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ABSTRACT

Advances in diffusion, autoregressive, and hybrid models have enabled high-quality
image synthesis for tasks such as text-to-image, editing, and reference-guided com-
position. Yet, existing benchmarks remain limited, either focus on isolated tasks,
cover only narrow domains, or provide opaque scores without explaining failure
modes. We introduce ImagenWorld, a benchmark of 3.6K condition sets spanning
six core tasks (generation and editing, with single or multiple references) and six
topical domains (artworks, photorealistic images, information graphics, textual
graphics, computer graphics, and screenshots). The benchmark is supported by
20K fine-grained human annotations and an explainable evaluation schema that
tags localized object-level and segment-level errors, complementing automated
VLM-based metrics. Our large-scale evaluation of 14 models yields several in-
sights: (1) models typically struggle more in editing tasks than in generation tasks,
especially in local edits. (2) models excel in artistic and photorealistic settings but
struggle with symbolic and text-heavy domains such as screenshots and informa-
tion graphics. (3) closed-source systems lead overall, while targeted data curation
(e.g., Qwen-Image) narrows the gap in text-heavy cases. (4) modern VLM-based
metrics achieve Kendall accuracies up to 0.79, approximating human ranking, but
fall short of fine-grained, explainable error attribution. ImagenWorld provides both
arigorous benchmark and a diagnostic tool to advance robust image generation.

1 INTRODUCTION

The rapid progress in generative image modeling, powered by diffusion (Rombach et al., 2022}
Lipman et al., 2023)), autoregressive (AR) (Yu et al.| 2022; Tian et al.l 2024), and hybrid architec-
tures (OpenAl 2025]), has enabled systems capable of producing high-quality images under diverse
conditioning inputs. More recent work has begun to push toward broader functionality, developing
models that can handle multiple tasks—such as generation and editing—within a single frame-
work (Deng et al.| 2025; [Wu et al., 2025b}; |Chen et al., [2025a} |Google, [2025)), with early evidence
of real-world applicability (Chen et al.l [2025a). However, evaluation has not kept pace with this
modeling progress. Existing benchmarks are fragmented, often restricted to isolated tasks (e.g., text-
to-image (Saharia et al., 2022} Yu et al.| 2022), editing (Huang et al., 2023)), or personalization (Peng
et al.,[2025; L1 et al.,[2023))) or biased toward narrow domains such as artworks (Ku et al., [2024b) or
textual graphics (Tuo et al.,[2024). As a result, it remains unclear how well these unified models
generalize across the full spectrum of real-world use cases. To address this gap, we introduce
ImagenWorld, a large-scale, human-centric benchmark comprising 3.6K condition sets designed to
systematically stress-test generative models. ImagenWorld unifies six representative task types and
six topical domains, creating a diverse testbed that mirrors the breadth of real-world image generation
and editing. At its core, ImagenWorld relies on structured human evaluation, where annotators not
only provide scores but also tag specific failure modes with textual descriptions and localized masks
as illustrated in Figure [T} This schema yields explainable outcomes, revealing why models fail.
To complement human judgments, we also include VLM-as-a-judge metrics, enabling comparison
between human and automatic evaluators. Together, this design supports both rigorous benchmarking
and forward-looking exploration of how evaluation protocols can scale. By evaluating a broad set of
model families under a single protocol, ImagenWorld provides the most comprehensive picture to
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Figure 1: Overview of our dataset and evaluation pipeline, covering six content categories and six
generation/editing tasks. Model outputs are assessed by both human annotators (explainable schema)
and vision—language models (scores only).

date of model performance and failure patterns across real-world generation and editing tasks. Our
study covers 14 models in total, including 4 recent unified models capable of both generation and
editing, and 10 task-specific models that serve as auxiliary baselines.

We uncover four key insights: (1) For editing tasks, we identify two distinct failure modes: (i)
regenerating an entirely new image, and (ii) returning the input unchanged. Strikingly, models tend
to exhibit one mode far more frequently than the other, suggesting a systematic bias in how they
interpret editing instructions. This highlights a deeper limitation in current architectures: they lack
fine-grained control mechanisms to modify localized regions without either overhauling or ignoring
the input. (2) All models struggle with text-related tasks such as information graphics, screenshots,
and textual graphics. However, our results reveal an exception: Qwen-Image consistently outperforms
other models on textual graphics. Notably, Qwen-Image employs a synthetic data curation pipeline
explicitly tailored for text-heavy images, suggesting that targeted data augmentation may be a
practical path to closing this gap. This highlights that the challenge is not purely architectural,
but also fundamentally tied to data design. (3) While closed-source models consistently achieve
strong results across tasks, open-source models are primarily competitive in text-to-image generation,
where abundant training data and community optimization have driven rapid progress. Their weaker
performance in editing and multimodal composition highlights the need for further research and
targeted data curation in these areas, beyond scale alone. (4) Beyond model performance, we find
that modern VLM metrics achieve Kendall accuracies up to 0.79, closely matching or even exceeding
human—human agreement. This suggests that modern VLMs as a judge are reliable as scalable
evaluators for relative ranking in our context, but they fall short in the explainable paradigm, where
humans remain indispensable for fine-grained tagging of specific failure modes.

Our contributions are threefold: (1) we introduce ImagenWorld, a diverse benchmark that unifies
six core tasks and six topical domains, enabling consistent cross-model and cross-task evaluation of
generative image systems; (2) we conduct the first human study of its kind, looking into the failure
modes, offering new insights and observed patterns. (3) we propose a schema for explainable human
evaluation, labeling object-level errors and segment-level errors to provide fine-grained, interpretable
error attribution beyond scalar scores. By combining task diversity, model breadth, and diagnostic
evaluation depth, ImagenWorld establishes a unified and human-centric study to record our process
towards the full control of creation and manipulation in images.

2 RELATED WORKS

Progress in Conditional and Multimodal Image Synthesis. The introduction of Latent Diffusion
Models (LDMs) (Rombach et al., 2022) marked a turning point, leading to a flourishing ecosystem of
conditional image synthesis systems (runwayml| [2023}; |stability.ail |2023)) spanning diverse tasks such
as instruction-driven editing (Brooks et al., [2023a; [Huang et al., [2025)), structural control (Zhang
& Agrawalal [2023)), and personalization (Ruiz et al.l 2023} [Yeh et al.l 2024} Hu et al.| [2024)).
While diffusion remains the dominant paradigm, alternative architectures are rapidly advancing.
Autoregressive approaches (Yu et al.l 2022; [Tian et al.l 2024) improve compositional reasoning
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and fidelity (Xiong et al) 2025), flow-matching models (BlackForestLabs et al., [2025) leverage
ODE-native properties for potentially faster sampling, and hybrid designs such as autoregressive
LLMs with diffusion decoders (Wu et al., |2024; OpenAl, 2025 |Google, 2025)) integrate native
image generation into conversational agents. Together, these families define the current landscape of
multimodal conditional image synthesis, though their evaluation remains fragmented across tasks and
settings. Our work takes these developments into account by systematically studying their strengths
and weaknesses under a unified evaluation framework.

Image Synthesis Assessments and Benchmarks. Traditional evaluations of generative image
models have relied on metrics such as FID (Heusel et al.,[2017) and LPIPS (Zhang et al.,|2018)) for
image fidelity, or CLIPScore (Hessel et al.| 2021) for text—image alignment. More recent approaches,
including VIEScore and VQAScore (Cho et al., 2023; |Hu et al., 2023; |[Ku et al., |2024a; |Lin et al.,
2024; Niu et al.| |[2025), use vision language models (VLM) to better capture semantic relevance,
though they introduce biases and often depend on proprietary models. Human preference—driven
metrics such as Pick-a-Pic (Kirstain et al.| [2023a), ImageReward (Xu et al.| [2023), and HPS (Ma
et al.,2025) emphasize aesthetics and subjective preferences. Beyond individual metrics, benchmarks
like DrawBench (Saharia et al.| 2022) and PartiPrompts (Yu et al.,|2022)) target text-to-image fidelity,
while others focus on editing (Huang et al., 2023)) or personalization (Peng et al.,|2025;|L1 et al., 2023).
More recent efforts, including ImagenHub (Ku et al.| 2024b) and MMIG-Bench (Hua et al.| [2025)),
extend beyond single tasks by covering multiple generation settings and integrating both automatic
and human evaluation. Gecko (Wiles et al., [2025) further scales this direction by introducing a large
evaluation suite that measures text-to-image alignment across diverse human annotation templates
and scoring setups. Open platforms like GenAl-Arena (Jiang et al.||2024) provide Elo-style rankings,
but suffer from topic bias in user-submitted prompts. Overall, existing protocols remain task-specific
or opaque, limiting the interpretability and scalability. Beyond simply adding another dataset, our
work offers a new perspective: a unified benchmark across tasks and domains, complemented by
structured, explainable human evaluation that can also serve as a foundation for future VLM-based
automatic evaluators. Table[T|reflects how ImagenWorld differs from prior works.

Table 1: Comparison with different evaluation benchmarks on different properties.

Generation Single Ref Multi Ref Human Topic Explainable

Method & Editing Guided Guided Rating Variety  Trace

ImagenHub (Ku et al..|2024b)
GenAl-Arena (Jiang et al.|[2024)
DreamBench++ (Peng et al.[[2025)
I2EBench (Ma et al.| 2024)
ICE-Bench (Pan et al.[[2025)
MMIG-Bench (Hua et al.[[2025)
Rich-HF (Liang et al.|[2024)

ImagenWorld (Ours)
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3 THE IMAGENWORLD BENCHMARK

Problem Formulation. To capture practical usage scenarios, we unify multiple generation and
editing tasks under a common instruction-driven framework: every task is conditioned on a natural
language instruction t;,, optionally accompanied by auxiliary inputs such as a source image I, or a
set of reference images I . This unification reflects how real users typically interact with generative
systems by providing instructions that guide the system to either create new images or edit existing
ones. Building on this formulation, we categorize tasks into two groups: instruction-driven generation,
where the system synthesizes a new image without a source image, and instruction-driven editing,
where the system modifies an existing source image I while following the instruction. Formally:

 Text-guided Image Generation (TIG): Given an instruction ¢;,s in natural language, the model
synthesizes a new image y = f (tins)-

» Single Reference Image Generation (SRIG): Given an instruction t;,; and a reference image I,
the model generates a new image y = f(Ler, tins) Of the referenced entity (e.g., subject, object, or
layout) in a different context, pose, or environment.

