Under review as a conference paper at ICLR 2026

INFOBLEND: STORING AND REUSING KV CACHES OF
MULTIMODAL INFORMATION WITHOUT POSITIONAL
RESTRICTION

Anonymous authors
Paper under double-blind review

ABSTRACT

The context caching technique is employed to accelerate the Multimodal Large
Language Model (MLLM) inference by prevailing serving platforms currently.
However, this approach merely reuses the Key-Value (KV) cache of the initial
sequence of prompt, resulting in full KV cache recomputation even if the pre-
fix differs slightly. This becomes particularly inefficient in the context of inter-
leaved text and images, as well as multimodal retrieval-augmented generation.
This paper proposes position-independent caching as a more effective approach
for multimodal information management. We have designed and implemented a
caching system, named INFOBLEND, to address both system-level and algorithm-
level challenges. INFOBLEND stores the KV cache on local disks when receiving
multimodal data, and calculates and loads the KV cache in parallel during infer-
ence. To mitigate accuracy degradation, we have incorporated the integrated reuse
and recompute mechanism within the system. The experimental results demon-
strate that INFOBLEND can achieve up to 54% reduction in response time and 2 X
improvement in throughput compared to existing context caching systems, while
maintaining negligible or no accuracy loss.

1 INTRODUCTION

Recent years have witnessed notable development in applications based on Multimodal Large Lan-
guage Model (MLLM), including those for code generation [Zhu et al.| (2023), graphical user in-
terface agents |[Hong et al.| (2024); |[Zhang et al.| (2023a), and medical image understanding |Li et al.
(2023)); |[Zhang et al.| (2023b)). To enhance the perceptual capabilities of MLLM, the number of pro-
cessed image tokens has increased considerably, from 576 in LLaVA 1.5 |Liu et al.| (2024a) to 2304
in LLaVA 1.6|Liu et al.| (2024b). This significant expansion in the number of tokens has the adverse
effect of slowing down MLLM inference and constraining the performance of applications. This
highlights the necessity for reducing latency and enhancing throughput.

In order to reduce the computational overhead, Context Caching (CC) is a prevalent technique em-
ployed by numerous prominent platforms, including Google Gemini |Google| (2024al), Moonshot
Kimi|Moonshot|(2024)), DeepSeek Deepseek (2024), vLLM |Kwon et al.|(2023), and SGLang Zheng
et al.| (2024). As users may access the same text or image context on multiple occasions, the inter-
mediate results (commonly referred to as KV cache |Pope et al.| (2023))) of these information items
can be stored for reuse. To illustrate, Gemini offers a CC API|Google| (2024b), which allows users
to upload a video file in advance. Subsequently, the KV cache of the file and system prompis pre-
computed, and reused when responding to the user’s query. In this manner, CC reduces the response
time of MLLM, namely the Time-to-First-Token (TTFT).

However, all of the aforementioned CC systems merely reuse the KV cache of the initial sequence
of tokens (the prefix). Given the autoregressive nature of MLLM, the KV value of each token
depends on the preceding tokens. If the prefix of a query differs slightly from that of a previous
query, the majority of existing CC systems will cease attempting to reuse the stored KV cache and
instead recompute it for the new query. Such inefficiencies can prove particularly problematic in

!'System prompt is a set of instructions or guidelines that inform the model about its role, the nature of the
task, and the expected behavior.

Under review as a conference paper at ICLR 2026

N

User: I'm planning a trip to Paris and I've found two images online. This one is of the Eiffel
Tower (IMAGE#EIFFEL2025), and this one is of the Louvre Museum (IMAGE#LOUVRE2025).
Which one do you think has a more iconic design?

MLLM assistant: Both are iconic in their own right, but the Eiffel Tower (IMAGE#EIFFEL2025) is
often considered more iconic due to its unique structure and global recognition.

Interleaved
text and images

User: That's interesting. Can you find me some images of nearby hotels with great views of the

Eiffel Tower? Multimodal
retrieval-

MLLM assistant: Absolutely. Here are a couple of options: IMAGE#HOTELO1 has a stunning view augmented

of the Eiffel Tower from its rooms, and IMAGE#HOTELO2 offers a panoramic view of the tower, generation

especially beautiful at night. Both hotels are highly rated for their locations and amenities.

Figure 1: An example of a dialogue between a user and MLLM assistant. The first round of dialogue
represents an example of interleaving text and images, whereas the second round of dialogue is an
example of information retrieval. IMAGE#EIFEL2025 and IMAGE#LOUVRE2025 are two images
uploaded by the user, while IMAGE#HOTELO1 and IMAGE#HOTELO2 are two images fetched
from external websites by MLLM assistant. In both examples, the KV cache of images cannot be
reused by prefix-based CC systems, as the opening words may differ.

cases where interleaved text and images |Huang et al.|(2024)) are concerned, as well as in the context
of Multimodal Retrieval-Augmented Generation (MRA Wei et al.| (2024). Suppose there is a
dialogue as shown in Figure [I] If a subsequent query is the same as this one, except that it starts
with “We’re planing to ...”, then the entire KV cache cannot be reused. The use of interleaved text
and images is a widespread phenomenon on the Internet, particularly in the context of blogs and
news media. MRAG fetches relevant information to meet specific user requirements, which is also
an important function for applications.

In this paper, we explore the possibilities of position-independent CC systems. We start with analyz-
ing the limitations of two existing approaches: prefix caching and full reuse. Experimental results
show that full reuse can save up to 69.4% in TTFT, while concurrently leading to a substantial de-
cline in generation quality (see details in §[2.2)). Consequently, we propose partial reuse of KV cache
as a trade-off between the two approaches.

The implementation of partial reuse faces both system-level and algorithm-level challenges. First,
the size of a single image’s KV cache can reach 1 GB, so the majority of KV caches are stored on the
local disk. Second, it is crucial and challenging to avoid quality degradation when reusing KV cache.
Third, recent studies on RAG and LLM serving systems |Agarwal et al.| (2025); |Gim et al.| (2024));
Hu et al.| (2025); [Yao et al.| (2025) undergo a two-step process in the field of MLLM. They assume
that all chunks are concatenated consecutively, without considering interleaved variable text. In the
context of interleaved text and images, they first compute the KV caches of text, and then reuse the
KV caches of text and images, introducing additional time overhead during MLLM serving.

We address the challenges by designing a system named INFOBLEND. Analogous to classical
position-independent code, INFOBLEND allows the KV caches to be reused at any position within
a prompt, not merely at the prefix. To maintain generation quality, we have analyzed the attention
mechanism of image tokens thoroughly, and select which tokens should be recomputed. Finally, we
design and implement the selective attention mechanism to reuse the KV caches in single step.

Evaluations on multiple MLLMs and datasets illustrate that INFOBLEND saves TTFT by 54.1%
compared to prefix caching, with accuracy loss within 13.6%. In the scenario of online services, IN-
FOBLEND improves the throughput by 2.0x compared to the state-of-the-art approach. In addition,
the generation quality of INFOBLEND does not degrade as the number of images grows.

2MRAG refers to a retriever that retrieves multimodal data.

Under review as a conference paper at ICLR 2026

User’s query: Text Image 1 Text Image 2 || i
1 Genera_tion
Prefill] | Qually
D Reuse cache Recompute cache | ’
System prompt Text Image 1 : Prif'ixg

. y 1 cachin
— CF;::(::ilr):g // / :
% Y !

