

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 IMAGENWORLD: STRESS-TESTING IMAGE GENERATION MODELS WITH EXPLAINABLE HUMAN EVALUATION ON OPEN-ENDED REAL-WORLD TASKS

Anonymous authors

Paper under double-blind review

ABSTRACT

Advances in diffusion, autoregressive, and hybrid models have enabled high-quality image synthesis for tasks such as text-to-image, editing, and reference-guided composition. Yet, existing benchmarks remain limited, either focus on isolated tasks, cover only narrow domains, or provide opaque scores without explaining failure modes. We introduce **ImagenWorld**, a benchmark of 3.6K condition sets spanning six core tasks (generation and editing, with single or multiple references) and six topical domains (artworks, photorealistic images, information graphics, textual graphics, computer graphics, and screenshots). The benchmark is supported by 20K fine-grained human annotations and an explainable evaluation schema that tags localized object-level and segment-level errors, complementing automated VLM-based metrics. Our large-scale evaluation of 14 models yields several insights: (1) models typically struggle more in editing tasks than in generation tasks, especially in local edits. (2) models excel in artistic and photorealistic settings but struggle with symbolic and text-heavy domains such as screenshots and information graphics. (3) closed-source systems lead overall, while targeted data curation (e.g., Qwen-Image) narrows the gap in text-heavy cases. (4) modern VLM-based metrics achieve Kendall accuracies up to 0.79, approximating human ranking, but fall short of fine-grained, explainable error attribution. ImagenWorld provides both a rigorous benchmark and a diagnostic tool to advance robust image generation.

1 INTRODUCTION

The rapid progress in generative image modeling, powered by diffusion (Rombach et al., 2022; Lipman et al., 2023), autoregressive (AR) (Yu et al., 2022; Tian et al., 2024), and hybrid architectures (OpenAI, 2025), has enabled systems capable of producing high-quality images under diverse conditioning inputs. More recent work has begun to push toward broader functionality, developing models that can handle multiple tasks—such as generation and editing—with a single framework (Deng et al., 2025; Wu et al., 2025b; Chen et al., 2025a; Google, 2025), with early evidence of real-world applicability (Chen et al., 2025a). However, evaluation has not kept pace with this modeling progress. Existing benchmarks are fragmented, often restricted to isolated tasks (e.g., text-to-image (Saharia et al., 2022; Yu et al., 2022), editing (Huang et al., 2023), or personalization (Peng et al., 2025; Li et al., 2023)) or biased toward narrow domains such as artworks (Ku et al., 2024b) or textual graphics (Tuo et al., 2024). As a result, **it remains unclear how well these unified models generalize across the full spectrum of real-world use cases**. To address this gap, we introduce **ImagenWorld**, a large-scale, human-centric benchmark comprising 3.6K condition sets designed to systematically stress-test generative models. ImagenWorld unifies six representative task types and six topical domains, creating a diverse testbed that mirrors the breadth of real-world image generation and editing. At its core, ImagenWorld relies on structured human evaluation, where annotators not only provide scores but also tag specific failure modes with textual descriptions and localized masks as illustrated in Figure 1. This schema yields explainable outcomes, revealing why models fail. To complement human judgments, we also include VLM-as-a-judge metrics, enabling comparison between human and automatic evaluators. Together, this design supports both rigorous benchmarking and forward-looking exploration of how evaluation protocols can scale. By evaluating a broad set of model families under a single protocol, ImagenWorld provides the most comprehensive picture to

