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Abstract

To increase the ubiquity of machine learning it needs to be automated. Automation1

is cost-effective as it allows experts to spend less time tuning the approach, which2

leads to shorter development times. However, while this automation produces3

highly accurate architectures, they can be uninterpretable, acting as ‘black-boxes’4

which produce low conventional errors but fail to model the underlying input-output5

relationships—the ground truth. This paper explores the use of the Fit to Median6

Error measure in machine learning regression automation, using evolutionary7

computation in order to improve the approximation of the ground truth. When used8

alongside conventional error measures it improves interpretability by regularising9

learnt input-output relationships to the conditional median. It is compared to10

traditional regularisers to illustrate that the use of the Fit to Median Error produces11

regression neural networks which model more consistent input-output relationships.12

The problem considered is ship power prediction using a fuel-saving air lubrication13

system, which is highly stochastic in nature. The networks optimised for their14

Fit to Median Error are shown to approximate the ground truth more consistently,15

without sacrificing conventional Minkowski-r error values.16

1 Development of Interpretable Machine Learning17

Machine learning regression models are increasingly being used in industrial and engineering con-18

texts for high-stakes decision making, automation and control. These methods often produce low19

conventional error values, yet are known to produce physically inconsistent results which cannot20

generalise off test set and so cannot be relied upon to model the ground truth of the system. The21

models are designed to be accurate, not interpretable, and so a human cannot understand how changes22

in the inputs change the prediction. In real-world applications, where the output can have a direct23

effect on human life or the environment, model accuracy alone is not sufficient.24

Trust is increased if a trained model approximates the true input-output relationships, performing25

accurately within the bounds of the training data set and beyond it. It has been demonstrated that for26

many applications minimising traditional error measures cannot guarantee an accurate approximation27

of the ground truth (Willard et al. 2020). This is due to a poor inductive bias, the inherent prioritisation28

of one solution over another (Battaglia et al. 2018), produced by conventional error measures which29

are based on Minkowski-r metrics (Hanson & Burr 1987).30

This trust can be increased by manually tuning to remove overfitting or to provide a solution that31

makes more sense to the user. However, the expert knowledge and domain experience required to32

properly tune a machine learning method manually are not always available in industry. Genetic33

algorithms are therefore increasingly used to search a method’s hyperparameter space more efficiently34
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(Yang et al. 2021) (Kumar et al. 2021); which minimise conventional error measures on a test set,35

often combined with lowering the complexity of the network. This automation exacerbates the36

lack of interpretability, as models have a large flexibility, and prediction accuracy is prioritised,37

a low conventional error is achieved without certainty that the method has modelled the correct38

internal functions. Regularisation hyperparameters can be optimised alongside other neural network39

parameters (Tani et al. 2021) (Luketina et al. 2016), which increases the search space and creates40

more flexibility for methods to produce ‘accurate’ predictions and avoid overfitting.41

Common regression regularisation methods are l1 and l2 regularisation and dropout. For l1 and l242

regularisation, large network weights are penalised in the loss function (Nowlan & Hinton 1992). The43

absolute value of the weights is penalised in l1 regularisation and the squared value in l2, meaning44

l1 encourages weights towards zero and l2 encourages weights to be small but non-zero. The l1, l245

and elastic net (l1+l2) regularisers improve a networks generality, increasing the applications where46

the trained methods can be applied, by penalising complexity. Dropout, where a randomly selected47

subset of weights are optimised at each epoch rather than the full set, improve the generality of the48

trained models by preventing co-adaption of weight values (Srivastava et al. 2014). Dropout has been49

shown to be equivalent to l2 regularisation after scaling by Fisher information (Wager et al. 2013),50

suggesting that the two should not be used in unison. The neural network regularisation methods51

discussed above aim to improve generality, reducing overfitting by simplifying the relationships52

modelled by the networks.53

Regularisers improve the modelling of the ground truth in scenarios adhering to the assumptions in the54

proof in Bishop (1995), under which minimum Minkowski-r error values approximate the conditional55

average of the dataset. This is because the inductive bias from the loss function guides the input-56

output relationships towards the conditional average, while the regularisation stops overfitting by57

simplfying the input-output relationships being modelled. However, these assumptions are restrictive58

and it is noted that few regression applications adhere to them. For example, one assumption is that59