— R';:ge : . Full reuse 00%»
. v - - |

— Reuse _ Il

Figure 2: Illustration of three processing methods. Left part: A query consists of multiple images
and parts of text. Suppose that the first sentence of the query does not match any other previous
queries, and the KV caches of images are stored in advance. Prefix caching reuses the KV cache
of system prompt, and recomputes that of the query. Full reuse recomputes the KV cache of text,
and reuses that of multimodal information. Partial reuse recomputes more tokens compared to Full
reuse. Right part: Partial reuse accelerates MLLM inference through reusing the KV caches of the
most image tokens, while maintaining generation quality by selectively recomputing.

2 BACKGROUND AND MOTIVATION

2.1 BENEFITS OF CONTEXT CACHING (CC)

The CC technique has been shown to enhance the efficiency and performance of the MLLM through
the storage and reuse of the context of prior interactions. In a video analysis task, for instance,
the user is likely to refer to the video multiple times, and reusing the KV cache of the video can
reduce the response time and enhance the user experience, especially when the video is of consid-
erable length. Similar beneficial scenarios for CC include code analysis with repeated repository
references, and Q&A assistants with a collection of pictures.

The adoption of CC techniques offers notable advantages for both service platforms and users. For
service platforms, CC contributes to a reduction in computational overhead, enabling providers to
accommodate a greater number of users. Consequently, MLLM service providers actively promote
the use of CC by users. For example, DeepSeek cuts API costs by up to 90% for cache hits|Deepseek
(2024). This incentivizes users to employ the CC API in pursuit of reduced costs.

2.2 LIMITATIONS OF TWO NAIVE APPROACHES

At present, nearly all CC systems are of the prefix-based variety. In the remainder of this paper,
the term “prefix caching” is employed to denote the prefix-based CC system, as it merely stores and
reuses the KV cache of the prefix. We detail the prefix caching in Appendix [A] This approach is
constrained by the necessity of an exact match in the prefix tokens across requests. We illustrate this
phenomenon in the left part of Figure 2] When the prefix of a new query differs from that of any
other previous query, prefix caching recomputes all the tokens except the system prompt. This turns
out to be inefficient, since the number of tokens of multimodal information is considerably greater
than that of text. When the user’s query becomes longer, prefix caching will be nearly as slow as
computing without the CC system.

In order to explore the potential for reducing TTFT, we implemented a naive approach called “‘full
reuse” which reuses the entire KV cache regardless of the position of multimodal data. Nevertheless,
the text input of the user is not cached as it is unpredictable. As shown in the left part of Figure 2]
full reuse first recomputes the KV cache of text, and then concatenates it with stored KV caches, and
finally computes the first output token with all KV caches. This approach is analogous to Prompt
Cache (Gim et al.| (2024). We conduct an experiment to compare prefix caching and full reuse, and

Under review as a conference paper at ICLR 2026

—e— prefix caching —e— full reuse —— layer1 layer 16 —— layer 31
7 1.0 1.0
25 A
6
20 0.8 208
- 5
oS g, L 06 fos
E 5 a
1o 3 “ 04 %04
0.5 2 ;;
0.2 50.2
1 £
2 4 6 8 10 2 4 6 8 10 3
The number of images The number of images 0.0 0.0
10727 107V 107
(a) TTFT (b) ThrOUghpUt Attention score ° 50?1 1000
Figure 3: Comparison between prefix caching @ (b)

and full reuse in terms of TTFT and genera- _, o . .
tion quality. The MLLM model is LLaVA-1.6- Figure 4: (a) Distribution of all image tokens in
mistral-7B and the dataset is MMDU. (a) The terms of computed attention score with the first
TTET of full reuse grows slowly. (b) The score output token. Note that the x-agis is expres§ed
in is assessed by ChatGPT, which is a common on a log scale. (b).The summation of attention
practice in evaluating open questions. Full reuse S¢°T°S of the first n image tokens. For t.h ¢ sake of
cannot match the performance of prefix caching, clarity, we show only th;eg representative layers,
especially when the number of images is large. and other layers show similar patterns.

the results are shown in Figure [3| The TTFT of prefix caching grows quadratically with respect to
the number of images, since the computational complexity of the attention mechanism is O(n?),
where n is the length of the prompt. In contrast, the TTFT of full reuse grows slowly, due to the
reuse of KV cache. When the number of image is large, full reuse can reduce the TTFT by 69.4%
compared to prefix caching.

However, it is clear that full reuse violates the attention mechanism in transformer models. The
stored KV cache differs from the required one due to the autoregressive nature of transformer. Fig-
ure [3b] illustrates that full reuse degrades the generation quality significantly. As the number of
images increases, this approach is incapable of producing any meaningful answers. Moreover, full
reuse is a two-step process: The first step is to calculate the KV cache of text, and the second step is
to calculate the first output token using the concatenated KV cache. This triggers the LLM engine
twice, introducing additional time overhead from a system perspective. Figure [3a]demonstrates this
inefficiency. When the number of images is 1, the TTFT of full reuse is larger than that of prefix
caching, due to the two-step process.

In summary, prefix caching is inefficient in decreasing TTFT, while full reuse exhibits poor per-
formance in generation quality. In the rest of this paper, we aim to find a trade-off between prefix
caching and full reuse.

2.3 OPPORTUNITIES OF PARTIAL REUSE

This section explores the possibility of improving generation quality through minor modifications to
the stored KV caches. Recall that the KV cache of multimodal data is computed through modality
encoder, connector, and self-attention. We posit that the KV cache contains the majority of the mul-
timodal information, except for position information and cross-attention with other inputs. Our goal
is to blend the missing position knowledge into the KV cache. This goal can be achieved through in-
tegrated reuse and recompute mechanism, named “partial reuse”. As illustrated in Figure 2] partial
reuse recomputes a few tokens to mitigating accuracy degradation.

In order to validate this idea, we conduct an experiment using the example in Figure[] The utilized
MLLM is LLaVA-1.6-vicuna-7B |Liu et al.[(2024b). It encodes the image “IMAGE#EIFFEL2025”
into 1176 tokens. We collect the attention scores between these image tokens and the first output
token from each transformer layer. Their values are normalized with softmax function. Figure 4a]
shows the cumulative distribution function (CDF) of these attention scores. We find that less than
5% of tokens receive more than 10~3 attention score. Since 1073 is small, this means that less than
5% of tokens affect the output. Many recent papers also point out this phenomenon Beltagy et al.
(2020); (Chen et al.| (2025); Tang et al.|(2024); Zhang et al.| (2024;[2025). We conclude it as Insight

Under review as a conference paper at ICLR 2026

Multimodal Input : [cache miss
InfoBlend (et [ez | - [mawen | -
Users Static Library Dynamic Library Look up B cache on chip
| QO — B & e
% — | Image 1 | | Image m | |l}naéar§\&illﬁa§e1ﬁﬂ] |”:|n/1ag/s,v,ny,:|
u‘ @ Retrieve
-— Retriever - toad
- N e -
-—
- | - compuis
MLLM Linker
@® 2awey a Figure 6: Load and compute the KV cache of
kG ® KV Cache O images in parallel. Note that we simply utilize

images as an example here. The parallelization is
Figure 5: The Architecture of INFOBLEND Serv- applicable to the other forms of multimodal data
ing System. as well.