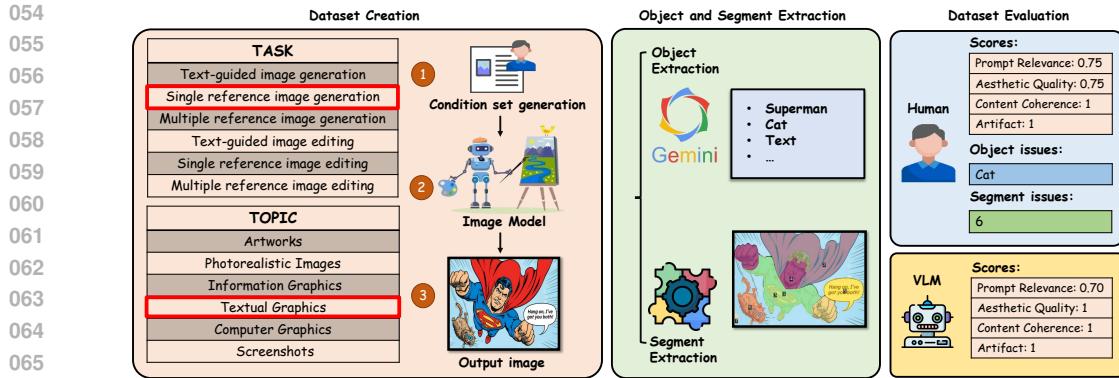


Figure 1: Overview of our dataset and evaluation pipeline, covering six content categories and six generation/editing tasks. Model outputs are assessed by both human annotators (explainable schema) and vision–language models (scores only).

date of model performance and failure patterns across real-world generation and editing tasks. Our study covers 14 models in total, including 4 recent unified models capable of both generation and editing, and 10 task-specific models that serve as auxiliary baselines.

We uncover four key insights: (1) For editing tasks, we identify two distinct failure modes: (i) regenerating an entirely new image, and (ii) returning the input unchanged. Strikingly, models tend to exhibit one mode far more frequently than the other, suggesting a systematic bias in how they interpret editing instructions. This highlights a deeper limitation in current architectures: they lack fine-grained control mechanisms to modify localized regions without either overhauling or ignoring the input. (2) All models struggle with text-related tasks such as information graphics, screenshots, and textual graphics. However, our results reveal an exception: Qwen-Image consistently outperforms other models on textual graphics. Notably, Qwen-Image employs a synthetic data curation pipeline explicitly tailored for text-heavy images, suggesting that targeted data augmentation may be a practical path to closing this gap. This highlights that the challenge is not purely architectural, but also fundamentally tied to data design. (3) While closed-source models consistently achieve strong results across tasks, open-source models are primarily competitive in text-to-image generation, where abundant training data and community optimization have driven rapid progress. Their weaker performance in editing and multimodal composition highlights the need for further research and targeted data curation in these areas, beyond scale alone. (4) Beyond model performance, we find that modern VLM metrics achieve Kendall accuracies up to 0.79, closely matching or even exceeding human–human agreement. This suggests that modern VLMs as a judge are reliable as scalable evaluators for relative ranking in our context, but they fall short in the explainable paradigm, where humans remain indispensable for fine-grained tagging of specific failure modes.

Our contributions are threefold: (1) we introduce ImagenWorld, a diverse benchmark that unifies six core tasks and six topical domains, enabling consistent cross-model and cross-task evaluation of generative image systems; (2) we conduct the first human study of its kind, looking into the failure modes, offering new insights and observed patterns. (3) we propose a schema for explainable human evaluation, labeling object-level errors and segment-level errors to provide fine-grained, interpretable error attribution beyond scalar scores. By combining task diversity, model breadth, and diagnostic evaluation depth, ImagenWorld establishes a unified and human-centric study to record our process towards the full control of creation and manipulation in images.

2 RELATED WORKS

Progress in Conditional and Multimodal Image Synthesis. The introduction of Latent Diffusion Models (LDMs) (Rombach et al., 2022) marked a turning point, leading to a flourishing ecosystem of conditional image synthesis systems (runwayml, 2023; stability.ai, 2023) spanning diverse tasks such as instruction-driven editing (Brooks et al., 2023a; Huang et al., 2025), structural control (Zhang & Agrawala, 2023), and personalization (Ruiz et al., 2023; Yeh et al., 2024; Hu et al., 2024). While diffusion remains the dominant paradigm, alternative architectures are rapidly advancing. Autoregressive approaches (Yu et al., 2022; Tian et al., 2024) improve compositional reasoning

108 and fidelity (Xiong et al., 2025), flow-matching models (BlackForestLabs et al., 2025) leverage
 109 ODE-native properties for potentially faster sampling, and hybrid designs such as autoregressive
 110 LLMs with diffusion decoders (Wu et al., 2024; OpenAI, 2025; Google, 2025) integrate native
 111 image generation into conversational agents. Together, these families define the current landscape of
 112 multimodal conditional image synthesis, though their evaluation remains fragmented across tasks and
 113 settings. Our work takes these developments into account by systematically studying their strengths
 114 and weaknesses under a unified evaluation framework.