the dataset is homoscedastic. In scenarios not adhering to these assumptions, network regularisation60

simplifies the relationships being modelled but this does not necessarily improve the generality, or61

model the ground truth.62

The Fit to Median Error measure (Parkes et al. 2021) produces more interpretable regression, when63

used in conjunction with conventional error measures. This is achieved by regularising the learnt64

input-output relationships to the conditional median of the training dataset: the median output value,65

conditioned on each isolated input variable in turn (Bishop 1995). For many regression applications66

the conditional medians are a good approximation of the ground truth input-output relationships but67

as yet it has not been explored as part of an automated approach.68

A challenging regression problem is ship power prediction for a vessel using air lubrication to reduce69

fuel consumption. It is chosen to be used in this study as it violates the assumptions in Bishop (1995),70

where the noise in the output space is non-Gaussian and heteroscedastic. In this situation, correctly71

modelling the ground truth and accurate prediction is required but there is limited understanding72

of that ground truth (Parkes et al. 2018). The literature shows that shaft powering of a vessel can73

be predicted with average accuracies of between 1.5-5% error with the use of a regression neural74

network trained with high frequency data from the vessel (Pedersen & Larsen 2009), (Petersen et al.75

2012), (Le et al. 2020), (Jeon et al. 2018), (Liang et al. 2019). All neural network applications to76

ship power prediction in the literature use a combination of local searches and domain knowledge to77

identify hyperparameter values. The addition of an air lubrication device increases the complexity of78

the regression problem, as the system interacts with a number of interrelated input variables.79

This paper explores the automation of neural network training to a new problem, with a focus80

on producing a network which accurately models the ground truth. It compares the ground truth81

representation of a neural network when a genetic algorithm optimises the network’s hyperparameters82

to reduce the Mean Fit to Median Error measure and compares it to standard regularization using l1,83

l2 and dropout, and to a network optimised to minimise the Maximum Absolute Error. It is illustrated84

that neural network regularisation methods (l1, l2 and dropout) can be replaced by the use of the85

Mean Fit to Median performance measure as an objective in the genetic algorithm, reducing the86

complexity of the search space and producing networks which more consistently model the ground87

truth.88
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2 Neural Networks Parameters89

Previous applications of neural networks to ship power prediction use between 1 and 3 hidden layers90

(Leifsson et al. 2008) (Parkes et al. 2019), and between 5 and 300 neurons in each hidden layer (Jeon91

et al. 2018). To provide a sufficiently large search space to allow verification, or otherwise, of these92

parameters a maximum of 4 hidden layers and 1000 neurons in each layer are used. The majority93

of the literature treats the problem as time-invariant and use feed-forward networks, so no recurrent94

parameters are optimised. As the optimiser or activation functions are rarely documented in the95

literature, the state-of-the-art optimisers and activation functions available in the Keras framework96

(Chollet et al. 2015) are used in the optimisation, Table 1.97

Table 1: Selected Neural Network Hyperparameters
Hyperparameter Value or set
Layers [1,4]
Neurons in each layer [1,1000]
Epochs Increasing from 1-20 for increasing generations
Early stopping patience 5
Loss function Mean Absolute Error
Performance measures Mean Absolute Relative Error, Maximum Absolute Relative Error,

Mean Fit to Median Error
Optimiser SGD, Adam (Kingma & Ba 2014), Nadam (Dozat 2016),

RMSprop (Hinton et al. 2012), Adagrad (Duchi et al. 2011),
Adadelta (Zeiler 2012), Adamax (Kingma & Ba 2014)

Activation function ReLU, sigmoid, softmax, softplus, softsign, tanh, selu, elu
l1 & l2 Rates 0, 0.01,0.001,0.0001,0.00001
Dropout [0,0.9)
Initialiser Random Normal (µ = 0, σ = 0.1)

The number of epochs and early stopping procedure are not optimised, as there was a need for98

predictable compute requirements and allowing the optimisation of these parameters leads to unpre-99

dictable run times. The number of epochs to train each network increases for increasing generation100

number in the genetic algorithm, from 1 epoch in the first 15 generations to 20 in the final 15. This101

was also implemented to reduce compute and it was validated that when more than 20 epochs were102

allowed, that the early stopping, with a patience of 5, stopped the training within 20 epochs for the103

majority of networks. The loss function is similarly not optimised, the Mean Absolute Error is used,104

as the conditional medians are closer to the ground truth input-output relationships in these datasets105

than the conditional means.106

The performance measures, or the genetic algorithm’s fitness functions, are the Mean Absolute107

