
EddyFormer: Accelerated Neural Simulations
of Three-Dimensional Turbulence at Scale

Yiheng Du
UC Berkeley

yihengdu@berkeley.edu

Aditi S. Krishnapriyan
UC Berkeley, LBNL

aditik1@berkeley.edu

Abstract

Computationally resolving turbulence remains a central challenge in fluid dynamics
due to its multi-scale interactions. Fully resolving large-scale turbulence through
direct numerical simulation (DNS) is computationally prohibitive, motivating data-
driven machine learning alternatives. In this work, we propose EddyFormer, a
Transformer-based spectral-element (SEM) architecture for large-scale turbulence
simulation that combines the accuracy of spectral methods with the scalability of
the attention mechanism. We introduce an SEM tokenization that decomposes the
flow into grid-scale and subgrid-scale components, enabling capture of both local
and global features. We create a new three-dimensional isotropic turbulence dataset
and train EddyFormer to achieves DNS-level accuracy at 2563 resolution, providing
a 30x speedup over DNS. When applied to unseen domains up to 4x larger than
in training, EddyFormer preserves accuracy on physics-invariant metrics—energy
spectra, correlation functions, and structure functions—showing domain gener-
alization. On The Well benchmark suite of diverse turbulent flows, EddyFormer
resolves cases where prior ML models fail to converge, accurately reproducing
complex dynamics across a wide range of physical conditions.

1 Introduction

Numerical simulation of fluid systems is essential for understanding and predicting complex flow
phenomena [Van Dyke, 1982] in engineering and the natural sciences. Many critical applications,
such as aerodynamics and weather forecast, rely on computational fluid dynamics (CFD) to simulate
these flows. However, capturing flow patterns in turbulent flows [Pope, 2001] remains a fundamental
challenge. In turbulence, eddies—coherent swirling structures—continuously interact and transfer
energy across a wide range of length scales. The extent of these scales is determined by the Reynolds
number, Re, a dimensionless quantity which represents the ratio of inertial to viscous forces. Fully
resolving a turbulent flow requires Re9/4 resolution, making DNS prohibitively expensive at high
Reynolds number [Moin and Mahesh, 1998], even with supercomputers [Yeung et al., 2012, 2015].

Turbulence exhibits a characteristic cascade: energy is injected at large scales, transferred through the
inertial range, and dissipated at the smallest scales where viscosity dominates. Statistical descriptions
of turbulence assumes that the smallest scales become independent of the large-scale flow structures,
which is known as the Kolmogorov’s similarity hypothesis [Pope, 2001]:

At sufficiently high Reynolds number, the statistics of small-scale motions have a
universal form that is uniquely determined by viscosity and energy dissipation rate.

Based on this principle, large-eddy simulation [Smagorinsky, 1963] (LES) resolves only the large-
scale structures while using theoretical models on smaller, subgrid scales (SGS). By filtering the
governing equations, LES captures dominant flow features while relying on “closure” models to ap-
proximate unresolved dynamics at SGS. Despite its successes, LES faces challenges in wall-bounded
and anisotropic turbulence [Piomelli, 1999], particularly in balancing accuracy and efficiency.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Simulation time: 152 sec. Simulation time: 4.86 sec.

(a) 2563 numerical solution (16.3% L2 error). (b) EddyFormer’s prediction (18.2% L2 error).

Figure 1: Vorticity magnitude of forced turbulence with Reynolds no. Re ≈ 94 at t = 5. EddyFormer
reproduces the accuracy level and invariant flow statistics of a direct numerical simulation (DNS)
at 2563 resolution, computed with highly efficient pseudo-spectral schemes [Canuto, 2007]. The
reported L2 error is measured against a reference DNS at 3843 resolution. When benchmarked on a
single NVIDIA A100 GPU, EddyFormer is 30x faster, achieving essentially real-time simulations.

Recent trends in ML have explored data-driven turbulence simulation [Li et al., 2020, Kochkov
et al., 2021], with spectral-based neural network surrogates showing promising accuracy. Similar to
spectral methods [Canuto, 2007], they approximate the solution using spectral bases and parameterize
the dynamics through spectral transformations. For example, Fourier neural operators (FNOs) [Li
et al., 2020] provide an expressive model for learning mappings on structured grids. However,
scaling them to large problems with a wide range of fine-scale eddy dynamics remains challenging,
as parameterizing large Fourier kernels is inefficient [Qin et al., 2024]. Likewise, Transformer
architectures [Vaswani et al., 2017] face certain obstacles in fluid systems, as the quadratic growth of
attention with mesh resolution may constrain their scalability in practice. These limitations suggest
exploring architectures that balance efficiency with scalability to handle large-scale turbulence.

Our contributions. We propose EddyFormer, a machine learning model for large-scale fluid flow
simulation that captures multi-scale interactions through learned representations of the flow. The
input is tokenized using the spectral/hp element method (SEM) [Karniadakis and Sherwin, 2005],
which partitions the domain into coarse elements with spectral expansions in each subdomain. This
tokenization combines the strengths of spectral modeling and scalability: local spectral expansions
provide highly expressive representations, while each coarse element, i.e., a SEM token, yields a
compact sequence that makes the attention mechanism efficient for capturing long-range interactions.

EddyFormer consists of two complementary streams: an SGS stream (§3.1), which captures localized
eddy interactions; and an LES stream (§3.2), which models global, coherent structures. The LES
stream is parameterized using multi-head attention applied to the filtered SEM tokens, significantly
reducing computational complexity compared to self-attention on the full mesh. For the SGS stream,
the Kolmogorov hypothesis suggests that small-scale dynamics can be modeled universally. We use
spectral convolutions with a localized kernel to model the subgrid-scale dynamics.

EddyFormer demonstrates strong performance across a wide range of fluid flow problems, outperform-
ing state-of-the-art ML models, as well as efficient numerical solvers at the same level of accuracy.
For three-dimensional isotropic turbulence (§4.1, Fig. 1), EddyFormer achieves the accuracy of direct
numerical simulation (DNS) at 2563 resolution while running 30× faster, reducing error by 30%
compared to neural operator and Transformer baselines. When trained on two-dimensional turbulence
(§4.2), it generalizes to domains up to four times larger than those seen in training by applying
attention masking at test time, suggesting it learns domain-independent flow dynamics that can be
adapted to general domain geometries. Benchmarks on other turbulent flows from The Well Ohana
et al. [2025] (§4.3) show that EddyFormer accurately resolves turbulence driven by a wide range of
physical conditions, including cases where other ML baselines fail to converge.

2

Related works. We briefly review ML approaches for turbulence here, with a more comprehensive
survey of Transformer-based models and application domains presented in §A. Early attempts focused
on learning data-driven turbulence closures for Reynolds-averaged Navier-Stokes (RANS)[Tracey
et al., 2015, Ling et al., 2016] and large-eddy simulation (LES) [Beck et al., 2018, Font et al., 2021,
List et al., 2022]. Wang et al. [2020] adopted the LES decomposition and modeled the mean and
fluctuating fields separately. More recent works instead focus on direct simulation of turbulent
flows using advanced neural networks architectures [Li et al., 2020, Tran et al., 2021, Wen et al.,
2022, Kossaifi et al., 2023], showing promise but not yet consistently matching the accuracy of
numerical solvers [Spalart, 2023, McGreivy and Hakim, 2024]. A promising alternative, “learned
correction” [Kochkov et al., 2021, Shankar et al., 2025], uses low-accuracy solvers to improve
accuracy. However, most previous works remain limited to small-scale two-dimensional flows.

2 Background

The Navier-Stokes (NS) equations [Kundu et al., 2024] describe the conservation of mass, momentum,
and energy in fluid systems, capturing flows in a wide range of physical conditions. We focus on the
incompressible flow described by the Boussinesq approximation for negligible density variations:

∂u

∂t
+ u · ∇u = ν∇2u− 1

ρ0
∇p,

∇ · u = 0,

(1)

where u(t;x, y, z) ∈ R3 is the velocity field on a domain Ω, ρ is the fluid density, ∇p is the pressure
gradient, and ν is the kinematic viscosity. Given the initial velocity field u(0; ·) and certain boundary
conditions on u and p, the task is to simulate the field u(t; ·) at a later time step t.

Large-eddy simulation. We adopt the methodology of large-eddy simulation (LES) in our model
architecture. Classical LES aims to directly simulate the large-scale unsteady turbulent motions, while
modeling the effects of small motions in theory. Given a (spatial) filter G(·, ·) on Ω, the velocity field
u(t; ·) is decomposed into its filtered field ū(t; ·) := G ∗ u(t; ·), and the corresponding subgrid-scale
field (SGS) u′ = u− ū. The filtered velocity field ū is governed by the filtered momentum equation,

∂ū

∂t
+ ū · ∇ū = ν∇2ū−∇ · τ − 1

ρ0
∇p̄, (2)

where τij := uiuj − ūiūj is the residual stress (or SGS) tensor. This filtered equation is unclosed,
in terms of the SGS tensor being approximated based on the filter G and the filtered field ū. Many
classical turbulence models express τ as an eddy viscosity τij ≈ −2νtS̄ij , where S̄ is the resolved
strain rate tensor and νt is the eddy viscosity to be modeled by the corresponding SGS model.

Spectral element method. We use the standard spectral element method (SEM) to parameterize the
solution field u(t; ·). The physical domain Ω is discretized into H structured elements Ω = ∪h≤HΩh,
where each element Ωh is mapped to an unit cube through a geometric transformation. We assume a
uniform mesh with cell size ∆ and denote the local coordinates on Ωh as 0 ≤ ξxh, ξ

y
h, ξ

z
h ≤ 1.

