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ABSTRACT

Diffusion models have achieved promising results for Structure-Based Drug Design
(SBDD). Nevertheless, high-quality protein subpocket and ligand data are rela-
tively scarce, which hinders the models’ generation capabilities. Recently, Direct
Preference Optimization (DPO) has emerged as a pivotal tool for aligning genera-
tive models with human preferences. In this paper, we propose DECOMPDPO, a
structure-based optimization method aligns diffusion models with pharmaceutical
needs using multi-granularity preference pairs. DECOMPDPO introduces decompo-
sition into the optimization objectives and obtains preference pairs at the molecule
or decomposed substructure level based on each objective’s decomposability. Ad-
ditionally, DECOMPDPO introduces a physics-informed energy term to ensure
reasonable molecular conformations in the optimization results. Notably, DECOM-
PDPO can be effectively used for two main purposes: (1) fine-tuning pretrained
diffusion models for molecule generation across various protein families, and (2)
molecular optimization given a specific protein subpocket after generation. Exten-
sive experiments on the CrossDocked2020 benchmark show that DECOMPDPO
significantly improves model performance, achieving up to 95.2% Med. High
Affinity and a 36.2% success rate for molecule generation, and 100% Med. High
Affinity and a 52.1% success rate for molecular optimization.

1 INTRODUCTION

Structure-based drug design (SBDD) (Anderson, 2003) is a strategic approach in medicinal chemistry
and pharmaceutical research that utilizes 3D structures of biomolecules to guide the design and
optimization of new therapeutic agents. The goal of SBDD is to design molecules that bind to specific
protein targets. Recent studies viewed this problem as a conditional generative task in a data-driven
way, and introduced powerful generative models equipped with geometric deep learning (Powers
et al., 2023). For example, Peng et al. (2022); Zhang & Liu (2023) proposed to generate the atoms
or fragments sequentially by a SE(3)-equivariant auto-regressive model, while Luo et al. (2021);
Peng et al. (2022); Guan et al. (2023a) introduced diffusion models (Ho et al., 2020) to model the
distribution of types and positions of ligand atoms. However, the scarcity of high-quality protein-
ligand complex data has emerged as a significant bottleneck for the development of generative models
in SBDD (Vamathevan et al., 2019). The success of deep learning typically relies on large-scale
datasets. In fields like computer vision and natural language processing, the proliferation of the
social media has greatly simplified the collection of text, images, and videos, thereby accelerating
advancements. In contrast, the collection of protein-ligand binding data is challenging and limited
due to the complex and resource-intensive experimental procedures. Notably, the CrossDocked2020
dataset (Francoeur et al., 2020), a widely-used dataset for SBDD, consists of ligands that are
docked into multiple similar binding pockets across the Protein Data Bank using docking software.
This may be regarded as a form of data augmentation; while it expands the dataset’s size, it may
unavoidably introduce some low-quality data. As highlighted by Zhou et al. (2024a), the ligands
in the CrossDocked2020 dataset have moderate binding affinities, which do not meet the stringent
demands of drug design. Moreover, the number of unique ligands remains the same before and after
this data augmentation, limiting generative models from learning diverse and high-quality molecules.

To address the aforementioned challenge, Xie et al. (2021); Fu et al. (2022) provided a straight-
forward method for searching molecules with desired properties in the extensive chemical space.
However, pure searching or optimization methods lack generative capabilities and fall short in the
diversity of the designed molecules. Zhou et al. (2024a) integrated conditional diffusion models with
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iterative optimization by providing molecular substructures as conditions and iteratively replacing the
substructures with better ones. This method achieves better properties while maintaining a certain
level of diversity. Nonetheless, the performance of this method is still limited due to fixed model
parameters during the optimization process.

To break the bottleneck, we propose a method for multi-objective optimization, aligning diffusion
models with practical pharmaceutical requirements of drug discovery using generated data. Inspired
by the decomposition nature of ligand molecules, DECOMPDPO introduces decomposition into
optimization objective to provide more flexibility in preference selection and alignment. Based
on each objective’s decomposability, DECOMPDPO directly aligns model with preferences using
GLOBALDPO with molecule pairs or LOCALDPO with decomposed substructure pairs. Recog-
nizing the importance of maintaining reasonable molecular conformations during optimization,
DECOMPDPO integrates physics-informed energy terms to penalize molecules with poor confor-
mations. Additionally, a linear beta schedule is proposed for improving optimization efficiency.
We apply DECOMPDPO to two scenarios: structure-based molecule generation and structure-based
molecular optimization. Under both settings, DECOMPDPO can significantly outperform baselines,
demonstrating its effectiveness. We highlight our contributions as follows:

• We propose DECOMPDPO, which introduces decomposition into the optimization objectives to
improve optimization effectiveness and flexibility, directly aligning generative diffusion models
with practical pharmaceutical requirements using multi-granularity preferences.

• Our approach is applicable to both structure-based molecular generation and optimization. No-
tably, DECOMPDPO achieves 95.2% Med. High Affinity and a 36.2% success rate for molecule
generation, and 100% Med. High Affinity and a 52.1% success rate for molecular optimization on
CrossDocked2020 dataset.

• To the best of our knowledge, we are the first to introduce preference alignment to structure-based
drug design. Our approach aligns the generative models for SBDD with the practical requirements
of drug discovery.

Recently, an independent concurrent work by Gu et al. (2024) proposed a different framework that also
uses preference alignment methods to fine-tune diffusion models for SBDD. Notably, they regularized
the DPO objective to alleviate overfitting on the winning data. However, they primarily focused on
optimizing affinity-related metrics for molecule generation and did not evaluate optimized molecular
conformations, which is an important aspect in drug design. Compared to Gu et al. (2024), we directly
formulate preference alignment in SBDD as a multi-objective optimization problem, which is more
aligned with pharmaceutical needs, and introduce decomposition into the optimization objectives to
provide more flexibility in multi-objective optimization. In addition, we incorporate physics-informed
energy terms to penalize unreasonable molecular conformations, thereby maintaining desirable
conformations during optimization. Moreover, we demonstrate the effectiveness of DECOMPDPO in
molecular optimization through iterative fine-tuning, achieving superior performance compared to
existing optimization methods.