Relative Error, the Maximum Absolute Relative Error and the Mean Fit to Median Error. Different108

combinations of these, alongside the use of regularisation parameters in the search space are compared109

to illustrate the effect of different types of regularisation.110

3 cMLSGA Parameters111

Table 2: Selected cMLSGA Hyperparameters
Hyperparameter Value or set
Algorithm at Individual Level HEIA, IBEA
Crossover Type & Rate SBX & DE, 1
Mutation Type & Rate Polynomial, 0.08
Number of eliminated collectives 1
Generations between elimination 10
Population size 1000
Generations 300
Proportion elite 10%
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In this study cMLSGA1 is selected as it shows the top performance on a range of evolutionary112

benchmarking problems (Grudniewski & Sobey 2021) and practical problems (Grudniewski & Sobey113

2019). Genetic algorithms are increasing used to tune neural network hyperparameters including114

regularisation parameters for use on new problems (Jin et al. 2004). Many approaches have multiple115

genetic algorithm objectives, although these all minimise an error measure and a measure of network116

complexity (Wang et al. 2019) and (Smith & Jin 2014). The use of multiple different performance117

measures as objectives is yet to be explored in the literature.118

Table 3: Genetic Algorithm Approaches
Approach Objective(s) Network Regularisation

GAi Mean Absolute Error l1, l2 and dropout
GAii Mean Absolute Error l1, l2 and dropout

Maximum Absolute Error
GAiii Mean Fit to Median Error None

Mean Absolute Error
GAiv Mean Absolute Error None

Maximum Absolute Error

Four approaches are investigated in this study, summarised in Table 3, for approach (GAi) and119

(GAii) the genetic algorithm cMLSGA optimises all variables in Table 2, including the l1 and l2120

regularisation rate and the dropout rate of the networks. Although it is advised that l2 regularisation121

and dropout are not used in the same network the genetic algorithms are provided with zero options122

for all regularisation parameters, to identify if one is preferable in this scenario.123

Approach (GAi) is a single objective genetic algorithm optimising the Mean Absolute Error which is124

compared to a multi-objective formulation where the (GAii) approach optimises both Mean Absolute125

Error and Maximum Absolute Error. For approaches (GAiii) and (GAiv) no network regularisation126

parameters are optimised: l1, l2 and dropout rates are all set permanently to zero. They avoid127

producing networks that have overfitted by the use of two performance metrics as multi-objectives,128

(GAiii) uses the Mean Fit to Median and Mean Absolute Errors to be minimised and (GAiv) uses the129

Maximum Absolute and Mean Absolute. All approaches use 40 CPUs with 2.0 GHz Intel Skylake130

processors and 192 GB of DDR4 memory, and take less than 3 days, this setup may not be feasible131

for widespread industrial application, although it is suggested it is within reach of some industries.132

4 Data133

The data used in this study are from a large vessel equipped with the Silverstream® Air Lubrication134

System. The air lubrication system works through use of fluid sheering to create an air microbubble135

carpet directly captured within the boundary layer on the ship hull bottom. The bubble carpet reduces136

the frictional resistance thereby increasing the speed and reducing the shaft power. Compressors137

provide a constant supply of air to the hull bottom to maintain a uniform bubble carpet operated at138

the optimal compressor power that maximises the energy balance. The study is performed on both139

system on and system off datasets, however for brevity only results for system off are presented as140

they show similar performance.This prediction is required for a baseline determination of how the141

system is working, but the relationships between the power, weather, ocean and operating conditions142

are complex and difficult to model.143

The variables considered in this study are the shaft power, speed through water, relative wind speed144

and direction, draught and trim, with shaft power the target variable. These are selected based on145

a detailed study into variable selection for shaft power prediction (Parkes et al. 2019). The speed146

through water is selected over the speed over ground, for use as an input variable, as it is more147

hydrodymanically relevant and its accuracy is validated by comparison to the speed over ground.148