The local field uh(t; ξh) on Ωh is expanded using higher-order bases. Let {ϕm}m be a set of one-
dimensional basis on [0, 1], their full tensor product forms a multi-dimensional basis set Φp(ξ) :=
Πiϕpi

(ξi). The local field uh(t; ·) is then approximated as,

uh(t; ξh) =
∑

|p|≤M

ũt
hpΦp(ξh), (3)

where ũt
h ∈ R3M3

are the expansion coefficients of the h’th element. In contrast to spectral methods,
the standard spectral basis must be modified to enforce a certain order of continuity across the element
boundaries. In this work, we consider C0-continuous boundary-interior decomposition. Given a set
of orthogonal polynomials1 {pm}m, their corresponding modal p-type basis is defined as,

ϕm(ξ) =


1− ξ m = 0,

(ξ−ξ2)pm−1(ξ) 0<m<M,

ξ m = M,

(4)

where ϕ0 and ϕM are the shared left and right boundary modes, respectively.
1In this work, we implement the (shifted) Chebyshev polynomials Tm(x) = cos(m arccos(2x− 1)), and

the Legendre polynomials Pm(x) = 1
2mm!

dm

dxm (x2 − 2x)m, as the orthogonal polynomial set pm.

3

SEMConv SEMConv

SEMAttn

Element-
wise MLP

Element-
wise MLP

SEMConvSEMConvSEMConv

LayerNormLayerNorm

RoPERotary PE

Global
 coords.

Self-attention
on local coords.

Linear

H

(c) SEMAttn block(b) SEMConv block

x L

(a) EddyFormer architecture

Large-eddy scale Sub-grid scale

K Q V

Linear Linear

Numerical convolution

Kernel coef. Pad

Concat

b(x)

y, z

uLES uSGS

x

x

Gaussian
quadrature

weights

Figure 2: Our proposed architecture: EddyFormer. (a) The PDE initial conditions are interpolated
using spectral element methods (SEM). The large-eddy simulation (LES) field and subgrid-scale
(SGS) field are transformed through the LES stream (§3.2) and SGS stream (§3.1), respectively. The
SGS stream consists of (b) SEM-based convolution blocks to model local eddy dynamics, while the
LES stream consists of (c) SEM-based attention blocks to capture long-range dependencies.

3 Model design choices for EddyFormer

We introduce the EddyFormer architecture (Fig. 2). EddyFormer parameterizes the solution field
using SEM bases defined in Eqn. (3). For a fixed domain discretization Ω = ∪hΩh with H =N3

elements and P =M3 modes per element, EddyFormer maps the spectral representation of the initial
condition u0 to the prediction u(t; ·) at a fixed time t, based on a chosen SEM basis Φ:

u(0;) =
∑

|p|≤M

ũ0
hpΦp 7→

∑
|p|≤M

ũt
hpΦp = u(t; ·) on Ωh, (5)

where ũt ∈ R3N3M3

is the output of the model.

EddyFormer decomposes the output as the sum of an LES-filtered part uLES and the residual field
uSGS. The residual coefficients ũSGS are unfiltered and parameterized by an SGS stream (§3.1).
For the LES filter, we simply use a spectral cutoff filter with kmax < M modes on each axis,
parameterizing the LES-filtered coefficients ũLES ∈ R3N3k3

max by an LES stream (§3.2). In §C.2.1,
we perform an ablation study on the LES-SGS splitting with different kmax to verify its effectiveness.

SGS stream: u(0) → u(1) → . . .→ u(L) → uSGS

LES stream: ū(0) → ū(1) → . . .→ ū(L) → uLES

}
−→ u = uLES + uSGS. (6)

3.1 SGS stream for local motions

The input is first interpolated onto the chosen SEM basis Φ, and then projected to the initial feature,
u(0) = Winu(0; ·), and the output is the projection of the final feature, uSGS = WSGSu

(L). In each
layer l, the locals fields u(l)

h receive information from the LES stream and then perform convolutions:

u
(l+1)
h = u

(l)
h + FFN(SEMConvh(u

(l)
h + ϵ ū

(l)
h)), (7)

where FFN is a two-layer feed-forward network applied on the collocation points independently, and
ϵ is a learnable scalar. SEMConv is our SEM-based convolution block, as introduced below.

SEM-based convolution. We extend the powerful spectral convolution [Li et al., 2020] as the basic
block in our architecture. The SEMConv block parameterizes convolution in SEM bases. For a given

4

field u with d components, we parameterize its convolution with a compact kernel k that is supported
on a window of size s,

SEMConv(u)(x′) =

∫
|x|≤s/2

k(x)u(x′ − x)T dx. (8)

Note that s > 0 is a hyperparameter to be determined. We found that a small value of s (compared to
the domain length-scale) is usually expressive enough. Due to the success of Fourier factorization
techniques [Tran et al., 2021], we also restrict the convolution kernel to axial form,

k(x, y, z) =
∑
m

k̃m[eiπmx/s eiπmy/s eiπmz/s]T , (9)

where k̃m ∈ Cd×d×3 are the learnable Fourier coefficients. The convolution is computed by directly
evaluating Eqn. (8) using numerical quadrature rules (see Algorithm 1). Since the number of modes
per element is small compared to the total number of modes, the computational cost of SEMConv
remains comparable to that of FFT-based convolution with global kernels (see Tab. 1 for comparison).

Inclusion of LES features. The inclusion of LES features in the SGS stream, Eqn. (7), is justified
by the turbulence cascade. Large eddies transport the turbulent kinetic energy downwards, while
smaller eddies primarily dissipate that energy. Classical closures—such as Smagorinsky [1963] and
Spalart and Allmaras [1992]—reflect this hierarchy by parameterizing subgrid stress τ in Eqn. (2)
using the resolved large-scale flow field. Similarly, we also find that the inclusion of LES features
into the SGS features is crucial for EddyFormer’s performance, but not vice versa.

3.2 LES stream for global motions

The initial LES feature ū(0) is spectrally truncated to kmax modes, and the output is the projection of
the final feature, uLES = WLESū

(L). The local fields ū(l)
h are regarded as SEM tokens. In each layer l,

the SEM tokens are globally mixed with other tokens first, and then locally transformed. Specifically,

ū
(l)
h ← ū

(l)
h + SEMAttnh(ū

(l)),

ū
(l+1)
h = ū

(l)
h + FFN(SEMConvh(ū

(l))),
(10)

where SEMAttn is our SEM-based self-attention block, which we introduce below.

SEM-based attention. We utilize the attention mechanism to model interactions between SEM
tokens. In SEMAttn, the SEM tokens ū(l)

h are mixed based on their local coordinates. Specifically,
these features are projected using convolutions, ūQ/K/V = SEMConvQ/K/V(ū(l)), and the SEMAttn
is defined by mixing all features on the same local coordinate ξ using self-attention mechanism,

SEMAttnh(ū
(l))(ξ) =

∑
h′≤H

SoftMaxh′(ūQ
h (ξ) · ū

K
h′(ξ)) ūV

h′(ξ), (11)

which is implemented by performing self-attention on each collocation point independently. Note
that SEMAttn strictly preserves the continuity of the input features, regardless of the discretization
scheme of SEM representation. Similar to standard Transformers, we also add learnable bias terms,
apply layer normalization2, and perform position encoding to the key and query features.

In contrast to mesh-based Transformers, the sequence length, or the number of SEM tokens, equals the
number of spectral elements N3, which is orders of magnitude smaller than the number of resolved
modes N3M3. This avoids the unfavorable quadratic scaling of standard attention mechanism.

Rotary position encoding. While vision Transformers [Dosovitskiy et al., 2020] are insensitive
to position encoding, we find that turbulence simulation relies on substantial positional information
in SEMAttn. Inspired by Su et al. [2024], we rotate the key and query fields based on their global
coordinates, namely, for the k’th channel, the rotation along x axis is defined by,

ū
Q/K
h,2k(x, y, z)← cos(kx)ū

Q/K
h,2k(x, y, z)− sin(kx)ū

Q/K
h,2k+1(x, y, z),

ū
Q/K
h,2k+1(x, y, z)← sin(kx)ū

Q/K
h,2k(x, y, z) + cos(kx)ū

Q/K
h,2k+1(x, y, z).

(12)

The rotation along y and z axes are similar, and the final results are concatenated together. Due to the
properties of rotation, it’s apparent that the SEMAttn layer is also strictly translational invariant.

2We don’t apply normalization on any other hidden features, since it was found to hurt model performance.
In order to regularize gradients, we initialize all convolution kernels with a random variable of magnitude 10−7.

5

Figure 3: Performance of models and DNS on Re94 (§4.1), a 3D homogeneous isotropic turbulence
fluid flow. The models learn to correct DNS at 963 resolution, and we report evaluation metrics
relative to a reference DNS at 3843 resolution. EddyFormer achieves the accuracy of DNS at 2563
resolution in terms of (a) relative L2 error for t ≤ 5 and (b) correlation for 5 ≤ t ≤ 10 which
measures field similarities; for (c) longer prediction rollouts up to 20 seconds, EddyFormer also
captures the third-order structure function, Eqn. (18), which measures the velocity skewness and
indicates the energy transfer across different scales. In contrast, the baseline F-FNO shows higher
rollout error and a mismatched structure function.

4 Experiments

The implementation (§C) and dataset used by EddyFormer is publicly available at https://github.
com/ASK-Berkeley/EddyFormer. In §4.1 and §4.2, we consider two- and three-dimensional homoge-
neous turbulence that are maintained by an artificial forcing. We evaluate the models using a set of
comprehensive metrics (see §B for details). In §4.3, we benchmark EddyFormer on The Well [Ohana
et al., 2025], a large-scale fluid simulation dataset under diverse flow conditions.