Insight 1. Attention matrix is extremely sparse.

To find out which tokens receive more attention, we calculate the cumulative summation of attention
scores as shown in Figure [db] It is evident that the first 500 tokens account for approximately 80%
of attention scores. This tendency aligns with the human attention mechanism, in which individuals
tend to allocate more attention to the initial sentences of a paragraph. Prior work Xiao et al.| (2024)
characterized this phenomenon as “attention sinks”, suggesting that the initial tokens tend to attract
a disproportionate share of attention. We observed it through depicting the heatmap of attention
matrix and the percentile rank of the first image token in Appendix[B] We conclude this as Insight[2]

Insight 2. The tokens at the beginning of all image tokens receive more attention.

The results of the motivational experiment indicate that only a few tokens are of importance, and
they typically occur at the beginning of the sequence. These insights are helpful for us to address the
accuracy challenge. We have verified our insights using another MLLM, InternVL-2.5. The code
and detailed results are provided in our supplementary material.

3 SYSTEM DESIGN AND IMPLEMENTATION

3.1 SYSTEM OVERVIEW

This section presents the architecture of INFOBLEND as shown in Figure [5] We will start with the
key components of INFOBLEND, and then introduce its workflow.

There are five key components in INFOBLEND. (1) MLLM inference serving system is responsi-
ble for generating output tokens in multiple steps (commonly referred to as the decode phase|Zhong
et al.| (2024)). It also contains a scheduler that manages users’ queries. The MLLM subsystem in-
corporates advanced techniques such as PagedAttention|Kwon et al.|(2023)) and continuous batching
Yu et al.|(2022). (2) Static Library stores the KV cache of files uploaded by users. The files from
different users are logically separated. Each user can access only his/her own files. It is relatively
static, as it can only be modified by the users. This component is analogous to the static-linked
code: Users refer to these files in their queries, and INFOBLEND links the KV cache of these files
for the MLLM to inference. (3) Dynamic Library serves as the storage for multimedia references
and related KV cache. This component is prepared for MRAG, for the sake of enhancing MLLM’s
quality and factuality. It is relatively dynamic, since the administrator of INFOBLEND can update
the references periodically according to the demand of applications. This component is analogous
to the dynamic-linked library: The MLLM retrieves the references during decode phase, when it
determines that a retrieval is required Asai et al.| (2023); Jeong et al.| (2024). (4) Retriever is re-
sponsible for searching the relevant information based on the query. It is analogous to the relocation
table when executing a program, in that the program needs the relocation table to find the address
of dynamic-linked libraries. (5) Linker links the KV cache of multimodal information to users’

Under review as a conference paper at ICLR 2026

queries. Linking without accuracy degradation is an algorithm-level challenge, and we will address
this challenge through selective attention mechanism in the next section.

The serving workflow of INFOBLEND is outlined as follows. (I) Users upload their respective files,
and INFOBLEND subsequently performs the computation of the KV cache, which is then stored in
GPU memory for the purpose of serving. Concurrently, these caches are copied to disks and subse-
quently deleted following the expiration of their designated timeframe. (2) The user submits a query,
including questions and references to specific files. 3) The MLLM accesses the files according to
the user’s ID and references. @) The retriever executes MRAG when triggered by the MLLM. ()
Linker blends the KV caches together and sends them to the MLLM as an input. (6) The MLLM
generates an answer to respond to the user.

3.2 KV CACHE TRANSFER IN PARALLEL

Normally, the KV caches of files from active users are loaded on the memory of computing chip
(e.g., GPU, TPU, NPU, etc.). When the stored KV caches are not on the chip, we design a parallel
transfer mechanism as shown in Figure 6]

Suppose that the input includes n images. INFOBLEND looks up the KV caches of these images
at the beginning of processing. The KV caches of m images are missing, due to deletion after
expiration. The KV caches of remaining n — m images are hit. Some of them are on GPU memory,
while others are on CPU memory or disks. Subsequently, the computation and transfer of KV caches
are executed concurrently, for the purpose of reducing the preparation time. In the case of failures
when loading KV caches from disks, INFOBLEND will continue to calculate all KV caches and keep
serving. The procedure falls back to inference without the existing KV cache.

Other optimization techniques such as layer-wise transfer [Patel et al.| (2024) and KV cache com-
pression |[Liu et al.| (2024c) are orthogonal to our work. They can be employed in our system as
well.

4 IMPLEMENTATION OF SELECTIVE ATTENTION

In order to partially reuse the KV caches, we implement the selective attention mechanism. Only
the selected tokens are passed into the MLLM, while they need to calculate the attention score with
other tokens. We first introduce this mechanism, and then explain how to select tokens.

4.1 ILLUSTRATION OF SELECTIVE ATTENTION

The process is illustrated in Figure Wi and W, in the figure are the parameters of MLLM. The
recomputed K tensor substitutes part of the K cache for calculating the attention matrix. Here we
utilize the tricky “dummy cache”. Since the KV cache of mutable text is not saved in advance, the
tokens of text must be computed. In other words, the tokens of text are part of selected tokens. The
KV cache of selected tokens will be replaced, so we do not need to pre-compute the KV cache of
text, and instead fill its KV cache with zeros. In this way, the selective attention mechanism is a
single-step process. This is more efficient than the two-step process of full reuse. Our experiment in
the next section exhibits the efficiency.

4.2 SELECTING IMPORTANT TOKENS

As analyzed in § [2.3] the attention matrix is sparse, and only 5% of tokens receive significant at-
tention scores. In this section, we determine which tokens are important and require recomputation
through a motivational experiment.

In the experiment, we compute two KV caches of a single image with different positions. Specifi-
cally, the first KV cache is created when the image is inserted before a question, while the second
KV cache is created with the reverse order. We focus on the distance between the two KV caches.
To find the tokens with large distance, we sort the image tokens by their K distance, and count the
number of transformer layers where the token is in the top 50, as shown in Figure[8] We conclude
the finding of the experiment as Insight 3]

Under review as a conference paper at ICLR 2026

[Reuse cache Dummy cache [[77] Recompute cache ve | w2

wn v

— X
c

Selected System prompt] g 2L
tOkenS Replace 0000000| Text g 330 30 30 30 ﬂ E
— cc
X w, - Image 1 29 29 29
K \ mage] E 1< <2
GJ
K 0000000 -g 2 28 28] 28 28 28 28
X o 4= 27
8 o)
"5 g 26 26 26 26
W, - E X = Attention matrix S 9 25| |25 25
Q a
Q S
K]-Enk g E 24
2
e
Figure 7: Illustration of selective attention. First, 2

. 012 3 45 6101112141517 1819243044485163
select the important tokens. Second, replace the Position of image token

respective K cache with generated K. Third,
multiply @ with K; link t0 Obtain the attention ma- Figure 8: Important tokens. The K distance of
trix. The V cache also undergoes the same oper- 5 token is defined as the L1 distance between its

ation. The details such as positional embedding two K tensors. For clarity, we only show tokens
and softmax are omitted in the figure. whose number is greater than 24.

Insight 3. The tokens at the beginning of all image tokens exhibit a greater disparity in terms of the
KV distance between reused KV tensor and recomputed KV tensor.