The dataset is cleaned by removing rows with missing or non-physical values and all datapoints149

below 0.05 normalised shaft power are removed. The dataset is split into two using the air lubrication150

system status: system on and system off, where system on is defined as air lubrication system power151

greater than zero. The system on dataset contains 352,690 datapoints and system off contains 237,962.152

The data is split into training, testing and validation sets of 70%, 15% and 15% respectively. Each153

1The code for cMLSGA is available at https://www.bitbucket.org/*******.
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Figure 1: The distribution of the observed shaft powers for half knot bins of speed through the water
for dataset where the system is off. In the box and whisker plots the boxes contain 50% of the
distribution and the whiskers extend to the datum which is at 1.5 times the interquartile range.

network in the genetic algorithm trains on a randomly sampled 35,000 datapoints from the training154

set and uses randomly sampled sets of size 7,500 from validation and testing sets for validation during155

training, and testing to produce the fitness of the network for the genetic algorithm. The errors stated156

in the paper are from networks on the Pareto fronts of each approach, which are validated on the full157

testing set.158

The datasets contain large regions of sparse data in all input variable domains, this is exemplified159

by the ship speed domain where each half-knot interval below 16 knots contains less than 0.8% of160

the data, which accounts for more than half the speed domain, Figure 1. In addition, the boxplot161

ranges and outliers show high heteroscedicity with idiosyncratic noise caused by situations where the162

angle of the propeller blades is varied to achieve the required speed. This highlights the complexity163

in developing models of the powering of this vessel, as the dataset also contains the effects from other164

latent variables, such as piloting behaviour and route taken.165

5 Optimisation including regularisation parameters: (GAi) and (GAii)166

Previous studies predicting ship powering using neural networks report that l1, l2 and elastic net167

increase both test set and off-test set errors and that optimal values for both l1 and l2 are zero.168

Therefore the genetic algorithm setup is biased towards low and zero values of regularisation rates by169

using a set of exponentially decreasing values and an explicit zero option.170

The single objective (GAi) fails to identify that zero regularisation rates produce the lowest errors,171

favouring networks with the highest possible rate of l2 (0.01), Figure 2b. (GAi) produces networks172

with the highest Mean Absolute Relative Errors of all the approaches, (5.19± 0.00)% from Figure173

4a. In contrast, (GAii) favours lower l1 and l2 rates of 0 or 0.00001, Figures 2c and 2d, which results174

in networks with the lowest Mean Absolute Relative Errors of all four approaches, on average, with a175

value of (2.87±0.45)%, shown in Figure 4a. This is around 0.5% higher than the lowest documented176

error for ship power prediction.177

It is posited that the high error for the single objective problem is directly related to the use of a178

large l2 regularisation rate, as noted in previous studies for ship power prediction. It is possible179

that the use of a multi-objective search algorithm for a single-objective problem means that the180

optimal hyperparameters can’t be found, resulting in large errors. The implementation also requires181

restrictions in the number of epochs used for training in the initial generations, it is possible this182

biases (GAi) towards certain size networks, where higher l2 rates are preferable. This hypothesis is183
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(a) (GAi) (b) (GAi) (c) (GAii) (d) (GAii)

Figure 2: Distribution of regularisation rates for networks in the last 15 generations of (GAi) cMLSGA
with multi-objectives of minimising Maximum and Mean Absolute Error for (a) l1 and (b) l2 and
(GAii) cMLSGA with the single objective of minimising Mean Absolute Error for (c) l1 and (d) l2

(a) (b)

Figure 3: (a) Dropout rate for networks in the last 15 generations of cMLSGA with (GAi) the single
objective of minimising Mean Absolute Error and (GAii) multi-objectives of minimising Maximum
and Mean Absolute Error and (b) the number of neurons in each layer for networks in the last 15
generations of cMLSGA with (GAi), (GAii),(GAiii) and (GAiv).

supported by the fact that 74.4% of networks in the first 15 generations of (GAi) have 1 hidden layer,184

and that over 99.8% of the networks in the final 15 generations have 1 hidden layer, with 880± 17185

neurons in this layer, Figure 3b. This is significantly more neurons than those in the hidden layer of186

networks in the final 15 generations of (GAii) which range from 3-952 with a median value of 709,187

Figure 3b. The added objective of minimising Maximum Absolute Error in (GAii) may cause these188

slightly smaller networks to be more attractive as they are in a sense regularised by their size, as they189

have reduced modelling flexibility therefore are less likely to overfit and produce high Maximum190