4.1 Homogeneous isotropic turbulence

We consider three-dimensional homogeneous isotropic turbulence, Re94 . We use an isotropic forcing
scheme on the lowest Fourier modes, which has been extensively used in turbulence modeling [Lang-
ford and Moser, 1999, Bazilevs et al., 2007, Yeung et al., 2015]. Specifically, a constant power
forcing f(x) is applied on the lowest velocity modes |k| ≤ 1, in order to maintain the turbulence:

∂u

∂t
+ u · ∇u = ν∇2u+ f(x), f(x) =

∑
|k|≤1,k ̸=0

Pin

E1
ûke

ik·x, (13)

where ν = 0.01 is the kinematic viscosity, Pin = 1.0 is the input power, and E1 = 1
2

∑
|k|≤1 ûk ·ûk

is the kinetic energy in lowest forced modes where |k| ≤ 1. The task is to predict the velocity field u
after ∆t = 0.5. This flow (see Fig. 1 for vorticity rendering) at equilibrium has Reynolds number
Re ≈ 94 at Taylor microscale. The dataset is recorded at 964 resolution. We generate the dataset
using a high-accuracy pseudo-spectral direct numerical simulation (DNS) at 3843 resolution, which
corresponds to a Kolmogorov scale of 0.5η. Detailed dataset and flow statistics can be found in §B.

For EddyFormer, we use 83 elements and 133 modes per element, resulting in approximatly ∼ 0.1%
interpolation error on Re94 . Detailed model architecture is described in Tab. 7. The LES filter size is
set to kmax = 5 in order to balance accuracy and efficiency (see §C.2.1 for ablations on kmax).

Direct prediction (“pure ML”) benchmark. We first benchmark EddyFormer in a purely learned
setting, where the task is to directly predict the one-step velocity field u without using any coarse
initial guess from a numerical solver. Baseline models include the classic ResNet [He et al., 2016], TF-
Net [Wang et al., 2020] which performs filter-based splitting, the popular neural operators (FNO [Li
et al., 2020] and F-FNO Tran et al. [2021]), and competitive Transformers for partial differential
equations (GNOT [Hao et al., 2023] and AViT [McCabe et al., 2023]).

6

https://github.com/ASK-Berkeley/EddyFormer
https://github.com/ASK-Berkeley/EddyFormer

(a) 3843 numerical solution. (b) EddyFormer’s prediction. (c) F-FNO’s prediction.

Figure 4: Visualization of the Q-criterion for a Re94 (§4.1) test sample at t = 5. The Q-criterion,
Eqn. (19), identifies vortex structures where rotational motion dominates over strain, with the red
volume in (a) reference DNS solution highlighting the vortex cores; (b) EddyFormer successfully
captures both vortex cores, while (c) F-FNO fails to resolve the vortex at the center of the domain.

Every model is trained for 15k steps using the time-averaged one-step relative error,

Lθ = Et,u0
[∥ut+∆t − fθ(ut)∥/∥ut+∆t∥], (14)

where fθ is a neural network parameterized by θ. Training details and loss curves for different models
can be found in §C.2. Tab. 1 compares the one-step error and the training speed of each model.
EddyFormer achieves lower test errors, combined with a compact model size and competitive training
speed, outperforming all other baseline models.

Table 1: Direct prediction on Re94 : model size, training time per iteration, and one-step relative
error. EF (cheb) and EF (leg) stands for our model EddyFormer with Chebyshev and Legendre basis.

ResNet TF-Net FNO F-FNO GNOT AViT EF (cheb) EF (leg)

of params. 2.3M 6.3M 17.6M 1.7M 6.2M 6.0M 2.3M 2.3M
Train speed 1.2s/it 3.0s/it 1.5s/it 1.5s/it 7.4s/it 1.0s/it 2.7s/it 1.8s/it

Test error 87.2% 27.7% 23.1% 22.5% 69.7% 26.6% 8.61% 8.52%

Learned correction from a coarse numerical solver. Next, we use the learned correction (“hybrid
model”) approach [Kochkov et al., 2021], which uses the output of a low-resolution DNS as an
efficient initial solution and trains the model to predict the missing fine-scale information. This
provides a good starting point for ML. The model additionally receives the output, u∗

t+∆t, of a coarse
solver, and predicts its error with respect to the high-resolution reference data ut+∆t. Similarly, the
loss function is also defined as the time-averaged relative L2 error,

Lθ = Et,u0
∥ut+∆t − LCθ(ut,u

∗
t+∆t)∥/∥ut+∆t∥, (15)

where LCθ(u,u
∗) = u∗ + αfθ(u,u

∗) is the correction on the coarse solution u∗. Here, we choose
α = 10−5, which corresponds to an a priori estimate of the coarse solver’s error. In practice, we find
that model performance is not very sensitive to the α value.

For baseline comparison, we only consider F-FNO since it was the best baseline in the direct
prediction benchmark. All models learn to correct DNS at 963 resolution, which under-resolves the
Kolmogorov scale η by a ratio of 2. Each model is trained for 15k steps on four NVIDIA A100 GPUs,
taking approximately one day wall-clock time to converge.

Results. Fig.3 shows the errors and invariant measures for both models, alongside DNS results at
different resolutions. On the test set, EddyFormer matches the accuracy of DNS at 2563 resolution
both the within trained window (Fig. 3a) and at later time steps (Fig. 3b), while accurately capturing
the invariant structure functions over longer rollouts (Fig. 3c). EddyFormer also successfully predicts
all characteristic vortices (Fig. 4), preserving both the shape and spatial coherence of highly rotational
eddies.

7

Attention mask

Tested domain

Trained domain

Figure 5: (Left) Illustration of how EddyFormer generalizes to larger domains. Trained on a smaller
domain, EddyFormer predicts the flow field on a larger domain by applying an attention mask that
ensures consistency with the training setup. The context window of each SEM token is constrained
to a square of length 2π, maintaining consistency between training and test times. (Right) Model
evaluation on both 2x and 4x larger domains of KF4 (§4.2). The scaled energy spectra, Eqn. (17), of
the EddyFormer’s predictions align closely with the reference high-resolution DNS, while F-FNO
does not capture this and shows deviation in high-frequency modes.

Table 2: Simulation times of Re94 and errors w.r.t
the reference DNS at 3843 resolution. EddyFormer
corrects the pseudo-spectral DNS at 963 resolution.

DNS 963 DNS 2563 EF (leg)

Error at t = 5 55.9% 16.3% 18.2%
Inference time 3.51s 152s 4.86s

In addition to its accuracy, EddyFormer offers
computational benefit. At test time, it only
adds ∼ 50% extra computational cost to the
base DNS at 963 resolution, accelerating the
simulation by 30-fold on a single GPU (includ-
ing the cost of the coarse DNS, as shown in
Fig. 1), and is comparable to a high-accuracy
DNS at 2563 resolution. This speed-up allows
for almost real-time high-accuracy simulations on Re94 , enabling long-time ensemble rollouts that
would otherwise be computationally expensive with high-resolution DNS.

4.2 Kolmogorov flow

We also consider the “Kolmogorov” flow KF4 , another very popular model for studying turbulence
in two dimensions. We use the scalar vorticity form of the Navier-Stokes equation:

∂ω

∂t
+ u · ∇ω = ν∇2ω + k cos(kx)− 0.1ω, (16)

where ω is the vorticity on z-axis. The energy is injected by a sinusoidal forcing f(x, y) = sin(kx)êy
on periodic domain of length 2π. Following Kochkov et al. [2021], we set the forcing mode k = 4,
the viscosity ν = 10−3, and add a damping term −0.1u to prevent energy accumulation at the lowest
modes [Chertkov et al., 2007]. The task is to predict the vorticity field ω after ∆t = 1.

We set the forcing mode k = 4 and use the vorticity form of the equation. The resulting flow at
equilibrium has a Reynolds number Re ≈ 800 at Taylor microscale. The dataset is generated using a
40962 pseudo-spectral DNS, which is more accurate than Kochkov et al. [2021] and Dresdner et al.
[2022]. See §B for dataset details and simulation statistics.

All models are trained to correct DNS at a 2562 resolution. To control the propagation of errors
over time, we incorporate a 5-step roll-out training approach, which minimizes accumulated error by
differentiating through the DNS steps [Kochkov et al., 2021]. The roll-out loss function is applied
during the fine-tuning stage, after the one-step loss has converged. See §C.1 for training details.

Results. In Fig. 8a and 8b, EddyFormer matches the accuracy of DNS at resolutions between 5122

and 10242, both within the training window and beyond, in terms of relative error and correlations with
the reference DNS. Over long rollouts (Fig. 8c), EddyFormer also accurately captures the invariant
structure function whereas the baseline F-FNO shows significant deviation. Tab. 10 reports the kinetic
energy, Eqn. (23), showing that EddyFormer conserves energy over extended time horizons.

8

(a) Reference solution at t = 30. (b) EddyFormer’s prediction. (c) FNO’s prediction.

Figure 6: Density of a Rayleigh-Taylor instability test case. EddyFormer successfully predicts the
structure of plumes due to buoyancy rise up to a long rollout of t = 30, while the baseline FNO fails
to converge to a physical solution. See Fig. 16 for the full density evolution over time.

Domain generalization. We evaluate EddyFormer’s ability to generalize beyond the training
domain by testing it on domains that are 4 times larger. EddyFormer requires minimal modification
(Fig. 5): we tile more elements proportionally to the domain expansion rate and apply a fixed
16× 16 attention window to the SEMAttn block. This ensures that each spectral element remains the
same size between training and test time, while still exchanging information within a fixed [0, 2π]2

neighborhood. This also ensures that the computation cost only scales linearly with domain size.

Fig. 5 shows the scaled energy spectra on both 2x and 4x larger domains. EddyFormer consistently
matches the energy spectrum of high-resolution DNS across all length scales, generalizing to larger
scales without degradation in accuracy. In contrast, F-FNO, while performing well on the original
domain, shows noticeable deviations in the high-frequency modes on the larger domains, indicating a
loss in consistency as the domain size increases.

4.3 Turbulence beyond homogeneous isotropy

The Well [Ohana et al., 2025] is a large-scale physics simulation dataset that contains fluid flows
under a diverse set of conditions. We benchmark EddyFormer on turbulence-related subsets, which
include magnetohydrodynamics, shear layer, thermal convection, and buoyancy-driven turbulence.
We follow their training protocols and describe experiment details in §C.3.