In summary, the tokens at the beginning are more different (Insight [3)) and receive more attention
(Insight 2). These tokens absorb too much attention due to “attention sinks” and contribute nega-
tively to the outcome. Consequently, we select all text tokens and % tokens at the beginning of image
tokens to be recomputed in the selective attention mechanism. We recompute them to make them
realize they are not the initial tokens of the sentence anymore and stop absorbing attention, and then
the accuracy can be recovered. This method is referred to as INFOBLEND-k. Our evaluations in the
next section verify the effectiveness of INFOBLEND-k.

5 EVALUATION

In this section, we evaluate INFOBLEND in terms of response time and generation quality. We also
investigate the throughput of INFOBLEND in the online scenario. The sensitivity analysis is left to
Appendix [C] due to page limit.

5.1 EXPERIMENTAL SETTINGS

We select two prevalent MLLMs in the experiments: LLaVA-1.6-vicuna-7B and LLaVA-1.6-
mistral-7B |Liu et al.| (2024b). All experiments are run on a server with 1 NVIDIA H800-80 GB
GPU, 20-core Intel(R) Xeon(R) Platinum CPUs, and 100GB DRAM.

Two datasets are used in our evaluation. (1) MMDU |Liu et al.| (2024d) aims to evaluate MLLMs’
abilities in multi-turn and multi-image conversations. Each conversation stitches together multi-
ple images and sentence-level text (e.g., “Can you describe these images as detailed as possible?
IMAGE#1, IMAGE#2.”). (2) SparklesEval Huang et al.|(2024) is a dataset for assessing MLLMs’
conversational competence across multiple images and conversation turns. Unlike MMDU, Sparkle-
sEval integrates multiple images at word level (e.g., “Can you link the celebration occurring in IM-
AGE#1 and the dirt bike race in IMAGE#2 ?”). As shown in the examples, the prompts of two
datasets are open questions. Previous works adopt GPT score to evaluate the quality of MLLMs’
responses to the open questions Liu et al.|(2024d); Huang et al.|(2024). GPT score is a GPT-assisted
evaluation that uses a powerful judge model (e.g., GPT-40, Qwen, etc.) to assess the answers. We
also employ this metric and their evaluation prompt, as listed in Appendix

We compare INFOBLEND-k with three existing CC algorithms: prefix caching, full reuse, and
CacheBlend [Yao et al| (2025). CacheBlend is also a position-independent algorithm designed
for RAG system. It recomputes 7% of total tokens with largest KV deviation, so we denote it as
CacheBlend-r. The primary focus of CacheBlend is the KV deviation, while the INFOBLEND’s

Under review as a conference paper at ICLR 2026

¢ prefixcaching * infoblend-64 infoblend-16 infoblend-4 cacheblend-10
® full reuse infoblend-32 infoblend-8 cacheblend-15 cacheblend-5
llava v1.6 vicuna 7b llava v1.6 mistral 7b llava v1.6 vicuna 7b llava v1.6 mistral 7b
a * N 9 N ¥ 3 Y
4 . 025 © *
@3) S50 S
g g3 5 . 52
(2} wn >
32 é 2 ° % ne g ‘
§ . . 2 E 1.0 % 1
1 &os &
8.00 0.05 0.10 0.15 8.00 0.05 0.10 0.15 0'8. 0 0.05 0.10 0.15 0.20 8.00 0.05 0.10 0.15 0.20
TTFT (s) TTFT (s) TTFT (s) TTFT (s)
() (b) (© (d)

Figure 9: Comparison of TTFT ({ Better) and Score (1 Better) using different models on different
datasets. Figures (a)(c) show the results of LLaVA-1.6-vicuna-7B, while Figures (b)(d) show the
results of LLaVA-1.6-mistral-7B. The label of y-axis indicates the dataset used.

selection process involves the identification of tokens that exhibit both high attention scores and
significant KV deviation. We implement the four CC algorithms based on vLLM 0.9.0 Kwon et al.
(2023)).

5.2 EFFECTIVENESS OF INFOBLEND

Based on vLLM offline inference, we compare the performance of all algorithms. Specifically, we
process all requests sequentially and evaluate their generation quality and processing time for prefill.
The workflow initiates with the precomputation of the relevant KV cache for images. Subsequently,
we send the user’s query along with the cache_ids of the images to the serving system. Prefix
caching will process the query with the KV cache of system prompt only. INFOBLEND concatenates
the dummy cache and stored cache, and computes the first output token using selective attention
mechanism in single step. Full reuse and CacheBlend first compute the KV cache of text, and then
produce the first output token with the concatenated KV cache. We record the processing time of
the algorithms and finally score for each response.

Figure [9] presents the experimental results of all algorithms across different models and datasets.
The results indicate that INFOBLEND consistently outperforms CacheBlend in terms of both TTFT
and score across various configurations. INFOBLEND-32 reduces TTFT by up to 54.1% while main-
taining a loss of score within 13.6% compared to prefix caching. Additionally, it is clear that IN-
FOBLEND exhibits a slight decrease in TTFT compared to full reuse, since INFOBLEND is a single-
step process. Compared to other algorithms, INFOBLEND achieves the best trade-off between TTFT
and score.

5.3 THROUGHPUT OF INFOBLEND IN THE ONLINE SCENARIO

To assess INFOBLEND’s latency and throughput performance, we leverage vLLM’s OpenAl-
compatible API server to simulate real-world user request patterns. We first sample dozens of
instances from MMDU and pre-generate KV caches for their images. Subsequently, we simulate
user request behavior by repeatedly sending the user queries along with the cache_ids of these sam-
ples at a specified request rate over a period of time. Through varying the request rate, we measure
the latency and throughput across different experimental conditions.

Figure[I0]presents a comparison of latency and throughput in the online scenario. As the request rate
increases, the TTFT of serving systems rises significantly. This phenomenon can be attributed to the
fact that, in high-demand scenarios, requests are required to queue, thereby delaying the processing
of individual requests. As the request rate increases, the throughput of serving systems first rises
linearly, then falls, and finally stabilizes around a fixed value. The throughput rises linearly because
the low request rate cannot saturate the system. When the request rate exceeds the capability of the
system, the throughput falls and converges to a fixed value. INFOBLEND consistently outperforms
CacheBlend and prefix caching in terms of TTFT and throughput. Compared to CacheBlend, In-
foBlend achieves up to 73.5% reduction in TTFT and 2.0x improvement in throughput. This gap
increases as the request rate rises.

Under review as a conference paper at ICLR 2026

—e— prefix caching —e— cacheblend-15 infoblend-32
1.0
700
0.8 5
'c 600
(7]
X
506 2500
- =
i 2 400
Foa <
3300
<
0.2 £ 200
100
0.0 5 10 15 5 10 15
Request rate (req/s) Request rate (req/s)
(a) TTFT (b) Throughput

Figure 10: The performance of INFOBLEND as the request rate increases. The throughput is defined
as the rate of generating output tokens.

6 RELATED WORK

LLM Serving Optimizations. Several serving systems emerged in the past year. vLLM [Kwon
et al.[(2023) is a pioneering work in this space featuring PagedAttention for higher throughput.
SGLang [Zheng et al.| (2024) is another serving system featuring a novel frontend language and
a backend runtime. Aside from full-systems, there are also many scheduling optimizations such
as disaggregated prefill and decode [Zhong et al.| (2024); Hu et al.| (2024aib); [Patel et al.| (2024)),
continuous batching[Yu et al.|(2022), multi-lora[Sheng et al.|(2023); L1 et al.| (2024), etc.