Absolute Errors.191

Another explanation for the difference in l2 rates chosen by (GAi) and (GAii) is the equivalence192

of l2 and dropout. Since l2 and dropout are equivalent up to a Fisher transformation, their use in193

conjunction is not recommended. The evidence for this is that (GAi) favours the highest l2 rate and194

has a median dropout rate in the final 15 generations of 0.116, whereas (GAii) favours the zero l2 rate195

and has a median dropout rate of 0.624, Figure 3a. This illustrates that the genetic algorithms will196

chose either l2 or dropout to minimise the Mean Absolute Relative Error. The l1 rates also support197

this hypothesis, as chosen rates for l1 regularisation in the final 15 generations are more comparable198

for (GAi) and (GAii).199
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6 Optimisation using multiple performance measures: (GAiii) and (GAiv)200

For approaches (GAiii) and (GAiv) all neural network regularisation parameters are set to zero.201

The regularisation is performed by minimising different network performance measures, the Mean202

Absolute and Mean Fit to Median for (GAiii), and the Mean Absolute and Maximum Absolute for203

(GAiv). The trade-off between the two objectives produces regularised neural networks, without204

explicitly changing the architecture or loss function. The Mean Fit to Median is chosen as it indicates205

how close the relationships modelled by a network are to the conditional averages of the dataset, in206

many regression examples this is akin to the ground truth input-output relationships (Parkes et al.207

2021). The Maximum Absolute is chosen as for many industrial applications of machine learning the208

maximum prediction error is more pertinent than the mean error. The Mean Absolute Error is used209

instead of the Mean Squared Error in both approaches, as the conditional medians are closer to the210

ground truth input-output relationships in these datasets than the conditional means.211

Differently shaped networks are favoured by (GAiii) and (GAiv), compared to (GAi) and (GAii),212

focusing on networks with 3 hidden layers and on average less than 400 neurons in each layer, Figure213

3b. These networks have 51 times the number of connections than the networks chosen in (GAi) and214

(GAii). Apart from (GAi), (GAiii) has the most consistently sized networks in the final 15 generations,215

with an interquartile range of 46 neurons, compared to (GAiv) which have an interquartile range of216

131 neurons. It is suggested that as the Mean Fit to Median Error biases networks towards specific217

input-output relationships, there is a smaller range of potential network architectures which habitually218

model these relationships. Whereas networks which minimise the Maximum Absolute Error are less219

restricted and can model a wider range of input and output relationships.220

(a) (b)

Figure 4: Mean Relative Absolute Error (a) and Maximum Absolute Error (b) from cMLSGA
with (GAi) the single objective of minimising Mean Absolute Error and (GAii) multi-objectives
of minimising Maximum and Mean Absolute Error, both optimising the parameters for l1, l2
regularisation and dropout in the networks, and (GAiii) and (GAiv) which do not use network
regularisation but minimise Mean Fit to Median and Maximum Absolute Error respectively, alongside
Mean Absolute Error

The Mean Absolute Relative Errors from networks in the Pareto fronts are (2.97±0.25)% for (GAiii)221

and (3.10 ± 0.28)% for (GAiv). It is expected that (GAiv) would produce higher Mean Absolute222

Relative Errors as discussed above, minimising the Maximum Absolute Error should bias predictions223

towards the midpoint of the conditional output distributions, whereas minimising the Mean Absolute224

Error should bias predictions towards the median of these distributions. As it is established that noise225

in the output distribution is non-Gaussian, Figure 1, these values will not align so some sacrifice226

in Mean Absolute Error is expected from (GAiv). Both (GAiii) and (GAiv) produce comparable227

Maximum Absolute Errors, of (49.5± 1.1)% and (51.9± 4.5)%. It is suggested that this is because,228

although the conditional median output value and conditional midpoint output value do not align229

for the majority of the input domain, they are sufficiently close to produce comparable Maximum230

Absolute Errors.231
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Across all four approaches, the genetic algorithm producing networks with the highest Mean Absolute232

Error is the approach which does not provide extra weighting to sparse areas of data. The approaches233

minimising Maximum Absolute Error are implicitly biased away from networks which predict the234

majority of the testing datapoints correctly, but predict one datapoint poorly, favouring networks235

which predict all testing datapoints to a moderate degree of error. Approach (GAiii) more explicitly236

weights prediction in sparse areas of data by favouring networks which model the conditional median237

of the dataset across all input domains, irrespective of the quantity of data across each input domain.238