* Multiple Reference Image Generation (MRIG): Given an instruction ¢;,; and a set of reference
images Ip = {IL, I2, ...}, the model synthesizes a new image y = f(Ig, tiss) that composes
multiple visual concepts from the instruction and references.
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| Task |

Text Instruction

Source Image

Image Conditions

| Success Case

Failure Case

TIG
(CG)

Forest scene showing bounding boxes around
animals such as deer, rabbits, and birds.

SRIG | CT scan of a brain using the reference mask as the
(P) anatomical shape.

Generate a pet simulation game interface with pet
MRIG | character designs from the first and second images

S) and the home decoration style from the third
image.

- 7 i

TIE | Change top text to “If Al learns from humans” and
()] the bottom text to “Who’s coaching the coach?”

SRIE Re-color the stylized portrait in image 1 using
) exclusively the specific color palette presented in
image 2. N
In step 2, update the added pasta to resemble PRI
MRIE | spaghetti noodles as shown in image 2. For steps e = C
[0)] 1 and 2, refine the water graphic, depicting it with D

the wave pattern style found in image 3.

Figure 2: Illustrative examples from our dataset, showing successful and failure cases for each task

» Text-guided Image Editing (TIE): Given an instruction ¢;,s and a source image I, the model
produces y = f(tins, s ) by modifying I, according to the instruction while preserving its core
structure.

 Single Reference Image Editing (SRIE): Given an instruction tj,s, a source image I, and a
reference image I,.r, the model edits I t0 y = f(Lier, tins, Isrc ), adapting the reference entity to
the specified instruction or style.

* Multiple Reference Image Editing (MRIE): Given an instruction #;,s, a source image I, and a
set of reference images I, the model edits I to y = f(Ig, tins, Isic ), aligning it with the visual
attributes or semantics suggested by the instruction and references.

Dataset Curation Pipeline. To construct ImagenWorld, we curated a large-scale dataset through
a combination of human annotation and automated refinement. Annotators wrote natural language
prompts and paired them with corresponding reference or source images, ensuring that each instance
aligned with one of the six benchmark tasks. To reflect real-world applications, our dataset covers
six major topics: Artworks (A), Photorealistic Images (P), Information Graphics (I), Textual
Graphics (T), Computer Graphics (CG), and Screenshots (S), each further divided into fine-
grained subtopics to guarantee diverse use cases. In total, our dataset contains 3.6K entries, with 100
samples for each task—topic combination. Figure[2]shows representative examples from our dataset
(see Appendix [A.6]for details).

4 EVALUATION SETUP

Scoring Criteria. Our evaluation relies on four criteria that measure Prompt Relevance, Aesthetic
Quality, Content Coherence, and Artifact, capturing complementary aspects of image generation and
editing quality, similar to prior works (Xu et al.} 2023} [Ku et al.| 2024b)). Each criterion is rated on a
5-point Likert scale (1 = poor, 5 = excellent) and later rescaled to the range [0,1]. The definitions of
the scoring dimensions are:

* Prompt Relevance: Measures whether the image faithfully reflects the instruction.

* Aesthetic Quality: Evaluates the overall visual appeal and design (e.g., overcrowded or poorly
aligned elements, poor color schemes, inconsistent fonts).

» Content Coherence: Assesses logical and semantic consistency (e.g., labels pointing to the wrong
region, a chart titled “growth” showing decreasing values, or a figure labeled “Parts of a Flower”
depicting tree anatomy).




Under review as a conference paper at ICLR 2026

' A
User Query J Scores:

\\\\)" &
K RS <4

Prompt Relevance: 0.75
Aesthetic Quality: 0.75
Content Coherence: 0.75
Artifacts: 1

Object Issues:

A chandelier in the upper-middle
section, appearing to hang from the
ceiling

ceiling of the room.
Match the style and
color scheme of the
original painting.

Add a chandelier to the

Expected ][ Model Output ] Segment Issues:
\ ’\

n g < i
Vo aNT\ i JV
3 g N 7

Figure 3: Examples include object-level issues, where expected objects are missing or distorted, and
segment-level issues, where SoM partitions highlight specific regions with visual inconsistencies that
affect evaluation scores.

 Artifacts: Captures visual flaws and technical issues caused by generation errors (e.g., distorted
or gibberish text, warped edges, extra limbs, unnatural eyes, or repeated patterns).

Each criterion was evaluated both by human annotators and by automated scorers. Specifically, each
image was rated by three annotators independently, while LLM-based scores were obtained using the
Gemini-2.5-Flash model following the VIEScore (Ku et al.,20244a) paradigm, which produces ratings
aligned with the same four criteria. In addition, CLIPScore (Hessel et al.,|2021)) and LPIPS (Zhang
et al.,[2018)) were computed as auxiliary automated metrics to assess image quality.

Explainability via Object and Segment Issues. While many prior works focus on evaluating image
generation quality, few consider the explainability of evaluation scores (Chen et al., 2023} |[Ku et al.|
2024a)). To improve interpretability, we define two complementary error taxonomies: object-level
issues in text and segment-level issues in image. In addition to assigning ratings on the four criteria,
annotators were asked to identify which objects or regions in the image negatively influenced their
scores. For object-level issues, the instruction together with any source or reference images from
our dataset were given to Gemini-2.5-Flash, and the model was queried to generate a list of objects
expected to appear in the output image. Annotators reviewed this list and marked any objects that
were missing, incorrectly rendered, or distorted. For segment-level issues, each generated image was
partitioned into regions using the Set-of-Mark (SoM) (Yang et al.,2023)), and annotators selected
any segments that contained visual flaws or inconsistencies, thereby identifying specific areas of
the image responsible for score deductions. Figure [3]illustrates examples of both object-level and
segment-level annotations from our dataset.

Baselines. We evaluate ImagenWorld using models from three major architectural families: diffusion
models, autoregressive models, and hybrids that combine AR with diffusion decoders. Table [2]lists
the evaluated models, their architectural families, and their task coverage. This set spans both unified
models capable of all six tasks (GPT-Image-1 (Chen et al., |2025a), Gemini 2.0 Flash (Google} [2025),
BAGEL (Deng et al.| [2025), OmniGen2 (Wu et al., 2025b)) and expert models specialized for subsets
of tasks (Wu et al.,[2025a; BlackForestLabs et al.|[2025} [Liu et al.| 2025} |Han et al.,2025). This setup
enables broad comparisons across architectures and between unified and expert approaches.

5 RESULTS AND ANALYSIS

We summarize our quantitative findings in Table 3] which reports human evaluation scores and VLM
predictions across six tasks and four criteria. The subsections below analyze these results by task,
topic, and evaluation metric (see Appendix [A.5]for statistical tests).
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Table 2: Task coverage and architectural categorization of the evaluated models are shown in
chronological order. We classify multimodal large language models as a form of autoregressive
model, and group flow matching within the diffusion family, following recent literature (Xiong et al.}
2023}, [Chang et al.| [2025). For closed-source models where architectural details are unavailable, we
label them as Unknown.

Model Architecture TIG TIE SRIG SRIE MRIG MRIE
InstructPix2Pix (Brooks et al.}[2023b) Diffusion X v X X X X
SDXL (Podell et al.|2023] Eozze) Diffusion oOX X X o x X
Infinity (Flan et al.| 2025 AR SoOoXx X X x X
Janus Pro AR + Diffusion v X X X X X
GPT-Image- Al Unknown v /7 v v v
UNO (Wu et al.]|20 AR + Diffusion v X / X v X
BAGE tal.[[2025 AR v 7/ v v v v
Step1X-Edit (Liu et al.|[20 AR + Diffusion X v X X X X
IC-Edit (Zhang et al.[[2025] Diffusion X v X X X X
Gemini 2.0 Flash (Wu et al.| Unknown v v 7 v v/ v
OmniGen? ( |w AR + Diffusion v/ v v v v
Flux.1-Krea-dev (Lee et al.|[2025] Diffusion A S X X X
Flux.1-Kontext-dev (BlackForestLabs et al.|2025) Diffusion X v v X X X
Qwen-Image (Wu et al.|[2025a Diffusion a4 X X X X

Task x Metric (Human means)

TIG

TIE

Mean score
Task
SRIG
Mean score

SRIE

MRIG

MRIE

0.3

Prompt Aesthetic Content Artifact Human Prompt Aesthetic Content Artifact Human
Relevance  Quality ~ Coherence Overall Relevance  Quality ~ Coherence Overall
Metric Metric

Figure 4: Mean human evaluation scores across metrics by topic (left) and task (right).

5.1 QUANTITATIVE ANALYSIS

Task Level. Across the six benchmark tasks, there is a clear gap between open- and closed-source
models as reflected in Figure [} GPT-Image-1 achieves the strongest overall performance, outper-
forming Gemini 2.0 Flash by about 0.1-0.2 points on average. This margin is particularly pronounced
in editing tasks, where Gemini falls further behind. Despite this average gap, scale alone doesn’t
determine success: several open-source models (e.g., Flux-Krea-dev, Qwen-Image, Flux-1-Kontext-
Dev) outperform Gemini on text-guided generation and editing, showing that larger scale doesn’t
always yield superior results. However, none of the open-source unified models can catch up with
close-source models, as seen in Figure El Beyond scale effects, the distribution of scores further
highlights differences in task difficulty: models consistently achieve lower performance on editing
tasks (TIE, SRIE, MRIE) than on their generation counterparts (TIG, SRIG, MRIG), with an average
gap of roughly 0.1 This pattern suggest that while generation has benefited from scaling and improved
reasoning integration, localized modification remains a major bottleneck.