2 RELATED WORK

Structure-based Drug Design Structure-based drug design (SBDD) aims to design ligand
molecules that can bind to specific protein targets. Recent efforts have been made to enhance
the efficiency of generating molecules with desired properties. Ragoza et al. (2022) employed
variational autoencoder to generate 3D molecules in atomic density grids. Luo et al. (2021); Peng
et al. (2022); Liu et al. (2022) adopted an autoregressive approach to generate 3D molecules atom
by atom, while Zhang et al. (2022) proposed to generate 3D molecules by predicting a series of
molecular fragments in an auto-regressive way. Guan et al. (2023a); Schneuing et al. (2022); Lin
et al. (2022) introduced diffusion models to SBDD, which first generate the types and positions
of atoms and subsequently determine bond types by post-processing. Some recent studies have
sought to further improve efficacy of SBDD methods by incorporating biochemical prior knowledge.
DecompDiff (Guan et al., 2023b) proposed decomposing ligands into substructures and generat-
ing atoms and bonds simultaneously using diffusion models with decomposed priors and validity
guidance. DrugGPS (Zhang & Liu, 2023) considered subpocket-level similarities, augmenting
molecule generation through global interaction between subpocket prototypes and molecular motifs.
IPDiff (Huang et al., 2023) addressed the inconsistency between forward and reverse processes using
a pre-trained protein-ligand interaction prior network. In addition to simply generative modeling of
existing protein-ligand pairs, some researchers leveraged optimization algorithms to design molecules
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Figure 1: Illustration of DECOMPDPO. This process can be summarized as: (a) Sample molecules
and select molecule pairs for each target protein using a pre-trained diffusion model; (b) Construct
physically constrained preference for each optimization objective based on its decomposability; (c)
Compute the DECOMPDPO loss and align the diffusion model with the multi-objective preference.

with desired properties. AutoGrow 4 (Spiegel & Durrant, 2020) and RGA (Fu et al., 2022) optimized
the binding affinity of ligand molecules towards specific targets by elaborate genetic algorithms.
RGA (Fu et al., 2022) viewed the evolutionary process as a Markov decision process and guided it
by reinforcement learning. EvoSBDD (Reidenbach, 2024) performd an evolutionary algorithm in a
pretrained 1D latent space using an AutoDock Vina redocking oracle to optimize generated SMILES.
TacoGFN (Shen et al., 2023) uses a Generative Flow Network to optimize 2D molecular graphs
for SBDD as a reinforcement learning task. PILOT (Cremer et al., 2024) employs an importance
sampling scheme during inference to reweight trajectories during generation and optimize towards
targeted objectives. DecompOpt (Zhou et al., 2024a) proposed a controllable and decomposed
diffusion model that can generate ligand molecules conditioning on both protein subpockets and
reference substructures, and combined it with iterative optimization to improve desired properties by
iteratively generating molecules given substructures observed in previous iterations. Our work also
focuses on designing molecules with desired properties by optimization. Differently, we optimize the
parameters of the model that generate molecules instead of molecules themselves, which has been
demonstrated to be more effective and efficient.

Learning from Human/AI Feedback Maximizing likelihood optimization of generative models
cannot always satisfy users’ preferences. Thus introducing human or AI assessment to improve the
performance of generative models has attracted significant attention. Reinforcement learning from
human/AI feedback (Ziegler et al., 2019; Stiennon et al., 2020; Ouyang et al., 2022; Lee et al., 2023;
Bai et al., 2022) was proposed to align large language models to human preference, consisting of
reward modeling from comparison data annotated by human or AI and then using policy-gradient
methods (Christiano et al., 2017; Schulman et al., 2017) to fine-tune the model to maximize the
reward. Similar techniques have also been introduced to diffusion models for text-to-image generation
(Black et al., 2023; Fan et al., 2024; Zhang et al., 2024), where the generative process is viewed as a
multi-step Markov decision process and policy-gradient methods can be then applied to fine-tuning
the models. Recently, Direct Preference Optimization (DPO) (Rafailov et al., 2024), which aligns
large language models to human preferences by directly optimizing on human comparison data,
has attracted much attention. Wallace et al. (2023) re-formulated DPO and derived Diffusion-DPO
for aligning text-to-image diffusion models. The above works focus on aligning large language
models or text-to-image diffusion models with human preferences. Recently, Zhou et al. (2024b)
proposed to fine-tune diffusion models for antibody design by DPO and choose low Rosetta energy
as preference. In our work, we introduce preference alignment to improve the desired properties of
generated molecules given specific protein pockets and propose specialized methods to improve the
performance of DPO in the scenario of SBDD.
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3 METHOD

In this section, we present our method, DECOMPDPO, which aligns diffusion models with phar-
maceutical needs using physically constrained multi-granularity preferences (Figure 1). We first
define the SBDD task and introduce the decomposed diffusion model for this task in Section 3.1.
Then, we incorporate decomposition into the optimization objectives and propose DECOMPDPO for
multi-objective optimization in Section 3.2. Recognizing the importance of maintaining reasonable
molecular conformations during optimization, we introduce physics-informed energy terms for penal-
izing the reward in Section 3.3. Finally, we introduce a linear beta schedule to improve the efficiency
of optimizing diffusion models (Section 3.4).

3.1 PRELIMINARIES

In the context of SBDD, generative models are conditioned on the protein binding site, represented as
P = {(xP

i ,v
P
i )}i∈{1,··· ,NP}, to generate ligands M = {(xM

i ,vM
i , bMij )}i,j∈{1,··· ,NM} that bind

to this site. Here, NP and NM are the number of atoms in the protein and ligand, respectively. For
both proteins and ligands, x ∈ R3,v ∈ Rh, bij ∈ R5 represents the coordinates of atoms, the types
of atoms, and the bonds between atoms. Here we consider h types of atoms (i.e., H, C, N, O, S, Se)
and 5 types of bonds (i.e., non-bond, single, double, triple, aromatic).

Following the decomposed diffusion model introduced by Guan et al. (2023b), each ligand is
decomposed into fragments K, comprising several arms A connected by at most one scaffold S
(|A| ≥ 1, |S| ≤ 1,K = |K| = |A|+ |S|). Based on the decomposed substructures, informative data-
dependent priors OP = {µ1:K ,Σ1:K ,H} are estimated from atom positions by maximum likelihood
estimation, where µk ∈ R3 represents the prior center, Σk ∈ R3×3 represents the prior covariance
matrix, and H = {ηP ∈ {0, 1}NM×K |

∑K
k=1 η

P
ik = 1} represents the prior-atom mapping. This

data-dependent prior enhances the training efficacy of the diffusion model, where M is gradually
diffused with a fixed schedule {λt}t=1,··· ,T . We denote αt = 1 − λt and ᾱt =

∏t
s=1 αt. The

i-th atom position is shifted to its corresponding prior center: x̃i
t = xi

t − (Hi)⊤µ. The noisy data
distribution at time t derived from the distribution at time t− 1 is computed as follows:

p(x̃t|x̃t−1,P) =

NM∏
i=1

N (x̃i
t; x̃

i
t−1, λt(H

i)⊤Σ), (1)

p(vt|vt−1,P) =

NM∏
i=1

C(vi
t|(1− λt)v

i
t−1 + λt/Ka), (2)

p(bt|bt−1,P) =

NM×NM∏
i=1

C(bi
t|(1− λt)b

i
t−1 + λt/Kb), (3)

where Ka and Kb represent the number of atom types and bond types used for featurization. The
perturbed structure is then fed into the prediction model, then the reconstruction loss at the time t can
be derived from the KL divergence as follows:

L(x) = Et

[
||x0 − x̂0||2

]
, L(v) = Et

[
Ka∑
k=1

c(vt,v0)k log
c(vt,v0)k
c(vt, v̂0)k

]
, L(b) = Et

[
Kb∑
k=1

c(bt,b0)k log
c(bt,b0)k

c(bt, b̂0)k
,

]

where (x0,v0,b0), (xt,vt,bt), (x̂0, v̂0, b̂0), represent true atoms positions, types, and bonds types
at time 0, time t, predicted atoms positions, types, and bonds types at time t ∼ U [0, T ]; c denotes
mixed categorical distribution with weight ᾱt and 1− ᾱt. The overall loss is L = L(x) + γvL

(v) +
γbL

(b), with γv, γb as weights of reconstruction loss of atom and bond type. We provide more details
for the model architecture in Appendix C. To better illustrate decomposition, we show a decomposed
molecule with the arms highlighted in Figure 2.

