

is relevant, and how it should modify model behav- 076

ior. We model these tasks separately (Fig. 1b): a 077

gating head soft-predicts whether the patch should 078

be applied (e.g., “food is described as bomb”), and 079

an interpreter head predicts a new output by com- 080

bining the information in the patch (e.g., “food 081

is good”) with the original input. Both heads are 082

trained on synthetic data in a patch tuning stage 083
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Figure 1: (a) Developers typically fix bugs by writing
brittle regex patches or by finetuning on additional data,
which is prone to simple shortcuts. In contrast, natural
language patches are more expressive than regexes and
prevent shortcuts by abstractly specifying when they
should be applied. (b) Our proposed model uses a gating
head to softly predict whether a patch condition c applies
to the input. That prediction is then used to combine the
original model output with the output of an interpreter
head that uses textual features from both the input as
well as the patch consequent q.

between training and deployment, such that new084

patches can be combined into a library of patches085

(or maybe various user-specific libraries), and ap-086

plied at test-time without further training. In addi-087

tion to the expressivity provided by abstractions,088

language-based patching is lightweight, iterative089

and easily reversible. Much like software, devel-090

opers can write / edit / remove patches iteratively091

until errors on unit tests or validation data are fixed,092

without constantly retraining the model.093

We present controlled experiments that indicate094

these patches work even for abstract conditions,095

where regex patches would be infeasible or very096

difficult – that is, they are applied correctly when097

the patch condition is met, and do nothing other-098

wise. Perhaps surprisingly, this is true even for099

test-time patches that are very different than the100

ones used in the patch finetuning stage. Next, we101

show that despite the synthetic nature of the patch102

tuning phase, a small set of very simple patches can 103

fix bugs (and thus improve performance) on real 104

benchmarks for two different tasks—1 to 6 simple 105

language patches improve performance by ~1-4 ac- 106

curacy points on two slices from the Yelp reviews 107

dataset, while 7 patches improve performance by 108

~7 F1 points on a relation extraction task derived 109

from NYT. Finally, we compare language patch- 110

ing, a computationally lightweight procedure, with 111

finetuning, a computationally and human-labor in- 112

tensive procedure, and find that as many as 100 113

labeled examples are needed to match performance 114

gains from a small set of 1 to 7 patches. Further, 115

finetuning sometimes fixes bugs at the expense of 116

introducing new bugs, while patches maintain prior 117

performance on inputs where they do not apply. 118

2 Related Work 119

Learning with Language. Natural language in- 120

structions or explanations have been used for train- 121

ing fewshot image classifiers (Mu et al., 2020; An- 122

dreas et al., 2018), text classifiers (Zaidan and Eis- 123

ner, 2008; Srivastava et al., 2018; Camburu et al., 124

2018; Hancock et al., 2018; Murty et al., 2020), and 125

in the context of RL (Branavan et al., 2012; Goyal 126

et al., 2019; Co-Reyes et al., 2019; Mu et al., 2022). 127

All of these works are concerned with reducing 128

labeled data requirements with language supervi- 129

sion, while our setting involves using language as 130

a corrective tool to fix bugs at test time. 131

Prompt Engineering. An emerging technique 132

for re-purposing language models for arbitrary 133

downstream tasks involves engineering “prompts”. 134

Prompts are high level natural language descrip- 135

tions of tasks that allow developers to express any 136

task as language modeling (Brown et al., 2020; Gao 137

et al., 2021; Zhong et al., 2021). While we could try 138

and use prompting to incorporate language patches, 139

our experiments show that prompting by itself fails 140

to utilize patches (Section 5). Using patches for 141

corrective purposes requires learning an accurate 142

interpretation model, as well as ignoring the patch 143

when it is not applicable. We solve these challenges 144

by learning a gating head and an interpretation head 145

through carefully constructed synthetic data. 146

Editing Factual Knowledge. Test time editing 147

of factual knowledge in models is considered by 148

Talmor et al. (2020); Cao et al. (2021); Mitchell 149

et al. (2021); Meng et al. (2022). Instead of mod- 150

ifying factual knowledge, we show that free-form 151
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language patches can be used to fix bugs on real152