The regression problem of ship power prediction is chosen in part because of it’s irregular data239

distribution; more than 9% of the dataset lies in less than a 0.5 knot interval of ship speed, Figure 1.240

This provides an explanation for the high testing errors from (GAi), where only the Mean Absolute241

Error is minimised, there is little incentive for the genetic algorithm to produce networks which242

generalise across the full range of the input domain well.243

7 Comparison of the interpretability244

To asses the interpretability of the networks selected by the four different approaches the learnt245

relationship between an input, the ship speed, and the output, shaft power, for the networks in246

the Pareto front of each approach are visualised, Figure 5. These are extracted with the following247

procedure: set all but one input variable to be constant at the mode; cycle the remaining variable from248

its minimum to its maximum recorded values with 150 points evenly spaced along the domain and249

run the new dataset through the trained network.250

(a) (GAi) (b) (GAii)

(c) (GAiii) (d) (GAiv)

Figure 5: The learnt speed-power curves from 5 networks on the Pareto fronts of (GAii), (GAiii),
(GAiv) and the 5 networks producing lowest Mean Absolute Relative Error from (GAi).

The approach which produces the most consistent speed-power relationships is (GAi), with an average251

variation of 1.8%2, Figure 5a. However, the relationship modelled by the 5 networks with the lowest252

Mean Absolute Relative Error in (GAi) all approximate a piece-wise linear relationship which clearly253

underfits the dataset in Figure 1. The expected trend between ship speed through the water and shaft254

2Average variation in just the speed-power curves are discussed in this section, but it is verified that all
input-power curves follow the same trends with variation around 0.5% across input variables.
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power is a cubic polynomial, therefore as well as producing the highest Mean Absolute Relative255

Errors, networks chosen by (GAi) model the ground truth input-output relationships the worst out of256

the four approaches. Both (GAii) and (GAiv) produce 5 fairly consistent speed-power curves, with257

average variations of 5.9% and 10% respectively, Figures 5b and 5d. Both approaches approximate258

smooth polynomial curves, although the degrees of the polynomials might differ, as multiple curves259

intersect at various points along the speed axis. The spread of learnt relationships is greater at the260

highest and lowest speeds for (GAii), with a decrease in spread for speeds of around 15 knots, where261

many of the curves intersect. The curves from (GAiv) show equal spread across the speed domain.262

The approach with both accurate and consistent learnt speed-power curves is (GAiii), with limited263

intersections of curves and an average spread of 3.0%. It is suggested that the reason using the264

Mean Fit to Median Error as an objective in a multi-objective genetic algorithm produces more265

interpretable results, or more consistent learnt relationships, is because instead of encouraging the266

networks to model more simple relationships. It encourages the networks to model the conditional267

median functions of the dataset, supported by the increase in network connections. Whereas the other268

approaches leave room for networks to fail to model the conditional averages, especially in irregularly269

distributed and non-normally distributed datasets. The Mean Absolute Error values from networks270

selected by (GAiii) are on average 0.1% higher than those from (GAii), and the Maximum Absolute271

Error values are 1.6% higher.272

A limitation of the approach is that the Fit to Median Error measure will likely perform best at273

improving interpretability on datasets which violate the assumptions in Bishop (1995); the ship274

powering example is chosen to illustrate this as it provides a clearly heteroscedastic dataset. For275

applications where noise profiles are Gaussian, and there is no effect from latent or interrelated input276

variables, the Fit to Median Error will not improve interpretability, but will perform the same as277

conventional Minkowski-r metrics, either Mean Squared or Mean Absolute Error depending on the278

convexity of input-output relationships.279

Interestingly, the approach producing the lowest Mean Absolute and Maximum Absolute Errors280

does not model the ground truth the most accurately. This creates a potential for negative societal281

impacts, as the standard performance metrics for regression neural networks do not provide a full282

picture of performance or expected behaviour. Interpretability of trained methods is essential for283

safe application of machine learning in the real world, especially when automated methods are284

used to replace experienced professionals. (GAii) demonstrates the same accuracy of approach as285

those with standard network regularisation, but with a better fit to the ground truth. This approach286

bypasses the need to use, and therefore to optimise the parameters of the regularisation methods.287