3.2 DIRECT PREFERENCE OPTIMIZATION IN DECOMPOSED SPACE

Decomposable Optimization Objectives In realistic pharmaceutical scenarios, potential drug
molecules should possess multiple desirable properties, which is rare among all known drug-like
molecules. As illustrated in previous work (Zhou et al., 2024a), directly learning the distribution
from training data is suboptimal, making it inefficient in generating desired molecules. Despite
DecompOpt (Zhou et al., 2024a) fully exploits the power of conditional diffusion models through
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iterative generation, the model’s upper limit remains constrained by the static parameters learned from
offline data. Direct preference optimization offers a simple yet efficient way to align models directly
with pairwise preferences. Inspired by the success of introducing decomposition in the drug space
(Guan et al., 2023b; Zhou et al., 2024a), we introduce the concept of decomposition into optimization
objectives in DECOMPDPO, providing greater flexibility in preference selection and alignment.

Molecule Vina Min=-6.08

Vina Min=-1.38

Vina Min=-1.85

Vina Min=-2.86

Figure 2: Illustration of decomposable objectives. De-
composition of a molecule into two arms (purple and
pink) and a scaffold (yellow), where the sum of the
substructures’ Vina Minimize Scores equals to the
molecule’s (left). The Pearson correlation between
molecule’s and sum of substructure’s Vina Minimize
Scores in the training dataset (right).

We define an optimization objective as de-
composable if the property of a molecule
is proportional to the sum of the proper-
ties of its decomposed substructures. This
means that a substructure with a higher
property will lead the molecule to have
a higher overall property. For example,
Vina Minimize Score is largely based on
pairwise atomic interactions, with each
substructure contributing its own set of
interactions with the protein target and
negligible inter-substructure interactions,
making it decomposable. As shown in
Figure 2, we validated the proportional re-
lationship of Vina Minimize Score in our
training dataset. Unfortunately, not every
optimization objective is decomposable.
Molecular properties such as QED and SA
are non-decomposable, as their calcula-
tions involve non-linear operations. We provide more statistical evidence in Appendix D.

GLOBALDPO To align the model with practical pharmaceutical preferences, following RLHF
(Ouyang et al., 2022), the pre-trained model is fine-tuned by maximizing certain reward functions
with the Kullback–Leibler (KL) divergence regularization:

max
pθ

EP∼D,M∼pθ(M|P)r(M,P)− βDKL [pθ(M | P) ∥ pref(M | P)] , (4)

where β > 0 is a hyperparameter controlling the deviation from the reference model pref. Recently,
Rafailov et al. (2024) proposed Direct Preference Optimization (DPO), deriving the DPO training
loss from the RLHF loss and providing a simpler way to fine-tune the model with pairwise preference
data:

LDPO = −E(P,M+,M−)∼D logσ
(
βlog

pθ(M+ | P)

pref(M+ | P)
− βlog

pθ(M− | P)

pref(M− | P)

)
. (5)

Here, M+ and M− represent the preferred and less preferred molecules, respectively.

As pθ(M0 | P) is intractable for diffusion models, following Diffusion-DPO (Wallace et al., 2023),
we define the reward over the entire diffusion process r(M,P) = Epθ(M1:T |M0,P)[R(M1:T ,P)],
where M1:T denotes the diffusion trajectories from the reverse process pθ. Consequently, the DPO
loss is reframed as:

LDiffusion-DPO = −E(P,M+,M−)∼D logσ
(
βEM+

1:T ,M−
1:T

[
log pθ(M+

1:T |P)

pref(M+
1:T |P)

− log pθ(M−
1:T |P)

pref(M−
1:T |P)

])
. (6)

Following Wallace et al. (2023), we further approximate reverse probability pθ with forward proba-
bility q, and utilize Jensen’s inequality to externalize the expectation:

LDiffusion-DPO = −E(P,M+,M−)∼D,t∼U(0,T ),

M+
t ∼q(M+

t |M+
0 ),

M−
t ∼q(M−

t |M−
0 )

logσ
(
β

[
log

pθ(M+
t−1|M

+
t ,P)

pref(M+
t−1|M

+
t ,P)

− log
pθ(M−

t−1|M
−
t ,P)

pref(M−
t−1|M

−
t ,P)

])
. (7)

The Diffusion-DPO loss is applied to align our model with non-decomposable optimization objectives
using molecule-level preferences. For clarity, we refer to this molecule-level preference alignment as
GLOBALDPO hereafter.
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LOCALDPO According to the decomposition in drug space, the probability of a molecule is
equivalent to the product of the probabilities of its decomposed substructures. As a result, we
reformulate the Diffusion-DPO loss as:

LDIFFUSION-DPO = −E (P,M+,M−)∼D,t∼U(0,T ),

M+
t ∼q(M+

t |M+
0 ),M−

t ∼q(M−
t |M−

0 )

logσ
(
β

K∑
i

[
log

pθ(M(i)+
t−1 |M(i)+

t ,P)

pref(M(i)+
t−1 |M(i)+

t ,P)
− log

pθ(M(i)−
t−1 |M(i)−

t ,P)

pref(M(i)−
t−1 |M(i)−

t ,P)

])
, (8)

where M(i) represents the i-th decomposed substructure, M(i)+
t is decomposed from winning molecule,

and M(i)−
t is decomposed from losing molecule: M+

t =
K⋃
i

M(i)+
t ,M−

t =
K⋃
i

M(i)−
t . Here, the decomposed

substructures of the preferred molecule are always considered the winning side, even though it is not
always the case that they have better properties.

For decomposable optimization objectives, we incorporate decomposition into preference alignment
by directly constructing preference pairs based on the properties of substructures. Using substructure-
level preferences, we derive the training loss for LOCALDPO as follows:

LLOCALDPO = −E (P,M+,M−)∼D,t∼U(0,T ),

M+
t ∼q(M+

t |M+
0 ),M−

t ∼q(M−
t |M−

0 ),

logσ
(
β

K∑
i

sign(r(M(i)+)−r(M(i)−))
[
A(i)

])
,

where A(i) = log
pθ(M(i)+

t−1 | M(i)+
t ,P)

pref(M(i)+
t−1 | M(i)+

t ,P)
− log

pθ(M(i)−
t−1 | M(i)−

t ,P)

pref(M(i)−
t−1 | M(i)−

t ,P)
,

(9)

where r(M(i)) represents the reward of the decomposed substructure M(i),

M+
t =

K⋃
i

M(i)+
t ,M−

t =
K⋃
i

M(i)−
t . Compared to Diffusion-DPO, LOCALDPO behaves differently

when the substructure-level preference is inconsistent with the molecule-level preference, that is
when the sign function yields sign(·) < 0. In such cases, if the model’s preference, denoted as A(i)

in Equation (9), conflict with the substructure-level preference, the loss for LOCALDPO increases
because the function − log σ is monotonically decreasing. Conversely, if the model’s preference
aligns with the substructure-level preference, the loss decreases. As a result, LOCALDPO more
effectively corrects misaligned substructure-level preferences.