Results. The VRMSE scores (Eqn. (25)) are reported in Tab. 3. Across all flow cases, EddyFormer
achieves lower errors and consistently outperforms the baselines across a wide range of physically-
driven turbulent flows. Fig. 6 visualizes the model predictions on the Rayleigh-Taylor instability
problem. EddyFormer is able to accurately capture the development of turbulent plumes, while all
baseline methods fail to converge.

Table 3: Performance on The Well dataset: time-averaged one-step VRMSE↓ scores on test sets. EF
(cheb) and EF (leg) denote our EddyFormer model with Chebyshev and Legendre basis, respectively.

Dataset name FNO T-FNO U-net CNextU-net EF (cheb) EF (leg)

MHD_64 0.3605 0.3561 0.1798 0.1633 0.1160 0.1240
shear_flow 1.189 1.472 3.447 0.8080 0.1123 0.0837
rayleigh_benard 0.8395 0.6566 1.4860 0.6699 0.2527 0.1854
rayleigh_taylor_instab. > 10 > 10 > 10 > 10 0.1115 0.1243

Conclusion. We introduced EddyFormer, an architecture inspired by the principles of large-eddy
simulation, and designed for accurate and efficient turbulence simulation. EddyFormer demonstrates
high accuracy with a significant acceleration on three-dimensional isotropic turbulence, as well as
on flows driven by a wide range of conditions, ensuring stable rollouts over extended time periods.
Future work will focus on extending EddyFormer to more complex flow domains and further scaling
it for extreme-scale turbulence.

9

Acknowledgements. This work was supported by Laboratory Directed Research and Development
(LDRD) funding under Contract Number DE-AC02-05CH11231. This research used resources of
the National Energy Research Scientific Computing Center (NERSC), a Department of Energy User
Facility. We thank Ningxiao Tao and Eric Qu for helpful discussions and feedback on earlier drafts.

Broader impacts. The development of EddyFormer has the potential to impact both scientific
research and practical applications. By accelerating turbulence simulations, it can aid in solving
complex fluid dynamics problems across fields such as climate modeling, aerospace engineering,
and energy systems, where understanding turbulence is critical. Additionally, the use of machine
learning to improve simulation efficiency opens new possibilities for real-time simulations, making it
feasible to explore more dynamic and complex systems. However, as with any AI-driven technology,
it is important to consider potential risks, such as over-reliance on model accuracy without suffi-
cient validation or unintended biases in training data. Moreover, as simulation tools become more
accessible, there is a responsibility to ensure their ethical and equitable use, particularly in areas like
environmental modeling and resource management, where decisions based on inaccurate simulations
could have widespread societal impacts.

References
Benedikt Alkin, Andreas Fürst, Simon Schmid, Lukas Gruber, Markus Holzleitner, and Johannes Brandstetter.

Universal physics transformers. arXiv e-prints, pages arXiv–2402, 2024.

Yuri Bazilevs, Victor M Calo, John A Cottrell, Thomas JR Hughes, Alessandro Reali, and Guglielmo Scovazzi.
Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows.
Computer methods in applied mechanics and engineering, 197(1-4):173–201, 2007.

Andrea D Beck, David G Flad, and Claus-Dieter Munz. Deep neural networks for data-driven turbulence models.
arXiv preprint arXiv:1806.04482, 2018.

Gal Berkooz, Philip Holmes, and John L Lumley. The proper orthogonal decomposition in the analysis of
turbulent flows. Annual review of fluid mechanics, 25(1):539–575, 1993.

Anudhyan Boral, Zhong Yi Wan, Leonardo Zepeda-Núñez, James Lottes, Qing Wang, Yi-fan Chen, John
Anderson, and Fei Sha. Neural ideal large eddy simulation: Modeling turbulence with neural stochastic
differential equations. Advances in Neural Information Processing Systems, 36:69270–69283, 2023.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin, George
Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. JAX: composable
transformations of Python+NumPy programs, 2018. URL http://github.com/jax-ml/jax.

C Canuto. Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics. Springer-
Verlag, 2007.

Shuhao Cao. Choose a transformer: Fourier or galerkin. Advances in neural information processing systems, 34:
24924–24940, 2021.

Nithin Chalapathi, Yiheng Du, and Aditi Krishnapriyan. Scaling physics-informed hard constraints with
mixture-of-experts. arXiv preprint arXiv:2402.13412, 2024.

M Chertkov, C Connaughton, I Kolokolov, and V Lebedev. Dynamics of energy condensation in two-dimensional
turbulence. Physical review letters, 99(8):084501, 2007.

Yuchen Dang, Zheyuan Hu, Miles Cranmer, Michael Eickenberg, and Shirley Ho. Tnt: Vision transformer for
turbulence simulations. arXiv preprint arXiv:2207.04616, 2022.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

Gideon Dresdner, Dmitrii Kochkov, Peter Norgaard, Leonardo Zepeda-Nunez, Jamie A Smith, Michael P
Brenner, and Stephan Hoyer. Learning to correct spectral methods for simulating turbulent flows. arXiv
preprint arXiv:2207.00556, 2022.

Yiheng Du, Nithin Chalapathi, and Aditi Krishnapriyan. Neural spectral methods: Self-supervised learning in
the spectral domain. The Twelfth International Conference on Learning Representations, 2024.

10

http://github.com/jax-ml/jax

Vladimir Sergeevich Fanaskov and Ivan V Oseledets. Spectral neural operators. In Doklady Mathematics,
volume 108, pages S226–S232. Springer, 2023.

Bernat Font, Gabriel D Weymouth, Vinh-Tan Nguyen, and Owen R Tutty. Deep learning of the spanwise-
averaged navier–stokes equations. Journal of Computational Physics, 434:110199, 2021.

Zhongkai Hao, Zhengyi Wang, Hang Su, Chengyang Ying, Yinpeng Dong, Songming Liu, Ze Cheng, Jian Song,
and Jun Zhu. Gnot: A general neural operator transformer for operator learning. In International Conference
on Machine Learning, pages 12556–12569. PMLR, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

Jacob Helwig, Xuan Zhang, Cong Fu, Jerry Kurtin, Stephan Wojtowytsch, and Shuiwang Ji. Group equivariant
fourier neural operators for partial differential equations. arXiv preprint arXiv:2306.05697, 2023.

Maximilian Herde, Bogdan Raonic, Tobias Rohner, Roger Käppeli, Roberto Molinaro, Emmanuel de Bézenac,
and Siddhartha Mishra. Poseidon: Efficient foundation models for pdes. Advances in Neural Information
Processing Systems, 37:72525–72624, 2024.

Thomas Y Hou and Ruo Li. Computing nearly singular solutions using pseudo-spectral methods. Journal of
Computational Physics, 226(1):379–397, 2007.

Jinhee Jeong and Fazle Hussain. On the identification of a vortex. Journal of fluid mechanics, 285:69–94, 1995.

George Karniadakis and Spencer J Sherwin. Spectral/hp element methods for computational fluid dynamics.
Oxford University Press, 2005.

George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang. Physics-
informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

Youngkyu Kim, Youngsoo Choi, David Widemann, and Tarek Zohdi. A fast and accurate physics-informed
neural network reduced order model with shallow masked autoencoder. Journal of Computational Physics,
451:110841, 2022.

Dmitrii Kochkov, Jamie A Smith, Ayya Alieva, Qing Wang, Michael P Brenner, and Stephan Hoyer. Machine
learning–accelerated computational fluid dynamics. Proceedings of the National Academy of Sciences, 118
(21):e2101784118, 2021.

Jean Kossaifi, Nikola Kovachki, Kamyar Azizzadenesheli, and Anima Anandkumar. Multi-grid tensorized
fourier neural operator for high-resolution pdes. arXiv preprint arXiv:2310.00120, 2023.

Robert H Kraichnan. Inertial ranges in two-dimensional turbulence. Physics of fluids, 10(7):1417, 1967.

Robert H Kraichnan and David Montgomery. Two-dimensional turbulence. Reports on Progress in Physics, 43
(5):547, 1980.

Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W Mahoney. Characterizing
possible failure modes in physics-informed neural networks. Advances in neural information processing
systems, 34:26548–26560, 2021.

Pijush K Kundu, Ira M Cohen, David R Dowling, and Jesse Capecelatro. Fluid mechanics. Elsevier, 2024.

J Nathan Kutz, Steven L Brunton, Bingni W Brunton, and Joshua L Proctor. Dynamic mode decomposition:
data-driven modeling of complex systems. SIAM, 2016.

Jacob A Langford and Robert D Moser. Optimal les formulations for isotropic turbulence. Journal of fluid
mechanics, 398:321–346, 1999.

Kookjin Lee and Kevin T Carlberg. Model reduction of dynamical systems on nonlinear manifolds using deep
convolutional autoencoders. Journal of Computational Physics, 404:108973, 2020.

Zijie Li, Kazem Meidani, and Amir Barati Farimani. Transformer for partial differential equations’ operator
learning. arXiv preprint arXiv:2205.13671, 2022.

Zijie Li, Dule Shu, and Amir Barati Farimani. Scalable transformer for pde surrogate modeling. Advances in
Neural Information Processing Systems, 36:28010–28039, 2023a.

11

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart,
and Anima Anandkumar. Fourier neural operator for parametric partial differential equations. arXiv preprint
arXiv:2010.08895, 2020.

Zongyi Li, Daniel Zhengyu Huang, Burigede Liu, and Anima Anandkumar. Fourier neural operator with learned
deformations for pdes on general geometries. Journal of Machine Learning Research, 24(388):1–26, 2023b.

Zongyi Li, Nikola Kovachki, Chris Choy, Boyi Li, Jean Kossaifi, Shourya Otta, Mohammad Amin Nabian,
Maximilian Stadler, Christian Hundt, Kamyar Azizzadenesheli, et al. Geometry-informed neural operator for
large-scale 3d pdes. Advances in Neural Information Processing Systems, 36:35836–35854, 2023c.

