CodeMod: The Code Modification Dataset

Anonymous ACL submission

Abstract

The continuous emergence of large language
models specially capable to deal with program-
ming languages makes crucial the development
of better benchmarks that appraise them in
terms of their skills. In this paper we intro-
duced CodeMod, the first benchmark dataset
for code modification. This dataset is evaluated
both in zero-shot and fine-tuned configurations
utilizing the most recent Large Language Mod-
els (LLMs) for code. We also demonstrate its
usefulness by evaluating the performance of
fine tuned models in terms of code synthesis
performance. We show up to 5 points of im-
provement on pass@1 performance on the Hu-
manEval benchmark. This new dataset will be a
new addition to the code benchmark landscape.

1 Introduction

The advent of Large Language Models (LLMs)
has redrawn the landscape of the world of Arti-
ficial Intelligence. The availability of larger and
open-source models trained with huge amounts of
data have pushed capabilities of these models to
limits that were out of reach just a few years ago.
Nowadays, LLMs are dealing with more diverse
data, not limited to general natural language, but
also domain specific data such as medical (Lee
et al., 2020), legal (Chalkidis et al., 2020), or fi-
nancial (Araci, 2019), diverse modalities such as
images (Trinh et al., 2019; Chen et al., 2021c),
videos (Sun et al., 2019), stocks prices (Wang et al.,
2022), proteins (Brandes et al., 2022), etc.

More recently, there has been an tremendous
growth in the area of LLMs which are trained
with data from the programming language do-
main (Chen et al., 2021a; Nijkamp et al., 2023;
Liet al., 2023; Si et al., 2023). Several close- and
open-source models have rushed the community
showing impressive skill. These models are capa-
ble of tackling several aspects of the coding domain,

j_mport *."-_,-'[’)-"_I‘_l'J O”glnal
def fibor (n: int):
accum =]
for i in range(n):
accum = accum * (i+1)
return accum

Convert the for loop intc a while loop

import typing
ot Modified
def bonac (n:
accum = 1
i =
while i < n:
accum =
i=i+]
return accum

int):

accum * (i+1)

Figure 1: An excerpt of the expected behaviour of the
code modification task.

such as code synthesis, code translation, code fix-
ing, code search, among others.

With the growth of code related LLMs, also
grows the interests of the development of datasets
and benchmarks intended to assess the capabilities
of these models. Example of such benchmarks can
are CONCODE (lIyer et al., 2018) for code search,
CodeSearchNet (Husain et al., 2019) for search an
summarisation, HumanEval (Chen et al., 2021b)
and MBPP (Austin et al., 2021), for program syn-
thesis), XLCoST (Zhu et al., 2022) (code trans-
lation), BigCloneBench (Svajlenko et al., 2014)
(clone detection), Bugs2Fix (Tufano et al., 2018)
(code fixing), and CodeXGlue (Lu et al., 2021), a
suite that cluster many of these datasets.

Existing datasets that involve code generation
fall into this definition: given an input in some
modality, generate a piece of code that fits the ex-
pected output. Examples of that include text-to-

code generation, code translation, program synthe-
sis based on unit tests, etc. On another side, code
repair datasets such as Bugs2Fix, aim at modifying
the input code by fixing an existing where a bug to
fix that should be obvious given the context. None
of these existing datasets provide both training and
evaluation sets for where the output is a piece of
code that should result from the input code and a
natural language description of the modification to
apply.

We propose CodeMod, ‘“code modification’
dataset which is intended to modify an function-
ing piece of code given a description of the ex-
pected behaviour. This dataset is closer to multi
step code synthesis than other text-to-code genera-
tion datasets such as HumanEval or MBPP.

B

Our contributions are threefold: (1) we introduce
CodeMod, a new dataset for training and evalua-
tion of Language models for code modification 2)
we benchmark well known LLMs in both zero-shot
and fine-tuned configurations 3) We further demon-
strate that our dataset can be also used to improve
models capable of program synthesis.