data, such as correctly interpreting the meaning of153

the word “bomb” in the context of food or predict-154

ing that divorced people are no longer married.155

3 Natural Language Patching156

Setup. We are given a model f , mapping an in-157

put text x to a probability distribution over its out-158

put space, f(x) = Pr(y | x). The model con-159

tains bugs—defined as behaviors inconsistent with160

users’ preferences or the “ground truth”, which161

we want to fix with a library of patches P =162

{lp1, lp2, . . . , lpt}. In this work, we require users163

to explicitly indicate the condition under which164

each patch applies and the consequence of applying165

it, such that each patch is in the form “If (condi-166

tion) c, then (consequence) q”. We use this format167

to make modeling easier, noting that it still allows168

for very flexible patching through high level ab-169

stractions (e.g., “if the customer complains about170

the ambiance”, “if food is not mentioned”, etc),171

and that most patches have an implicit applicability172

function, and thus can be converted to this format.173

Applying Patches. As indicated in Fig. 1(b), our174

model consists of two separate heads. The gating175

head g computes the probability that the condition176

specified by lp = (c, q) is true for a given input x177

as g(x, c). The interpreter head I computes a new178

distribution over the label space, that conditions on179

x and the consequence q. This is then combined180

with the original model output f(x) using the above181

gating probability. A single patch lp = (c, q), can182

be applied to any input x as183

Fix(f , x, lp) = g(x, c) · I(x, q) (1)184

+ [1− g(x, c)] · f(x).185

Given a library of patches P = {lp1, . . . , lpt},186

we find the most relevant patch the given input, and187

use that to update the model,188

lp∗ = argmax
lpi∈P

g(x, ci) (2)189

Fix(f , x, P ) = Fix(f , x, lp∗) (3)190

Patch Types. We consider two categories of191

patches (examples in Table 1). Override patches192

are of the form “If cond, then label is l” i.e., they193

override the model’s prediction on an input if the194

patch condition is true. For these patches, we do not195

use the interpreter head since I(x, “label is l”) = l.196

Feature-based patches are of the form “If cond,197

then feature”, i.e., they provide the model with a 198

contextual feature “hint” in natural language, e.g., 199

in Fig. 3 the feature is “food is good”. For these 200

patches, the model needs to integrate the hints with 201

the original data, and thus both the gating and in- 202

terpreter heads are used. 203

4 Training Patchable Models 204

Assuming f has a text encoder and a classifica- 205

tion head, we have two finetuning stages. In the 206

Task Finetuning stage, we train f on a labeled 207

dataset {xi, yi} (standard supervised learning). In 208

the Patch Finetuning stage, we use the learnt en- 209

coder and learn g (initialized randomly) and I (ini- 210

tialized with the classification head). 211

For the patch finetuning stage, we write a small 212

set of patch templates covering the kinds of patches 213

users might want to write for their own application 214

(see Table 1 for the patch templates used for our 215

sentiment analysis results). Based on these tem- 216

plates, we instantiate a small number of patches 217

along with synthetic labeled examples. This gives 218

us a dataset {xi, yi, lpi}, where lpi consists of a 219

condition ci as well as a consequence qi. 220

The interpreter head I is trained to model Pr(yi | 221

xi, qi) through standard log-likelihood maximiza- 222

tion. The gating head g is trained via noise con- 223

trastive estimation to maximize 224

log g(xi, ci)−
∑

cj∈NEG(xi)

log g(xi, cj), (4) 225

where NEG(xi) is a randomly sampled set of 226

negative conditions for xi. 227

Entropy Increasing Transformations. Patch 228

Finetuning will fail if the synthetic data can be 229

fit by a model that ignores the input or the patch 230

(Fig. 2a). Thus, to ensure our model cannot fit the 231

synthetic data without combining patch features 232

with inputs, we perturb the inputs with Entropy 233

Increasing Transformations (EITs). We identify 234

words from the input template for which the patch 235

supplies additional information e.g., aspect adjec- 236

tives, relationship between entities, and transform 237

these into a small set of nonce words. Crucially, the 238

meanings of these nonce words vary from example 239

to example, and can only be inferred from the patch 240

(Fig. 2a bottom; more examples in Appendix A.2). 241

Intuitively, the transformations inject an additional 242

source of randomness which can only be recovered 243

via the patch features. Such transformations are 244
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Template Examples

Patches

Override: If aspect is good, then
label is positive

e0: If service is good, then label is positive
e1: If food is good, then label is positive

Override: If aspect is bad, then label
is negative

e2: If service is bad, then label is negative
e3: If ambience is bad then label is negative

Override: If review contains words
like word, then label is positive

e4: If review contains words like zubin, then label is positive
e5: If review contains words like excellent, then label is positive

Override: If review contains words
like word, then label is negative

e6: If review contains words like wug, then label is negative
e7: If review contains words like really bad, then label is negative

Feature Based: If aspect is described
as word, then aspect is good / bad

e8: If food is described as above average, then food is good
e9: If food is described as wug, then food is bad
e10: If food is described as zubin, then service is good
e11: If service is described as not great, then service is bad

Inputs

The aspect at the restaurant was
adj

The service at the restaurant was really good. e0, e3
The food at the restaurant was wug. e6, e9

The restaurant had adj aspect The restaurant had really bad service. e7, e2, e11
The restaurant had zubin ambience. e4, e10

The aspect1 was adj1, the aspect2
was adj2

The food was good, the ambience was bad. e1, e3, e1
The service was good, the food was not good. e0, e1

The aspect1 was adj1 but the
aspect2 was really adj2

The food was good, but the service was really bad. e7, e1, e0
The ambience was bad, but the food was really not wug. e3, e9

The aspect1 was really adj1 even
though aspect2 was adj2

The food was really bad even though the ambience was excellent. e5, e7, e8
The food was really zubin, even though the service was bad e4, e10, e0

Table 1: Patch and Input templates used for the Patch Finetuning stage for the sentiment analysis task. We divide
our patches into 2 categories: Override and Feature Based (see Section 3 for more details). For each input, we
provide examples of patches that apply and patches that don’t apply. The simplistic nature of these templates
makes them easy to write without access to additional data sources or lexicons.