In multi-objective optimization, different objectives can interfere with each other, leading to subopti-
mal results. By leveraging decomposed preferences, LOCALDPO offers more flexible and diverse
optimization pathways, indirectly mitigating conflicts inherent in multi-objective optimization and
enhancing overall performance.

DECOMPDPO Based on GLOBALDPO and LOCALDPO introduced above, we construct prefer-
ence pairs for each optimization objective according to its decomposability. By taking a weighted
sum of all the preference alignment losses, we derive the overall loss for DECOMPDPO:

LDECOMPDPO =
∑

i∈QDecomp

wiLLOCALDPO(i) +
∑

j∈QNon-Decomp

wjLGLOBALDPO(j), (10)

where QDecomp and QNon-Decomp represent the decomposable and non-decomposable properties, and
wi, wj are weighting coefficients. This dual-granularity alignment allows for more precise control
over the optimization process and offers greater flexibility in selecting preferences to meet the diverse
requirements of molecular design.

3.3 PHYSICALLY CONSTRAINED OPTIMIZATION

An important aspect of preference alignment in drug design is to maintain reasonable molecular
conformations that obey physical rules. Inspired by Wu et al. (2022), we define physics-informed
energy terms that penalize bonds and angles which deviate significantly from empirical values,
formulated as:

Ebond =
∑
i,j∈B

(
max

(
0,

∣∣∣Lij − µl
vi,vj

∣∣∣− 3σl
vi,vj

))2
, (11)

Eangle =
∑

i,j,k∈A

(
max

(
0,

∣∣∣Aijk − µa
vi,vj ,vk

∣∣∣− 3σa
vi,vj ,vk

))2
, (12)

where B denotes the set of bonds in the molecule, and A denotes the set of angles formed by two
neighboring bonds in B. Here, Lij is the bond length between atoms i and j, and Aijk is the radian
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of the angle formed by atoms i, j, and k; µl
vi,vj and σl

vi,vj are the expectation and standard deviation
of bond lengths between atom types vi and vj , obtained from the training data. Similarly, µa

vi,vj ,vk

and σa
vi,vj ,vk

represent the expectation and standard deviation of bond angles formed by atom types
vi, vj , and vk. The overall energy term is defined as rconstraint = Ebond +Eangle. To prevent the model
from learning unrealistic molecular conformations, we adjust the reward by penalizing it with this
energy term: r∗(M,P) = r(M,P)−λrconstraint(M,P), where λ is a weighting factor that balances
the importance of the physical constraints.

3.4 LINEAR BETA SCHEDULE

Drawing from Equation (4), the parameter β serves as a form of regularization, balancing the
exploration of high-quality molecules with adherence to the pre-learned prior distribution. During the
diffusion sampling process, earlier steps influence the subsequent ones. Moreover, the final few steps
are crucial in determining the atoms’ types and positions, which significantly affect the molecules’
properties and make optimization in the later steps more critical. To improve optimization efficiency,
we propose a linear beta schedule βt =

t
T βT , where βT is the beta parameter at the final time step T

of the reverse process. This schedule ensures a progressive reduction in the impact of regularization,
enhancing alignment with the desired properties as the diffusion process progresses.

4 EXPERIMENTS

Considering the practical demands of the pharmaceutical industry, we implement DECOMPDPO to
address two critical needs: (1) fine-tuning the reference model for molecule generation across various
protein families, and (2) optimizing the reference model specifically for targeted protein subpockets.

4.1 EXPERIMENTAL SETUP

Dataset We followed prior work (Luo et al., 2021; Peng et al., 2022; Guan et al., 2023a;b) in using
the CrossDocked2020 dataset (Francoeur et al., 2020) to pre-train our base model and evaluate the
performance of DECOMPDPO. According to the protocol established by Luo et al. (2021), we filtered
complexes to retain only those with high-quality docking poses (RMSD < 1Å) and diverse protein
sequences (sequence identity < 30%), resulting in a refined dataset comprising 100,000 high-quality
training complexes and 100 novel proteins for evaluation.

To fine-tune with DECOMPDPO, we sample 10 molecules for each protein in the training dataset using
pre-trained base model. The favorability of each molecule was evaluated based on a multi-objective
score defined as rmulti =

∑
xi∈X xi, where X denotes the set of normalized optimization objectives.

For each protein, we select the molecules with the highest and lowest scores to form preference pairs
for the fine-tuning process, resulting in 63,092 valid pairs. For molecular optimization, we sample
500 molecules for each target protein with fine-tuned model in the test dataset and and construct
preference pairs from the top 100 and bottom 100 molecules based on their scores.

Baselines To assess the capability of DECOMPDPO fine-tuned model in generating high-quality
molecules across various protein families, we compare it with several representative generative
models. liGAN (Ragoza et al., 2022) employs a CNN-based variational autoencoder to encode
both ligand and receptor into a latent space, subsequently generating atomic densities for ligands.
Atom-based autoregressive models such as AR (Luo et al., 2021), Pocket2Mol (Peng et al., 2022),
and GraphBP (Liu et al., 2022) update atom embeddings using a graph neural network (GNN).
TargetDiff (Guan et al., 2023a) and DecompDiff (Guan et al., 2023b) utilize GNN-based diffusion
models, the latter innovatively incorporates decomposed priors for predicting atoms’ type, position,
and bonds with validity guidance. IPDiff (Huang et al., 2023) integrates the interactions between
pockets and ligands into both the diffusion forward and sampling processes. In addition, to evaluate
the molecular optimization capabilities of DECOMPDPO, we compared it with two strong optimization
methods. RGA (Fu et al., 2022), which utilizes a reinforced genetic algorithm to simulate evolutionary
processes and optimize a policy network across iterations, and DecompOpt (Zhou et al., 2024a),
which leverages decomposed priors to control and optimize conditions in a diffusion model.

Evaluation Following the methodology outlined by Guan et al. (2023a), we evaluate molecules
from two aspects: target binding affinity and molecular properties, and molecular conformation.
Following the established protocol from previous studies (Luo et al., 2021; Ragoza et al., 2022),
we use AutoDock Vina to assess target binding affinity. Vina Score quantifies the direct binding
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Table 1: Summary of different properties of reference molecules and molecules generated by DE-
COMPDPO and other generative models. (↑) / (↓) denotes a larger / smaller number is better. Top 2
results are highlighted with bold text and underlined text, respectively.