2 Related Work

From the past few years there has been a growth in
the interest to find new and better ways to assess the
strength of models able to perform program synthe-
sis. There have been many datasets aim at mapping
different forms of natural language code. Examples
of that are Magic the Gathering (MTG) and Hearth-
stone (HS) introduced by Ling et al. (2016), which
generated code for cards in Trading Card Games,
Django (Oda et al., 2015; Ling et al., 2016), which
was introduced to generate pseudo-code from ac-
tual Python code, and NAPS (Zavershynskyi et al.,
2018) and SPoC (Kulal et al., 2019) which do the
opposite.

Along with the advent of Large Language Mod-
els for code, the discipline was popularised among
the Natural Language Processing community. An
example of that was the presentation of Code-
BLEU (Ren et al., 2020), an extension of the popu-
lar metric BLEU (Papineni et al., 2002) but adapted
to be used in the coding domain. CodeBLEU ex-
tends the assessment of a generated piece of code
not only in terms of word overlap against a refer-
ence solution, but also considering the syntax and
the semantics of code, comparing it in terms of the
Abstract Syntax Tree (AST) and the data-flow of
the reference solution. Moreover, inspired in recent

general language understanding benchmarks such
as GLUE (Wang et al., 2018) and XTREME (Hu
et al., 2020), a new suite, CodeXGlue, was intro-
duced by Lu et al. (2021), CodeXGlue consists in
a set of benchmarks for both code understanding
a generation, ,including 14 tasks, among them the
task of text-to-code generation or program synthe-
sis. The dataset consists in 100k training instances,
and it’s evaluated in terms of BLEU and Code-
BLUE. Chen et al. (2021a) introduced HumanEval.
This dataset measures functional correctness for
synthesizing programs from docstrings. It con-
sists of 164 original programming problems writ-
ten in Python, assessing language comprehension,
algorithms, and simple mathematics, with some
comparable to simple software interview questions.
It benchmarks models based on the capacity to
pass unit tests that check for the correct execu-
tion of the function. Soon after the introduction of
HumanEval, MBPP was presented (Austin et al.,
2021). The Mostly Basic Programming Problems
(MBPP) dataset, is similar is similar to the for-
mer, but include a much larger set of problems
(974 in total) and in addition to the ability to be
used both in a few-shot and fine-tuned configura-
tion. More recently Nijkamp et al. (2023) intro-
duced MTPB (Multi-Turn Programming Bench-
mark). MTPB consists of 115 handcrafted prob-
lems, each of which includes a multi-step descrip-
tions in natural language (prompt). Contrary to
the previous datasets, to solve a problem, a model
needs to synthesize functionally correct subpro-
grams following the description at the current step
and considering descriptions and synthesized sub-
programs at previous steps.

3 Dataset

In this section we explain the process we applied to
create the CodeMod dataset. It consists of several
filtering steps to guarantee the quality and useful-
ness of the resulting instances.

3.1 Filtering

The raw data for CodeMod consists of git commits
taken from StarCoder (Li et al., 2023), which is
gathered from BigQuery!. Only single-file com-
mits of repositories with the same licenses and file
extension as used in The Stack (Kocetkov et al.,
2022) are used. All repositories from users that

"https://cloud.google.com/bigquery/
public—-data/

https://cloud.google.com/bigquery/public-data/
https://cloud.google.com/bigquery/public-data/

Model BLEU Model BLEU
baseline 88.15 baseline 88.15
zero-shot zero-shot

starcoderbase-1b 28.88 Starchat-beta 66.19
santacoder 20.98 CodeLlama-34b-Instruct—-hf 85.43
codet5p-770m 4.51 GPT3.5 71.21
fine-tuned Table 2: Zero shot evaluation of Larger models on the
starcoderbase-1b 92.47 CodeMod Dataset

santacoder 81.83

codet 5p-770m 76.79 new code than a modification to functionality.