(a) (b)

Figure 2: A model can learn from just the labels that
“yummy” and “greasy” are positive and negative words
respectively, and thus learn to perfectly fit training data
without ever using patch features (a, top). This behavior
can be explicitly prevented via EITs (a, bottom). A
model may also fit the data without using the input
features by always predicting 1 / 0 for “food is good”
/ “food is bad” (a, top/bottom). Thus, we additionally
ensure that the label cannot be inferred from the patch
alone (b).

also used in Rajendran et al. (2020) in the context 245

of meta-learning. EITs alone do not fix the failure 246

mode where the model can fit the data without us- 247

ing input features at all. For example, in Fig. 2a 248

bottom, the model might learn a shortcut so that it 249

always predicts 1/0 for “food is good” / “food is 250

bad”, regardless of the input. Thus, in addition to 251

EITs, to ensure that the model uses input features, 252

we ensure that a given patch consequence q and the 253

target label are independent (Fig. 2b). 254

5 Experimental Setup 255

Applications. We apply our method to binary 256

sentiment analysis and relation extraction. For sen- 257

timent analysis, our task finetuning data comes 258

from SST2 (Socher et al., 2013). For relation ex- 259

traction, we use the Spouse dataset (Hancock et al., 260

2018) for task finetuning, where the objective is to 261

determine whether two entities are married or not 262

given a textual context about them. 263

Model. We use T5-large (Raffel et al., 2019) 264

as implemented in the transformers library (Wolf 265

et al., 2020) for all experiments. Both the gating 266

and interpreter heads are separate decoders learnt 267

on top of a shared encoder and each of these com- 268
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ponents are initialized with the corresponding T5269

pre-trained weights. To prevent catastrophic forget-270

ting on the original task during patch finetuning,271

we also multi-task learn the patch finetuning loss272

along with the original task loss. Templates for gen-273

erating patches for patch finetuning are in Table 1274

for sentiment analysis and in Table 9 ( Section A.2)275

for relation extraction. We train separate models276

for override and feature-based patches (the former277

does not need an interpreter head). When using a278

patch, its content (either c for the gating head or q279

for the interpreter head) is inserted in the beginning280

of the input with a separator as in Fig. 1(b).281

Baselines. We report performance of the orig-282

inal model with only task finetuning (ORIG) as283

well as the model obtained after patch finetuning284

(ORIG+PF) without using any patches, to isolate285

the gains of language patches from those induced286

by training on additional synthetic data. We also287

report results obtained from prompting ORIG with288

our patches (PROMPT), i.e., inserting the patch text289

before the input text in the hopes that T5 will follow290

instructions appropriately. When we have multiple291

patches, we prompt the model with each individual292

patch and ensemble results with majority voting.293

Finally, we experiment with regex-based patches294

(REGEX) where the patch condition is turned into295

a regex rule and the consequent is converted into a296

function Ruleq(x). For override patches, we sim-297

ply output the label in the consequent. For sen-298

timent analysis, where all feature based patches299

supply contextual meanings of words, Ruleq(x) re-300

places the word in the input with its corresponding301

meaning e.g., replacing “bomb” with “good” in302

“the food was bomb”. For feature based patches303

on relation extraction, Ruleq(x) appends the patch304

consequent to the input text.305

6 Controlled Experiments306

We test the behavior of natural language patches307

(and baselines) under different controlled condi-308

tions with CheckList (Ribeiro et al., 2020). Patches309

and example inputs are presented in Fig. 3. We test310

cases where where patches apply and are relevant311

for predictions, and corresponding cases where312

they either do not apply or are not relevant. Thus,313

models that rely on shortcuts such as copying the314

label word from the patch or merely performing315

token matching perform poorly on the CheckList.316

For sentiment analysis, we test Override patches317

with abstract conditions (e.g., “If food is described318

Figure 3: (a) We construct datasets based on CheckLists
to study how well our approach can leverage abstrac-
tions in language patches. (b) To control for spurious
behaviors such as copying label words from the patch,
performing simple string lookups or affecting predic-
tions when patch features are unimportant, we also con-
struct corresponding invariance tests.

as weird, then label is negative” ) on various con- 319

crete instantiations such as “The pizza at the restau- 320

rant was weird”. We also construct invariance tests 321

(O-Inv), expecting that adding such patches should 322

not change predictions on inputs where the condi- 323

tion is false (e.g., “The waiter was weird”, “The 324

tacos were not weird”). We also construct tests 325

for feature-based patches (Feat) where patches pro- 326

vide meaning for nonce adjectives, with analogous 327

invariance tests (Feat-Inv). Finally, we construct 328

analogous tests for relation extraction, with addi- 329

tional patches that fill in reasoning gaps in the 330

model such as “If Entity1 gave Entity2 a ring, then 331

Entity1 and Entity2 are engaged”. 332

We present the results in Table 2, where we first 333

note that ORIG+PF does not perform well overall, 334

and thus patching improvements are not merely 335

a result of the additional synthetic data. REGEX 336

cannot handle abstract conditions, and thus (as ex- 337

pected) does not change predictions on sentiment 338

analysis, and do not do well on relation extraction. 339

While merely inserting the patch into the input 340

(PROMPT) results in some gains when the patch 341

applies, it does so at the cost of changing predic- 342

tions when the patch does not apply (O-Inv and 343

Feat-Inv). In contrast to baselines, our method is 344

able to apply abstract patches correctly on concrete 345

instantiations, disregarding them when they do not 346
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Model
Sentiment Analysis Relation Extraction

