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Abstract

The continuous emergence of large language001
models specially capable to deal with program-002
ming languages makes crucial the development003
of better benchmarks that appraise them in004
terms of their skills. In this paper we intro-005
duced CodeMod, the first benchmark dataset006
for code modification. This dataset is evaluated007
both in zero-shot and fine-tuned configurations008
utilizing the most recent Large Language Mod-009
els (LLMs) for code. We also demonstrate its010
usefulness by evaluating the performance of011
fine tuned models in terms of code synthesis012
performance. We show up to 5 points of im-013
provement on pass@1 performance on the Hu-014
manEval benchmark. This new dataset will be a015
new addition to the code benchmark landscape.016

1 Introduction017

The advent of Large Language Models (LLMs)018

has redrawn the landscape of the world of Arti-019

ficial Intelligence. The availability of larger and020

open-source models trained with huge amounts of021

data have pushed capabilities of these models to022

limits that were out of reach just a few years ago.023

Nowadays, LLMs are dealing with more diverse024

data, not limited to general natural language, but025

also domain specific data such as medical (Lee026

et al., 2020), legal (Chalkidis et al., 2020), or fi-027

nancial (Araci, 2019), diverse modalities such as028

images (Trinh et al., 2019; Chen et al., 2021c),029

videos (Sun et al., 2019), stocks prices (Wang et al.,030

2022), proteins (Brandes et al., 2022), etc.031

More recently, there has been an tremendous032

growth in the area of LLMs which are trained033

with data from the programming language do-034

main (Chen et al., 2021a; Nijkamp et al., 2023;035

Li et al., 2023; Si et al., 2023). Several close- and036

open-source models have rushed the community037

showing impressive skill. These models are capa-038

ble of tackling several aspects of the coding domain,039

Figure 1: An excerpt of the expected behaviour of the
code modification task.

such as code synthesis, code translation, code fix- 040

ing, code search, among others. 041

With the growth of code related LLMs, also 042

grows the interests of the development of datasets 043

and benchmarks intended to assess the capabilities 044

of these models. Example of such benchmarks can 045

are CONCODE (Iyer et al., 2018) for code search, 046

CodeSearchNet (Husain et al., 2019) for search an 047

summarisation, HumanEval (Chen et al., 2021b) 048

and MBPP (Austin et al., 2021), for program syn- 049

thesis), XLCoST (Zhu et al., 2022) (code trans- 050

lation), BigCloneBench (Svajlenko et al., 2014) 051

(clone detection), Bugs2Fix (Tufano et al., 2018) 052

(code fixing), and CodeXGlue (Lu et al., 2021), a 053

suite that cluster many of these datasets. 054

Existing datasets that involve code generation 055

fall into this definition: given an input in some 056

modality, generate a piece of code that fits the ex- 057

pected output. Examples of that include text-to- 058
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code generation, code translation, program synthe-059