Table 1: Zero shot and finetuned evaluation on the Code-
Mod Dataset

have opted out of The Stack are removed. Star-
Coder already employs some filters to the commits
as described in their paper. Notably, excessively
long files are removed, and JSON, YAML, XML
and HTML are subsampled. These languages are
mostly removed from this dataset, due to the abun-
dance of documentation using these formats.

By employing additional filtering processes to
this data, a higher quality corpus of code pairs is ob-
tained. These pairs consist of before code and some
modified after code, with a related commit message.
The modification made should be a change in func-
tionality to working code, not a fix/repair to broken
or dysfunctional code.

A number of filters targeting certain words are
added to remove non-useful messages i.e. "fix"
to remove examples of code repair. Additionally
some basic filters e.g. the maximum length of the
file are applied. A summary of the basic filters
and the removed terms, with a short justification, is
provided in the Appendix.

Commit messages of less than 9 words are re-
moved to improve quality, as longer messages are
more verbose and tend to include more specific
information describing the change than those with
less words.

The similarity (Reimers and Gurevych, 2019)
of the before and after code is measured, and
filtered so that the before and after code are not
too dissimilar. In addition, a minimum of 1 and
a maximum of 15 lines of code can be added or
modified (complete removal of a line does not
count as a modified). Overly large refactoring of
code is considered to be closer to generation of

In order to remove messages that hold low
information, a few metrics are taken.

The perplexity (Meister and Cotterell, 2021) of
the commit message is measured against the cor-
responding ’after’ example of code. If the com-
mit message describes the change, the perplexity
should be lower due to sharing relevant terms and
semantics.

Similarly, a metric that measures the similarity
docstrings and codes is used (Husain et al., 2019;
Lu et al., 2021). In this work, the similarity be-
tween the commit message and the code is used.
The commit message, if high in quality, should
show some resemblance to a natural language query
that someone might use to search for the associated
piece of code. This includes features such as use of
specific words/names or numbers and description
of functionality.

The commit message is also compared to some
chosen sample sentences via SentenceTransformer
(see below).

"Fixed a bug in the code’
"initial commit’
"Updated date and time’

If the commit message shows very high simi-
larity to the provided sentences, they are removed
for lack of relevant information, as a message with
more specific knowledge would separate itself from
those with low semantic value. This is effective at
removing trivial commits but not narrowing down
to higher quality samples.

A few other metrics were measured, e.g. sur-
prisal (Oh et al., 2021) of the commit message and
the number of modified lines, but these provided
little information as evident by their very sharp dis-

Model 7S FT

codet5p-770m 15.24 18.90
starcoderbase-1b 15.17 20.12
santacoder 18.29 21.95

Table 3: Performance on HumanEval pass@1, ZS: zero-
shot and FT, after finetuning with CodeMod

tributions, which provide no meaningful threshold
from which to filter. Correlation between metrics is
also measured to investigate whether any of them
used are performing identical tasks. None of the
metrics show statistically significant correlation to-
ward one another and so the chosen metrics should
be justified in their combined use as separate val-
ues.

3.2 The Final Dataset

The final dataset consists of 52,171 examples from
the original 7.6 million from the raw data. It is
packaged in a parquet in an identical format to the
original data, shown here:

<BEFORE> CODE <MSG> TEXT | <AFTER> | CODE <EOS>

The distribution of programming languages in
the final dataset is uncertain due to the raw data not
providing filenames or any other relevant metadata.
Some approximation is made utilising GuessLang
2, with the most common languages being Python,
followed by Java, Javacript and C.

4 Experiments

To validate the quality / usefulness of the dataset, 3
models were finetuned using a shortened version of
the dataset. The shortening consists of taking only
examples in which the after code is under 1000
characters in length. This is done to accomodate
the relatively small context windows of the models.
The models include, starcoderbase-1b (Li et al.,
2023), santacoder (Si et al., 2023) and codetSp-
770m (Wang et al., 2021). In all cases the entire
model was trained. We show improved BLEU re-
sults using the dataset for evaluation against a base-
line using the before code and the after code.