Context Caching (CC). Context Caching (CC) has two main categories. The first is Position-
dependent caching, which can be further divided into prefix-based caching Yu & Li (2023)); Zheng
et al.| (2024) and modular caching |Gim et al|(2024). By mid-2024, vendors such as Kimi Moon-
shot| (2024) and Gemini (Google| (2024a)) began incorporating explicit CC features into their sys-
tems. The second category is Position-Independent Caching (PIC). To the best of our knowledge,
CacheBlend |Yao et al|(2025) represents the first work addressing aspects of PIC, while EPIC [Hu
et al.[(2025) formally defines the PIC problem and advances the state-of-the-art one step forward.
However, these two pieces of work focus mainly on text-based applications, and are inefficient in
the context of interleaved text and images. In order to prevent triggering MLLM engine twice, we
design selective attention mechanism to process the prefill phase of queries in single step. Our work
is the first to explore a solution to the PIC problem in the multi-modality field.

Retrieval-Augmented-Generation (RAG). RAG is a technique that combines retrieval-based meth-
ods with generation-based models to improve the performance of LLMs. It aims to address the lim-
itations of purely generative models, which can sometimes lack factual accuracy or struggle with
long-context understanding [Li et al.|(2022)); Jin et al.| (2024); |Gao et al.| (2023); Jeong et al.| (2024);
Ram et al.| (2023)); Mao et al.| (2020). For example, Adaptive-RAG [Jeong et al.| (2024) develops a
dynamic framework to select the most suitable strategy for LLMs to deal with queries based on their
complexity. To classify queries of different complexity, Adaptive-RAG trains a small model as a
classifier to predict the complexity of queries. We also incorporate the RAG into INFOBLEND, and
enhance its efficiency through the reuse of KV cache.

7 CONCLUSION

In this paper, we present INFOBLEND to store and reuse KV caches of multimodal information
without positional restriction. We design parallelized KV cache transfer and selective attention
mechanism to address the system-level and algorithm-level challenges respectively. We have ana-
lyzed the characteristic of image tokens in detail, and select the important tokens with the insights.
Experimental results across different models and datasets illustrate that INFOBLEND reduces TTFT
by 54.1% with negligible or no quality degradation, and doubles the throughput in the scenario of
online services. Our solution is applicable to large number of images as well.

Under review as a conference paper at ICLR 2026

REFERENCES

Shubham Agarwal, Sai Sundaresan, Subrata Mitra, Debabrata Mahapatra, Archit Gupta, Rounak
Sharma, Nirmal Joshua Kapu, Tong Yu, and Shiv Saini. Cache-craft: Managing chunk-caches
for efficient retrieval-augmented generation. Proc. ACM Manag. Data, 3(3), June 2025. doi:
10.1145/3725273. URL https://doi.org/10.1145/3725273.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-RAG: Learning
to retrieve, generate, and critique through self-reflection. arXiv preprint arXiv:2310.11511, 2023.
URLhttps://arxiv.org/abs/2310.11511.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer,
2020. URL https://arxiv.org/abs/2004.05150.

Liang Chen, Haozhe Zhao, Tianyu Liu, Shuai Bai, Junyang Lin, Chang Zhou, and Baobao Chang.
An image is worth 1/2 tokens after layer 2: Plug-and-play inference acceleration for large vision-
language models. In Ales Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten Sattler,
and Giil Varol (eds.), Computer Vision — ECCV 2024, pp. 19-35, Cham, 2025. Springer Nature
Switzerland. ISBN 978-3-031-73004-7.

Deepseek. Deepseek api introduces context caching on disk, cutting prices by an order of magnitude.
https://api-docs.deepseek.com/news/news0802, 2024.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and
Haofen Wang. Retrieval-augmented generation for large language models: A survey. arXiv
preprint arXiv:2312.10997, 2023.

In Gim, Guojun Chen, Seung-seob Lee, Nikhil Sarda, Anurag Khandelwal, and Lin Zhong. Prompt
cache: Modular attention reuse for low-latency inference. Proceedings of Machine Learning and
Systems, 6:325-338, 2024.

Google. Gemini. https://gemini.google.com, 2024a.

Google. Gemini context caching. |https://ai.google.dev/gemini-api/docs/
caching, 2024b.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxiao Dong, Ming Ding, and Jie Tang. Cogagent: A visual language model for gui
agents. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 14281-14290, June 2024.

Cunchen Hu, Heyang Huang, Junhao Hu, Jiang Xu, Xusheng Chen, Tao Xie, Chenxi Wang,
Sa Wang, Yungang Bao, Ninghui Sun, et al. Memserve: Context caching for disaggregated llm
serving with elastic memory pool. arXiv preprint arXiv:2406.17565, 2024a.

Cunchen Hu, Heyang Huang, Liangliang Xu, Xusheng Chen, Jiang Xu, Shuang Chen, Hao Feng,
Chenxi Wang, Sa Wang, Yungang Bao, et al. Inference without interference: Disaggregate llm
inference for mixed downstream workloads. arXiv preprint arXiv:2401.11181, 2024b.

Junhao Hu, Wenrui Huang, Weidong Wang, Haoyi Wang, tiancheng hu, zhang qin, Hao Feng,
Xusheng Chen, Yizhou Shan, and Tao Xie. EPIC: Efficient position-independent caching for
serving large language models. In Forty-second International Conference on Machine Learning,
2025. URL https://openreview.net/forum?id=gjd3ZUiHRT.

Yupan Huang, Zaigiao Meng, Fangyu Liu, Yixuan Su, Nigel Collier, and Yutong Lu. Sparkles:
Unlocking chats across multiple images for multimodal instruction-following models. In ICLR
2024 Workshop on Navigating and Addressing Data Problems for Foundation Models, 2024. URL
https://openreview.net/forum?id=bTOZgQyalB.

Soyeong Jeong, Jinheon Baek, Sukmin Cho, Sung Ju Hwang, and Jong C Park. Adaptive-rag:
Learning to adapt retrieval-augmented large language models through question complexity. arXiv
preprint arXiv:2403.14403, 2024.

10

https://doi.org/10.1145/3725273
https://arxiv.org/abs/2310.11511
https://arxiv.org/abs/2004.05150
https://api-docs.deepseek.com/news/news0802
https://gemini.google.com
https://ai.google.dev/gemini-api/docs/caching
https://ai.google.dev/gemini-api/docs/caching
https://openreview.net/forum?id=qjd3ZUiHRT
https://openreview.net/forum?id=bTOZqQyalB

Under review as a conference paper at ICLR 2026

Chao Jin, Zili Zhang, Xuanlin Jiang, Fangyue Liu, Xin Liu, Xuanzhe Liu, and Xin Jin.
Ragcache: Efficient knowledge caching for retrieval-augmented generation. arXiv preprint
arXiv:2404.12457, 2024.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Chunyuan Li, Cliff Wong, Sheng Zhang, Naoto Usuyama, Haotian Liu, Jianwei Yang, Tris-
tan Naumann, Hoifung Poon, and Jianfeng Gao. Llava-med: Training a large language-
and-vision assistant for biomedicine in one day. In A. Oh, T. Naumann, A. Glober-
son, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information Pro-
cessing Systems, volume 36, pp. 28541-28564. Curran Associates, Inc., 2023. URL
https://proceedings.neurips.cc/paper_files/paper/2023/file/
Sabcdf8ecdcacbal28c6662789194572-Paper—-Datasets_and_Benchmarks.
pdf.