Override O-Inv Feat Feat-Inv Feat Feat-Inv

ORIG 50.0 n/a 59.1 n/a 14.5 n/a

ORIG+PF 50.0 n/a 59.9 n/a 35.8 n/a

REGEX 50.0 100.0 59.9 100.0 45.8 88.1

PROMPT 68.7 63.8 64.3 85.4 13.9 87.6

PATCHED 100.0 100.0 100.0 100.0 47.2 92.6

Table 2: Applying patches on CheckLists. We see sig-
nificant improvements when the patches apply and in-
variances when they do not apply or are unimportant.
For Sentiment Analysis, the datasets are designed to
evaluate patching with abstract conditions, thus we see
no effects from using regex based patches. For testing
invariance, we report the percentage of inputs for which
the prediction did not change w.r.t the base model.

apply, without relying on shortcuts such as copying347

the label from the consequent or merely checking348

for matching words between patch and input (all of349

which are tested by the invariance tests).350

7 Patching models on real benchmarks351

7.1 Sentiment Analysis352

Unless noted otherwise, all datasets in this subsec-353

tion are derived from Yelp Review (Zhang et al.,354

2015). To fix errors on low-accuracy slices, we355

write patches by inspecting a random subset of356

10-20 errors made by ORIG+PF.357

Controlling the model. In order to check if358

patches can control model behavior with abstract359

conditions “in the wild”, we manually annotate a360

random subset of 500 reviews with food and service361

specific sentiment (“The food was good, service362

not so much” is labeled as service: 0, food: 1).363

We then construct override patches of the form “if364

food / service is good / bad, then label is positive365

/ negative”, and evaluate models as to how often366

(on average) the prediction is as expected when367

the patch applies and how often it is unchanged368

when the patch does not apply. We present results369

in Table 3. The sentiment of both aspects typically370

agrees, and thus even models without patching of-371

ten behave according to the patch. We note that372

natural language patches improve patched behav-373

ior the most (when compared to baselines), while374

almost never changing predictions when the patch375

does not apply. We present results only on the sub-376

set where both aspects disagree in Appendix B,377

where the difference in performance is more pro-378

nounced.379

Model Correctly patched (applies) Invariance (does not apply)

ORIG 91.5 n/a

ORIG+PF 90.7 n/a

REGEX 91.0 99.5

PROMPT 92.3 98.4

PATCHED 95.0 98.9

Table 3: To measure how well patches control behavior
“in the wild”, we evaluate the model’s ability to match
the label specified by the patch when it applies, and
invariance w.r.t the base model when the patch does not
apply, on a subset of yelp with sentiment annotations
for different aspects

Patching low-accuracy slices. We identify slices 380

where our base model has (comparatively) low ac- 381

curacy, and check whether patches can improve 382

performance. Yelp-stars consists of all examples in 383

Yelp Review with the word ‘star’ present. For this 384

subset, we use a single override patch: “If review 385

gives 0, 1, 2 stars, then label is negative”. Yelp- 386

Colloquial is a label-balanced slice consisting of 387

examples having the colloquial terms {dope, wtf, 388

omg, the shit, bomb, suck}. Because the collo- 389

quial use of these terms depends on context, we fur- 390

ther construct Yelp-Colloquial-Control, a Check- 391

List where the same terms are used in their tradi- 392

tional sense (e.g., “The manager was a dope”, “The 393

bomb was found by the police at the restaurant”). A 394

model can do well on both of these datasets simulta- 395

neously only if it understands the contextual nuance 396

associated with colloquial terms, rather than rely- 397

ing on simple shortcuts such as equating “bomb” 398

with “good”. For these datasets, we write simple 399

feature-based patches such as “If food is described 400

as bomb, then food is good” for each term. Fi- 401

nally, we use the “Women’s E-commerce Clothing 402

Reviews” dataset (WCR) from Zhong et al. (2021) 403

and add two override patches: “If review mentions 404

phrases like needs to be returned, then label is neg- 405

ative”, and “If fit is boxy, then label is negative”. 406

From results in Table 4, we observe that a very 407

small number of language patches improve per- 408

formance by 0.5-4.3 accuracy points, always out- 409

performing both the original model and baselines. 410

These gains are not a result of the added synthetic 411

data, as ORIG+PF often lowers performance. Qual- 412

itatively, PROMPT tends to rely on shortcuts such as 413

copying over the label in the patch rather than gat- 414

ing and integrating the information, while REGEX 415

cannot deal with simple semantic understanding, 416

e.g., the rule on Yelp-stars fires for “Will deduct 1 417
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Model Yelp-Stars Yelp-Colloquial Yelp-Colloquial-Control WCR

ORIG 93.1 89.1 100.0 89.6

ORIG+PF 93.6 88.6 100.0 88.9

REGEX 92.7 91.9 88.1 89.9

PROMPT 90.8 85.2 70.1 88.3

PATCHED 94.5 93.4 100.0 90.1

Table 4: Using Override and Feature Based patches
to fix bugs on various benchmarks derived from real
sentiment analysis datasets. For Yelp-Colloquial, we
also generate an control test based on CheckList.