The results show such a large improvement over
the zero shot as the before and after code shares

https://github.com/yoeo/guesslang

much similarity. As such the model will greatly
improve its results as it learns to copy over code.
Due to the commit message, the model does make
changes to the code, in many cases to its own detri-
ment. StarCoder (1 billion parameters) manages to
improve over the baseline by adding useful informa-
tion from the commit message into the code. While
a small improvement, it is significantly better than
santacoder and codet5p-770m. Santacoder may be
a more capable model than the results suggest, as
it is trained only on Python, Java and Javascript
which may explain the discrepancy. They are all
trained for the same number of steps, but due to
their performance compared to baseline may be
undertrained, or simply failing to learn due to the
consistently large length of the corpus.

The zero shot evaluation is done on a smaller ran-
domly sampled subset of the data, and may need a
better prompting strategy as sometimes the model
will not reproduce the entire code but only return a
changed snippet. The larger models do a much bet-
ter job of maintaining the original code, and adding
less unnecessary changes. They do however, espe-
cially gpt3.5, add comments where there otherwise
would not, in turn lowering the BLEU score.

The HumanEval (Python) scores improve by a
few points across the board, it is worth noting that
all 3 models are non-instruction tuned and that San-
taCoder is trained on Python, Java and Javascript
only.

5 Conclusion

In this work we comment about the existing
datasets for evaluation of Large Language mod-
els for code. We assess their limitation and present
CodeMod, a new dataset and benchmark for the
evaluation of code synthesis task where the ex-
pected output is a modified version of the input.
Our contributions are: i) We describe the process
for extraction and filtering of the CodeMod dataset
based on existing commit information extracted
from open source repositories. ii) We show that
our benchmark is useful both in zero-shot and fine
tune configurations, showing that is challenging
for established LLM for code. iii) we proved that
our dataset is also useful as training signal for the
task of code synthesis, showing up to 5 points of
improvement on HumanEval performance.

https://github.com/yoeo/guesslang

6 Limitations

Presented in a short paper, the current work is lim-
ited in all the experimentation that could have been
included. The main limitation we see is the eval-
uation of CodeMod is limited to be benchmarked
in terms of BLEU score. While Pass@k metric,
popularized by Chen et al. (2021a) is the dominant
metric these days, the lack of proper unit test for
most of the original source code made the evalua-
tion in those terms, unfeasible.

7 Ethical Considerations

This research piece introduces a new resource
meant to improve performance of Large Language
Models for Code. Although this work do not deal
with datasets or tasks which might be ethically con-
cerning the medical domain, the authors recognize
that any work that aims to automatize tasks which
are currently carried out almost exclusively by hu-
mans should be of particular ethical interest. We
recognize that better language models, in particular
on the coding domain, might constitute a risk for
future jobs positions, in particular for those who
are just starting a career in software engineering.

References

Dogu Araci. 2019. Finbert: Financial sentiment
analysis with pre-trained language models. CoRR,
abs/1908.10063.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Nadav Brandes, Dan Ofer, Yam Peleg, Nadav Rap-
poport, and Michal Linial. 2022. Proteinbert: a uni-
versal deep-learning model of protein sequence and
function. Bioinformatics, 38(8):2102-2110.

Ilias Chalkidis, Manos Fergadiotis, Prodromos Malaka-
siotis, Nikolaos Aletras, and Ion Androutsopoulos.
2020. LEGAL-BERT: The muppets straight out of
law school. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 2898—
2904, Online. Association for Computational Lin-
guistics.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz

Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021a. Evaluat-
ing large language models trained on code.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, et al. 2021b. Evaluating large lan-
guage models trained on code. arXiv preprint
arXiv:2107.03374.

Xiangning Chen, Cho-Jui Hsieh, and Boging Gong.
2021c. When vision transformers outperform resnets
without pre-training or strong data augmentations.
arXiv preprint arXiv:2106.01548.