Marten Lienen, David Lüdke, Jan Hansen-Palmus, and Stephan Günnemann. From zero to turbulence: Generative
modeling for 3d flow simulation. arXiv preprint arXiv:2306.01776, 2023.

Julia Ling, Andrew Kurzawski, and Jeremy Templeton. Reynolds averaged turbulence modelling using deep
neural networks with embedded invariance. Journal of Fluid Mechanics, 807:155–166, 2016.

Björn List, Li-Wei Chen, and Nils Thuerey. Learned turbulence modelling with differentiable fluid solvers:
physics-based loss functions and optimisation horizons. Journal of Fluid Mechanics, 949:A25, 2022.

Huakun Luo, Haixu Wu, Hang Zhou, Lanxiang Xing, Yichen Di, Jianmin Wang, and Mingsheng Long. Tran-
solver++: An accurate neural solver for pdes on million-scale geometries. arXiv preprint arXiv:2502.02414,
2025.

Michael McCabe, Bruno Régaldo-Saint Blancard, Liam Holden Parker, Ruben Ohana, Miles Cranmer, Alberto
Bietti, Michael Eickenberg, Siavash Golkar, Geraud Krawezik, Francois Lanusse, et al. Multiple physics
pretraining for physical surrogate models. arXiv preprint arXiv:2310.02994, 2023.

Levi D McClenny and Ulisses M Braga-Neto. Self-adaptive physics-informed neural networks. Journal of
Computational Physics, 474:111722, 2023.

Nick McGreivy and Ammar Hakim. Weak baselines and reporting biases lead to overoptimism in machine
learning for fluid-related partial differential equations. Nature Machine Intelligence, 6(10):1256–1269, 2024.

Parviz Moin and Krishnan Mahesh. Direct numerical simulation: a tool in turbulence research. Annual review of
fluid mechanics, 30(1):539–578, 1998.

Geoffrey Négiar, Michael W Mahoney, and Aditi S Krishnapriyan. Learning differentiable solvers for systems
with hard constraints. arXiv preprint arXiv:2207.08675, 2022.

Ruben Ohana, Michael McCabe, Lucas Meyer, Rudy Morel, Fruzsina Agocs, Miguel Beneitez, Marsha Berger,
Blakesly Burkhart, Stuart Dalziel, Drummond Fielding, et al. The well: a large-scale collection of diverse
physics simulations for machine learning. Advances in Neural Information Processing Systems, 37:44989–
45037, 2025.

Pranshu Pant, Ruchit Doshi, Pranav Bahl, and Amir Barati Farimani. Deep learning for reduced order modelling
and efficient temporal evolution of fluid simulations. Physics of Fluids, 33(10), 2021.

Benjamin Peherstorfer and Karen Willcox. Data-driven operator inference for nonintrusive projection-based
model reduction. Computer Methods in Applied Mechanics and Engineering, 306:196–215, 2016.

Ugo Piomelli. Large-eddy simulation: achievements and challenges. Progress in aerospace sciences, 35(4):
335–362, 1999.

Stephen B Pope. Turbulent flows. Measurement Science and Technology, 12(11):2020–2021, 2001.

Shaoxiang Qin, Fuyuan Lyu, Wenhui Peng, Dingyang Geng, Ju Wang, Naiping Gao, Xue Liu, and Liangzhu Leon
Wang. Toward a better understanding of fourier neural operators: Analysis and improvement from a spectral
perspective. arXiv preprint arXiv:2404.07200, 2024.

Md Ashiqur Rahman, Robert Joseph George, Mogab Elleithy, Daniel Leibovici, Zongyi Li, Boris Bonev, Colin
White, Julius Berner, Raymond A Yeh, Jean Kossaifi, et al. Pretraining codomain attention neural operators
for solving multiphysics pdes. Advances in Neural Information Processing Systems, 37:104035–104064,
2024.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal
of Computational physics, 378:686–707, 2019.

12

Varun Shankar, Dibyajyoti Chakraborty, Venkatasubramanian Viswanathan, and Romit Maulik. Differentiable
turbulence: Closure as a partial differential equation constrained optimization. Physical Review Fluids, 10(2):
024605, 2025.

Joseph Smagorinsky. General circulation experiments with the primitive equations: I. the basic experiment.
Monthly weather review, 91(3):99–164, 1963.

Philippe Spalart. An old-fashioned framework for machine learning in turbulence modeling. arXiv preprint
arXiv:2308.00837, 2023.

Philippe Spalart and Steven Allmaras. A one-equation turbulence model for aerodynamic flows. In 30th
aerospace sciences meeting and exhibit, page 439, 1992.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Brendan D Tracey, Karthikeyan Duraisamy, and Juan J Alonso. A machine learning strategy to assist turbulence
model development. In 53rd AIAA aerospace sciences meeting, page 1287, 2015.

Alasdair Tran, Alexander Mathews, Lexing Xie, and Cheng Soon Ong. Factorized fourier neural operators.
arXiv preprint arXiv:2111.13802, 2021.

Milton Van Dyke. An album of fluid motion, volume 176. Parabolic Press Stanford, 1982.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017.

Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni
Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, et al. Scipy 1.0: fundamental algorithms for
scientific computing in python. Nature methods, 17(3):261–272, 2020.

Rui Wang, Karthik Kashinath, Mustafa Mustafa, Adrian Albert, and Rose Yu. Towards physics-informed deep
learning for turbulent flow prediction. In Proceedings of the 26th ACM SIGKDD international conference on
knowledge discovery & data mining, pages 1457–1466, 2020.

Sifan Wang, Shyam Sankaran, and Paris Perdikaris. Respecting causality is all you need for training physics-
informed neural networks. arXiv preprint arXiv:2203.07404, 2022.

Sifan Wang, Shyam Sankaran, Panos Stinis, and Paris Perdikaris. Simulating three-dimensional turbulence with
physics-informed neural networks. arXiv preprint arXiv:2507.08972, 2025.

Gege Wen, Zongyi Li, Kamyar Azizzadenesheli, Anima Anandkumar, and Sally M Benson. U-fno—an enhanced
fourier neural operator-based deep-learning model for multiphase flow. Advances in Water Resources, 163:
104180, 2022.

Matthew O Williams, Ioannis G Kevrekidis, and Clarence W Rowley. A data–driven approximation of the
koopman operator: Extending dynamic mode decomposition. Journal of Nonlinear Science, 25(6):1307–1346,
2015.

Haixu Wu, Huakun Luo, Haowen Wang, Jianmin Wang, and Mingsheng Long. Transolver: A fast transformer
solver for pdes on general geometries. arXiv preprint arXiv:2402.02366, 2024.

Mingtao Xia, Lucas Böttcher, and Tom Chou. Spectrally adapted physics-informed neural networks for solving
unbounded domain problems. Machine Learning: Science and Technology, 4(2):025024, 2023.

Jin-Han Xie and Oliver Bühler. Exact third-order structure functions for two-dimensional turbulence. Journal of
Fluid Mechanics, 851:672–686, 2018.

PK Yeung, DA Donzis, and KR Sreenivasan. Dissipation, enstrophy and pressure statistics in turbulence
simulations at high reynolds numbers. Journal of Fluid Mechanics, 700:5–15, 2012.

PK Yeung, XM Zhai, and Katepalli R Sreenivasan. Extreme events in computational turbulence. Proceedings of
the National Academy of Sciences, 112(41):12633–12638, 2015.

13

A Discussions on related works

We provide a broader overview of related work in ML for fluid dynamics, covering physics-informed
learning, spectral methods, Transformer-based models, and reduced-order modeling.

ML for fluids. Except for the data-driven approaches discussed in §1, another line of work focuses
on developing large pretrained models that can generalize across a wide range of flow conditions,
geometries, and Reynolds numbers [McCabe et al., 2023, Herde et al., 2024, Rahman et al., 2024].
These models are trained on diverse simulation datasets and aim to serve as universal surrogates for
fluid dynamics. In parallel, generative approaches have been proposed to capture the stochasticity and
variability of turbulent flows. Lienen et al. [2023] apply diffusion models to synthesize physically
plausible trajectories in a zero-shot setting, while Boral et al. [2023] introduce neural stochastic
differential equations to model ensembles of turbulent trajectories.

Another popular direction involves physics-informed machine learning [Karniadakis et al., 2021],
which integrates prior knowledge of problem during training. Physics-Informed Neural Networks
(PINNs) [Raissi et al., 2019] incorporates the residuals of the governing equations into the loss
function. This framework allows for training with sparse or no supervision. Works in this direction
seek to address challenges such as training strategy [Krishnapriyan et al., 2021, Wang et al., 2022],
residual estimation [McClenny and Braga-Neto, 2023, Du et al., 2024], and constraint enforce-
ment [Négiar et al., 2022, Chalapathi et al., 2024]. Recent advances also demonstrated that PINNs are
able to simulate large-scale three-dimensional turbulence [Wang et al., 2025]. However, the training
cost of PINNs, and solving for one problem at a time, makes their efficiency worse compared to
state-of-the-art numerical simulations.

Spectral-based models. Spectral methods [Canuto, 2007] provide powerful inductive biases for
neural fluid simulation. Li et al. [2020] introduced Fourier neural operator (FNO), which is based
on spectral convolutions in the Fourier domain. Neural operators have demonstrated accuracy and
efficiency advantages over traditional convolutional networks. Subsequent works extended neural
operators by either improving the spectral kernel’s design [Tran et al., 2021, Fanaskov and Oseledets,
2023, Helwig et al., 2023], or by learning completely in the spectral domain [Du et al., 2024, Xia
et al., 2023]. These models have shown promising results on low-dimensional problems; however,
due to the inefficiency of parameterizing and learning large Fourier convolution kernels [Qin et al.,
2024], their application to large-scale three-dimensional turbulence has been limited.