star for the service but otherwise everything was418

excellent”, leading to an incorrect patch applica-419

tion. Natural language patches avoid both of these420

pitfalls by explicitly modeling gating and using a421

language model that can accurately interpreting,422

while also using a language model.423

7.2 Spouse Relation Extraction424

We construct Spouse-FewRel, an out-of-425

distribution test benchmark derived from426

FewRel (Gao et al., 2019) by sampling from all427

relation types where at least one of the entities is428

a person (n = 8400), and labeling examples as429

positive if they have the Spouse relation, negative430

otherwise. We inspect 20 randomly sampled431

errors made by ORIG+PF on Spouse-FewRel, and432

observe that the model often confuses “Entity1 has433

a child with Entity2” with ”Entity1 is the child434

of Entity2”, and also misclassifies widowhood as435

negative. Thus, we write override patches for both436

of these error categories, resulting in 7 patches,437

presented in Table 5. Using all patches, we observe438

a ~7.4 point F1 improvement over ORIG, while439

baselines barely improve or decrease F1.440

We highlight in Table 5 a phenomenon where441

each natural language patch in isolation decreases442

performance, while all patches together increase443

performance. Further analysis reveals that this is444

because the gating head is not well calibrated in this445

case, and thus individual patches are applied incor-446

rectly. However, the comparative values of g(x, ci)447

are often ordered correctly, and thus a better patch448

is the one applied (lp∗ in Eq 2) when all patches449

are available. We do further analysis in Table 6,450

where we report the gating accuracy (i.e., whether451

the patch actually applies or not, labeled manually)452

of lp∗ on the subset of inputs where the PATCHED453

model changes the prediction (Diff), and where it454

changes the prediction to the correct label (Diff455

∩ Correct). With the caveat that patches are ap-456

plied softly (and thus perfect gating accuracy is not457

Model F1

ORIG 65.5
ORIG+PF 61.4
REGEX 61.0
PROMPT 65.7
PATCHED 72.9

U
si

ng
si

ng
le

pa
tc

h

If p2 is the son of p1, then label is negative 57.5
If p1 is the son of p2, then label is negative 58.9
If p1 and p2 have a daughter, then label is positive 61.9
If p1 and p2 have a son, then label is positive 66.8
If p1 is the widow of p2, then label is positive 63.6
If p1 is the daughter of p2, then label is negative 50.7
If p2 is the daughter of p1, then label is negative 49.4

Table 5: Using Override Patches on Spouse-FewRel for
Spouse relation extraction.

Patch Condition Diff Diff ∩ Correct

p2 is the son of p1 0.0 NaN (0/0)

p1 is the son of p2 75.0 75.0

p1 and p2 have a daughter 63.3 93.8

p1 and p2 have a son 78.1 98.3

p1 is the widow of p2 10.9 19.6

p1 is the daughter of p2 71.4 100.0

p2 is the daughter of p1 6.3 100.0

Overall 42.9 72.3

Table 6: Measuring how often the chosen patch correctly
applies to an input (i.e., gating accuracy) for Spouse-
FewRel, for the set of inputs where the patched model
and original model differ (Diff) as well as the subset
where the patched model is additionally correct (Diff
∩ Correct).

strictly necessary), we observe that a few patches 458

seem to hurt performance even in combination with 459

others (e.g., the first one). We also note that the 460

patched model is right “for the right reasons” in 461

over 72% of inputs where it changes the prediction 462

to the correct one. 463

8 Analysis 464

8.1 How Important are EITs? 465

The goal of Entropy Increasing Transformations 466

(EITs; Section 4) is to prevent the interpreter head 467

from learning shortcuts that either ignore patch fea- 468

tures or rely exclusively on them. We perform an 469

ablation, comparing our model to a model trained 470

without EITs on the CheckLists in Table 2 (Sec- 471

tion 6), where the feature-based patch consequent 472

supplies important information for making a cor- 473

rect prediction. From Table 7, we note that the 474

interpreter head trained without EITs has much 475

lower performance on these datasets (as expected). 476

7



0 20 40 60 80 100 120
training points

20

30

40

50

60

70

80
F1

Spouse

finetuned
Patched

0 10 20 30 40 50 60
training points

90

92

94

96

ac
cu

ra
cy

Yelp-Colloquial

Finetuned
Patched

0 10 20 30 40 50 60
training points

40

50

60

70

80

90

100

ac
cu

ra
cy

Yelp-Colloquial-Control

Finetuned
Patched

0 20 40 60 80 100 120
training points

86

88

90

92

94

ac
cu

ra
cy

Yelp-Stars

Finetuned
Patched

Figure 4: How many additional finetuning training examples it takes to reach the same accuracy level as patching.
We report the mean and standard deviations across 5 runs.

Patch Consequent Patched Patched (Without EITs)

p1 went on a honeymoon with p2 59.1 33.7
p1 has kids with p2 75.2 74.4
p1 is engaged to p2 77.7 64.8
food is good 67.8 54.2
food is bad 88.7 56.5
service is good 62.8 52.9
service is bad 62.8 52.9

Overall 70.6 55.6

Table 7: Patching Accuracy of a model with and without
Entropy Increasing Transformations (EITs).