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Gra-
ham Neubig, Orhan Firat, and Melvin Johnson.
2020. Xtreme: A massively multilingual multi-task
benchmark for evaluating cross-lingual generaliza-
tion. CoRR, abs/2003.11080.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis
Allamanis, and Marc Brockschmidt. 2019. Code-
searchnet challenge: Evaluating the state of semantic
code search. CoRR, abs/1909.09436.

Srinivasan lIyer, Ioannis Konstas, Alvin Cheung, and
Luke Zettlemoyer. 2018. Mapping language to code
in programmatic context. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1643—1652, Brussels, Bel-
gium. Association for Computational Linguistics.

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia
Li, Chenghao Mou, Carlos Muiioz Ferrandis, Yacine
Jernite, Margaret Mitchell, Sean Hughes, Thomas
Wolf, Dzmitry Bahdanau, Leandro von Werra, and
Harm de Vries. 2022. The stack: 3 tb of permissively
licensed source code.

Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina
Lee, Oded Padon, Alex Aiken, and Percy S Liang.
2019. Spoc: Search-based pseudocode to code. In
Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon
Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang.
2020. Biobert: a pre-trained biomedical language
representation model for biomedical text mining.
Bioinformatics, 36(4):1234-1240.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim,

http://arxiv.org/abs/1908.10063
http://arxiv.org/abs/1908.10063
http://arxiv.org/abs/1908.10063
https://doi.org/10.18653/v1/2020.findings-emnlp.261
https://doi.org/10.18653/v1/2020.findings-emnlp.261
https://doi.org/10.18653/v1/2020.findings-emnlp.261
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2003.11080
http://arxiv.org/abs/2003.11080
http://arxiv.org/abs/2003.11080
http://arxiv.org/abs/2003.11080
http://arxiv.org/abs/2003.11080
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436
https://doi.org/10.18653/v1/D18-1192
https://doi.org/10.18653/v1/D18-1192
https://doi.org/10.18653/v1/D18-1192
http://arxiv.org/abs/2211.15533
http://arxiv.org/abs/2211.15533
http://arxiv.org/abs/2211.15533
https://proceedings.neurips.cc/paper_files/paper/2019/file/7298332f04ac004a0ca44cc69ecf6f6b-Paper.pdf

Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo,
Thomas Wang, Olivier Dehaene, Mishig Davaadorj,
Joel Lamy-Poirier, Jodo Monteiro, Oleh Shliazhko,
Nicolas Gontier, Nicholas Meade, Armel Zebaze,
Ming-Ho Yee, Logesh Kumar Umapathi, Jian Zhu,
Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo
Wang, Rudra Murthy, Jason Stillerman, Siva Sankalp
Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey,
Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya,
Wenhao Yu, Swayam Singh, Sasha Luccioni, Paulo
Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel
Romero, Tony Lee, Nadav Timor, Jennifer Ding,
Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri
Dao, Mayank Mishra, Alex Gu, Jennifer Robinson,
Carolyn Jane Anderson, Brendan Dolan-Gavitt, Dan-
ish Contractor, Siva Reddy, Daniel Fried, Dzmitry
Bahdanau, Yacine Jernite, Carlos Mufioz Ferrandis,
Sean Hughes, Thomas Wolf, Arjun Guha, Leandro
von Werra, and Harm de Vries. 2023. Starcoder: may
the source be with you!

Wang Ling, Phil Blunsom, Edward Grefenstette,
Karl Moritz Hermann, Toma$ Kocisky, Fumin Wang,
and Andrew Senior. 2016. Latent predictor networks
for code generation. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 599-609,
Berlin, Germany. Association for Computational Lin-
guistics.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin B. Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Li-
dong Zhou, Linjun Shou, Long Zhou, Michele Tu-
fano, Ming Gong, Ming Zhou, Nan Duan, Neel Sun-
daresan, Shao Kun Deng, Shengyu Fu, and Shujie
Liu. 2021. Codexglue: A machine learning bench-
mark dataset for code understanding and generation.
CoRR, abs/2102.04664.