Methods
Vina Score (↓) Vina Min (↓) Vina Dock (↓) High Affinity (↑) QED (↑) SA (↑) Diversity (↑) Success
Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Rate (↑)

Reference -6.36 -6.46 -6.71 -6.49 -7.45 -7.26 - - 0.48 0.47 0.73 0.74 - - 25.0%

LiGAN - - - - -6.33 -6.20 21.1% 11.1% 0.39 0.39 0.59 0.57 0.66 0.67 3.9%
GraphBP - - - - -4.80 -4.70 14.2% 6.7% 0.43 0.45 0.49 0.48 0.79 0.78 0.1%

AR -5.75 -5.64 -6.18 -5.88 -6.75 -6.62 37.9% 31.0% 0.51 0.50 0.63 0.63 0.70 0.70 7.1%
Pocket2Mol -5.14 -4.70 -6.42 -5.82 -7.15 -6.79 48.4% 51.0% 0.56 0.57 0.74 0.75 0.69 0.71 24.4%
TargetDiff -5.47 -6.30 -6.64 -6.83 -7.80 -7.91 58.1% 59.1% 0.48 0.48 0.58 0.58 0.72 0.71 10.5%

IPDiff -6.42 -7.01 -7.45 -7.48 -8.57 -8.51 69.5% 75.5% 0.52 0.53 0.60 0.59 0.74 0.73 17.7%
DECOMPDIFF* -5.96 -7.05 -7.60 -7.88 -8.88 -8.88 72.3% 87.0% 0.45 0.43 0.60 0.60 0.60 0.60 28.0%
DECOMPDPO -6.10 -7.22 -7.93 -8.16 -9.26 -9.23 78.2% 95.2% 0.48 0.45 0.64 0.64 0.62 0.62 36.2%

Reference DecompDiff* DecompDPO Reference DecompDiff* DecompDPO

QED:0.71 SA:0.81 Vina:-9.74 QED:0.44 SA:0.66 Vina:-9.53 QED:0.38 SA:0.65 Vina:-9.05 QED:0.75 SA:0.8 Vina:-10.38QED:0.48 SA:0.68 Vina:-8.98 QED:0.91 SA:0.72 Vina:-10.23

Figure 3: Visualization of reference binding ligands and the molecule generated by DECOMPDIFF*
and DECOMPDPO on protein 4D7O (left) and 1UMD (right).

affinity between a molecule and the target protein, Vina Min measures the affinity after local structural
optimization via force fields, Vina Dock assesses the affinity after re-docking the ligand into the
target protein, and High Affinity measures the proportion of generated molecules with a Vina Dock
score higher than that of reference ligands. Regarding molecular properties, we calculate drug-
likeness (QED) (Bickerton et al., 2012), synthetic accessibility (SA) (Ertl & Schuffenhauer, 2009),
and diversity. Following Jin et al. (2020); Xie et al. (2021), the overall quality of generated molecules
is evaluated by Success Rate (QED > 0.25, SA > 0.59, Vina Dock < -8.18). To evaluate molecular
conformation, Jensen-Shannon divergence (JSD) is employed to compare the atom distributions
of the generated molecules with those of reference ligands. We also evaluate median RMSD and
energy difference of rigid fragments and the whole molecule before and after optimizing molecular
conformations with Merck Molecular Force Field (MMFF) (Halgren, 1996).

Implementation Details The bond-first noise schedule proposed by Peng et al. (2023) effectively
addresses the inconsistency between atoms and bonds when using predicted bonds for molecule
reconstruction. We adapt this noise schedule for DecompDiff, resulting in an enhanced model that
we used as our base model, termed as DecompDiff*. Details about the bond-first noise schedule
are provided in Appendix C.2. For multi-objective optimization, the optimization objectives for
DECOMPDPO and baseline methods are QED, SA, and Vina Minimize Score. During fine-tuning, we
assign a weight of 1 to each objective, and for molecular optimization, we weighted each objective by
the reciprocal of the distance from the current objectives’ mean to the success rate threshold. Please
refer to Appendix C for more details.

4.2 MAIN RESULTS

Molecule Generation We evaluate the effectiveness of DECOMPDPO in terms of target binding
affinity and molecular properties. As shown in Table 1, after a single epoch of fine-tuning with
DECOMPDPO, the performance is significantly improved across all metrics, demonstrating the
effectiveness of DECOMPDPO in multi-objective optimization. Notably, DECOMPDPO achieves the
highest score in Vina Minimize, Vina Dock, High Affinity, and Success Rate among all generative
methods, and also improves other metrics compared to the base model, indicating its superior ability
to generate high-quality molecules across various target proteins. Figure 3 shows reference ligands
and molecules generated by DecompDiff* and DECOMPDPO. As shown, molecules generated by
DECOMPDPO achieve better performance while maintaining desired molecular conformations. More
visualize results are provided in Appendix D.

Regarding molecular conformation, we plot the all-atom pairwise distance distribution of generated
molecules and compute the JSD with the distribution obtained from reference ligands. As shown
in Figure 4, DECOMPDPO has performance comparable to DecompDiff*, achieving the lowest JSD

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Summary of different properties of reference molecules and molecules generated by DE-
COMPDPO and other optimization methods. (↑) / (↓) denotes a larger / smaller number is better. Top
2 results are highlighted with bold text and underlined text, respectively.

Methods
Vina Score (↓) Vina Min (↓) Vina Dock (↓) High Affinity (↑) QED (↑) SA (↑) Diversity (↑) Success
Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Rate (↑)

RGA - - - - -8.01 -8.17 64.4% 89.3% 0.57 0.57 0.71 0.73 0.41 0.41 46.2%
DecompOpt -5.87 -6.81 -7.35 -7.72 -8.98 -9.01 73.5% 93.3% 0.48 0.45 0.65 0.65 0.60 0.61 52.5%

DECOMPDPO -7.27 -7.93 -8.91 -8.88 -9.90 -10.08 88.5% 100.0% 0.48 0.47 0.60 0.62 0.61 0.62 52.1%
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Figure 4: Compare pairwise distance distributions between all atoms in generated molecules and
reference molecules from the test set. Jensen-Shannon divergence (JSD) between two distributions is
reported (left). Median energy difference for rigid fragments of generated molecules before and after
optimizing with the Merck Molecular Force Field (right).

relative to the distribution of reference molecules among all generative models. We also calculate the
JSD of bond distance and bond angle distributions, observing that DECOMPDPO does not significantly
compromise molecular conformation while achieving superior optimization results. These results are
reported in Appendix D. To further evaluate molecular conformation, we calculate the median energy
difference before and after conformation optimization by MMFF for rigid fragments that do not
contain rotatable bonds. As shown in Figure 4, DECOMPDPO performs comparably to DecompDiff*
when with fewer rotatable bonds and achieves the lowest energy differences among all generative
methods when with more rotatable bonds. These results demonstrates the potency of DECOMPDPO
in maintaining reasonable conformations while optimizing towards desired properties. Results of the
median RMSD differences for rigid fragments and whole molecules are provided in Appendix D.