sis based on unit tests, etc. On another side, code060

repair datasets such as Bugs2Fix, aim at modifying061

the input code by fixing an existing where a bug to062

fix that should be obvious given the context. None063

of these existing datasets provide both training and064

evaluation sets for where the output is a piece of065

code that should result from the input code and a066

natural language description of the modification to067

apply.068

We propose CodeMod, “code modification”069

dataset which is intended to modify an function-070

ing piece of code given a description of the ex-071

pected behaviour. This dataset is closer to multi072

step code synthesis than other text-to-code genera-073

tion datasets such as HumanEval or MBPP.074

Our contributions are threefold: (1) we introduce075

CodeMod, a new dataset for training and evalua-076

tion of Language models for code modification 2)077

we benchmark well known LLMs in both zero-shot078

and fine-tuned configurations 3) We further demon-079

strate that our dataset can be also used to improve080

models capable of program synthesis.081

2 Related Work082

From the past few years there has been a growth in083

the interest to find new and better ways to assess the084

strength of models able to perform program synthe-085

sis. There have been many datasets aim at mapping086

different forms of natural language code. Examples087

of that are Magic the Gathering (MTG) and Hearth-088

stone (HS) introduced by Ling et al. (2016), which089

generated code for cards in Trading Card Games,090

Django (Oda et al., 2015; Ling et al., 2016), which091

was introduced to generate pseudo-code from ac-092

tual Python code, and NAPS (Zavershynskyi et al.,093

2018) and SPoC (Kulal et al., 2019) which do the094

opposite.095

Along with the advent of Large Language Mod-096

els for code, the discipline was popularised among097

the Natural Language Processing community. An098

example of that was the presentation of Code-099

BLEU (Ren et al., 2020), an extension of the popu-100

lar metric BLEU (Papineni et al., 2002) but adapted101

to be used in the coding domain. CodeBLEU ex-102

tends the assessment of a generated piece of code103

not only in terms of word overlap against a refer-104

ence solution, but also considering the syntax and105

the semantics of code, comparing it in terms of the106

Abstract Syntax Tree (AST) and the data-flow of107

the reference solution. Moreover, inspired in recent108

general language understanding benchmarks such 109

as GLUE (Wang et al., 2018) and XTREME (Hu 110

et al., 2020), a new suite, CodeXGlue, was intro- 111

duced by Lu et al. (2021), CodeXGlue consists in 112

a set of benchmarks for both code understanding 113

a generation, ,including 14 tasks, among them the 114

task of text-to-code generation or program synthe- 115

sis. The dataset consists in 100k training instances, 116

and it’s evaluated in terms of BLEU and Code- 117

BLUE. Chen et al. (2021a) introduced HumanEval. 118

This dataset measures functional correctness for 119

synthesizing programs from docstrings. It con- 120

sists of 164 original programming problems writ- 121

ten in Python, assessing language comprehension, 122

algorithms, and simple mathematics, with some 123

comparable to simple software interview questions. 124

It benchmarks models based on the capacity to 125

pass unit tests that check for the correct execu- 126

tion of the function. Soon after the introduction of 127

HumanEval, MBPP was presented (Austin et al., 128

2021). The Mostly Basic Programming Problems 129

(MBPP) dataset, is similar is similar to the for- 130

mer, but include a much larger set of problems 131

(974 in total) and in addition to the ability to be 132

used both in a few-shot and fine-tuned configura- 133

tion. More recently Nijkamp et al. (2023) intro- 134

duced MTPB (Multi-Turn Programming Bench- 135

mark). MTPB consists of 115 handcrafted prob- 136

lems, each of which includes a multi-step descrip- 137

tions in natural language (prompt). Contrary to 138

the previous datasets, to solve a problem, a model 139

needs to synthesize functionally correct subpro- 140

grams following the description at the current step 141

and considering descriptions and synthesized sub- 142

programs at previous steps. 143

3 Dataset 144

In this section we explain the process we applied to 145

create the CodeMod dataset. It consists of several 146

filtering steps to guarantee the quality and useful- 147

ness of the resulting instances. 148

3.1 Filtering 149

The raw data for CodeMod consists of git commits 150

taken from StarCoder (Li et al., 2023), which is 151

gathered from BigQuery1. Only single-file com- 152

mits of repositories with the same licenses and file 153

extension as used in The Stack (Kocetkov et al., 154

2022) are used. All repositories from users that 155

1https://cloud.google.com/bigquery/
public-data/
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Model BLEU