8.2 Comparison to fine-tuning477

While patching is computationally lightweight, it478

requires domain knowledge or error analysis of in-479

correctly labeled examples. However, once such480

analysis is performed, one can label these addi-481

tional examples and finetune the model on them.482

We ignore the computational and infrastructure483

costs of repeated finetuning, and focus here on the484

annotation effort involved.485

We compare language patches with finetuning on486

Yelp-stars, Yelp-Colloquial, and Spouse-FewRel487

(Section 7). We split each dataset into a train-488

ing set with 128 examples, and a test set with re-489

maining examples. Next, we finetune ORIG, on490

k = {2, 4, 8, 16, 32, 64, 128} examples from the491

training set, stopping early if finetuning perfor-492

mance exceeds patched performance. We finetune493

for 64 steps and optimize using AdamW with a494

fixed learning rate of 1e-4. We report means and495

standard deviations obtained from finetuning with496

5 random seeds.497

Results are presented in Fig. 4, where we note498

that over 100 labeled examples are needed to match499

the performance of a single patch on Yelp-Stars or500

7 patches on Spouse-FewRel. On Yelp-Colloquial,501

the patched performance is matched with a mere502

16 examples. However, as noted earlier, Yelp-503

Colloquial is susceptible to simple shortcuts, and504

we observe that the performance on the control set505

Yelp-Colloquial-Control suffers significantly as we 506

finetune on more data (with very high variance). 507

Thus, we conclude that language patches on these 508

datasets are not only very efficient in terms of an- 509

notation effort (when compared to labeling data 510

for finetuning), but also less susceptible to simple 511

shortcuts that do not address the problem at the 512

right level of abstraction. 513

9 Conclusion 514

When faced with the task of fixing bugs in trained 515

models, developers often resort to brittle regex 516

rules or finetuning, which requires curation and 517

labeling of data, is computationally intensive, and 518

susceptible to shortcuts. This work proposes nat- 519

ural language patches which are declarative state- 520

ments of the form “if c, then q” that enable de- 521

velopers to control the model or supply additional 522

information with conditions at the right level of 523

abstraction. We proposed an approach to patching 524

that models the task of determining if a patch ap- 525

plies (gating) separately from the task of integrating 526

the information (interpreting), and showed that this 527

approach results in significant improvements on 528

two tasks, even with very few patches. Moreover, 529

we show that patches are efficient (1-7 patches re- 530

quire as many as 100 finetuning examples), and 531

more robust to potential shortcuts. Our system is 532

a first step in letting users correct models through 533

a single step “dialogue”. Avenues for future work 534

include extending our approach to a back-and-forth 535

dialogue between developers and models, model- 536

ing pragmatics, interpreting several patches at once, 537

and automating the patch finetuning phase. 538
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Model Correctly patched (applies) Invariance (does not apply)

ORIG 52.1 n/a
PROMPT 55.7 97.6
ORIG+PF 52.4 n/a
REGEX 55.1 100.0
PATCHED 79.9 100.0

Table 8: We evaluate the model’s ability to match the
label specified by the patch when it applies, and invari-
ance w.r.t the base model when the patch does not apply,
on a subset of yelp with sentiment annotations for differ-
ent aspects. In this table, we specifically consider inputs
where both food and service aspects differ in sentiment.

A More details on Patch Finetuning684

A.1 Sentiment Analysis Data685

The templates used for constructing inputs are in686

Table 12. We programmatically find all patches for687

an input, to generate labels.688

A.2 Relation Extraction Data689

Override Patches. Patches and Input templates690

for constructing patch finetuning data can be found691

in Table 13.692

Feature Based Patches For training the gating693

head, we use the same data as generated by Ta-694

ble 13. For training the interpreter head, we use695

patches and input templates in Table 11 to generate696

finetuning data.697

A.3 Additional Finetuning Details698

After the model is finetuned in the Task finetun-699

ing stage, we finetune it additionally with a learn-700

ing rate of learning rate of 1e-4 and with a linear701

warmup scheduler which ramps up the learning702

rate from 0 to 1e-4 over 100 steps. The training703

batch size is 32, and we clip gradients to have a704

max norm of 5. We early stop based on valida-705

tion performance on a held out subset of the patch706

finetuning data.707

B Controlling models with language708

patches on Yelp (Addendum)709

We additionally report results on the subset of our710

aspect annotated examples where both aspects dis-711

agree in Table 8. Overall, we see a more pro-712

nounced difference i.e., our model gets ~27 point713

boost in accuracy when the patch condition applies,714

while maintaining invariance when the condition715

does not apply.716

Override Patches

If [ Entity1/ Entity2] is not a person, then label is negative
If Entity1 is the [child / parent] of Entity2, then label is negative
If Entity1 and Entity2 have children, then label is positive
If Entity1 and Entity2 are divorced, then label is negative
If Entity1 is engaged to Entity2, then label is positive
If Entity1 and Entity2 are siblings, then label is negative

Feature Based Patches

If cond, then Entity1 is [married/not married] to Entity2
If cond, then Entity1 is divorced from Entity2
If cond, then Entity1 is engaged to Entity2
If cond, then Entity1 is the sibling of Entity2
If cond, then Entity1 is dating Entity2
If cond, then Entity1 is the parent of Entity2

Table 9: Patch templates used for the Patch Finetuning
stage for relation extraction. Each Entity is sampled
from a small list of names, and cond is a set of condi-
tions derived from keywords.