Clara Meister and Ryan Cotterell. 2021. Language
model evaluation beyond perplexity.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2023. Codegen: An open large language
model for code with multi-turn program synthesis.

Yusuke Oda, Hiroyuki Fudaba, Graham Neubig,
Hideaki Hata, Sakriani Sakti, Tomoki Toda, and
Satoshi Nakamura. 2015. Learning to generate
pseudo-code from source code using statistical ma-
chine translation. In 2015 30th IEEE/ACM Interna-
tional Conference on Automated Software Engineer-
ing (ASE), pages 574-584.

Byung-Doh Oh, Christian Clark, and William Schuler.
2021. Surprisal estimators for human reading times
need character models. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 3746-3757, Online. Association
for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311-318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu,
Duyu Tang, Neel Sundaresan, Ming Zhou, Ambrosio
Blanco, and Shuai Ma. 2020. Codebleu: a method
for automatic evaluation of code synthesis. CoRR,
abs/2009.10297.

Shuzheng Si, Zefan Cai, Shuang Zeng, Guogiang Feng,
Jiaxing Lin, and Baobao Chang. 2023. SANTA: Sep-
arate strategies for inaccurate and incomplete annota-
tion noise in distantly-supervised named entity recog-
nition. In Findings of the Association for Compu-
tational Linguistics: ACL 2023, pages 3883-3896,
Toronto, Canada. Association for Computational Lin-
guistics.

Chen Sun, Austin Myers, Carl Vondrick, Kevin Mur-
phy, and Cordelia Schmid. 2019. Videobert: A joint
model for video and language representation learning.
CoRR, abs/1904.01766.

Jeffrey Svajlenko, Judith F Islam, Iman Keivanloo,
Chanchal K Roy, and Mohammad Mamun Mia. 2014.
Towards a big data curated benchmark of inter-project
code clones. In 2014 IEEE International Conference
on Software Maintenance and Evolution, pages 476~
480. IEEE.

Trieu H. Trinh, Minh-Thang Luong, and Quoc V. Le.
2019. Selfie: Self-supervised pretraining for image
embedding. CoRR, abs/1906.02940.

Michele Tufano, Cody Watson, Gabriele Bavota, Massi-
miliano Di Penta, Martin White, and Denys Poshy-
vanyk. 2018. An empirical study on learning bug-
fixing patches in the wild via neural machine transla-
tion. CoRR, abs/1812.08693.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
353-355, Brussels, Belgium. Association for Com-
putational Linguistics.

Chaojie Wang, Yuanyuan Chen, Shuqi Zhang, and Qi-
uhui Zhang. 2022. Stock market index prediction
using deep transformer model. Expert Systems with
Applications, 208:118128.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H.
Hoi. 2021. CodeT5: Identifier-aware unified pre-
trained encoder-decoder models for code understand-
ing and generation. In Proceedings of the 2021