Huayang Li, Yixuan Su, Deng Cai, Yan Wang, and Lemao Liu. A survey on retrieval-augmented
text generation. arXiv preprint arXiv:2202.01110, 2022.

Suyi Li, Hanfeng Lu, Tianyuan Wu, Minchen Yu, Qizhen Weng, Xusheng Chen, Yizhou Shan, Bin-
hang Yuan, and Wei Wang. Caraserve: Cpu-assisted and rank-aware lora serving for generative
llm inference. arXiv preprint arXiv:2401.11240, 2024.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 26296-26306, June 2024a.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
Llava-next: Improved reasoning, ocr, and world knowledge, January 2024b. URL https://
llava-vl.github.io/blog/2024-01-30-1lava—-next/.

Yuhan Liu, Hanchen Li, Yihua Cheng, Siddhant Ray, Yuyang Huang, Qizheng Zhang, Kuntai Du,
Jiayi Yao, Shan Lu, Ganesh Ananthanarayanan, Michael Maire, Henry Hoffmann, Ari Holtz-
man, and Junchen Jiang. Cachegen: Kv cache compression and streaming for fast large language
model serving. In Proceedings of the ACM SIGCOMM 2024 Conference, ACM SIGCOMM
24, pp. 38-56, New York, NY, USA, 2024c. Association for Computing Machinery. ISBN
9798400706141. doi: 10.1145/3651890.3672274. URL https://doi.org/10.1145/
3651890.3672274.

Ziyu Liu, Tao Chu, Yuhang Zang, Xilin Wei, Xiaoyi Dong, Pan Zhang, Zijian Liang, Yuanjun
Xiong, Yu Qiao, Dahua Lin, and Jiaqgi Wang. MMDU: A multi-turn multi-image dialog un-
derstanding benchmark and instruction-tuning dataset for LVLMs. In The Thirty-eight Confer-
ence on Neural Information Processing Systems Datasets and Benchmarks Track, 2024d. URL
https://openreview.net/forum?id=s8h2jSN6ab.

Yuning Mao, Pengcheng He, Xiaodong Liu, Yelong Shen, Jianfeng Gao, Jiawei Han, and Weizhu
Chen. Generation-augmented retrieval for open-domain question answering. arXiv preprint
arXiv:2009.08553, 2020.

Moonshot. Kimi context caching. https://platform.moonshot.cn/docs/guide/
use—context—caching-feature-of-kimi-api, 2024.

Pratyush Patel, Esha Choukse, Chaojie Zhang, Aashaka Shah, fﬁigo Goiri, Saeed Maleki, and Ri-
cardo Bianchini. Splitwise: Efficient generative 1lm inference using phase splitting. In 2024
ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA), pp. 118—
132, 2024. doi: 10.1109/ISCA59077.2024.00019.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury,
Jonathan Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scal-
ing transformer inference. In D. Song, M. Carbin, and T. Chen (eds.), Proceed-
ings of Machine Learning and Systems, volume 5, pp. 606-624. Curan, 2023. URL

11

https://proceedings.neurips.cc/paper_files/paper/2023/file/5abcdf8ecdcacba028c6662789194572-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/5abcdf8ecdcacba028c6662789194572-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/5abcdf8ecdcacba028c6662789194572-Paper-Datasets_and_Benchmarks.pdf
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://doi.org/10.1145/3651890.3672274
https://doi.org/10.1145/3651890.3672274
https://openreview.net/forum?id=s8h2jSN6a6
https://platform.moonshot.cn/docs/guide/use-context-caching-feature-of-kimi-api
https://platform.moonshot.cn/docs/guide/use-context-caching-feature-of-kimi-api

Under review as a conference paper at ICLR 2026

https://proceedings.mlsys.org/paper_files/paper/2023/file/
cdbe7lab8d24cdfbd5e3d06dbfca2780-Paper-mlsys2023.pdfl

Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay, Amnon Shashua, Kevin Leyton-Brown, and
Yoav Shoham. In-context retrieval-augmented language models. Transactions of the Association
for Computational Linguistics, 11:1316-1331, 2023.

Ying Sheng, Shiyi Cao, Dacheng Li, Coleman Hooper, Nicholas Lee, Shuo Yang, Christopher Chou,
Banghua Zhu, Lianmin Zheng, Kurt Keutzer, et al. S-lora: Serving thousands of concurrent lora
adapters. arXiv preprint arXiv:2311.03285, 2023.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. QUEST:
Query-aware sparsity for efficient long-context LLM inference. In Forty-first International
Conference on Machine Learning, 2024. URL https://openreview.net/forum?id=
KzACYwOMTV.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Informa-
tion Processing Systems, 2017.

Cong Wei, Yang Chen, Haonan Chen, Hexiang Hu, Ge Zhang, Jie Fu, Alan Ritter, and Wenhu
Chen. Uniir: Training and benchmarking universal multimodal information retrievers. In Ales
Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten Sattler, and Giil Varol (eds.),
Computer Vision - ECCV 2024 - 18th European Conference, Milan, Italy, September 29-October
4, 2024, Proceedings, Part LXXXVII, volume 15145 of Lecture Notes in Computer Science, pp.
387-404. Springer, 2024. doi: 10.1007/978-3-031-73021-4\ 23. URL |https://doi.org/
10.1007/978-3-031-73021-4_23.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In The Twelfth International Conference on Learning Rep-
resentations, 2024. URL https://openreview.net/forum?id=NG7sS51zVF.

Jiayi Yao, Hanchen Li, Yuhan Liu, Siddhant Ray, Yihua Cheng, Qizheng Zhang, Kuntai Du,
Shan Lu, and Junchen Jiang. Cacheblend: Fast large language model serving for rag with
cached knowledge fusion. In Proceedings of the Twentieth European Conference on Com-
puter Systems, EuroSys ’25, pp. 94-109, New York, NY, USA, 2025. Association for Com-
puting Machinery. ISBN 9798400711961. doi: 10.1145/3689031.3696098. URL https:
//doi.org/10.1145/3689031.3696098,

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-Gon Chun. Orca: A
distributed serving system for Transformer-Based generative models. In /6th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 22), pp. 521-538, Carlsbad, CA, July
2022. USENIX Association. ISBN 978-1-939133-28-1. URL https://www.usenix.org/
conference/osdi22/presentation/yu.

Lingfan Yu and Jinyang Li. Stateful large language model serving with pensieve. arXiv preprint
arXiv:2312.05516, 2023.

Chi Zhang, Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu, and Gang
Yu. Appagent: Multimodal agents as smartphone users, 2023a. URL https://arxiv.org/
abs/2312.13771.

Junyang Zhang, Mu Yuan, Ruiguang Zhong, Puhan Luo, Huiyou Zhan, Ningkang Zhang,
Chengchen Hu, and Xiangyang Li. A-vl: Adaptive attention for large vision-language models. In
AAAI 2025.

Xiaoman Zhang, Chaoyi Wu, Ziheng Zhao, Weixiong Lin, Ya Zhang, Yanfeng Wang, and Weidi
Xie. Pmc-vqa: Visual instruction tuning for medical visual question answering. arXiv preprint
arXiv:2305.10415, 2023b.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H20: Heavy-hitter oracle for efficient gen-
erative inference of large language models. Advances in Neural Information Processing Systems,
36, 2024.