Topic Level. Performance also varies substantially across topical domains. Figure ] presents topic-
level statistics (see Appendix [A.4]for detailed results across the full model set). Among the six defined
topics, Artworks (A) and Photorealistic Images (P) stand out as the most successful, with averages
approaching 0.78 and the best model (GPT-Image-1) reaching around 0.9 in both categories. This
reflects notable progress in rendering high-fidelity content in naturalistic and stylistic domains. In
contrast, structured and symbolic topics reveal much larger gaps. Textual Graphics (T) and Computer
Graphics (C) both average near 0.68, while Screenshots (S) and Information Graphics (I) remain
the most challenging, with averages closer to 0.55. Overall, these findings underscore persistent
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Table 3: All evaluated models across six core tasks with bolded maxima for the four human metrics
and overall in each task. Oyym,, denotes the human-annotated overall average; Ovyy is the VLM-
predicted overall. o is Krippendorff’s alpha for inter-rater reliability and p; is the Spearman’s rank
correlation for human-vlm alignment.

Human Overalls Agreement
Prompt T Aesthetic T Content T e = = « p
Model Relevance  Quality ~ Coherence Artifacts T | Ottuman Ovim Kripp.  Spear.
Text-guided Image Generation (TIG)
GPT-Image-1 0.90+0.14 0.92+£0.10 0.91+0.13 0.92+0.12 | 0.91+0.10 0.92+0.13 | 0.52 0.39
Qwen-Image 0.82+0.22 0.92+0.11 0.88+0.17 0.85+0.22 | 0.87+£0.15 0.86+0.20 | 0.75 0.76

Flux.1-Krea-dev 0.77£0.23 0.85+0.16 0.84+0.18 0.80+0.22 | 0.82+0.17 0.82+0.23 | 0.67 0.79
Gemini-2.0-Flash ~ 0.794+0.21 0.784+0.21 0.83+0.19 0.7940.25 | 0.80+0.19 0.82+0.24 | 0.67 0.70

UNO 0.75+0.21 0.77£0.19 0.83%+0.17 0.76£0.26 | 0.78+0.18 0.72+0.27 | 0.72 0.73
BAGEL 0.72+0.24 0.80£0.20 0.824+0.21 0.73£0.29 | 0.76+£0.21 0.75+0.26 | 0.74 0.78
OmniGen2 0.67+0.25 0.77£0.23 0.784+0.24 0.72+0.32 | 0.74+0.23 0.75+£0.27 | 0.71 0.80
Infinity 0.64+0.30 0.74£0.23 0.76+0.24 0.69£0.31 | 0.70+£0.24 0.73+0.27 | 0.78 0.81
SDXL 0.55+0.29 0.70£0.25 0.70+0.27 0.61£0.31 | 0.64+0.25 0.65+0.30 | 0.75 0.79
Janus Pro 0.624+0.30 0.62+£0.30 0.624+0.30 0.60£0.29 | 0.61+£0.29 0.54+0.32 | 0.77 0.74
Text-guided Image Editing (TIE)
GPT-Image-1 0.77+0.17 0.86+£0.15 0.86+0.17 0.79+0.22 | 0.82+£0.15 0.80+0.28 | 0.65 0.58

Flux.1-Kontext-dev  0.5240.31 0.76+0.22 0.75+£0.22 0.7640.26 | 0.70£0.21 0.634+0.32 | 0.68 0.71
Gemini-2.0-Flash ~ 0.624+0.29 0.68+0.25 0.75+£0.24 0.70£0.28 | 0.69£0.23 0.64+0.35 | 0.70 0.64

BAGEL 0.59+0.28 0.64+£0.26 0.73+0.23 0.70£0.25 | 0.67£0.22 0.59+0.33 | 0.62 0.66
OmniGen2 0.38+0.31 0.63+£0.29 0.67+0.30 0.66+0.31 | 0.58+0.27 0.57+0.32 | 0.77 0.72
IC-Edit 0.38+0.28 0.54+0.23 0.56+0.22 0.52+0.24 | 0.50+£0.22 0.49+0.29 | 0.65 0.58
Step1xEdit 0.34+0.28 0.46+0.29 0.51+£0.29 0.51+0.32 | 0.46+£0.26 0.43+0.36 | 0.73 0.71

InstructPix2Pix 0.26+£0.24 0.48+£0.25 0.56+£0.26 0.51+0.27 | 0.45+£0.22 0.41+0.30 | 0.64 0.66

Single Reference Image Generation (SRIG)

GPT-Image-1 0.79+0.20 0.86+0.16 0.86+0.18 0.85+0.18 | 0.84+0.15 0.86+0.18 | 0.61 0.48
Gemini-2.0-Flash ~ 0.62+0.26 0.65+£0.24 0.744+0.24 0.69+0.28 | 0.67+0.22 0.70+0.28 | 0.66 0.60
BAGEL 0.57+0.24 0.67£0.25 0.69+0.24 0.64+0.29 | 0.644+0.22 0.65+0.28 | 0.66 0.66
UNO 0.57+0.25 0.62+£0.23 0.65+0.23 0.59+0.25 | 0.614+0.21 0.60+0.29 | 0.65 0.65
OmniGen2 0.41+0.26 0.61£0.24 0.65+0.26 0.64+0.28 | 0.584+0.22 0.62+0.30 | 0.65 0.74
Single Reference Image Editing (SRIE)
GPT-Image-1 0.73+0.22 0.80+£0.20 0.86+0.17 0.80+0.22 | 0.80+0.16 0.76+0.29 | 0.63 0.46
Gemini-2.0-Flash ~ 0.444+0.29 0.60£0.24 0.69+0.25 0.63+0.26 | 0.594+0.21 0.544+0.32 | 0.64 0.66
BAGEL 0.35+£0.29 0.58+£0.25 0.62+0.26 0.65+0.27 | 0.55+£0.22 0.53+0.32 | 0.56 0.60
OmniGen2 0.30+0.27 0.60£0.27 0.62+0.28 0.62+0.30 | 0.544+0.24 0.54+0.31 | 0.66 0.72
Multiple Reference Image Generation (MRIG)
GPT-Image-1 0.80+0.17 0.86+£0.15 0.86+0.18 0.85+0.17 | 0.84+0.15 0.88+0.16 | 0.51 0.39
Gemini-2.0-Flash ~ 0.69+0.25 0.72£0.24 0.81+0.20 0.72+0.29 | 0.73+0.22 0.68+0.30 | 0.73 0.73
BAGEL 0.56+0.26 0.63£0.26 0.66+0.26 0.60+0.30 | 0.61+0.24 0.59+0.31 | 0.67 0.65
OmniGen2 0.47+0.26 0.66+0.22 0.66+0.26 0.65+0.28 | 0.614+0.21 0.59+0.28 | 0.66 0.70
UNO 0.53+0.22 0.61+£0.20 0.67+0.20 0.60+0.22 | 0.604+0.18 0.58+0.25 | 0.58 0.54
Multiple Reference Image Editing (MRIE)
GPT-Image-1 0.72+0.19 0.82+0.18 0.82+0.20 0.80+0.21 | 0.79+0.17 0.75+0.27 | 0.66 0.55
Gemini-2.0-Flash ~ 0.49+0.25 0.66+£0.21 0.69+0.22 0.64+0.25 | 0.62+0.19 0.514+0.31 | 0.62 0.56
OmniGen2 0.32+0.20 0.56+£0.25 0.554+0.28 0.60+0.28 | 0.514+0.22 0.454+0.30 | 0.69 0.66
BAGEL 0.2840.22 0.44+£0.26 0.48+0.29 0.51+0.28 | 0.434+0.23 0.384+0.28 | 0.67 0.64

weaknesses in handling text-heavy and symbolic content, highlighting the need for targeted advances
in these domains. We also observe similar trend but more obvious gap in unified models (Figure [5).

Evaluation Criteria. Across the four defined metrics, we observe distinct patterns in model behavior
from Figure ] Prompt Relevance shows the largest variability across tasks, peaking in TIG (0.72)
but dropping to 0.46 in editing tasks on average, underscoring the difficulty of aligning edits with
instructions. Aesthetic Quality and Content Coherence are more stable, with maximum task-level
gaps of 0.17 and 0.16, respectively. Both metrics (Aesthetic Quality/Content Coherence) achieve
their highest values in Artworks (0.79/0.79) and Photorealistic Images (0.82/0.82) but decline in
symbolic settings such as Screenshots (0.58/0.63) and Information Graphics (0.58/0.59). Artifact
suppression appears more uniform at the task level (gap = 0.11), yet topic-level analysis reveals
clear asymmetry: non-symbolic content is largely free of distortions, whereas text-heavy categories
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Figure 5: Overall human rating by task and topic for the four unified models that support all six tasks.

frequently suffer from unreadable or corrupted elements. Taken together, these results show that
instruction following is the primary bottleneck across tasks, while artifact control remains the central
challenge in text-intensive domains, particularly Screenshots.

5.2 QUALITATIVE ANALYSIS

Quantitative metrics alone fail to capture common mistakes that become clear when examining outputs
more closely. These mistakes manifest in several recurring ways, as illustrated in Appendix [A.3]
Across tasks, models often skip parts of complex and multi-step instructions (Figure 8 or produce
unreadable and corrupted text (Figure[I3)), a problem that persists across nearly all text-heavy domains.
Numerical inconsistencies are also frequent in symbolic settings, such as pie chart percentages not
summing to 100 or receipt totals not matching itemized values (Figure[9). Symbolic and structured
domains add further challenges, including errors in understanding depth maps, frequent mismatches
between chart legends and plotted data, and incomplete object detection in computer graphics where
bounding boxes are poorly aligned with object boundaries (Figure [T0). Editing tasks further expose
critical weaknesses: models may alter the canvas, misplace objects, neglect shadows and reflections,
return the original input unchanged, or even generate a completely new image instead of applying the
requested modification (Figure[TT). In generation, systems sometimes collapse to near-duplicates of
references, ignore one or more references, or produce distorted human figures. These recurring errors
clarify why artifact suppression and fine-grained alignment remain key open problems, even for the
strongest models.