Molecule Optimization To validate the capability of DECOMPDPO in molecular optimization, we
perform iterative DPO, optimizing the DECOMPDPO fine-tuned model for each target protein in the
test set. As shown in Table 2, DECOMPDPO achieves the highest scores in affinity-related metrics
among all optimization methods. Compared to DecompOpt, DECOMPDPO achieves a comparable
Success Rate, demonstrating its effectiveness in continuously enhancing molecule performance toward
a specific protein of interest in practical pharmaceutical applications. Additionally, DECOMPDPO
can be adapted to DecompOpt, potentially providing stronger results by combining the benefits of
preference alignment with iterative optimization.

4.3 ABLATION STUDIES

Single-Objective Optimization To further validate the effectiveness of DECOMPDPO, we test its
performance in single-objective optimization. As AliDiff (Gu et al., 2024) aims to align diffusion
models with high binding affinity, we select Vina Minimize as the optimization objective and compare
the performance of DECOMPDPO with AliDiff. As shown in Table 3, DECOMPDPO achieves
higher Vina Minimize, Vina Dock, High Affinity, and SA compared to AliDiff. Notably, while only
optimizing towards high Vina Minimize, DECOMPDPO attains remarkable improvements in molecular
properties compared to the base model. Specifically, DECOMPDPO achieves 5.9%, 11.7%, and 11.8%
improvement in Vina Score, Vina Minimize, and Vina Dock, respectively, and improvements of 6.7%
and 10% in QED and SA. Additionally, we computed the Complete Rate, defined as the percentage of
valid and connected molecules among all generated molecules. The Complete Rate of DECOMPDPO
is 83.6%, representing a 14.8% improvement compared to the base model. These results indicate
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Table 3: Summary of results of single-objective optimization for affinity-related metrics. (↑) / (↓)
denotes a larger / smaller number is better. The best result is highlighted with bold text.

Method
Vina Score (↓) Vina Min (↓) Vina Dock (↓) High Affinity (↑) QED (↑) SA (↑) Diversity (↑) Success
Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Rate (↑)

AliDiff -7.07 -7.95 -8.09 -8.17 -8.90 -8.81 73.4% 81.4% 0.50 0.50 0.57 0.56 0.73 0.71 -
DECOMPDPO -6.31 -7.70 -8.49 -8.72 -9.93 -9.77 85.9% 97.8% 0.48 0.46 0.66 0.66 0.65 0.65 43.0%

Table 4: Ablation study of decomposing DPO loss and linear beta schedule. (↑) / (↓) denotes a larger
/ smaller number is better. The best result is highlighted with bold text.

Method
Vina Score (↓) Vina Min (↓) Vina Dock (↓) High Affinity (↑) QED (↑) SA (↑) Diversity (↑) Success
Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Rate (↑)

w/ Constant Beta Weight -5.97 -7.14 -7.78 -8.04 -9.04 -9.09 74.9% 91.8% 0.46 0.44 0.62 0.62 0.61 0.61 32.1%
w/ Molecule-level DPO -6.08 -7.21 -7.92 -8.16 -9.06 -9.20 77.8% 96.2% 0.48 0.45 0.63 0.63 0.60 0.61 35.1%

DECOMPDPO -6.10 -7.22 -7.93 -8.16 -9.26 -9.23 78.2% 95.2% 0.48 0.45 0.64 0.64 0.62 0.62 36.2%

that DECOMPDPO not only enhances the targeted optimization objective but also improves overall
molecular quality and validity, demonstrating its effectiveness in single-objective optimization.

Benefits of Decomposed Preference Our primary hypothesis is that introducing decomposition into
the optimization objectives enhances training efficiency by providing greater flexibility in preference
selection and multi-objective optimization. We verify this hypothesis in the molecule generation
setting by fine-tuning the base model with molecule-level preference pairs for all optimization
objectives, which we term Molecule-level DPO. As shown in Table 4, DECOMPDPO outperforms
Molecule-level DPO on most of the affinity-related metrics and achieves a higher Success Rate,
validating that decomposed preference enhances optimization effectiveness and efficiency. Besides,
DECOMPDPO achieves a higher SA, indicating that it potentially mitigates conflicts in multi-objective
optimization by providing greater flexibility and diversity in preference selection.

Benefits of Linear Beta Schedule To validate the effectiveness of the linear beta schedule proposed
in Section 3.4, we evaluate the performance of DECOMPDPO when the value of β remains constant
in molecule generation setting. As shown in Table 4, employing the linear beta schedule improves
all metrics, with only a negligible decrease in Diversity, indicating its effectiveness in enhancing
optimization efficiency.

5 CONCLUSION

In this work, we introduced preference alignment to SBDD for the first time, developing DECOM-
PDPO to align pre-trained diffusion models with multi-granularity preference, which provides more
flexibility during the optimization process. The physics-informed energy term penalizing the reward
is beneficial for maintaining reasonable molecular conformations during optimization. The linear beta
schedule effectively improves optimization efficiency by progressively reducing regularization during
the diffusion process. DECOMPDPO shows promising results in molecule generation and molecular
optimization, highlighting its ability to meet practical needs of the pharmaceutical industry.
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A IMPACT STATEMENTS

Our contributions to structure-based drug design have the potential to significantly accelerate the
drug discovery process, thereby transforming the pharmaceutical research landscape. Furthermore,
the versatility of our approach allows for its application in other domains of computer-aided design,
including, but not limited to, protein design, material design, and chip design. While the potential
impacts are ample, we underscore the importance of implementing our methods responsibly to prevent
misuse and potential harm. Hence, diligent oversight and ethical considerations remain paramount in
ensuring the beneficial utilization of our techniques.

B LIMITATIONS

While we demonstrate that DECOMPDPO excels in improving models in terms of several prevalently
recognized properties of molecules. A more comprehensive optimization objectives properties still
require attention. Besides, we simply combined the various objectives into a single one by using
a weighted sum loss, without investigating the optimal approach for multi-objective optimization.
Extending the applicability of DECOMPDPO to more practical scenarios is reserved for our future
work.

C IMPLEMENTATION DETAILS

C.1 FEATURIZATION

Following DecompDiff (Guan et al., 2023b), we characterize each protein atom using a set of features:
a one-hot indicator of the element type (H, C, N, O, S, Se), a one-hot indicator of the amino acid type
to which the atom belongs, a one-dimensional indicator denoting whether the atom belongs to the
backbone, and a one-hot indicator specifying the arm/scaffold region. We define the part of proteins
that lies within 10Å of any atom of the ligand as pocket. Similarly, a protein atom is assigned to the
arm region if it lies within a 10Å radius of any arm; otherwise, it is categorized under the scaffold
region. The ligand atom is characterized with a one-hot indicator of element type (C, N, O, F, P,
S, Cl) and a one-hot arm/scaffold indicator. The partition of arms and scaffold is predefined by a
decomposition algorithm proposed by DecompDiff.