Moreover, they face challenges on irregular domain geometries since spectral methods are inherently
homogeneous. To overcome this, several extensions have been proposed that incorporate geometry
more explicitly [Li et al., 2023b,c]. However, these methods still encounter limitations in accurately
capturing complex geometries, as well as in applying to problems with a wide range of length scales.

Transformers for spatiotemporal modeling. There has been an increased interest in exploring
the Transformer architecture for fluid simulation, and more generally, for solving partial differential
equations. One line of work [Dang et al., 2022, McCabe et al., 2023, Herde et al., 2024] applied
well-established Vision Transformer (ViT) architectures to this task. However, due to the quadratic
complexity of the self-attention mechanism, their scalability is limited by the spatial resolution of the
solution field, especially for the resolution of three-dimensional turbulent flows.

Several approaches have been proposed to address this challenge: (a) simplified attention: Cao
[2021] draw connections between the attention mechanism and kernel convolution, providing insights
into reducing computational complexity. GNOT [Hao et al., 2023], FactFormer [Li et al., 2023a],
OFormer [Li et al., 2022], and AViT [McCabe et al., 2023] applied different simplifications to
the attention mechanism, enabling linear or almost-linear computational complexity; (b) grouped
tokens: this approach reduces the number of tokens involved in the attention mechanism by grouping
relevant mesh points together. UPT [Alkin et al., 2024] uses sub-sampling supernodes in combination
with a perceiver-style architecture, while Transolver [Wu et al., 2024, Luo et al., 2025] operates
on slice-based physical tokens. While these approaches have shown promise for moderate-scale
problems, their effectiveness and accuracy on large-scale turbulence problems is unclear.

Reduced-order modeling. Reduced Order Modeling (ROM) provides a framework for approximat-
ing high-fidelity simulations with lower computational cost. Classical methods such as Proper Orthog-
onal Decomposition (POD) [Berkooz et al., 1993] have been extensively used as low-dimensional
representations. Data-driven approaches, including Dynamic Mode Decomposition [Williams et al.,

14

Figure 7: Energy spectrum, velocity correlation, and structure function [Pope, 2001] of Re94 . The
energy spectrum follows the−5/3 scaling law, indicating inertial-range turbulence. The non-Gaussian
velocity correlation shows intermittent behavior. Additionally, the structure function exhibits scaling
consistent with Kolmogorov’s theory, further confirming the presence of turbulent dynamics.

2015, Kutz et al., 2016] and Operator Inference [Peherstorfer and Willcox, 2016], have expanded
the scope of reduced-order modeling by constructing surrogate models directly from data. Recently,
autoencoders has been employed to construct nonlinear reduced-order models [Lee and Carlberg,
2020, Pant et al., 2021, Kim et al., 2022]. These approaches aim to learn low-dimensional manifolds
that capture the essential dynamics of complex systems beyond linear methods. However, these
methods often require complete information of the solution regime; consequently, their accuracy and
generalization usually remain problem-dependent.

B Dataset details

In this section, we provide details on the two and three-dimensional turbulence dataset used in our
experiments. Tab. 4 and Tab. 5 contains simulation parameters and flow statistics in the dataset. Fig. 7
plots the energy spectrum of each flow, averaged across the whole test set.

Initial condition. The lowest Fourier modes |k| < 16 of every initial velocity field are randomly
initialized according to the k−5/3 spectrum. The initial condition is then burned in for a fixed time t0,
which is chosen empirically so that energy injection and dissipation reach equilibrium.

Solver details. We use pseudo-spectral method to generate the high-accuracy dataset as well as
the low-resolution input for learned correction on top of it. Smooth dealiasing [Hou and Li, 2007] is
used during advection in order to keep more modes than the common 2/3 rule. We use fourth-order
Runge-Kutta scheme for time-stepping, coupled with a second-order implicit diffusion step. The time
step is determined dynamically by fixing Courant–Friedrichs–Lewy (CFL) number below Cmax = 1.

Dataset. The dataset is downsampled onto uniform grids using FFT at intervals of ∆t, over a total
duration t. The test set contains 16 longer trajectories: t = 50s for KF4 and t = 20s for Re94 .

Table 4: Simulation parameters
of KF4 (§4.2) and Re94 (§4.1).

Name KF4 Re94

Domain Ω [0, 2π]2 [0, 2π]3

Burn-in time t0 40s 20s
Record time ∆t 0.125s 0.1s
Trajectory length t 10s 5.0s
Solver resolution 40963 3843

Dataset resolution 2562 963

Dataset size 89GB 1TB

Table 5: Turbulence statistics
of KF4 (§4.2) and Re94 (§4.1).

Name KF4 Re94

Viscosity ν 0.001 0.01
Kinetic energy Ek 2.0061 3.6023
Dissipation rate ϵ 0.0419 0.9749
Velocity r.m.s. ⟨v⟩2 1.1539 1.5493
Taylor microscale λ 0.6939 0.6090
Kolmogorov scale η 0.0124 0.0318
Reynolds no. Reλ 799.76 94.40

15

Evaluation metrics. We report standard error metrics, such as relative L2 error, as well as other
invariant flow statistics when evaluating all models and numerical solvers. Specifically, let u be the
reference solution and u′ be the prediction, the following metrics are reported:

1. Relative L2 error ∥u−u′∥2/∥u∥2. Relative error is used when u and u′ are highly correlated,
i.e., during early steps in the rollout. It is also used as the training objective (see Eqn. (15)).

2. Point-wise correlation ⟨u,u′⟩/∥u∥22. Correlation is used in later solution rollout, when u
and u′ are statistically correlated, but relative error is too large to be a meaningful metric.

3. Energy spectrum E(k),

E(k) =

∫
|k|=k

1

2
|û(k)|2dk. (17)

The energy spectrum describes how turbulent energy is distributed across different length
scales. In the inertial range, E(k) is expected to follow Kolmogorov’s 5/3 law, i.e., E(k) ∝
k−5/3. Accurately reproducing the energy spectrum is necessary for a model to yield
physically meaningful predictions; even after the model’s prediction becomes decorrelated
from the reference, E(k) remains critical because it still reflects the turbulence cascade.

4. Two-point third-order longitudinal structure function SL,

SL(r) = ⟨([u(x+ r)− u(x)] · r
r
)3⟩|r|=r. (18)

The structure function SL(r) measures the statistical asymmetry of the velocity differences
across a distance r, indicating the downscale energy transfer across turbulence scales. It
is hypothesized to follow the Kolmogorov’s 4/5 law, i.e., SL(r) = − 4

5ϵr, where ϵ is the
dissipation rate. However, in two-dimensional turbulence where inverse energy transfer, i.e.,
“backscattering”, occurs, SL exhibits more complex behavior [Kraichnan, 1967, Kraichnan
and Montgomery, 1980, Xie and Bühler, 2018]. Evaluating the two-point structure function
on a model’s prediction tests whether the it preserves the correct inter-scale statistics.

5. The Q-criterion q,

q =
1

2
(∥Ω∥2 − ∥S∥2), (19)

where S = 1
2 (∇u+∇uT) and Ω = 1

2 (∇u−∇u
T) are the strain rate and rotation tensor,

respectively. The Q-criterion is a widely used diagnostic metric [Jeong and Hussain, 1995]
for identifying vortical structures in turbulent flows. Regions where q > 0 indicate local
dominance of rotational motion over strains, which typically corresponds to coherent vortex
cores. It provides a frame-invariant and physically interpretable way to visualize and quantify
vortical structures in complex turbulent flows. We use the Q-criterion to visually compare
the vortex cores in the reference DNS solution and EddyFormer’s prediction.

C Experiment details

Hyperparameters. For 2D and 3D problems, EddyFormer uses the hyperparameters described in
Tab. 6 and Tab. 7, respectively. We consider both Chebyshev and Legendre basis as the orthogonal
polynomials in SEM basis for most problems, which is indicated by EddyFormer (cheb) and Eddy-
Former (leg), respectively. We use the Adam optimizer with a learning rate of 10−3. For homogeneous
turbulence §4.1 and §4.2, we use a batch size of 16, while a batch size of 64 is used in §4.3.

Table 6: EddyFormer architecture (2D).

Stream LES SGS

Number of layers L 10
Hidden dimension d 32
Mesh size H 162

Mode kmax and M 4 24
Kernel mode m 4 24
Kernel size s π/4 π/4
Number of heads nhead 8 —
Head dimension dhead 16 —

Table 7: EddyFormer architecture (3D).

Stream LES SGS

Number of layers L 4
Hidden dimension d 32
Mesh size H 83

Mode kmax and M 5 13
Kernel mode m 5 13
Kernel size s π/4 π/4
Number of heads nhead 4 —
Head dimension dhead 32 —

16

Implementation details. EddyFormer is implemented using the JAX framework [Bradbury et al.,
2018]. We implement our own three-dimensional pseudo-spectral solver for all data generations and
learned correction used in our experiments. We acknowledge the JAX-CFD [Dresdner et al., 2022]
and NSM [Du et al., 2024] codebases, which we referenced and built upon in our implementation.

Implementation of SEMConv. The SEM-based convolution, Eqn. (8), evaluates the convolution
between a Fourier kernel and features on collocation points. For simplicity, here we only consider the
implementation of 1D convolution. Its extension to multi-dimensional case is straightforward due to
the use of factorized kernels. Specifically, the SEMConv performed along x axis is defined by,

SEMConv(u)(x′) =

∫
|x|≤s/2

k(x)u(x′ − x)T dx. (20)

We use quadrature rules to directly compute the convolution on each collocation point. Specifically,
Clenshaw–Curtis and Gauss-Lobatto-Legendre quadratures are use for Chebyshev and Legendre-
based SEM bases, respectively. For each collocation point x(n)

h in the h’th element, the integral is the
sum of the quadratures in neighbor elements,

SEMConv(u)(x
(n)
h) ≈

∑
|h′−h|≤S

∑
m≤M

w
(m)
h′ k(x

(m)
h′ − x

(n)
h)u(x

(m)
h′)T , (21)

where S = ⌈ s
2∆⌉ is the half-width of the neighbors within the convolution window s, and {w(m)

h′ }m
are the quadrature weights on element Ωh′ , which can be pre-computed using routines from standard
packages like QUADPACK [Virtanen et al., 2020]. Below is a pseudo-code of our implementation.