5.3 HUMAN vs. VLM AS JUDGE

To assess the reliability of automatic evaluation, we compare VLM-based judgments with human
ratings across all four criteria. Table@]reports fold-averaged'|rank correlations (Spearman), Kendall’s
accuracy, and VLM bias (the average signed difference between VLM and human ratings). Overall,
the VLM exhibits moderate to strong agreement with human raters across evaluation dimensions,
aligning well with human—human consistency. Spearman correlations between VLM and human
ratings range from 0.57 for content coherence to 0.70 for prompt relevance, closely matching and in
some cases exceeding human—human correlations. Kendall’s accuracy follows a similar trend, with
values between 0.74 and 0.79, indicating that the VLM preserves the relative ranking of samples in
line with human judgments. At the metric level, prompt relevance shows the strongest alignment,
suggesting that the VLM is particularly effective at assessing semantic faithfulness to the input
prompt. In contrast, for artifacts, VLM-human agreement lags behind human—human agreement,
and the positive bias indicates that the VLM under-penalizes flaws such as unreadable text, boundary
glitches, or misaligned layouts that humans consistently flag. Taken together, the results suggest that

'Fold-averaged results are computed using a leave-one-out procedure: each annotator (or the VLM) is
compared against the mean of the other two, and results are averaged across folds.
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Table 4: Fold-averaged Spearman correlations, Kendall’s accuracy, and Bias (average signed differ-
ence between VLM and human ratings) comparing VLM-based judgments with human ratings across
all criteria.

. Human—Human VLM-Human
Metric

Spearman p Kendall Acc. Spearman p Kendall Acc. Bias

Prompt Relevance  0.67 £0.03 0.77 £0.01 0.70£0.00 0.79 £0.00 —-0.07£0.01
Aesthetic Quality  0.55+0.01 0.734+0.00 0.62+0.01 0.76+0.00 —0.01+0.01
Content Coherence 0.50 £0.01 0.71 £0.01 0.57+0.01 0.74 £0.01 —-0.05+£0.01
Artifact 0.64 +0.01 0.76 +£0.01 0.59 +0.01 0.75 + 0.00 0.06 +0.00

Overall 0.68£0.02 0.76+0.01 0.72£0.00 0.78+0.00 —0.02=£0.00

VLM-based evaluation provides a reliable proxy for human scoring on high-level criteria such as
prompt relevance and aesthetic quality, but human judgment remains crucial for more detailed criteria
such as visual defects.

6 DISCUSSION

The task is editing, but the model generated a new image instead The model outputs the same image as the input.
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Figure 6: Percentage of cases where the model generating completely new image or simply return
input in image editing tasks.

Targeted data curation boosts domain-specific performance. While GPT-Image-1 achieves the
strongest results across most domains, Qwen-Image demonstrates how deliberate data design can
shift the balance in text-heavy scenarios. Unlike many models that struggle with textual content,
Qwen-Image consistently outperforms even closed-source systems in artwork, photorealistic images,
and especially textual graphics for text-guided generation (Figure[I3). This advantage stems from a
training pipeline enriched with synthetic text-rich samples and a progressive curriculum that gradually
introduced increasingly complex layouts. Together with a balanced domain coverage, these choices
directly improved text rendering, making Qwen-Image particularly effective in text-heavy tasks where
most models perform poorly.

Architectural pathways and training objectives influence editing tasks behaviours. The error
rates in Figure [f] suggest that autoregressive—diffusion hybrids such as OmniGen2 and Step1X-Edit
are more likely to generate entirely new images when asked to edit (17%), possibly reflecting their
reliance on language-driven pathways that can override source conditioning. In contrast, diffusion-
only editors like IC-Edit (0.6%) and InstructPix2Pix (3.4%) rarely disregard the source image,
consistent with their architectures being explicitly optimized for localized modifications (though
this may come at the cost of limited task coverage). Interestingly, Flux.1 Kontext, despite being
diffusion-based, shows a higher rate of generating a new image (14.4%), likely due to its broader
training scheme that mixes local edits, global edits, and reference-based composition. This unified
in-context design improves versatility but makes the model less constrained to preserve the source
image like InstructPix2Pix and IC-Edit.

Future Work. The structure of our dataset, which includes human scores, object-level tags, and full
model outputs, points to several directions for future research. (1) The collected human scores can be
used as preference data to train models that better align with human judgments, for example through
preference optimization or ranking-based fine-tuning (Wu et al., [2023}; |Liang et al.| 2024)). (2) The
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object-level tags provide a basis for diagnostic and self-corrective approaches, enabling models to
generate object-aware refinements or produce corrective instructions (Chen et al.| 2024} |(Chakrabarty
et al., 2023). (3) The combination of fine-grained annotations and human evaluations creates
opportunities for developing more interpretable metrics that capture object-level errors, compositional
inconsistencies, and prompt—object mismatches more faithfully than existing automatic metrics (Tan
et al.} 2024} |[Kirstain et al., 2023b). Taken together, we hope that these directions will support the
development of more reliable, controllable, and human-aligned multimodal generation systems.

7 CONCLUSION

We present ImagenWorld, a benchmark that unifies six generation and editing tasks across six
topical domains, supported by 20K fine-grained human annotations. Unlike prior benchmarks,
ImagenWorld introduces an explainable evaluation schema with object-level and segment-level
issue labels, enabling interpretable diagnosis of model failures beyond scalar scores. Evaluating 14
models, we find consistent trends: models perform better on generation than on editing, struggle with
symbolic and text-heavy domains, and show a persistent gap between closed-source and open-source
models. Our structured human annotations capture localized errors and reveal insights that modern
VLM-based metrics miss. By combining broad task coverage with explainable labeling, ImagenWorld
serves not only as a rigorous benchmark but also as a diagnostic tool, laying the groundwork for more
faithful and robust image generation systems.

ETHICS STATEMENT

The rapid advancement of image generation and editing technologies raises pressing safety and
ethical concerns. Traditional photo manipulation tools such as Photoshop already enabled malicious
uses, but modern Al-powered systems dramatically lower the technical barrier, making realistic
forgeries accessible to a much broader audience. This democratization amplifies risks of fraud and
deception in everyday contexts: for example, a user might alter a photo of delivered food to obtain
fraudulent refunds, fabricate receipts for economic gain, or generate fake identification documents.
More broadly, the same capabilities can be misused for deepfake creation, leading to non-consensual
imagery, political disinformation, or privacy violations. Such misuse threatens not only businesses and
institutions but also public trust in digital media and the safety of individuals. As generative models
continue to improve in fidelity and controllability, it is critical to establish safeguards, encourage
responsible deployment, and promote ethical practices. In releasing ImagenWorld, we will provide
only sanitized data and annotations, exclude sensitive or personally identifiable content, and make all
resources publicly available to support transparent and responsible research.

REPRODUCIBILITY STATEMENT

All experiments were conducted with 8§ NVIDIA A6000 GPUs using the ImagenHub (Ku et al.,
2024b)) inference library, into which we integrated the latest models when not already included. w
For fairness, all model implementations followed the default configurations recommended in their
respective papers or official releases, and all open-source models were evaluated under the same
seed (42). Approximately $1,000 USD were spent on API access for closed-source models and
VLM-based evaluators. Code, dataset, and sanitized human annotations will be released on publicly
accessible platforms (e.g., GitHub, HuggingFace).
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A APPENDIX

A.1 USE OF LLM IN WRITING

We used ChatGPT to improve the writing, mainly on grammar fix.

A.2 HUMAN ANNOTATION DETAILS

During the annotation stage, we recruited 22 expert annotators, primarily graduate students fluent in
English. Each annotator evaluated approximately 500—1,000 images, with each annotation taking
30-90 seconds. To reduce fatigue and ensure consistent quality, we restricted annotators to a
maximum of 200 samples per week. The entire process was conducted using Label Studio, which
provided a user-friendly interface. Potential object-level and segment-level issues were pre-listed
using a vision-language model (VLM) and Set-of-Marks (SOM), allowing annotators to simply select
them via checkboxes. For cases where the VLM and SOM failed to capture issues, annotators could
switch to a manual mode to input text or create bounding boxes. The full annotation process spanned
two months, during which all data were collected. Below we present the guidelines for annotators,
and Figure [/|illustrates the annotation interface.

Prompt Relevance

Definition: Whether the image accurately reflects or responds to the prompt.
Ask yourself: Does the image actually follow the instructions or topic in the prompt?

Common issues:

— Prompt: “Explain the water cycle.” — Image shows the food chain.

— Prompt: “Slide about diabetes symptoms.” — Image shows a kidney structure.

— Prompt: “Compare apples and oranges.” — Image compares apples and bananas.

Rating (1-5):
1. Completely unrelated to the prompt.

Mostly incorrect; vague connections with many mismatches.
Partially relevant; key ideas present but with errors/omissions.
Mostly accurate; follows the prompt with minor issues.

Fully aligned with the prompt; clear, focused, and complete.

A = B

Aesthetic Quality / Visual Appeal

Definition: Whether the image is visually appealing, clean, and easy to interpret.
Ask yourself: Is this image pleasant to look at, readable, and professionally designed?
Common issues:

— Text too small/hard to read or blending into the background.

— Cluttered or misaligned layout.

— Poor color combinations; inconsistent fonts or spacing.

Rating (1-5):

1. Visually poor; unattractive, hard to read, or confusing.

Below average; noticeable design flaws, poor readability.

Decent; generally readable with minor layout/design issues.

Clean and aesthetically good; few flaws.

A s> N

Polished and visually excellent.
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Content Coherence

Definition: Whether the content is logically consistent and fits together meaningfully.
Ask yourself: Does everything in the image belong together and make sense as a whole?
Common issues:

— Labels pointing to the wrong part (e.g., “liver” pointing to lungs).
— Chart shows decreasing values titled “growth over time.”

— Title: “Parts of a Flower” but the figure shows tree anatomy.
Rating (1-5):

1. Internally inconsistent or nonsensical; contradictory parts.

. Some logic present, but components are confusing/mismatched.
Mostly coherent, with noticeable mismatches or awkward parts.
Logically sound overall; only minor inconsistencies.
Completely coherent and internally consistent.

DR W

Artifacts / Visual Errors

Definition: Whether the image has visual flaws due to generation errors (e.g., distortions,
glitches).