We use two types of message-passing graphs to model the protein-ligand complex: a k-nearest
neighbors (knn) graph for all atoms (we choose k = 32 in all experiments) and a fully-connected
graph for ligand atoms only. In the knn graph, edge features are obtained from the outer product of
the distance embedding and the edge type. The distance embedding is calculated using radial basis
functions centered at 20 points between 0Å and 10Å. Edge types are represented by a 4-dimensional
one-hot vector, categorizing edges as between ligand atoms, protein atoms, ligand-protein atoms or
protein-ligand atoms. For the fully-connected ligand graph, edge features include a one-hot bond type
indicator (non-bond, single, double, triple, aromatic) and a feature indicating whether the bonded
atoms belong to the same arm or scaffold.

C.2 MODEL DETAILS

Our based model used in DECOMPDPO is the model proposed by Guan et al. (2023b), incorporating
the bond first noise schedule presented by Peng et al. (2023). Specifically, the noise schedule is
defined as follows:

s =
sT − s1

sigmoid(−w)− sigmoid(w)

b =
s1 + sT + s

2
ᾱt = s · sigmoid(−w(2t/T − 1)) + b

For atom types, the parameters of noise schedule are set as s1 = 0.9999, sT = 0.0001, w = 3.
For bond types, a two-stage noise schedule is employed: in the initial stage (t ∈ [1, 600]), bonds
are rapidly diffused with parameters s1 = 0.9999, sT = 0.001, w = 3. In the subsequent stage
(t ∈ [600, 1000]), the parameters are set as s1 = 0.001, sT = 0.0001, w = 2. The schedules of atom
and bond type are shown in Figure 5.
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Figure 5: Noise schedule of atom and bond types.

C.3 MOLECULAR FRAGMENTATION

Following DecompDiff (Guan et al., 2023b), we fragment a molecule into arms and scaffold using
RDKit and Alphaspace2 (Katigbak et al., 2020) toolkit. Specifically, subpockets for the target
protein is extracted using Alphaspace2 and ligands are decomposed into fragments using BRICS.
Then terminal fragments with only one connection site are assigned to subpockets by a linear sum
assignment. Arms centers are defined as the centroids of terminal fragments and any remaining
subpockets, and scaffold center is defined as the farthest fragment from all arm centers. Finally, the
nearest neighbor clustering is performed to tag fragments as arms or the scaffold.

C.4 TRAINING DETAILS

Pre-training We use Adam (Kingma & Ba, 2014) for pre-training, with
init_learning_rate=0.0004 and betas=(0.95,0.999). The learning rate is
scheduled to decay exponentially with a factor of 0.6 with minimize_learning_rate=1e-6.
The learning rate is decayed if there is no improvement for the validation loss in 10 consecutive
evaluations. We set batch_size=8 and clip_gradient_norm=8. During training, a
small Gaussian noise with a standard deviation of 0.1 to protein atom positions is added as data
augmentation. To balance the magnitude of different losses, the reconstruction losses of atom and
bond type are multiplied with weights γv = 100 and γb = 100, separately. We perform evaluations
for every 2000 training steps. The model is pre-trained on a single NVIDIA A6000 GPU, and it
could converge within 21 hours and 170k steps.

Fine-tuning and Optimizing For both fine-tuning and optimizing model with DECOMPDPO,
we use the Adam optimizer with init_learning_rate=1e-6 and betas=(0.95,0.999).
We maintain a constant learning rate throughout both processes. We set batch_size=4 and
clip_gradient_norm=8. Consistent with pre-training, Gaussian noise is added to protein atom
positions, and we use a weighted reconstruction loss. For fine-tuning model for molecule generation,
we set βT = 0.001 and trained for 1 epoch, 16k steps on one NVIDIA A40 GPU. For molecular
optimization, we set βT = 0.02 and trained for 20,000 steps on one NVIDIA V100 GPU, and perform
evaluation every every 1,000 steps.

C.5 EXPERIMENT DETAILS

The scoring function for selecting training molecules is defined as S = QED + SA +
V ina_Min/(−12). Vina Minimize Score is divided by -12 to ensure that it is generally ranges
between 0 and 1. For molecule generation, we exclude molecules that cannot be decomposed or
reconstructed, resulting in a total of 63,092 preference pairs available for fine-tuning. In molec-
ular optimization, to ensure that the model maintains a desirable completion rate, we include an
additional 50 molecules that failed in reconstruction in as the losing side of preference pairs. To
tailor the optimization to a specific protein, the weights of the optimization objectives are defined as
wx = e−(x−xs), where x is the mean property of the generated molecules and xs is the threshold of
the property used in Success Rate. For both molecule generation and molecular optimization, we
employ the same Opt Prior used in DecompDiff. Opt Prior is defined as a mixture of Ref Prior,
which is determined by the reference ligand, and Pocket Prior, which is defined by a prior generation
algorithm using AlphaSpace2 (Katigbak et al., 2020), depending on whether Ref Prior passes the
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Success threshold. The λ used for penalizing rewards with energy terms proposed in Section 3.3 is
set to 0.1.

In evaluating the performance of DECOMPDPO, for each checkpoint, we generate 100 molecules
for the molecule generation task and 20 molecules for the molecular optimization task across each
target protein in the test set. For both molecule generation and optimization, we select the checkpoint
with the highest weighted Success Rate, which is defined as the product of the Success Rate and the
Complete Rate.

D ADDITIONAL RESULTS

D.1 FULL EVALUATION RESULTS

Molecular Conformation To provide a more comprehensive evaluation of molecular conforma-
tions, we compute the JSD of distances for different types of bonds and angles between molecules
from generative models and reference molecules. As shown in Table 5 and Table 6, DECOMPDPO
achieves the lowest or second lowest JSD for bond types such as ’C=O’, ’C-N’, and ’C-O’, and for
angle types such as ’OPO’, ’NCC’, and ’CC=O’. For other types of bonds and angles, the JSD gener-
ally remains similar to that of DecompDiff, demonstrating that DECOMPDPO generally maintains
desirable molecular conformations during preference alignment.

Table 5: Jensen-Shannon Divergence of the bond distance distribution between the generated
molecules and the reference molecule by bond type, with a lower value indicating better. “-”,
“=”, and “:” represent single, double, and aromatic bonds, respectively. The top 2 results are high-
lighted with bold text and underlined text.

Bond liGAN GraphBP AR Pocket2Mol TargetDiff DecompDiff IPDiff DECOMPDPO

C−C 0.601 0.368 0.609 0.496 0.369 0.359 0.451 0.426
C=C 0.665 0.530 0.620 0.561 0.505 0.537 0.530 0.542
C−N 0.634 0.456 0.474 0.416 0.363 0.344 0.411 0.363
C=N 0.749 0.693 0.635 0.629 0.550 0.584 0.567 0.582
C−O 0.656 0.467 0.492 0.454 0.421 0.376 0.489 0.397
C=O 0.661 0.471 0.558 0.516 0.461 0.374 0.431 0.370
C:C 0.497 0.407 0.451 0.416 0.263 0.251 0.221 0.287
C:N 0.638 0.689 0.552 0.487 0.235 0.269 0.255 0.267

Table 6: Jensen-Shannon Divergence of the bond angle distribution between the generated molecules
and the reference molecule by angle type, with a lower value indicating better. The top 2 results are
highlighted with bold text and underlined text.