Algorithm 1: SEMConv Implementation (1D)
Input: Feature field u; Fourier convolution kernel k(x)
Output: Convolved feature field SEMConv(u)
S ← ⌈s/2∆⌉ ; // Number of neighbors
w ← QuadratureWeights() ; // Precomputed weights
foreach collocation point x(n)

h do
y ← 0 ; // Output at x

(n)
h

for h′ = h− S to h+ S do
for m = 0 to M do

w ← w
(m)
h′ ; // Quadrature weight

k ← k(x
(m)
h′ − x

(n)
h) ; // Evaluate convolution kernel

u← u(x
(m)
h′) ; // Evaluate input feature

y += w · k · uT ;

SEMConv(u)(x
(n)
h)← y

Computation cost of SEMConv. The computational cost of Algorithm 1 consists of two main
components: evaluating the kernel k on collocation points and performing quadrature over the input
field. Under the assumption of a uniform mesh, the kernel only needs to be evaluated at MS distinct
offsets, which is equivalent to performing an MS ×MS-size matrix multiplication. The quadrature
step involves a weighted dot product across neighbors, which costs O(M2S) per element. Therefore,
the total cost scales with the number of resolved modes, with a sublinear factor of O(MS).

C.1 Two-dimensional turbulence KF4

Learned correction. All models are trained to correct a DNS at 2562 resolution. Each model is
first trained using the one-step loss, Eqn. (15), for 30k steps with a learning rate of 10−3. In order
to control the roll-out error over time, we also differentiate through the DNS steps and minimize
accumulated error as Kochkov et al. [2021] did. Specifically, LC(n)

θ represents the n-step prediction
roll-out using learned corrections, and the N -step loss function is defined as follows:

Et,u0
[
1

N

∑
n≤N

∥ut+n∆t − LC(n)
θ (ut)∥/∥ut+n∆t∥], (22)

17

Figure 8: Performance of models and DNS at different resolutions on KF4 (§4.2), a two-dimensional
fluid flow example (“Kolmogorov” flow). The models learn to corrrect DNS at 2562 resolution,
and the metrics here are relative to a reference DNS at 40962 resolution. EddyFormer achieves the
accuracy of DNS between 5122 and 10242 resolution in terms of (a) relative L2 error for t ≤ 10 and
(b) point-wise correlation for 10 ≤ t ≤ 20; for (c) longer rollouts up to 50 seconds, EddyFormer also
accurately captures the third-order structure function, Eqn. (18), which characterizes the forward and
inverse energy transfer in fine length-scales.

However, as reported by Dresdner et al. [2022], directly minimizing multi-step loss is difficult and
unstable. Therefore, we choose N = 5 and only fine-tuned using the 5-step loss for another 5k steps
with a reduced learning rate of 10−5, after the one-step training converged.

Baseline models. We consider ResNet [He et al., 2016], FNO [Li et al., 2020], and F-FNO [Tran
et al., 2021] as baseline models for comparison. For ResNet, we adopt the standard ResNet-18
architecture. For both FNO and F-FNO, we use 642 modes, with 10 layers and 32 hidden dimensions,
to ensure a fair comparison with EddyFormer. All models, except for FNO, have a model size of the
order of 10MB.

Figure 9: Vorticity visualization of a test sample on KF4 (§4.2). EddyFormer accurately tracks the
dynamics of the vortex core (indicated by the red square) up to t = 20, while the baseline F-FNO
fails to resolve it over the long rollout.

18

Figure 10: (a) Training loss, and (b) and (c) test error curves on KF4 (§4.2). EddyFormer converges
significantly faster than all baselines, while achieving almost a 50% reduction in converged loss.

For reference, we also include results reported by previous work [Kochkov et al., 2021], which were
obtained by correcting a lower-accuracy finite-volume DNS at 642 resolution. For a fair comparison,
we reproduced their result by correcting our high-accuracy pseudo-spectral solver using a ResNet.

Results. Fig. 10 shows the training loss as well as test errors at different times. Tab. 8 and Tab. 9
report the relative L2 error and point-wise correlation metrics on test set. EddyFormer is able to
converge faster than the baselines, consistently achieving lower test error. Fig. 9 visualizes the
evolution of a vortex core, showing that EddyFormer captures its development up to t = 20.

Table 8: Relative L2 error (%) on KF4 test set with learned correction of DNS 2562.
t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10

DNS 2562 0.23 0.24 0.28 0.36 0.52 0.82 1.38 2.59 4.55 7.79
DNS 5122 0.09 0.10 0.12 0.16 0.23 0.38 0.64 1.21 2.13 3.71
DNS 10242 0.04 0.04 0.05 0.07 0.10 0.16 0.27 0.52 0.92 1.60

Kochkov et al. 0.63 1.38 2.53 4.54 8.09 14.7 24.3 36.5 56.4 74.5
FNO 0.17 0.20 0.28 0.40 0.71 1.19 2.06 3.58 6.59 11.4
ResNet 0.08 0.10 0.14 0.22 0.36 0.63 1.27 2.47 4.30 7.58
F-FNO 0.06 0.07 0.10 0.15 0.27 0.50 1.03 1.88 2.91 5.28
EddyFormer 0.03 0.04 0.06 0.09 0.14 0.24 0.49 0.86 1.44 2.61

Table 9: Point-wise correlation on KF4 test set with learned correction of DNS 2562.
t=11 t=12 t=13 t=14 t=15 t=16 t=17 t=18 t=19 t=20

DNS 2562 0.98 0.96 0.89 0.78 0.67 0.55 0.43 0.26 0.18 0.13
DNS 5122 1.00 0.99 0.96 0.90 0.83 0.71 0.59 0.43 0.31 0.19
DNS 10242 1.00 1.00 0.99 0.97 0.93 0.87 0.76 0.62 0.50 0.37

Kochkov et al. 0.69 0.51 0.36 0.24 0.15 0.09 0.09 0.02 −0.01 0.02
FNO 0.98 0.96 0.89 0.79 0.66 0.52 0.42 0.27 0.21 0.14
ResNet 0.98 0.95 0.87 0.78 0.66 0.50 0.39 0.27 0.22 0.12
F-FNO 0.99 0.98 0.95 0.89 0.79 0.67 0.53 0.39 0.31 0.20
EddyFormer 1.00 0.99 0.98 0.94 0.88 0.80 0.67 0.55 0.38 0.27

19

Discussions on domain generalization. This expansion task (Fig. 5) is conceptually different from
super-resolution. While super-resolution [Li et al., 2020] aims to recover finer-scale details on a
fixed physical domain, domain expansion keeps the grid spacing and increases only the physical
extent of the flow, testing whether the model has overfitted to domain-specific flow dynamics. Neural
operators have no corresponding expansion mechanism. We tried two ad-hoc work-arounds: rescaling
the appended spatial coordinates and stretching the learned convolution kernels. Neither produced
comparable results: Fig. 5 shows that F-FNO, by rescaling the appended coordinates, fails to match
the energy spectra on the expanded domains.

Energy conservation. In addition to evaluating the statistical properties of model’s long-term
prediction, we also assess the model’s ability to conserve total kinetic energy, Etot, over time:

Etot(T) = k|t=0 +

∫ T

0

I(t)− ϵ(t)dt, (23)

where the kinetic energy k = ⟨ 12u
2⟩, the dissipation rate ϵ = 2ν⟨∥S∥22⟩ with S = 1

2 (∇u +∇uT)
denoting the strain-rate tensor, and the injection rate I = ⟨f · u⟩ given a forcing term f . This
cumulative energy accounts for the balance of injection and dissipation and should remain constant
in time. Even though energy conservation is a necessary condition for a physically correct model and
is implicitly present in the training data, the models are not explicitly informed of this constraint and
must learn to conserve energy purely from data.

Tab. 10 reports the time-averaged total kinetic energy over a test trajectory. The results indicate that
EddyFormer preserves the energy balance over long rollouts, whereas the baseline F-FNO exhibits
significant and systematic energy dissipation over time.

Table 10: Time-averaged total kinetic energy Etot(t) of a trajectory in KF4 test set.
Time interval [0, 5] [5, 10] [10, 15] [15, 20] [20, 25] [25, 30] [30, 35] [35, 40] [40, 45] [45, 50]

EddyFormer 1.728 1.668 1.692 1.660 1.712 1.736 1.695 1.694 1.706 1.670
F-FNO 1.728 1.668 1.688 1.588 1.650 1.623 1.524 1.518 1.502 1.511

C.2 Three-dimensional turbulence Re94

The Re94 case is adopted from Bazilevs et al. [2007]. The forcing term f(x),

f(x) =
∑

|k|≤1,k̸=0

Pin

E1
ûke

ik·x, (24)

injects energy uniformly across all directions. Here, ûk is the k’th Fourier coefficient of the velocity.

Figure 11: Direct prediction loss curves
Re94 (§4.1). EF (leg) denotes EddyFormer
with Legendre basis.

Direction prediction (“pure ML”) benchmark. For
baseline comparisons, we adopt ResNet, FNO, and F-
FNO in 3D without modifying their original architec-
tures. For FNO, we reduce the number of modes to 163

in order to avoid exceeding the model size constraint.
In addition, we also consider TF-Net [Qin et al., 2024],
GNOT [Hao et al., 2023], and AViT [McCabe et al.,
2023] as additional baselines. We use their default ar-
chitectures and adapt them to handle three-dimensional
input fields. The number of trainable parameters for each
model is reported in Tab. 1.