Ask yourself: Are there technical visual issues like melting edges, strange text, or broken parts?
Common issues:

— Gibberish or distorted text (e.g., “#di%et@es” instead of “diabetes”).
— Warped borders, duplicated textures, or glitched areas.

— Extra limbs, broken symmetry, over-smoothed or pixelated regions.
Rating (1-5):

1. Severe artifacts that ruin the image.

. Major flaws that are clearly noticeable.

Minor artifacts; image remains usable.

Mostly clean; very subtle flaws if any.

No visible artifacts.

LR W

Issue Tagging

— Object-level issues (model output): Select any item that has issues. If none apply, choose
“None of the objects have issues.”

— Segmentation issues (segmentation map): Select any index with issues. If none apply,
choose “None.”

— Other issues: If your score is not 5/5 and the issue is not covered above, briefly describe it
here.

Important: Selecting “None” may mean either (i) there is no issue, or (ii) your issue is not listed.

In the latter case, provide a brief explanation under “Other issues.” If your score is not full (5/5),
you must either select a corresponding issue or provide a short explanation.
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864 Refined Prompt:
865 Edit image 1, which shows a calendar for May 2025. Change the active date to May 12, 2025. This requires deselecting the
866 current active date, '11' (marked with a blue circular highlight in the second row of dates, second from the right), and selecting
'12' by applying a similar blue circular highlight to it (located in the third row of dates, first from the left).
Generated Image
867 = Reference Images
- May 2025 < > Way 2025 A
869 y
M T W T F § S

870 M T W T F s s r
871 w » 2 30 1 2 3 ¢« ¥ 2% 1 234

®

°
“567"100“' v 5 6 7 8 9 10

873
874 20 12 13 14 15 16 17 118 Q 20 12 13 14 15 16 17 18
875 21 19 20 1 22 23 24 25 21 19 20 21 22 23 24 25
876 2 26 27 28 29 30 3 1 2 2 271 28 29 30 31 1
877
23 2 3 - 5 3 7 8 23 2 3 4 5 6 7 8
878
879 Prompt Relevance Aesthetic Quality
880
881
882 Content Coherence Artifacts or Visual Defects (5 = no artifacts or
defects)
883
884 .
885 - Oblect-l'evel Issues (MOdel ompl‘“) blue circular highlight on date '12'
886 calendar grid structure'®) blue circular highlight on date '11' (should not be present)™
887 "May 2025" text® The texts are not readablef!
888 navigation arrow symbols”! Al of the abjects have issuest!
889 weekday labels (M, T, W, T, F, S, S)*! None of the objects have issues!
890 calendar date numbers (€.g., 1, 2, ..., 31)" The task is editing, but the model generated a new image instead®
891 week numbers (e.g., 18, 19, ..., 23) on the left side!® The model outputs the same image as the input.©
892 # Segmentation Issues (Segmentation Map)
893
894
895
896
897
898
899
900
901
902 10 2l 32 4 5la 6V 71] 8wl 9n 100! 110 120 13 140 15 nonel™
903 a“
904
l Problematic_human
905
906 ", Other Issues (Not Captured Above)
907 Describe any additional issues not captured by object-level or segmentation-level selections
908
909 4
91 0 Add
911
The model incorrectly changed the date '11' to '12', resulting in two '12's and no '11' on the calendar. It also highlighted the wrong oy
912 12, failing to follow the spatial instructions in the prompt. O
913
a1 Figure 7: Label Studio interface: annotators read the prompt, inspect the image, rate four criteria
915 (1-5), and flag VLM/SoM-suggested object- and segment-level issues.
916
917

17



Under review as a conference paper at ICLR 2026

A.3 EXAMPLES OF FAILURES
A.3.1 MODEL FAILS TO PRECISELY FOLLOW INSTRUCTIONS.

Prompt: Edit image 1. Replace the top-left crate with the yellow warning sign from image 3. Place
the pink crewmate (from the center of image 2) and the yellow crewmate (from the bottom right
of image 2) standing side-by-side on the central doorway in image 1. Ensure all new elements are
integrated with correct perspective, lighting, and scale.

Figure 8: Instruction-following problem: The model placed red and green crewmates instead of pink
and yellow, and the yellow sign’s position does not match the request.

A.3.2 NUMERICAL INCONSISTENCIES

Happiness

Neutral

Neutral

Sadness
LANINATOR

rSUErOT‘-L‘ g
; AN
Surprise s

B

The total percentage in the

pie chart exceeds 100%. The sum of person expressions is equal to 275% The total of the receipt items is

$378.65, not $420.69.

Figure 9: Examples of numerical inconsistencies.

A.3.3 SEGMENTS AND LABELING ISSUES

The model does not specify Label locations do not point to
any borders or labels. the detected areas.

Figure 10: Examples of labeling issues.
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A.3.4 GENERATE NEW IMAGE IN EDITING

Source Output
"""" T I
:- Transform the triangle in logo into a glossy neon blue square with |,
1 areflective highlight and slight bevel, T

The model generates a new person
The model changes the source image ratio

Add a tractor at the right side of the field. Follow the texmure
of the original painting.

The model generates a new background
similar to the one in the source image.

The model generates a new bone structure
with different colering

Figure 11: Examples of generating a new image when the task is editing.
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A.3.5 PLOTS AND CHART ERRORS

Fm— e e e e e m e — — = —— - — -~ e e e e e e e e e — — = — — -
Visualize a bubble chart of 2025 Saa$S startups: x-axis r Visualize a decision tree for medical diagnosis with

= monthly burn rate ($M), y-axis = ARR growth %, branching pathways, probability percentages at each
bubble size = employees, bubble hue = industry node, colored outcome leaves (green=healthy,
vertical (FinTech, HealthTech, AdTech, EdTech, yellow=monitor, red=urgent), and stethoscope icons.

ClimateTech)

@ 2025 Saas starttups MEDICAL DIAGNSOUSIS

The tree does not have clear instructions
and flow for diagnosis.

Instead of company names, the text in all
bubbles is 'Employees'.

Figure 12: Examples of plots and diagram issues.

A.3.6 UNREADABLE TEXT
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Figure 13: Examples of text issues.

A.3.7 ERROR MASK STATISTICS

Error pixel proportion
error / total
1400
1200

1000

600
- IIII
200 II
, I Illll-l
0.0 0.2 0.4 0.6 0.8 1.0

Value

Count

Figure 14: Distribution of error pixel proportions across the dataset. Histograms illustrate the fraction
of error pixels relative to total mask pixels, excluding masks with none or all pixels marked as errors.
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A.4 TASK AND TOPIC STATISTICS

Computer Information Photorealistic Textual
Model Artworks Graphics Graphics Images Screenshots Graphics
Text-guided Image Generation
GPT-Image-1 0.954+0.06 0.90+0.09 0.81+0.13  0.96+0.06  0.93+0.09 0.92+0.08
Qwen-Image 0.974+0.03 0.81+0.14 0.79£0.18  0.97+0.07  0.73£0.14 0.94+0.11

Flux.1-Krea-dev 0.92+0.06 0.754+0.18 0.67+£0.22  0.94+0.08  0.73+0.12 0.88+0.13
Gemini 2.0 Flash 0.87£0.09 0.73+£0.20 0.61+0.26  0.94+0.09  0.75+£0.12 0.88+0.14

UNO 0.89+0.08 0.73£0.16 0.62+0.21 0.86+0.13 0.6440.13  0.92+0.09
BAGEL 0.95+0.04 0.66+0.19 0.66+0.23 0.91£0.09 0.624+0.17 0.79+0.17
Infinity 0.93+0.08 0.69£0.18 0.5640.27 0.85+0.15 0.44+0.12 0.76£0.22
OmniGen2 0.86+0.11 0.77£0.19 0.5240.29 0.89+0.11 0.52+0.13 0.87£0.13
SDXL 0.90+0.10 0.434+0.27 0.55+0.25 0.82+0.14 0.57+0.18 0.57£0.19
Janus Pro 0.87+0.13 0.49+0.27 0.4240.29 0.81+0.23 0.50+0.22 0.60£0.27
Text-guided Image Editing
GPT-Image-1 0.86+0.09 0.90+0.12 0.69+0.19 0.88+0.09 0.73+0.13 0.86+0.12

Flux.1-Kontext-dev | 0.73+0.14 0.83+0.14 0.50+£0.23  0.76+0.12  0.56£0.20 0.82+0.17
Gemini 2.0 Flash 0.72+£0.16 0.75+0.21 0.50+0.23  0.83+£0.17  0.51+0.19 0.83+0.18

BAGEL 0.64+0.20 0.86+0.14 0.45+0.22  0.71+0.16  0.614+0.18 0.73£0.21
OmniGen2 0.74£0.13 0.72+0.23  0.40+0.21 0.81+£0.14  0.36+0.22 0.48+0.24
IC-Edit 0.594+0.20 0.57+0.24 0.35+0.18  0.5540.21 0.394+0.18 0.56+0.21
Step1X-Edit 0.53+0.26 0.39+0.30 0.19+0.15  0.65+0.19  0.47+0.20 0.50£0.20