http://arxiv.org/abs/2305.06161
http://arxiv.org/abs/2305.06161
http://arxiv.org/abs/2305.06161
https://doi.org/10.18653/v1/P16-1057
https://doi.org/10.18653/v1/P16-1057
https://doi.org/10.18653/v1/P16-1057
http://arxiv.org/abs/2106.00085
http://arxiv.org/abs/2106.00085
http://arxiv.org/abs/2106.00085
http://arxiv.org/abs/2203.13474
http://arxiv.org/abs/2203.13474
http://arxiv.org/abs/2203.13474
https://doi.org/10.1109/ASE.2015.36
https://doi.org/10.1109/ASE.2015.36
https://doi.org/10.1109/ASE.2015.36
https://doi.org/10.1109/ASE.2015.36
https://doi.org/10.1109/ASE.2015.36
https://doi.org/10.18653/v1/2021.acl-long.290
https://doi.org/10.18653/v1/2021.acl-long.290
https://doi.org/10.18653/v1/2021.acl-long.290
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/2009.10297
http://arxiv.org/abs/2009.10297
http://arxiv.org/abs/2009.10297
https://doi.org/10.18653/v1/2023.findings-acl.239
https://doi.org/10.18653/v1/2023.findings-acl.239
https://doi.org/10.18653/v1/2023.findings-acl.239
https://doi.org/10.18653/v1/2023.findings-acl.239
https://doi.org/10.18653/v1/2023.findings-acl.239
https://doi.org/10.18653/v1/2023.findings-acl.239
https://doi.org/10.18653/v1/2023.findings-acl.239
http://arxiv.org/abs/1904.01766
http://arxiv.org/abs/1904.01766
http://arxiv.org/abs/1904.01766
http://arxiv.org/abs/1906.02940
http://arxiv.org/abs/1906.02940
http://arxiv.org/abs/1906.02940
http://arxiv.org/abs/1812.08693
http://arxiv.org/abs/1812.08693
http://arxiv.org/abs/1812.08693
http://arxiv.org/abs/1812.08693
http://arxiv.org/abs/1812.08693
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/https://doi.org/10.1016/j.eswa.2022.118128
https://doi.org/https://doi.org/10.1016/j.eswa.2022.118128
https://doi.org/https://doi.org/10.1016/j.eswa.2022.118128
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685

Conference on Empirical Methods in Natural Lan- The commit message sentence comparison is

guage Processing, pages 8696-8708, Online and 4]0 done with SentenceTransformer and filtered
Punta Cana, Dominican Republic. Association for to below 0.4

Computational Linguistics.

Maksym Zavershynskyi, Alexander Skidanov, and Illia ~ CodeSearchNet metric uses the implementa-

Polosukhin. 2018. NAPS: natural program synthesis tion from Nokia> and is filtered to examples above
dataset. CoRR, abs/1807.03168. 025

Ming Zhu, Aneesh Jain, Karthik Suresh, Roshan Ravin- o .)
dran, Sindhu Tipirneni, and Chandan K. Reddy. 2022. Perplexity is calculated using GPT-2 as in
Xlcost: A benchmark dataset for cross-lingual code huggingface* and is filtered to examples under 15.

intelligence.
Surprisal® was calculated using GPT-2, but

8 Appendix was not utilised in the final process.

The specifics of the filtering are listed below:

Code including the following regex expres-
sion are removed:

copyright

After a preliminary cleaning of commit numbers,
commit messages including the following regex
expressions are removed:

#

->

version

bump
documentation
(ox) N (ox) N\ ()
\x*\x empty log message *\x\x*
readme

fix

error

refactor

commit
(J*%):s(.%):(.*)PM
(o*):(.x):(.x)AM
license

The after code is filtered to be between 5 and 500
lines (inclusive). The number of added must be a
minimum of 1 and a maximum of 15.

Similarity is calculated via sentence- *https://github.com/nokia/codesearch
L : 4 . ;
transformers/all-MiniLM-L6-v2 from huggingface, https://huggingface.co/docs/

transformers/perplexity
and the before code and after code must be greater Shttps://github.com/aalok-sathe/

or equal to 0.8 surprisal

http://arxiv.org/abs/1807.03168
http://arxiv.org/abs/1807.03168
http://arxiv.org/abs/1807.03168
http://arxiv.org/abs/2206.08474
http://arxiv.org/abs/2206.08474
http://arxiv.org/abs/2206.08474
https://github.com/nokia/codesearch
https://huggingface.co/docs/transformers/perplexity
https://huggingface.co/docs/transformers/perplexity
https://github.com/aalok-sathe/surprisal
https://github.com/aalok-sathe/surprisal

	Introduction
	Related Work
	Dataset
	Filtering
	The Final Dataset

	Experiments
	Conclusion
	Limitations
	Ethical Considerations
	Appendix