12

https://proceedings.mlsys.org/paper_files/paper/2023/file/c4be71ab8d24cdfb45e3d06dbfca2780-Paper-mlsys2023.pdf
https://proceedings.mlsys.org/paper_files/paper/2023/file/c4be71ab8d24cdfb45e3d06dbfca2780-Paper-mlsys2023.pdf
https://openreview.net/forum?id=KzACYw0MTV
https://openreview.net/forum?id=KzACYw0MTV
https://doi.org/10.1007/978-3-031-73021-4_23
https://doi.org/10.1007/978-3-031-73021-4_23
https://openreview.net/forum?id=NG7sS51zVF
https://doi.org/10.1145/3689031.3696098
https://doi.org/10.1145/3689031.3696098
https://www.usenix.org/conference/osdi22/presentation/yu
https://www.usenix.org/conference/osdi22/presentation/yu
https://arxiv.org/abs/2312.13771
https://arxiv.org/abs/2312.13771

Under review as a conference paper at ICLR 2026

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao,
Christos Kozyrakis, Ton Stoica, Joseph E. Gonzalez, Clark Barrett, and Ying Sheng. SGLang:
Efficient execution of structured language model programs. In The Thirty-eighth Annual Confer-
ence on Neural Information Processing Systems, 2024. URL https://openreview.net/
forum?id=VgkAKQibpd.

Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xuanzhe Liu, Xin Jin, and
Hao Zhang. DistServe: Disaggregating prefill and decoding for goodput-optimized large lan-
guage model serving. In I8th USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI 24), pp. 193-210, Santa Clara, CA, July 2024. USENIX Association.
ISBN 978-1-939133-40-3. URL https://www.usenix.org/conference/osdi24/
presentation/zhong—yinminl

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: Enhancing
vision-language understanding with advanced large language models, 2023. URL https://
arxiv.org/abs/2304.10592.

13

https://openreview.net/forum?id=VqkAKQibpq
https://openreview.net/forum?id=VqkAKQibpq
https://www.usenix.org/conference/osdi24/presentation/zhong-yinmin
https://www.usenix.org/conference/osdi24/presentation/zhong-yinmin
https://arxiv.org/abs/2304.10592
https://arxiv.org/abs/2304.10592

Under review as a conference paper at ICLR 2026

A TRANSFORMER PRIMER

The attention-based transformer architecture |Vaswani et al.| (2017) underpins most large language
models (LLMs) today. A typical LLM comprises multiple transformer layers, each containing an
attention module. This module maps input vectors to query, key, and value vectors, which it then
combines to produce an output vector. Specifically, when an attention module receives input vectors,
or a sequence of hidden states (x1,xa,...z,) € R™*4 where n is the number of tokens in the
sequence, and d is the hidden dimension, it computes the key, query, and value vectors for each
token as follows:
ki = Wixi, qs = Wox, v = Wya;.

where Wy, W,, and W, are learnable weight matrices. The attention module then computes the
attention score between tokens as follows:

o explg k;/Vd)
Yy explq] ke/Vd)

Finally, the attention module computes the output vectors as weighted sums of the value vectors:

i
0; = E aijvj
j=1

The output of the attention module can either serve as the input to the next layer or act as the final
output.

A.1 MULTIMODAL TRANSFORMER

While the original transformer architecture [Vaswani et al.| (2017) was initially developed for natu-
ral language processing (NLP) tasks, its attention-based mechanism has been successfully extended
to a wide range of multi-modal applications. In the multi-modal setting, the key challenge is to
effectively combine information from heterogeneous modalities, each with distinct structures and
representations. Existing approaches address this by using modality-specific encoders. For ex-
ample, in vision-language tasks, one encoder processes image features (often using convolutional
neural networks or vision transformers), while another processes textual input, such as captions or
queries. These encoders project modality-specific features into a shared embedding space, enabling
the transformer model to process embeddings from different modalities uniformly.

A.2 AUTOREGRESSIVE GENERATION & KV CACHE

LLMs generate tokens autoregressively, predicting one token at a time based on the input. This
process involves two phases: the prefill phase and the decode phase. In the prefill phase, LLMs
process the entire input prompt (z1, 3, . . ., T,), computing and caching the key and value vectors
for each token. This phase can be slow for long inputs, and the time to generate the first token
is measured by the Time-to-First-Token (TTFT) metric. In the decode phase, LLMs generate one
token at a time. The model computes the probability of the next token x,, 1, selects the most likely
token, and appends its key and value vectors to the KV cache.

The KV cache Pope et al.| (2023), which stores the key and value vectors computed by the attention
module, accelerates generation by enabling intra-request and inter-request reuse. First, within a
single request, the cache speeds up token generation by allowing the model to reuse cached KV
vectors, thus only processing the new token instead of recalculating vectors for the entire sequence.
Second, when a new request shares a prefix with a previous one, the KV cache for the prefix can be
reused, thereby accelerating the prefill phase of the new request.

A.3 CONTEXT CACHING

To better use KV cache, existing approaches propose context caching (CC) that exploits inter-request
dependency to reuse KV cache across inference requests to avoid repeated computation of the same
prompt tokens [Kwon et al|(2023); Zheng et al.|(2024); Yao et al,| (2025); |Hu et al.| (2025). There
are two types of context caching. First, in prefix-based context caching, only the initial portion

14

Under review as a conference paper at ICLR 2026

g
=}
S

e
©
o

{H{ {}H } H

1<)
o
o
—0—
—e—i

o
©
@

4
©
S

o
N
o

Percentile rank of the first image token

T T T T T T T
0 5 10 15 20 25 30

Layer ID

« Figure 12: The percentile rank of the first image
token in all tokens across different layers. The
red dots are the mean value, while the green error
bars are the standard deviation across different
heads.

Figure 11: The attention heatmap of an example
with two images. Tokens from 2512 to 2731 are
output tokens.

of the sequence is cached and reused. Almost all existing CC offerings and designs are prefix-
based Kwon et al.| (2023); Zheng et al.|(2024); |Hu et al.| (2024a); Zhong et al.|(2024). However, in
this approach, if the prefix differs slightly (e.g., one or two words are different at the beginning), the
entire cache cannot be reused, forcing the model to recompute all the key-value pairs for that request.
This inefficiency can be particularly problematic in cases where many requests share a substantial
amount of overlapping context but differ slightly in their initial tokens (e.g., in RAG). Second, the
position-independent context caching addresses the limitation of prefix-based caching by enabling
KV cache reuse across requests, even when token sequences differ, without being constrained by the
shared prefix. The position-independent approach was a new concept and was explored in two
CacheBlend |Yao et al.| (2025) and EPIC Hu et al.| (2025) on Natural Language Processing (NLP)
tasks. Our work is the first to explore a solution to the PIC problem in the multi-modality field.

B INVESTIGATION OF THE IMPORTANCE OF INITIAL IMAGE TOKENS
This appendix provides detailed evidence to illustrate the importance of initial image tokens.

B.1 ATTENTION HEATMAP

We use the example in Figure[T| with LLaVA-1.6-vicuna-7B to generate the attention scores by three
steps. First, we discard the negative attention scores, i.e., setting them to 0. Second, the attention
scores are normalized through min-max normalization. Third, we calculate the average value of 32
heads in the first transformer layer, and show the value in Figure[TT] It is observed that the beginning
tokens of two image, token 109 and token 1294, receive more attention scores from other tokens.