InstructPix2Pix 0.49+£0.22 0.53+0.23 0.32+0.16  0.52+0.25 0.48+£0.19 0.36£0.18

Single Reference Image Generation

GPT-Image-1 0.95+0.08 0.86+0.13 0.72+0.18 0.87+0.10 0.83+0.14 0.81+0.15
BAGEL 0.83+£0.17 0.76£0.23 0.57+0.19 0.67£0.16 0.524+0.19 0.52+0.19
Gemini 2.0 Flash 0.77£0.19 0.73£0.19 0.52+0.19 0.81£0.19 0.56+0.18 0.66+£0.20
UNO 0.78+£0.20 0.65+0.20 0.49+0.19 0.68+0.20 0.56+0.15 0.49+0.19
OmniGen2 0.78+£0.16 0.68+0.18 0.43+0.19 0.66+0.17 0.414+0.20 0.50+0.16
Single Reference Image Editing
GPT-40 0.79+0.16 0.79+0.18 0.80-0.17 0.89+0.08 0.63+0.15 0.86-0.11
Gemini 2.0 Flash 0.59+0.19 0.63+£0.22 0.3940.14 0.64+0.20 0.39+0.14 0.63£0.19
BAGEL 0.54+0.24 0.53£0.22 0.5040.26 0.68+0.19 0.47+0.17 0.58+0.19
OmniGen2 0.62+0.17 0.57+£0.23 0.27+0.14 0.57£0.23 0.274+0.14 0.47£0.20
Multiple Reference Image Generation
GPT-Image-1 0.96+0.03 0.81+0.12 0.66:+0.17 0.860.07 0.83+0.12 0.92+0.10
Gemini 2.0 Flash 0.91£0.12 0.71£0.20 0.53+0.17 0.85+0.15 0.544+0.15 0.86+0.15
OmniGen2 0.80+£0.14 0.62+0.18 0.46+0.15 0.69+0.17 0.40+0.18 0.68+0.17
BAGEL 0.79+0.17 0.49+0.22 0.4740.16 0.80+0.17 0.42+0.20 0.71£0.17
UNO 0.70+0.12 0.66+0.14 0.41+0.13 0.63+0.14 0.51+£0.15 0.71£0.20
Multiple Reference Image Editing
GPT-Image-1 0.85+0.11 0.85+0.10 0.69+0.20 0.92+0.05 0.81+0.12 0.62+0.18
Gemini 2.0 Flash 0.76£0.16 0.58+0.17 0.62+0.25 0.70£0.13 0.56+0.16 0.50+0.16
OmniGen2 0.66+£0.13 0.53£0.18 0.44+0.22 0.68+0.19 0.324+0.15 0.41+£0.15
BAGEL 0.53+0.23 0.50+£0.20 0.41+0.23 0.59+0.15 0.214+0.11 0.32+0.16

Table 5: Topic-wise performance across six tasks. Bolded entries are the per-topic best within each
task.
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Figure 15: Best-performing model per taskxtopic across all of our 14 baselines.
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Figure 16: Best-performing model per taskxtopic for closed-source (left) and open-source (middle)
models based on human overall scores; the A panel (right) shows A = Closed — Open.

Closed — Best Model by Task X TDpIC

GPT GPT GPT GPT GPT GPT

TG- mage image | Image Image Image Image
0.9 90 081 096 0.9 0.92
GPT  GPT

TIE- Image Image
0.86

GPT GPT

SRIG- Image  Image Image Image Image
095 0.8

GPT

Image mage Image
0.8

.86
Image Image
0.8

Image Image
0.9

GPT  GPT
swie- IR IS Image Image
079 0.7 0.80  0.89

GPT  GPT
MRIG- Image | image
0.96

GPT
MRIE - Image Imag
085 085

Open — Best Model by Task x Topic
A I P S T

Qwen
Image
0.97

Quen
Image
0.79

Qwen  Qwen Qwen
TIG- Image | Image

Image
0.94

SRIG BoA(égL Bé\GEL

A (Closed Open)

A
1.0 5 B
TIG. o .. o .
0.9 03

S

TE- +0.12  +0.04 +019 +0.08 +0.12 +0.04 I

08 o

]

02 8

7 SRIG- +0.11 +0.10 +0.15 +0.18 ;
@

8 e}

S 5

Gl g

0.6 SRiE- +0.17 4022 +0.15 +0.20 +0.16 01 =

El

5

0.5 \‘I

MRIG- +0.16 +0.16 +0.19  +0.06 +0.20 °

0.0 £

0.4
. .. o o
03

-0.1

Figure 17: Average human score per taskxtopic for closed-source (left) and open-source (middle)
models; the A panel (right) shows A = Closed — Open.
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A.5 STATISTICAL SIGNIFICANCE ANALYSIS

We conduct statistical significance tests to quantify the robustness of the performance differences
reported in the paper. All analyses operate on human ratings, where each human score denotes the
average of the three independent annotators for a given (task_id, model) pair. The tests are performed
on a per-item basis. Paired two-sided #-tests are used when comparing two models (or model families)
evaluated on the same instances, while Welch’s #-test is used when comparing two disjoint groups of
items (e.g., generation vs. editing tasks).

I. GPT-Image-1 vs. Gemini 2.0 Flash. We compare GPT-Image-1 and Gemini across all task
instances. GPT-Image-1 receives significantly higher ratings overall compared to Gemini 2.0 Flash.

* Overall: n = 1080, mean diff = 0.5961, std = 0.7706, t = 25.42, p = 4.3 x 107112,

IL. Closed vs. Open Model Families. We compare the family-wise means of closed-source models
with open-source ones using a paired test across tasks.

* Overall: n = 1080, mean diff = 0.6821, std = 0.5840, t = 38.38, p = 6.6 x 10724,

III. Generation vs. Editing Tasks (Unified Models). To assess task difficulty, we compare human
ratings on generation and editing tasks over our unified models: {Bagel, Gemini 2.0 Flash, GPT-
Image-1, OmniGen2}.

* Overall: generation (n = 2158, mean = 3.9152), editing (n = 2160, mean = 3.5244), t = 13.71,
p=6.6x 10742,

IV. Symbolic vs. Non-Symbolic Topics. We compare human ratings on symbolic and text-heavy do-
mains (Information Graphics, Screenshots) against non-symbolic domains (Artworks, Photorealistic
Images).

* Overall: non-symbolic (n = 2159, mean = 4.1067), symbolic (n = 2157, mean = 3.1905),
t=34.26,p="17.3 x 1072%7,

 Artifacts: non-symbolic (n = 2159, mean = 4.3522), symbolic (n = 2157, mean = 3.0163),
t=46.23,p < 107196,

V. Human vs. VLM-as-Judge Agreement. We compare Gemini’s automatic scores with human-
mean ratings for all 6,469 (task_id, model) instances.

» Prompt Relevance: mean diff = —0.2704, std = 1.0185, ¢t = —21.35, p = 8.4 x 1079,
* Aesthetic Quality: mean diff = —0.0529, std = 1.0135, ¢t = —4.20, p = 2.7 x 107°.

+ Content Coherence: mean diff = —0.2069, std = 1.2741, ¢t = —13.06, p = 1.7 x 10738,
* Artifacts: mean diff = +0.2220, std = 1.1207, t = 15.93, p = 4.2 x 10756,

* Overall: mean diff = —0.0770, std = 0.8516, t = —7.28, p = 3.9 x 1013,
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A.6 DATASET DETAILS

Topic Distribution Across the Dataset

I Screenshots 3 Artworks [ Computer Graphics
[ Photorealistic Images B Information Graphics [ Textual Graphics

Figure 18: Topic distribution for the entire dataset

Word Cloud of Subtopics Across the Dataset
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Figure 19: Word cloud of subtopics across the entire dataset, with word size proportional to frequency
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Task Topic Subtopics (Count)
A Collage (26), Cultural/heritage art (9), Digital arts (15), Glitch Art (3), Pixel Art
(5), Pop art (5), Stylized art (11), Traditional art (11), oil paintings (16)
CG 3D renders (17), CAD models (13), Depth maps (11), Facial estimation and
analysis (3), Game assets (8), Object detection visuals (11), Semantic or Instance
segmentation (16), Texture Map (8), Texture maps (1), VEX and Particles (12)
1 Diagrams, charts, and graphs (25), Icons and symbols (26), Maps (17), Ul
mockups (21), Visual instructions and manuals (11)
TIG P Astronomical images (18), Long exposure (7), Medical Images (1), Medical
images (21), Microscopic imagery (20), Minimalist Designs (5), Photography
(28), Retro Futurism (2)
Games (19), Receipts (35), Software interfaces (19), Websites (27)
T ASCII Art (6), Branding and visual identity (7), Calligraphy (6), Comics (13),
Concrete Poetry (3), Graffiti (Text-based) (9), [lluminated Manuscripts (9),
Memes (11), Posters (12), Textile Art with Text (6), Textual Tattoos (7), Typog-
raphy (6), Word Clouds (5)
A Collage (16), Cultural or Heritage art (14), Digital arts (24), Portraits (1), Styl-
ized art (32), Traditional art (14)
CG 3D renders (12), CAD models (12), Depth maps (13), Facial estimation and
analysis (13), Game Assets (1), Game assets (12), Object detection visuals (13),
Semantic or Instance segmentation (13), VFX and Particles (12)
I Diagrams, charts, and graphs (25), Icons and symbols (21), Maps (14), Ul
SRIG mockups (20), Visual instructions and manuals (20)
P Astronomical images (28), Medical images (22), Microscopic imagery (23),
Photography (27)
Games (24), Receipts (18), Software interfaces (28), Websites (30)
T Branding and visual identity (11), Comics (15), Memes (25), Newspaper (3),
Posters (22), Typography (22), Website (2)
A Collage (13), Cultural or Heritage art (23), Digital arts (29), Stylized art (19),
Traditional art (16)
CG 3D renders (12), CAD models (11), Depth maps (13), Facial estimation and
analysis (10), Game assets (11), Object detection visuals (23), Semantic or
Instance segmentation (10), VFX and Particles (10)
MRIG I Diagrams, charts, and graphs (38), Icons and symbols (15), Maps (18), Ul
mockups (18), Visual instructions and manuals (11)
P Astronomical images (6), Microscopic imagery (13), Photography (81)
Games (24), Receipts (23), Software interfaces (31), Websites (22)
T Branding and visual identity (24), Comics (15), Memes (16), Posters (23),

Typography (18), Typography-not-english (5)

Table 6: Subtopics across generation tasks (TIG, SRIG, MRIG).
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Task

Topic

Subtopics (Count)

TIE

Animation (2), Blueprint (1), Ceramic art (1), Collage (4), Conceptual art (1),
Cropping (1), Cubism (3), Cultural or Heritage art (4), Digital art (8), Digital arts
(2), Expressionism (4), Fauvism (2), Futurism (4), Graffiti (1), Graffiti art (1),
Hand drawn blueprint (1), Impressionism (4), Medieval art (1), Neoclassicism
(2), Oil Painting (1), Painting (8), Paintings (3), Pixel art (4), Pixel arts (2),
Pop art (3), Post-Impressionism (2), Renaissance (6), Renaissance arts (1),
Romanticism (4), Sketches (2), Statue (5), Surrealism (3), Traditional art (4),
Traditional arts (1), Vector art (3), Vector arts (1)