If evolutionary computation is already being used to optimise network parameters, then compute288

is saved by removing the network regularisation parameters l1, l2 and dropout. (GAiii) completed289

300 generations in 46hours whereas (GAii) required 12 hours more computation to complete 300290

generations.291

8 Conclusion292

Interpretable and accurate methods are required for widespread application of machine learning293

to real-world regression problems. To automate the training of neural networks so that the result294

is interpretable, three different genetic algorithm approaches are compared: one to minimise the295

Maximum Absolute Error of the networks, which includes standard regularization using l1, l2 and296

dropout; and two which do not use any network regularisation, one minimising the Mean Fit to297

Median and one to minimise the Maximum Absolute Error. The results show that all three approaches298

give similar Mean Absolute Errors from networks on their Pareto fronts, from 2.9% for the approach299

with regularisation to 3.1% for the approach minimising Maximum Absolute Error. However, the300

Mean Fit to the Median approach shows a considerably better interpretability, or fit to the ground301

truth, with a spread in predicted input-output curves of 3% compared to a spread of 6% for the302

approach using regularisation and 10% when minimising the Maximum Absolute Error.303
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[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing380

the appropriate section of your paper or providing a brief inline description. For example:381

• Did you include the license to the code and datasets? [Yes] See Section ??.382

• Did you include the license to the code and datasets? [No] The code and the data are383

proprietary.384

• Did you include the license to the code and datasets? [N/A]385

Please do not modify the questions and only use the provided macros for your answers. Note that the386

Checklist section does not count towards the page limit. In your paper, please delete this instructions387

block and only keep the Checklist section heading above along with the questions/answers below.388

1. For all authors...389

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s390

contributions and scope? [Yes] The scope of the paper (regression problem automation)391

is made clear in the abstract. The claims of improved interpretability using the Fit to392

Median Error measure are reflected in Figure 5, as well as the body of text.393

(b) Did you describe the limitations of your work? [Yes] The limitations of the Fit to394

Median are discussed in Section 7, and the limitations relating to compute are discussed395

in Section 3.396
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Section 6398

(d) Have you read the ethics review guidelines and ensured that your paper conforms to399

them? [Yes]400

2. If you are including theoretical results...401

(a) Did you state the full set of assumptions of all theoretical results? [No] Citation of402

(Bishop 1995) is included instead of explicit statement of all assumptions, although the403

most pertinent assumptions are discussed in Section 1404

(b) Did you include complete proofs of all theoretical results? [N/A] No theorems are405

posited, the paper explores a practical comparison of common methods.406
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(a) Did you include the code, data, and instructions needed to reproduce the main ex-408

perimental results (either in the supplemental material or as a URL)? [Yes] Instruc-409

tions needed to replicate the results on a different dataset are provided in the main410

text; Sections 3 and 2 specify the expermental setup. The code is based on the411

cMLSGA algorithm, available at https://www.bitbucket.org/******* (redacted412

for anonymity) which is provided in Section 3. The data is proprietary so is not pro-413

vided.414

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they415
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deviation, and all figures show multiple runs with respect to either a random seed or an419

evolutionary method.420

(d) Did you include the total amount of compute and the type of resources used (e.g., type421
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(a) If your work uses existing assets, did you cite the creators? [Yes] The creators of the424

genetic algorithim cMLSGA are cited in Section 3 and the data is acknowledged to425

belong to Silverstream Technologies Ltd in Section 4426

(b) Did you mention the license of the assets? [Yes] The code is licensed under the GNU427

General Public License. The data is not licensed.428

(c) Did you include any new assets either in the supplemental material or as a URL? [No]429

(d) Did you discuss whether and how consent was obtained from people whose data430

you’re using/curating? [No] The work is performed in collaboration with Silverstream431

Techonologies Ltd.432

(e) Did you discuss whether the data you are using/curating contains personally identifiable433

information or offensive content? [No] The shaft power variable is normalised to434

remove any possibility of identifying the vessel in question.435

5. If you used crowdsourcing or conducted research with human subjects...436
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(b) Did you describe any potential participant risks, with links to Institutional Review439

Board (IRB) approvals, if applicable? [N/A]440
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