All models are trained for 15k steps using one-step loss.
Fig. 11 shows the training loss of different baseline mod-
els. EddyFormer converges significantly faster and con-
sistently achieving lower test error than state-of-the-art
neural operators and Transformers. In these baselines, F-
FNO is the best model, yet EddyFormer achieves almost
3× lower error.

20

Figure 12: (a) Training loss, and (b) and (c) test error curves on Re94 (§4.1) with learned correction
of DNS at 963 resolution. EddyFormer consistently achieves lower error on both training and test set.

Learned correction. Both F-FNO and EddyFormer are trained using one-step loss, Eqn. (15), for
15k steps with a learning rate of 10−3. Fig. 12 shows the training loss as well as test errors at different
times. Tab. 11 and Tab. 12 report the relative L2 error and point-wise correlation metrics on test set.

Table 11: Relative L2 error (%) on Re94 test set with learned correction of DNS 963.
t=0.5 t=1.0 t=1.5 t=2.0 t=2.5 t=3.0 t=3.5 t=4.0 t=4.5 t=5.0

DNS 963 1.53 3.34 5.64 8.74 13.0 18.7 26.0 34.8 44.8 55.9
DNS 1283 1.04 2.28 3.88 6.08 9.1 13.3 19.0 26.2 35.0 45.5
DNS 1923 0.53 1.17 2.00 3.17 4.84 7.16 10.4 14.9 20.9 28.8
DNS 2563 0.27 0.60 1.02 1.62 2.48 3.70 5.44 7.92 11.3 16.3

F-FNO 0.68 1.18 1.87 2.93 4.44 6.60 9.71 14.0 19.8 27.4
EddyFormer 0.46 0.78 1.23 1.89 2.80 4.20 6.23 9.27 13.1 18.2

Table 12: Point-wise correlation on Re94 test set with learned correction of DNS 963.
t=5.5 t=6.0 t=6.5 t=7.0 t=7.5 t=8.0 t=8.5 t=9.0 t=9.5 t=10.

DNS 963 0.78 0.71 0.63 0.55 0.47 0.39 0.30 0.23 0.16 0.09
DNS 1283 0.84 0.78 0.70 0.62 0.54 0.45 0.36 0.28 0.20 0.13
DNS 1923 0.93 0.88 0.82 0.75 0.67 0.60 0.51 0.43 0.34 0.25
DNS 2563 0.97 0.95 0.91 0.86 0.80 0.74 0.67 0.59 0.51 0.43

F-FNO 0.93 0.89 0.83 0.76 0.69 0.62 0.54 0.46 0.38 0.30
EddyFormer 0.97 0.94 0.90 0.85 0.78 0.71 0.64 0.56 0.48 0.41

C.2.1 Ablation studies

In order to better understand EddyFormer and the right model design choices, we perform various
ablation studies using the direct prediction (“pure ML”) benchmark on Re94 . First, we consider the
following modifications to isolate the model components:

• EF (LES). EddyFormer using only the LES stream for large-scale dynamics.

• EF (SGS). EddyFormer using only the SGS stream for small-scale dynamics.

• EF (FFT). EddyFormer variant with SEMConv replaced by Fourier-based convolution.
A factorized kernel with the same number of modes as F-FNO is used for a fair comparison.

• EF (CNN). EddyFormer variant with SEMConv replaced by standard convolution.
A 3D convolution with the same kernel size is directly applied on the collocation points.

21

(a) Reference solution. (b) EddyFormer’s prediction. (c) T-FNO’s prediction.

Figure 13: Visualization of the density field for a MHD_64 test sample at t = 3. EddyFormer is able
to match the reference solution while the baseline T-FNO’s prediction diverges after three steps.

Table 13: Direct prediction benchmark on Re94 : one-step error of different ablation models.
EF EF (LES) EF (SGS) EF (FFT) EF (CNN) F-FNO ResNet

Test error 8.61% 12.6% 23.2% 12.8% 25.3% 22.5% 87.2%

Results. Tab. 13 reports the one-step error of the ablation models. The results show that the LES
stream alone performs worse without the support of the SGS stream, and the SGS stream alone is
slightly less accurate than its F-FNO counterpart. This suggests that many global modes in FNOs
may be redundant for turbulence modeling. EddyFormer with CNN shows a significant accuracy
drop, consistent with the gap between ResNet and FNO. The FFT-based variant of EddyFormer also
performs worse, highlighting that the SEM basis offers an advantage over FFT and serves as a core
component of our architecture. Compared to the LES-only version, the full model demonstrates that
(a) SEMAttn captures large-scale dynamics more effectively than F-FNO, and (2) SEMConv models
small-scale dynamics that FFT-based spectral convolution fail to resolve.

Table 14: Data-only benchmark on Re94 :
one-step error across different LES filter sizes.
kmax 2 5 (ours) 6 8

Test error 18.76% 8.61% 8.66% 8.34%

Choice of the LES filter. In classical LES, the
filter size defines the cutoff between resolved and
subgrid-scale motions, and is typically set based on
the grid resolution or an associated spectral cutoff
based on the energy spectrum.

To assess the impact of the LES filter size, we vary kmax while keeping all other hyperparameters fixed.
The results in Tab. 14 show that increasing kmax improves accuracy up to kmax = 5, beyond which
the performance saturates. This saturation reflects the limited resolution capacity of the SEMAttn
module, which determines the range of large-scale structures the LES stream can effectively capture.
When the spectral filter includes higher-frequency modes beyond this capacity, the LES stream is
unable to utilize them effectively—especially under a fixed model size. In such cases, increasing the
cutoff adds computational cost without improving performance. These results validate our choice of
kmax = 5 as a balance between expressivity and efficiency.

C.3 The Well dataset

We benchmark EddyFormer on the turbulence-related subsets in The Well. We follow all training
protocols described by Ohana et al. [2025], with the exception of the training duration. EddyFormer
is trained for 10k steps on each problem, rather than the one-day training budget used in the original
benchmark, to ensure reproducibility. The batch size is set to 64. We report the variance-scaled mean
square error (VRMSE) scores on test sets as Ohana et al. [2025] did, which is defined as:

VRMSE(u, u′) = (⟨|u− u′|2⟩/(⟨|u− ū|2⟩+ ϵ))1/2, (25)

where u is the reference solution and u′ is the prediction. The safety value ϵ = 10−7 prevents extreme
values on near-constant fields. All reported VRMSE scores are averaged across all time steps in the
test set. Baseline results in Tab. 3 are taken from the original benchmark by Ohana et al. [2025].

22

Figure 14: Visualization of the tracer field for a shear_flow test sample over time. EddyFormer
predicts the development of two vorticies in the shear layer, while the baseline CNextU-net converged
to a over-dissipasive solution.

Figure 15: Visualization of the density field for a rayleigh_benard test sample over time. Eddy-
Former predicts the growth of the mixing layer as well as the plume structures, while the baseline
T-FNO predicts a non-physical solution (the solution collapsed into a uniform region at T = 4.0).

23

Results. Tab. 15 and Tab. 16 shows the time-averaged per-field VRMSE scores, and Tab. 3 shows
the field-average VRMSE scores. Fig. 13, Fig. 14, Fig. 15, and Fig. 16 show visualizations of the
MHD_64, shear_flow, rayleigh_benard, and rayleigh_taylor_instab. cases, respectively.

Table 15: EddyFormer (Chebyshev basis) on
The Well: per-field VRMSE↓ scores.

Field VRMSE

MHD_64
velocity

[
0.0944
0.1007
0.1076

]
density 0.1647

magnetic

[
0.1368
0.1052
0.1028

]

shear_flow
velocity

[
0.0071
0.3038

]
pressure 0.1193
tracer 0.0189

rayleigh_benard
velocity

[
0.6221
0.3112

]
pressure 0.0220
buoyancy 0.0555

rayleigh_taylor velocity

[
0.1603
0.1280
0.0960

]
density 0.0618

Table 16: EddyFormer (Legendre basis) on
The Well: per-field VRMSE↓ scores.

Field VRMSE

MHD_64
velocity

[
0.1056
0.1142
0.1161

]
density 0.1926

magnetic

[
0.1611
0.1219
0.1161

]

shear_flow
velocity

[
0.0004
0.1908

]
pressure 0.1295
tracer 0.0106

rayleigh_benard
velocity

[
0.6289
0.3063

]
pressure 0.0279
buoyancy 0.0807

rayleigh_taylor velocity

[
0.1446
0.1560
0.1284

]
density 0.0679

D Limitations

While EddyFormer accelerates the simulation of three-dimensional turbulence, its application to
real-world turbulent flows in near-wall regions with fine features is left unexplored. In addition,
scaling EddyFormer to accelerate simulations of extreme-scale turbulence at high Reynolds numbers
is particularly challenging due to the complex nature of these flows. Future works include extending
EddyFormer to general domains and exploiting its scalability.

24

(a) Reference solution at t = 0. (b) EF’s prediction at t = 0. (c) FNO’s prediction at t = 0.

(d) Reference solution at t = 10. (e) EF’s prediction at t = 10. (f) FNO’s prediction at t = 10.

(g) Reference solution at t = 20. (h) EF’s prediction at t = 20. (i) FNO’s prediction at t = 20.

(j) Reference solution at t = 30. (k) EF’s prediction at t = 30. (l) FNO’s prediction at t = 30.

Figure 16: Visualization of the density evolution for a rayleigh_taylor_instab. test sample.
EddyFormer successfully predicts the development of instability and the plume structures up to
t = 30, while the baseline FNO fail to converge.

25

	Introduction
	Background
	Model design choices for EddyFormer
	SGS stream for local motions
	LES stream for global motions

	Experiments
	Homogeneous isotropic turbulence
	Kolmogorov flow
	Turbulence beyond homogeneous isotropy

	Discussions on related works
	Dataset details
	Experiment details
	Two-dimensional turbulence KF4
	Three-dimensional turbulence Re94
	Ablation studies

	The Well dataset

	Limitations