CG

3D renders (10), CAD models (10), Depth maps (10), Facial estimation and
analysis (10), Game assets (10), Mesh Processing (5), Object detection visuals
(10), Physics Simulation (5), Semantic or Instance segmentation (10), Shader
Programming (5), Skeletal Animation and Rigging (5), VEX and Particles (5),
Volume Rendering (5)

Diagrams, charts, and graphs (61), Exploded Views (5), Exploded views (2),
Floor Plan (8), Icons and symbols (8), Maps (5), Tables (6), Ul mockups (5)

Astronomical images (21), Medical images (15), Microscopic imagery (20),
Photography (45)

Game Screenshots (1), Games (26), Mobile software interfaces (7), QR codes
(11), Receipts (3), Software interfaces (50), Websites (14)

Branding and visual identity (27), Comics (15), Memes (26), Posters (16),
Typography (16)

SRIE

Collage (20), Cultural or Heritage art (19), Digital arts (20), Stylized art (20),
Traditional art (21)

CG

3D renders (11), CAD models (6), Depth maps (13), Facial estimation and
analysis (13), Game assets (13), Image Transformation (15), Object detection
visuals (18), Semantic or Instance segmentation (11)

Diagrams, charts, and graphs (30), Icons and symbols (20), Maps (26), Ul
mockups (24)

Astronomical images (30), Medical images (23), Microscopic imagery (20),
Photography (27)

Games (25), Receipts (25), Software interfaces (25), Websites (25)

Branding and visual identity (22), Comics (22), Memes (20), Posters (16),
Typography (20)

MRIE

Collage (20), Cultural or Heritage art (12), Digital arts (9), Oil painting (12),
Pop art (14), Portraits (10), Stylized art (9), Traditional art (14)

CG

3D Character Integration (1), 3D renders (7), Augmented Reality or Computer
Vision Visualization (1), CAD models (1), Computer Animation (1), Com-
puter Animation or Stylized Rendering (1), Depth maps (10), Game assets
(9), Geometric Modeling or Stylized Rendering (1), Global Illumination (2),
Non-Photorealistic Rendering (1), Object detection visuals (23), Scene Editing
(1), Semantic or Instance segmentation (19), Stylized Rendering (1), Stylized
Rendering or 3D renders (4), Stylized Rendering or Computer Animation (2),
Stylized Rendering or Visual Effects (1), UI Design or Stylized Rendering (1),
VEX and Particles (13)

Diagrams, charts, and graphs (23), Icons and symbols (22), Maps (25), Ul
mockups (23), Visual instructions and manuals (8)

Astronomical images (15), Medical images (15), Microscopic imagery (10),
Scenic Nature Parks (19), Urban & Street Photography (16), Wildlife & Nature
Photography (25)

Chat and Social Messaging (14), Forms and Authentication (9), Games (14),
Online Meeting Interfaces (11), QR Code (14), Receipts (15), Software interfaces
(11), Software interfaces - farsi (1), Websites (11)

Advertisements (1), Book (1), Branding and visual identity (12), Card (1),
Comics (9), Flyers (2), Fonts (1), Magazine (2), Meme (1), Memes (18), Menu
(4), Newspaper (2), Newspapers (1), Nutrition Fact (1), Poster (2), Posters (15),
Products (1), Signs (5), Subtitle (1), Typography (20)

Table 7: Subtopics across editing tasks (TIE, SRIE, MRIE).
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A.7 AUTOMATED EVALUATIONS

LLM-based Embedding & perceptual

Model Prompt = Aesthetic  Content oo | Overall | CLIP LPIPS
relevance quality  Coherence
Text-guided Image Generation
GPT-40 0.89£0.20 0.95+0.12 0.914+0.23 0.96£0.13 | 0.93£0.13 | 0.25+0.12 N/A
Qwen-Image 0.79£0.29 0.93+0.17 0.864+0.28 0.88+0.24 | 0.87£0.20 | 0.24+0.12 N/A
Flux.1-Krea-dev 0.74£0.30 0.89+0.20 0.824+0.33 0.89+0.25 | 0.84£0.23 | 0.24+0.12 N/A
Janus Pro 0.40£0.31 0.52+0.34 0.604+0.41 0.58+0.38 | 0.52+0.32 | 0.23£0.10 N/A
Gemini 2.0 Flash 0.79£0.27 0.86+0.23 0.844+0.31 0.83£0.29 | 0.83£0.23 | 0.24+0.11 N/A
BAGEL 0.65+£0.33 0.83+0.24 0.764+0.37 0.81£0.29 | 0.76£0.26 | 0.24+0.12 N/A
UNO 0.61£0.31 0.80+0.25 0.794+0.34 0.80£0.30 | 0.75£0.25 | 0.24=£0.11 N/A
OmniGen2 0.62+£0.31 0.81+0.26 0.744+0.38 0.81£0.33 | 0.74£0.27 | 0.24£0.12 N/A
Infinity 0.58+£0.33 0.79+0.27 0.764+0.36 0.76£0.33 | 0.72£0.28 | 0.24=£0.11 N/A
SDXL 0.49+£0.33 0.72+0.31 0.714£0.39 0.72+0.35 | 0.66=£0.30 | 0.24=£0.11 N/A
Janus Pro 0.40£0.31 0.52+0.34 0.60+0.41 0.58+0.38 | 0.52£0.32 | 0.23£0.10 N/A
Text-guided Image Editing
GPT-40 0.77+0.31 0.81£0.30 0.79+0.35 0.84+0.32 | 0.80+0.28 | 0.25+0.10  0.54+0.15
Flux.1-Kontext-dev | 0.52+£0.38 0.66+0.34 0.67+0.41 0.76+0.36 | 0.65+0.31 | 0.25+0.10  0.52+0.18
BAGEL 0.56+0.37 0.61+0.35 0.68+£0.39 0.70+0.37 | 0.64+0.32 | 0.25+0.09  0.33+0.23
Gemini 2.0 Flash 0.57+0.37 0.61+£0.36 0.63£0.42 0.68+0.40 | 0.62+0.34 | 0.25+0.09  0.39+0.23
OmniGen2 0.344+0.35 0.56+0.35 0.61£0.43 0.724+0.39 | 0.56£0.32 | 0.25+0.09  0.42+0.25
IC-Edit 0.254+0.34 0.50+0.35 0.63£0.41 0.66+0.40 | 0.51£0.30 | 0.25+0.09  0.23+0.19
InstructPix2Pix 0.16+0.27 0.45+0.35 0.58+£0.43 0.61+0.43 | 0.45+0.30 | 0.25+0.09  0.2740.19
Step1X-Edit 0.35+0.34 0.44+0.37 0.46£0.43 0.53+0.42 | 0.44+0.34 | 0.25+0.09 0.36+0.27
Single Reference Image Generation
GPT-Image-1 0.77+0.28 0.91+0.16 0.88+£0.24 0.93+0.20 | 0.88+0.17 | 0.15+0.09  0.73+0.08
Gemini 2.0 Flash 0.61+0.32 0.73+0.35 0.73£0.38 0.774£0.35 | 0.69+£0.28 | 0.17+0.10  0.5940.16
BAGEL 0.51+0.30 0.68+0.32 0.65+£0.42 0.73+0.37 | 0.64+0.30 | 0.17+0.10  0.68+0.17
UNO 0.404+0.30 0.65+0.27 0.66£0.40 0.73+0.37 | 0.61£0.29 | 0.16+0.10  0.66+0.14
OmniGen2 0.414+0.33 0.63+0.35 0.64+£0.42 0.74+0.37 | 0.61+£0.31 | 0.17+0.11  0.53+0.24
Single Reference Image Editing

GPT-Image-1 0.75£0.30 0.80+0.29 0.784+0.35 0.84+0.32 | 0.79£0.27 | 0.24£0.10  0.66+0.12
Gemini 2.0 Flash 0.40£0.35 0.55+0.35 0.594+0.42 0.67£0.39 | 0.55+£0.32 | 0.24£0.10  0.5940.16
OmniGen2 0.30£0.30 0.59+0.34 0.584+0.43 0.70£0.40 | 0.54£0.30 | 0.24£0.11  0.69£0.11
BAGEL 0.31£0.33 0.56+0.35 0.594+0.42 0.67£0.38 | 0.53£0.30 | 0.24£0.10  0.5740.16

Multiple Reference Image Generation
GPT-Image-1 0.69+0.31 0.75+0.30 0.73£0.37 0.80+0.33 | 0.74£0.29 | 0.16+0.10  0.7240.07
UNO 0.35+0.24 0.64+0.27 0.62£0.39 0.73+0.36 | 0.59+0.26 | 0.13+0.09  0.734+0.09
Gemini 2.0 Flash 0.35+0.30 0.49+0.35 0.50£0.42 0.59+0.41 | 0.48+0.32 | 0.17+0.10  0.6940.09
OmniGen2 0.26+0.28 0.51+0.34 0.45+0.42 0.63+0.40 | 0.46£0.30 | 0.16+0.11  0.724+0.09
BAGEL 0.23+0.28 0.39+0.34 0.36£0.40 0.49+0.40 | 0.37+0.29 | 0.14+0.09  0.7040.09

Multiple Reference Image Editing

GPT-Image-1 0.69£0.31 0.75+0.30 0.73+0.37 0.80£0.33 | 0.74£0.29 | 0.16£0.10  0.7240.07
Gemini 2.0 Flash 0.35£0.30 0.49+0.35 0.50+0.42 0.59+0.41 | 0.48+£0.32 | 0.17£0.10  0.6940.09
OmniGen2 0.26+0.26 0.51+0.34 0.45+£0.42 0.63+0.40 | 0.46+0.30 | 0.16+0.11  0.73+0.07
BAGEL 0.23£0.24 0.39+0.34 0.36+0.40 0.49+0.40 | 0.37£0.29 | 0.16£0.10  0.70£0.09

Table 8: Automatic evaluations on all entries in our dataset
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LLM-based Embedding & perceptual