B.2 PERCENTILE RANK
Figure [12] shows the distribution of the percentile rank of the first image token in all tokens across
different layers. In each layer, we collect the percentile rank of the attention score between the first

image token and the first output token across different heads. It is evident that the first image token
receives more attention score than 80% of all tokens, in most layers and heads.

C ADDITIONAL RESULTS: SENSITIVITY ANALYSIS

In order to achieve a more profound comprehension of INFOBLEND, a subsequent analysis is nec-
essary to ascertain how the number of images impacts overall performance. We divide the dataset

15

Under review as a conference paper at ICLR 2026

—e— prefix caching —e— full reuse infoblend-32

3,
2,
2 4 6 8 10 2 4 6 8 10
The number of images The number of images

() (b)

Figure 13: The performance of INFOBLEND as the number of images increases. For clarity, we only
present the results of INFOBLEND-32. Other variants of INFOBLEND show similar patterns.

of MMDU into 10 groups in terms of the number of images. We evaluate the TTFT and score of
INFOBLEND and baselines on each group. The average value of results are shown in Figure [T3]
The TTFT of INFOBLEND is consistently shorter than that of prefix caching. When the number
of images is 10, INFOBLEND achieves 54.7% reduction in TTFT. Furthermore, the performance
of INFOBLEND remains unaffected by the number of images, exhibiting negligible or no accuracy
degradation.

D EVALUATION PROMPT

We evaluate the answers to open questions with the assist of chatGPT. The evaluation prompt im-
ported from MMDU |Liu et al.| (2024d) is as follows.

“You are an assistant skilled at evaluating the quality of creative text. Please act as an impartial judge
and evaluate the quality of the response provided by an Al assistant to the user question displayed
below. You’ll need to assess the response on the following dimensions: Creativity, Richness, Visual
Perception, Logical Coherence, Answer Accuracy and Image Relationship Understanding. We will
provide you with a creative question and the Al model’s response and a reference answer for your
evaluation. As you begin your assessment, follow this process: 1. Evaluate the Al model’s answers
on different dimensions, pointing out its strengths or weaknesses in each dimension and assigning a
score of 1 to 10 for each. 2. Finally, based on the assessments across dimensions, provide an overall
score of 1 to 10 for the Al model’s response. 3. Your scoring should be as stringent as possible and
follow the scoring rules below:

In general, the higher the quality of the model’s response and its strict adherence to user needs, the
higher the score. Responses that do not meet user needs will receive lower scores.

Scoring rules: Creativity: Scores 1-2 when there is no innovation or uniqueness in the content.
Scores 3-4 when providing partially original content but with low creative quality. Scores 5-6 when
mostly creative but lacks significant novelty, with moderate quality. Scores 7-8 when having novelty
and high-quality content. Scores 9-10 when highly novel and of exceptional quality compared to the
reference answer.

Richness: Scores 1-2 when lacking depth and breadth, with very limited information. Scores 3-4
when limited in depth and breadth, with fewer explanations and examples, showing low diversity.
Scores 5-6 when limited in depth and breadth but provides basic necessary information. Scores 7-8

16

Under review as a conference paper at ICLR 2026

when providing depth and useful additional information. Scores 9-10 when providing exceptional
depth, breadth, and high diversity compared to the reference answer.

Visual Perception: Scores 1-2 when the description of the visual information in the image contains
errors or is significantly inconsistent with the content of the image. Scores 3-4 When the description
of the visual information in the image reflects only a small amount of the image’s information
and contains some errors. Scores 5-6 when the description of the visual information in the image
includes the basic information of the image but contains minimal information. Scores 7-8 when the
description of the visual information in the image matches the image well and is rich in content,
providing a substantial amount of information about the image. Scores 9-10 when the description
of the visual information in the image not only matches the image but also is more detailed and
informative compared to the reference answer, providing more information about the image.

Logical Coherence: Scores 1-2 when entirely incoherent, lacking any logic, and not matching the
question or known information. Scores 3-4 when somewhat coherent but with many logical errors
or inconsistencies. Scores 5-6 when mostly coherent, with few errors, but may struggle to maintain
complete coherence in complex situations. Scores 7-8 when excellent logical handling, very few
errors. Scores 9-10 when flawless logic, impeccable in handling complexity, and significantly higher
logical coherence compared to the reference answer.

Answer Accuracy Scores 1-2 when the answer is significantly inconsistent with the question or
contains obvious errors. Scores 3-4 when the answer is partially correct but contains some errors or
is incomplete. Scores 5-6 when the answer is basically correct but lacks details or is not sufficiently
detailed. Scores 7-8 when the answer is accurate and detailed, fully corresponding to the question.
Scores 9-10 when the answer is not only accurate and detailed but also provides additional useful
information, exceeding expectations.

Image Relationship Understanding: Scores 1-2 when there are significant errors or confusion in dis-
tinguishing and describing different images, unable to correctly identify and relate the content of the
images. Scores 3-4 when the description of different images reflects only minimal distinguishing
information, contains some errors and confusion, and fails to clearly differentiate and relate the im-
ages. Scores 5-6 when the description of different images includes basic distinguishing information,
is able to correctly identify and relate the images in a basic manner, but the information provided
is minimal and lacks detail. Scores 7-8 when the description of different images is accurate and
detailed, clearly distinguishing and relating the images, with rich content that points out the main
commonalities and differences between the images. Scores 9-10 when the description of different
images is not only accurate and detailed but also provides richer information and analysis, clearly
distinguishing and relating the images, more comprehensively pointing out the commonalities and
differences between the images compared to the reference answer.

Overall Score: Scores 1-2 when irrelevant to the question, factually incorrect, or generates harmful
content. Scores 3-4 when no serious errors, mostly harmless, but of low quality and does not meet
requirements. Scores 5-6 when basically meeting requirements but performing poorly in some di-
mensions, with moderate quality. Scores 7-8 when performing well in all dimensions. Scores 9-10
when fully addressing user questions and all requirements, significantly surpassing the reference
answer.

Please remember, you must evaluate and explain before scoring. After your explanation for each
dimension, add the score for that dimension. Finally, at the end of your response, in the format of
the dictionary (including brackets), return all your scoring results, ensuring your scores are integers:

{’Dimension One’: Score, 'Dimension Two’: Score, ..., "Overall Score’: Score}, for example:
{’Creativity’: 9, ’Richness’: 6, ..., ’Overall Score’: 7}.”

17

	Introduction
	Background and Motivation
	Benefits of Context Caching (CC)
	Limitations of two naive approaches
	Opportunities of partial reuse

	System Design and Implementation
	System overview
	KV cache transfer in parallel

	Implementation of Selective Attention
	Illustration of selective attention
	Selecting important tokens

	Evaluation
	Experimental settings
	Effectiveness of InfoBlend
	Throughput of InfoBlend in the online scenario

	Related Work
	Conclusion
	Transformer Primer
	Multimodal Transformer
	Autoregressive Generation & KV Cache
	Context Caching

	Investigation of the importance of initial image tokens
	Attention Heatmap
	Percentile rank

	Additional Results: Sensitivity Analysis
	Evaluation Prompt