Bond liGAN GraphBP AR Pocket2Mol TargetDiff DecompDiff IPDiff DECOMPDPO

CCC 0.598 0.424 0.340 0.323 0.328 0.314 0.402 0.353
CCO 0.637 0.354 0.442 0.401 0.385 0.324 0.451 0.358
CNC 0.604 0.469 0.419 0.237 0.367 0.297 0.407 0.312
OPO 0.512 0.684 0.367 0.274 0.303 0.217 0.388 0.194
NCC 0.621 0.372 0.392 0.351 0.354 0.294 0.399 0.300

CC=O 0.636 0.377 0.476 0.353 0.356 0.259 0.363 0.278
COC 0.606 0.482 0.459 0.317 0.389 0.339 0.463 0.355

We also evaluate the median RMSD of rigid fragments before and after optimizing molecular
conformations with MMFF. As shown in Figure 6, DECOMPDPO consistently achieves lower RMSD
differences than the base model, DecompDiff, across all fragment sizes. The median RMSD and
energy differences for whole molecules are presented in Figure 7 and Figure 8, respectively. Generally,
DECOMPDPO achieves comparable or even better results than DecompDiff, indicating that it can
generate molecular conformations with low energy while optimizing towards preference. We further
provided numerical evidence in addition to the distributional evidence in Table 7.

Molecular Properties To provide a comprehensive evaluation, we have expanded our evaluation
metrics beyond those discussed in Section 4.1, which primarily focus on molecular properties and
binding affinities. To assess the model’s efficacy in designing novel and valid molecules, we calculate
the following additional metrics:
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Table 7: Summary of conformation related metrics of generated molecules. RF is short for rigid
fragments. The top 2 results are highlighted with bold text and underlined text.

Pocket2Mol TargetDiff IPDiff DecompDiff DecompDPO

JSD - All Atom 0.14 0.09 0.08 0.07 0.07
Energy Diff - RF 31.18 1355.94 1459.45 39.39 42.49
Energy Diff - Mol 185.14 6116.37 21431.71 8833.80 976.33

RMSD - RF 0.12 0.13 0.14 0.13 0.11
RMSD - Mol 0.75 1.02 1.04 1.10 1.11

• Complete Rate is the percentage of generated molecules that are connected and vaild, which is
defined by RDKit.

• Novelty is defined as the ratio of generated molecules that are different from the reference ligand of
the corresponding pocket in the test set.

• Similarity is the Tanimoto Similarity between generated molecules and the corresponding reference
ligand.

• Uniqueness is the proportion of unique molecules among generated molecules.
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Figure 6: Median RMSD for rigid fragments of generated molecules before and after optimizing with
the Merck Molecular Force Field
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Figure 7: Median RMSD of generated molecules before and after optimizing with the Merck
Molecular Force Field
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Figure 8: Median energy difference of generated molecules before and after optimizing with the
Merck Molecular Force Field

As reported in Table 8, in molecule generation, DECOMPDPO fine-tuned model achieves better
Complete Rate and Similarity compared to the base model. In molecular optimization, DECOMPDPO
maintains a relatively acceptable Complete Rate and the lowest similarity among all optimization
methods.

Table 8: Summary of the models’ ability in designing novel and valid molecules. (↑) / (↓) denotes a
larger / smaller number is better.

Methods Complete Rate (↑) Novelty (↑) Similarity (↓) Uniqueness (↑)

G
en

er
at

e

LiGAN 99.11% 100% 0.22 87.82%
AR 92.95% 100% 0.24 100%

Pocket2Mol 98.31% 100% 0.26 100%
TargetDiff 90.36% 100% 0.30 99.63%

DECOMPDIFF* 72.82% 100% 0.27 99.58%
DECOMPDPO 73.26% 100% 0.26 99.57%

O
pt

im
iz

e RGA - 100% 0.37 96.82%
DecompOpt 71.55% 100% 0.36 100%

DECOMPDPO 65.05% 100% 0.26 99.63%
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Figure 9: Boxplots of QED, SA, Vina Score, Vina Minimize, and Vina Dock of molecules generated
by DECOMPDPO and other generative models.
We also draw boxplots to provide confidence intervals for the performance in molecule generation,
which are shown in Figure 9.

To further illustrate the potency of the generated molecules, we draw a scatter plot of heavy atom
numbers versus Vina Dock score to demonstrate the effect of heavy atom numbers on the binding
affinity of generated molecules.

D.2 EVIDENCE FOR DECOMPOSABILITY OF PROPERTIES

As illustrated in Section 3.2, QED and SA are non-decomposable due to the non-linear processes
involved in their calculations. We validate this non-decomposability on our training set. As shown
in Figure 11, the Pearson correlation coefficients between the properties of molecules and the sum
of the properties of their decomposed substructures are very low, not exceeding 0.1. These results
indicate that substructures with higher QED or SA do not necessarily lead the molecule to have better
properties. Therefore, we choose molecule-level preferences for QED and SA.
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Figure 10: Scatter Plots of heavy atom numbers versus Vina Dock scores for TargetDiff, IPDiff,
DecompDiff, and DECOMPDPO.

Figure 11: The Pearson correlation between molecule’s and sum of substructure’s SA (left) / QED
(right) Scores in the training dataset.

D.3 TRADE-OFF IN MULTI-OBJECTIVE OPTIMIZATION

Given the multiple objectives in DECOMPDPO, inherent trade-offs between different properties
are unavoidable. In molecular optimization, as illustrated in Figure 12, molecules generated by
DECOMPDPO exhibit significantly improved properties compared to those generated by DecompDiff.
However, DECOMPDPO encounters a notable trade-off between optimizing the Vina Minimize Score
and SA.
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Figure 12: Pairplots of molecules’ properties before and after using DECOMPDPO for molecular
optimization on protein 4Z2G (left) and 2HCJ (right).
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D.4 TRAINING SET DISTRIBUTION

We further provided winning and losing molecules’ distribution of QED, SA, and Vina Minimize in
the training set, as shown in Figure 13.
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Figure 13: Distribution of QED, SA, and Vina Minimize of the winning and losing molecule in the
training set.
D.5 EXAMPLES OF GENERATED MOLECULES

Examples of reference ligands and molecules generated by DecompDiff* and DECOMPDPO, which
are shown in Figure 14.

Reference DecompDiff* DecompDPO Reference DecompDiff* DecompDPO

QED:0.87 SA:0.84 Vina:-8.57 QED:0.71 SA:0.83 Vina:-10.54 QED:0.86 SA:0.7 Vina:-10.19 QED:0.92 SA:0.83 Vina:-9.72QED:0.49 SA:0.6 Vina:-9.10 QED:0.88 SA:0.86 Vina:-9.78

Figure 14: Additional Examples of reference binding ligands and the molecule with the highest
property among all generated molecules of DECOMPDIFF* and DECOMPDPO on protein 1GG5 (left)
and 3TYM (right).
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