Model Prompt — Aesthetic  Content e | Overall | CLIP LPIPS
relevance quality ~ Coherence
Text-guided Image Generation
GPT-Image-1 0.88+£0.22 0.95+0.13 0.914+0.23 0.96£0.13 | 0.92+0.13 | 0.2440.12 N/A
Qwen-Image 0.77£0.31 0.93+0.17 0.8740.28 0.89+0.24 | 0.86+0.20 | 0.2340.12 N/A
Flux.1-Krea-dev 0.72+£0.31 0.88+0.21 0.804+0.35 0.89+0.26 | 0.82+0.23 | 0.2340.12 N/A
Gemini 2.0 Flash 0.78+0.28 0.85+0.23 0.82+0.31 0.83+0.29 | 0.824+0.24 | 0.24+0.12 N/A
BAGEL 0.62+0.34 0.83+0.23 0.74+0.37 0.82+0.30 | 0.754+0.26 | 0.23+0.12 N/A
OmniGen2 0.62+0.33 0.81+0.25 0.73+0.37 0.82+0.31 | 0.754+0.27 | 0.22+0.12 N/A
UNO 0.57+0.32 0.79+0.26 0.75+0.37 0.78+0.31 | 0.724+0.27 | 0.23+0.12 N/A
Infinity 0.58+£0.32 0.80+0.26 0.764+0.36 0.75+0.34 | 0.73£0.27 | 0.22+0.11 N/A
SDXL 0.48+0.33 0.72+0.32 0.71+£0.39 0.71+0.36 | 0.654+0.30 | 0.23+0.11 N/A
Janus Pro 0.41£0.30 0.55+0.33 0.624+0.41 0.60£0.37 | 0.54+0.32 | 0.2240.10 N/A
Text-guided Image Editing
GPT-Image-1 0.77+£0.31 0.81+0.30 0.794+0.35 0.85+0.31 | 0.80+0.28 | 0.24+0.10 ~ 0.5540.15
Gemini 2.0 Flash 0.59+0.37 0.62+0.37 0.664+0.41 0.68+0.40 | 0.64+0.35 | 0.24+0.10  0.424+0.23
Flux.1-Kontext-dev | 0.48+0.36 0.664+0.35 0.64+0.42 0.75+0.37 | 0.63+0.32 | 0.24+0.10  0.52+0.19
BAGEL 0.51+0.37 0.57+0.37 0.654+0.41 0.64+0.39 | 0.59+0.33 | 0.24+0.10  0.354+0.25
OmniGen2 0.34+0.36 0.58+0.35 0.63+0.43 0.74+0.38 | 0.57+0.32 | 0.254+0.10  0.414+0.26
IC-Edit 0.23+0.32 0.48+0.35 0.604+0.40 0.64+0.41 | 0.49+0.29 | 0.24+0.09  0.234+0.18
Step1X-Edit 0.34+0.35 0.43+0.38 0.454+0.45 0.52+0.43 | 0.43+0.36 | 0.244+0.09  0.394+0.30
InstructPix2Pix 0.14+0.25 0.41+0.35 0.524+0.43 0.58+0.44 | 0.41+0.30 | 0.244+0.09  0.264+0.19
Single Reference Image Generation
GPT-Image-1 0.73£0.28 0.91+0.16 0.874+0.24 0.92+0.22 | 0.86+0.18 | 0.16+0.10 ~ 0.7340.18
Gemini 2.0 Flash 0.58+0.33 0.72+0.35 0.744+0.38 0.76+0.35 | 0.70+£0.28 | 0.16+0.10  0.594+0.16
BAGEL 0.49+0.30 0.68+0.32 0.654+0.42 0.73£0.37 | 0.65+0.28 | 0.16+0.10  0.6940.17
OmniGen2 0.41£0.33 0.63+0.35 0.644+0.42 0.74+0.37 | 0.62+0.30 | 0.174£0.11  0.554+0.24
UNO 0.38+£0.29 0.64+0.32 0.654+0.40 0.73£0.37 | 0.60£0.29 | 0.15+0.10  0.68+0.14
Single Reference Image Editing

GPT-40 0.67+£0.30 0.77+0.29 0.784+0.35 0.84+0.32 | 0.76+0.29 | 0.24+0.10 ~ 0.6540.13
OmniGen2 0.29+0.31 0.58+0.34 0.584+0.43 0.70+0.40 | 0.54+0.31 | 0.24+0.10  0.6940.11
BAGEL 0.38+£0.35 0.54+0.36 0.604+0.42 0.65+0.38 | 0.53+0.32 | 0.244+0.10  0.5640.17
Gemini 2.0 Flash 0.42+0.36 0.52+0.37 0.594+0.42 0.68+0.40 | 0.51+£0.32 | 0.244+0.10  0.5940.16

Multiple Reference Image Generatio!
GPT-Image-1 0.79+£0.25 0.91+0.17 0.904+0.25 0.93+0.21 | 0.88+0.16 | 0.14+0.09  0.7340.08
Gemini 2.0 Flash 0.59+0.31 0.70+0.30 0.704+0.39 0.74+0.37 | 0.68+0.30 | 0.14+0.09  0.7440.09
OmniGen2 0.40+£0.28 0.64+0.28 0.584+0.40 0.74+0.38 | 0.59+0.28 | 0.13+0.10 ~ 0.7240.09
BAGEL 0.47+0.26 0.61+0.33 0.614+0.41 0.68+0.39 | 0.59+0.31 | 0.144+0.09  0.7440.08
UNO 0.35+0.25 0.65+0.26 0.624+0.39 0.72+0.36 | 0.58+0.25 | 0.13+0.09  0.7440.08

Multiple Reference Image Editing

GPT-Image-1 0.67+£0.31 0.77+0.30 0.734+0.36 0.82+0.32 | 0.75+£0.28 | 0.16+0.10  0.7240.08
Gemini 2.0 Flash 0.36+0.30 0.51+£0.35 0.53+0.42 0.62+0.41 | 0.514+0.31 | 0.17+£0.10  0.69+0.09
OmniGen2 0.23£0.23 0.50+0.34 0.424+0.42 0.64+0.41 | 0.45+0.30 | 0.15+0.11  0.7340.07
BAGEL 0.23+0.25 0.40+0.33 0.37+£0.39 0.52+0.40 | 0.384+0.28 | 0.16+0.10  0.70+0.09

Table 9: Automatic evaluations on our human-annotated subset
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A.8 PROMPT TEMPLATES

Prompt Template for Image Generation & Editing

You are an expert visual generation assistant.

Task: {TASK_.NAME}

Task Definition: { TASK_DEFINITION}

Visual Domain: {TOPIC_.NAME}

User Objective: {USER_PROMPT}

Attached Images: {IMG_LIST} (None for Text-guided image generation)

Please generate an image that fulfills the user’s objective, adheres to the task definition, and fits
within the specified visual domain.

TASK_NAME:
¢ Text-guided Image Generation
* Text-guided Image Editing
* Single Reference-guided Image Generation
* Single Reference-guided Image Editing
* Multiple References-guided Image Generation

» Multiple References-guided Image Editing

TASK_DEFINITION:

* Text-guided Image Generation: Generate a completely new image based only on a descrip-
tive text prompt. No source or reference images are provided.

Text-guided Image Editing: Edit an existing image using a descriptive text prompt. Decide
what to modify in the image based on the prompt. No mask or marked region is given.

* Single Reference-guided Image Generation: Create a new image by combining visual cues
from one reference image with instructions from a descriptive text prompt.

* Single Reference-guided Image Editing: Edit an existing image using both a reference
image and a text prompt. Use the reference image to guide the style or content of the edits.

Multiple References-guided Image Generation: Generate a new image using several refer-
ence images along with a text prompt. The new image should reflect visual elements from
the references and follow the prompt’s description.

Multiple References-guided Image Editing: Modify an existing image using multiple
reference images and a descriptive text prompt. The edits should be guided by both the
style or content of the references and the instructions in the prompt.

TOPIC_NAME:
¢ Information Graphics
* Artworks
* Screenshots
* Computer Graphics
* Photorealistic Images

* Textual Graphics
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Prompt Template for Image Evaluation

You are an expert AI image evaluator. Your task is to rate a generated image based on a
provided text prompt and any reference images.

Use the following guidelines for your assessment. Provide a rating from 1 to 5 for each criterion.
Do NOT include any additional text or explanations in your response. The response MUST be
a single JSON object.

Quality Assessment

* Prompt Relevance
Definition: Whether the image accurately reflects or responds to the prompt.
Rating Guide (1-5):
1 — Completely unrelated to the prompt.
2 — Mostly incorrect; some vague connections but many mismatches.
3 — Partially relevant; key ideas are present but with errors or omissions.
4 — Mostly accurate; follows the prompt well with minor issues.
5 — Fully aligned with the prompt; clear, focused, and complete.

Aesthetic Quality / Visual Appeal

Definition: Whether the image is visually appealing, clean, and easy to interpret.
Rating Guide (1-5):

1 — Visually poor; unattractive, hard to read or confusing.

2 — Below average; noticeable design flaws, poor readability.

3 — Decent; generally readable but has minor layout/design issues.

4 — Clean and aesthetically good; professional feel with few flaws.

5 — Beautiful, polished, and visually excellent.

* Content Coherence
Definition: Whether the content in the image is logically consistent and fits together
meaningfully.
Rating Guide (1-5):
1 — Internally inconsistent or nonsensical; parts contradict each other.
2 — Some logic, but confusing or mismatched components.
3 — Mostly coherent, though there are noticeable mismatches or awkward parts.
4 — Logically sound overall, with only minor inconsistencies.
5 — Completely coherent and internally consistent.

Artifacts / Visual Errors

Definition: Whether the image has visual flaws due to generation errors (e.g., distortions,
glitches).

Rating Guide (1-5):

1 — Severe artifacts that ruin the image.

2 — Major flaws that are clearly noticeable.

3 — Some minor artifacts, but the image remains usable.

4 — Mostly clean; only very subtle flaws if any.

5 — Perfectly clean; no visible artifacts at all.

Expected Output (single JSON object):
{

"prompt_relevance": <rating>,
"aesthetic_quality": <rating>,
"content_coherence": <rating>,
"artifacts": <rating>
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