C Patches used for Yelp-Colloquial. 717

We used the following patches for fixing bugs on 718

Yelp-Colloquial: 719

• “If clothes are described as dope, then clothes 720

are good.” 721

• “If food is described as the shit, then food is 722

good.” 723

• “If service is described as bomb, then service 724

is good.” 725

• “If restaurant is described as bomb, then 726

restaurant is good.” 727

• “If food is described as bomb, then food is 728

good.” 729

• “If something is described as wtf, then some- 730

thing is bad.” 731

• “If something is described as omg, then some- 732

thing is good.” 733

• “If food is described as shitty, then food is 734

bad.” 735

D More examples of Entropy Increasing 736

Transformations 737

To perform Entropy Increasing Transformations 738

(EITs) for relation extraction, we convert rel (see 739

Table 11 into nonce words e.g., “Alice has a kid 740

with John” gets transformed into “Alice has a wug 741

with John”, for which we use a patch “If Entity1 742

has a wug with Entity2, then Entity1 and Entity2 743

have kids 744

11



Dataset #examples

Yelp-Stars 3172
Yelp-Colloquial 1784
WCR 2919
Yelp-Colloquial (Control) 67
Yelp-Aspect 439
Spouse-NYT 8400

Table 10: Dataset statistics for all the real data slices
considered in this work.

E Regex Based Patches.745

The exact functions we use for patching with746

regexes can be found in Listing 1 and Listing 2.747

F Data Statistics for all evaluation slices748

Statistics for all slices used for evaluation can be749

found in Table 10.750

G Limitations751

Scaling to large patch libraries. For our ap-752

proach, inference time scales linearly with the size753

of the patch library. This is primarily because the754

gating head makes predictions on each patch in our755

patch library (Eq 2). Instead of running the gating756

head on each patch, one can trade off exactness for757

efficiency, by running the gating head on a much758

smaller candidate set identified using fast approx-759

imate nearest neighbors (Johnson et al., 2019) on760

sentence embeddings.761

Scaling to more patch types. The current ap-762

proach requires writing patch templates beforehand763

based on prior knowledge of the kinds of corrective764

feedback that developers might want to write in765

the future. Writing patch templates manually is766

fundamentally bottlenecked by human creativity767

and foresight. Morever, since humans are required768

to write templates, it makes scaling up to different769

patch types harder, since we expect generalization770

to completely new patch types to be poor e.g., gen-771

eralizing to a patch that requires counting. Future772

work can explore automatic generation of synthetic773

patch templates e.g., using pre-trained language774

models.775

Interpreting multiple patches. Finally, the ap-776

proach we develop can only incorporate a single777

patch at a time, by selecting the most relevant patch778

from our patch library. This precludes the model779

from being able to combine features from multiple780

patches — e.g., “caviar is a kind of food” and “If781

caviar is described as overpowering, then caviar 782

is spoiled”. 783
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[ Entity1] [ rel] [ Entity2]
[ Entity1] [ rel] [ Entity2] and [ Entity1] is (not) married to [ Entity2]
[ Entity1] who [ rel] [ Entity2], [ rel2] [ Entity3]

rel = [have-kids, are-engaged, is-sibling, is-parent]
Entity = [Alice, Bob, Stephen, Mary]

Table 11: Templates used for constructing inputs for patch finetuning stage in relation extraction analysis. Terms
marked with ’()’ are optional. rel is a list of 4 relation types. For each relation type, we have a small list of 3 to 4
words. For instance have-kids = [‘has a kid with’, ‘has a son with’, ‘has a daughter with’]

The [ aspect] at the restaurant was ( modifier) (not) [ adj]
The [ aspect] was ( modifier) (not) [ adj]
The restaurant [has/had] ( modifier) [ adj] [ aspect]
The [ aspect1] was (not) [ adj1], the [ aspect2] was (not) [ adj2]
The [ aspect1] was (not) [ adj1], but the [ aspect2] was (not) [ adj2]
The [ aspect1] was really (not) [ adj1], even though the [ aspect2] was (not) [ adj2]

aspect = [food, service, ambience]
modifier = [really, surprising, quite]

Table 12: Templates used for constructing inputs for patch finetuning stage in sentiment analysis. Terms marked
with ’()’ are optional. adj comes from a small set of 6 positive and 6 negative adjectives, as well as 6 nonce
adjectives for EITs

Examples

Patches

e0: Entity1 divorced Entity2

e1: Entity1 has kids with Entity2

e2: Entity1 is the parent of Entity2

e3: Entity1 and Entity2 are engaged

e4: Entity1 and Entity2 are just friends or coworkers

e5: Entity1 or Entity2 is not human

Inputs

Entity1 and Entity2 have a kid named Person3. e1, e2
Entity1 and Entity2 have a kid named Person3. e2, e1