baseline 88.15

zero-shot

starcoderbase-1b 28.88
santacoder 20.98
codet5p-770m 4.51

fine-tuned

starcoderbase-1b 92.47
santacoder 81.83
codet5p-770m 76.79

Table 1: Zero shot and finetuned evaluation on the Code-
Mod Dataset

have opted out of The Stack are removed. Star-156

Coder already employs some filters to the commits157

as described in their paper. Notably, excessively158

long files are removed, and JSON, YAML, XML159

and HTML are subsampled. These languages are160

mostly removed from this dataset, due to the abun-161

dance of documentation using these formats.162

By employing additional filtering processes to163

this data, a higher quality corpus of code pairs is ob-164

tained. These pairs consist of before code and some165

modified after code, with a related commit message.166

The modification made should be a change in func-167

tionality to working code, not a fix/repair to broken168

or dysfunctional code.169

A number of filters targeting certain words are170

added to remove non-useful messages i.e. "fix"171

to remove examples of code repair. Additionally172

some basic filters e.g. the maximum length of the173

file are applied. A summary of the basic filters174

and the removed terms, with a short justification, is175

provided in the Appendix.176

Commit messages of less than 9 words are re-177

moved to improve quality, as longer messages are178

more verbose and tend to include more specific179

information describing the change than those with180

less words.181

The similarity (Reimers and Gurevych, 2019)182

of the before and after code is measured, and183

filtered so that the before and after code are not184

too dissimilar. In addition, a minimum of 1 and185

a maximum of 15 lines of code can be added or186

modified (complete removal of a line does not187

count as a modified). Overly large refactoring of188

code is considered to be closer to generation of189

Model BLEU

baseline 88.15

zero-shot

Starchat-beta 66.19
CodeLlama-34b-Instruct-hf 85.43
GPT3.5 71.21

Table 2: Zero shot evaluation of Larger models on the
CodeMod Dataset

new code than a modification to functionality. 190

191

In order to remove messages that hold low 192

information, a few metrics are taken. 193

The perplexity (Meister and Cotterell, 2021) of 194

the commit message is measured against the cor- 195

responding ’after’ example of code. If the com- 196

mit message describes the change, the perplexity 197

should be lower due to sharing relevant terms and 198

semantics. 199

Similarly, a metric that measures the similarity 200

docstrings and codes is used (Husain et al., 2019; 201

Lu et al., 2021). In this work, the similarity be- 202

tween the commit message and the code is used. 203

The commit message, if high in quality, should 204

show some resemblance to a natural language query 205

that someone might use to search for the associated 206

piece of code. This includes features such as use of 207

specific words/names or numbers and description 208

of functionality. 209

The commit message is also compared to some 210

chosen sample sentences via SentenceTransformer 211

(see below). 212

’Fixed a bug in the code’ 213

’initial commit’ 214

’Updated date and time’ 215

If the commit message shows very high simi- 216

larity to the provided sentences, they are removed 217

for lack of relevant information, as a message with 218

more specific knowledge would separate itself from 219

those with low semantic value. This is effective at 220

removing trivial commits but not narrowing down 221

to higher quality samples. 222

A few other metrics were measured, e.g. sur- 223

prisal (Oh et al., 2021) of the commit message and 224

the number of modified lines, but these provided 225

little information as evident by their very sharp dis- 226
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Model ZS FT

codet5p-770m 15.24 18.90
starcoderbase-1b 15.17 20.12
santacoder 18.29 21.95

Table 3: Performance on HumanEval pass@1, ZS: zero-
shot and FT, after finetuning with CodeMod

tributions, which provide no meaningful threshold227

from which to filter. Correlation between metrics is228

also measured to investigate whether any of them229

used are performing identical tasks. None of the230

metrics show statistically significant correlation to-231

ward one another and so the chosen metrics should232

be justified in their combined use as separate val-233

ues.234

3.2 The Final Dataset235

The final dataset consists of 52,171 examples from236

the original 7.6 million from the raw data. It is237

packaged in a parquet in an identical format to the238

original data, shown here:239

240

241

242

The distribution of programming languages in243

the final dataset is uncertain due to the raw data not244

providing filenames or any other relevant metadata.245

Some approximation is made utilising GuessLang246
2, with the most common languages being Python,247