Entity1 proposed to Entity2. The event was witnessed by Entity1’s best friend Person3. e3, e4
Entity1 proposed to Entity2. The event was witnessed by Entity1’s best friend Person3. e4, e0

Entity1 has decided to divorce Entity2. They have a child named Person3. e0, e3
Entity1 has decided to divorce Entity2. They have a child named Person3. e2, e0

Entity1 works at location. e5, e0

Table 13: Patches along with a subset of inputs used for the Patch Finetuning stage for the Spouse relation extraction
task. For each input, we highlight the two entities and provide examples of some positive and negative patches.
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1 def star_rbpatch(model, inp):
2 keywords = [' 0 star', ' 1 star', ' 2 star',
3 ' zero star', ' one star', ' two star']
4 patches = [(keyword, 0) for keyword in keywords]
5 return sentiment_override_rbpatch(model, inp, patches)
6

7

8 def clothing_reviews_rbpatch(model, inp):
9 return sentiment_override_rbpatch(model, inp, [('boxy', 0), ('needs to be returned', 0)])

10

11

12 def spousenyt(model, inp):
13 patch_list = [('Entity1 is the son of Entity2', 0),
14 ('Entity2 is the son of Entity1', 0),
15 ('Entity1 and Entity2 have a son', 1),
16 ('Entity1 and Entity2 have a daughter', 1),
17 ('Entity1 is the daughter of Entity2', 0),
18 ('Entity2 is the daughter of Entity1', 0),
19 ('Entity1 is the widow of Entity2', 1)]
20 return re_override_rbpatch(model, inp, patch_list)
21

22

23

24 # for all override patches
25 def sentiment_override_rbpatch(model, inp, patch_list):
26 '''
27 inp: "X" a review for which we want to predict sentiment
28 patch_list: list of override patches converted into a form (cond, label) where cond is
29 a string condition and label is the associated binary label
30 '''
31 for cond, label in patch_list:
32 if cond in inp:
33 return label
34 return model(inp)
35

36

37 # for override patches for relation extraction
38 def re_override_rbpatch(model, inp, patch_list):
39 '''
40 inp: "X. Entity1: e1. Entity2: e2"
41 patch_list: list of override patches converted into a form (cond, label) where cond is
42 a string condition and label is the associated binary label
43 '''
44 text, ent_info = inp.split(' Entity1:')
45 e1, e2 = ent_info.split('. Entity2:')
46 e1 = e1.strip()
47 e2 = e2.strip()
48 for cond, label in patch_list:
49 p = patch.replace('Entity1', e1).replace('Entity2', e2)
50 p2 = patch.replace('Entity1', '').replace('Entity2', '')
51 if p in inp:
52 return pred
53 elif p2 in inp:
54 return pred
55 return model(x)

Listing 1: Rule based override patching for all our experiments
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1 # Regex based patching for using feature based patches on
2 # controlled experiments for sentiment analysis
3 def sentiment_regex_based(model, inp, patch_list):
4 '''
5 inp: "X. Entity1: e1. Entity2: e2"
6 patch_list: list of feature patches of the form 'if aspect is word, then aspect is good/ bad'
7 as a tuple (aspect, word, sentiment)
8 '''
9

10 for aspect, word, sentiment in patch_list:
11 if '{} is {}'.format(aspect, word) in inp:
12 inp = inp.replace(word, sentiment)
13 break
14 return model(inp)
15

16

17

18

19 # Regex based patching for controlled experiments on relation extraction
20 def re_regex_based(model, inp, patch_list):
21 '''
22 inp: "X. Entity1: e1. Entity2: e2"
23 patch_list: list of feature patches converted into a form (cond, cons) where cond
24 and cons are both strings
25 '''
26 text, ent_info = inp.split(' Entity1:')
27 e1, e2 = ent_info.split('. Entity2:')
28 e1 = e1.strip()
29 e2 = e2.strip()
30 for cond, cons in patch:
31 p = cond.replace('Entity1', e1).replace('Entity2', e2)
32 if p in inp:
33 cons_curr = cons.replace('Entity1', e1).replace('Entity2', e2)
34 inp = '{}. {} Entity1: {}. Entity2: {}'.format(cons_curr, text, e1, e2)
35 break
36 return model(inp)
37

38 # Regex based patching on yelp colloquial
39 def yelp_col_regex_based(model, inp, patch_list):
40 if 'wtf' in inp:
41 inp = inp.replace('wtf', 'bad')
42 elif 'omg' in inp:
43 inp = inp.replace('omg', 'good')
44 elif 'the shit' in inp:
45 inp = inp.replace('the shit', 'good')
46 elif 'bomb' in inp and 'food' in inp:
47 inp = inp.replace('bomb', 'good')
48 elif 'bomb' in inp and 'service' in inp:
49 inp = inp.replace('bomb', 'good')
50 elif 'bomb' in inp and 'restaurant' in inp:
51 inp = inp.replace('bomb', 'good')
52 elif 'dope' in inp and 'clothes' in inp:
53 inp = inp.replace('dope', 'good')
54 elif 'sucks' in inp:
55 inp = inp.replace('sucks', 'bad')
56 return model(inp)

Listing 2: Regex based patching for using feature based patches for all experiments.
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