followed by Java, Javacript and C.248

4 Experiments249

To validate the quality / usefulness of the dataset, 3250

models were finetuned using a shortened version of251

the dataset. The shortening consists of taking only252

examples in which the after code is under 1000253

characters in length. This is done to accomodate254

the relatively small context windows of the models.255

The models include, starcoderbase-1b (Li et al.,256

2023), santacoder (Si et al., 2023) and codet5p-257

770m (Wang et al., 2021). In all cases the entire258

model was trained. We show improved BLEU re-259

sults using the dataset for evaluation against a base-260

line using the before code and the after code.261

The results show such a large improvement over262

the zero shot as the before and after code shares263

2https://github.com/yoeo/guesslang

much similarity. As such the model will greatly 264

improve its results as it learns to copy over code. 265

Due to the commit message, the model does make 266

changes to the code, in many cases to its own detri- 267

ment. StarCoder (1 billion parameters) manages to 268

improve over the baseline by adding useful informa- 269

tion from the commit message into the code. While 270

a small improvement, it is significantly better than 271

santacoder and codet5p-770m. Santacoder may be 272

a more capable model than the results suggest, as 273

it is trained only on Python, Java and Javascript 274

which may explain the discrepancy. They are all 275

trained for the same number of steps, but due to 276

their performance compared to baseline may be 277

undertrained, or simply failing to learn due to the 278

consistently large length of the corpus. 279

The zero shot evaluation is done on a smaller ran- 280

domly sampled subset of the data, and may need a 281

better prompting strategy as sometimes the model 282

will not reproduce the entire code but only return a 283

changed snippet. The larger models do a much bet- 284

ter job of maintaining the original code, and adding 285

less unnecessary changes. They do however, espe- 286

cially gpt3.5, add comments where there otherwise 287

would not, in turn lowering the BLEU score. 288

The HumanEval (Python) scores improve by a 289

few points across the board, it is worth noting that 290

all 3 models are non-instruction tuned and that San- 291

taCoder is trained on Python, Java and Javascript 292

only. 293

5 Conclusion 294

In this work we comment about the existing 295

datasets for evaluation of Large Language mod- 296

els for code. We assess their limitation and present 297

CodeMod, a new dataset and benchmark for the 298

evaluation of code synthesis task where the ex- 299

pected output is a modified version of the input. 300

Our contributions are: i) We describe the process 301

for extraction and filtering of the CodeMod dataset 302

based on existing commit information extracted 303

from open source repositories. ii) We show that 304

our benchmark is useful both in zero-shot and fine 305

tune configurations, showing that is challenging 306

for established LLM for code. iii) we proved that 307

our dataset is also useful as training signal for the 308

task of code synthesis, showing up to 5 points of 309

improvement on HumanEval performance. 310
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6 Limitations311

Presented in a short paper, the current work is lim-312

ited in all the experimentation that could have been313

included. The main limitation we see is the eval-314

uation of CodeMod is limited to be benchmarked315

in terms of BLEU score. While Pass@k metric,316

popularized by Chen et al. (2021a) is the dominant317

metric these days, the lack of proper unit test for318

most of the original source code made the evalua-319

tion in those terms, unfeasible.320

7 Ethical Considerations321

This research piece introduces a new resource322

meant to improve performance of Large Language323

Models for Code. Although this work do not deal324

with datasets or tasks which might be ethically con-325

cerning the medical domain, the authors recognize326

that any work that aims to automatize tasks which327

are currently carried out almost exclusively by hu-328

mans should be of particular ethical interest. We329

recognize that better language models, in particular330

on the coding domain, might constitute a risk for331

future jobs positions, in particular for those who332

are just starting a career in software engineering.333
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8 Appendix543

The specifics of the filtering are listed below:544

545

Code including the following regex expres-546

sion are removed:547

---548

===549

\[(.*)\]\((.*)\)550

</p>551

</div>552

\.\.(.*)\:\:553

copyright554

After a preliminary cleaning of commit numbers,555

commit messages including the following regex556

expressions are removed:557

#558

->559

version560

bump561

documentation562

(.*)\.(.*)\.(.*)563

\*\*\* empty log message \*\*\*564

readme565

fix566

error567

refactor568

commit569

(.*):(.*):(.*)PM570

(.*):(.*):(.*)AM571

license572

The after code is filtered to be between 5 and 500573

lines (inclusive). The number of added must be a574

minimum of 1 and a maximum of 15.575

576

Similarity is calculated via sentence-577

transformers/all-MiniLM-L6-v2 from huggingface,578

and the before code and after code must be greater579

or equal to 0.8580

The commit message sentence comparison is 581

also done with SentenceTransformer and filtered 582

to below 0.4 583

584

CodeSearchNet metric uses the implementa- 585

tion from Nokia3 and is filtered to examples above 586

0.25 587

588

Perplexity is calculated using GPT-2 as in 589

huggingface4 and is filtered to examples under 15. 590

591

Surprisal5 was calculated using GPT-2, but 592

was not utilised in the final process. 593

3https://github.com/nokia/codesearch
4https://huggingface.co/docs/

transformers/perplexity
5https://github.com/aalok-sathe/

surprisal
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