115 **Image Synthesis Assessments and Benchmarks.** Traditional evaluations of generative image
 116 models have relied on metrics such as FID (Heusel et al., 2017) and LPIPS (Zhang et al., 2018) for
 117 image fidelity, or CLIPScore (Hessel et al., 2021) for text–image alignment. More recent approaches,
 118 including VIEScore and VQAScore (Cho et al., 2023; Hu et al., 2023; Ku et al., 2024a; Lin et al.,
 119 2024; Niu et al., 2025), use vision language models (VLM) to better capture semantic relevance,
 120 though they introduce biases and often depend on proprietary models. Human preference–driven
 121 metrics such as Pick-a-Pic (Kirstain et al., 2023a), ImageReward (Xu et al., 2023), and HPS (Ma
 122 et al., 2025) emphasize aesthetics and subjective preferences. Beyond individual metrics, benchmarks
 123 like DrawBench (Saharia et al., 2022) and PartiPrompts (Yu et al., 2022) target text-to-image fidelity,
 124 while others focus on editing (Huang et al., 2023) or personalization (Peng et al., 2025; Li et al., 2023).
 125 More recent efforts, including ImagenHub (Ku et al., 2024b) and MMIG-Bench (Hua et al., 2025),
 126 extend beyond single tasks by covering multiple generation settings and integrating both automatic
 127 and human evaluation. **Gecko** (Wiles et al., 2025) further scales this direction by introducing a large
 128 evaluation suite that measures text-to-image alignment across diverse human annotation templates
 129 and scoring setups. Open platforms like GenAI-Arena (Jiang et al., 2024) provide Elo-style rankings,
 130 but suffer from topic bias in user-submitted prompts. Overall, existing protocols remain task-specific
 131 or opaque, limiting the interpretability and scalability. Beyond simply adding another dataset, our
 132 work offers a new perspective: a unified benchmark across tasks and domains, complemented by
 133 structured, explainable human evaluation that can also serve as a foundation for future VLM-based
 134 automatic evaluators. Table 1 reflects how ImagenWorld differs from prior works.
 135

Table 1: Comparison with different evaluation benchmarks on different properties.

Method	Generation & Editing	Single Ref Guided	Multi Ref Guided	Human Rating	Topic Variety	Explainable Trace
ImagenHub (Ku et al., 2024b)	✓	✓	✗	✓	✓	✗
GenAI-Arena (Jiang et al., 2024)	✓	✗	✗	✓	✗	✗
DreamBench++ (Peng et al., 2025)	✗	✓	✗	✗	✓	✗
I^2 EBench (Ma et al., 2024)	✗	✗	✗	✓	✓	✗
ICE-Bench (Pan et al., 2025)	✓	✓	✗	✗	✓	✗
MMIG-Bench (Hua et al., 2025)	✗	✓	✗	✓	✓	✓
Rich-HF (Liang et al., 2024)	✗	✗	✗	✓	✓	✓
ImagenWorld (Ours)	✓	✓	✓	✓	✓	✓

3 THE IMAGENWORLD BENCHMARK

145 **Problem Formulation.** To capture practical usage scenarios, we unify multiple generation and
 146 editing tasks under a common instruction-driven framework: every task is conditioned on a natural
 147 language instruction t_{ins} , optionally accompanied by auxiliary inputs such as a source image I_{src} or a
 148 set of reference images \mathbf{I}_R . This unification reflects how real users typically interact with generative
 149 systems by providing instructions that guide the system to either create new images or edit existing
 150 ones. Building on this formulation, we categorize tasks into two groups: instruction-driven generation,
 151 where the system synthesizes a new image without a source image, and instruction-driven editing,
 152 where the system modifies an existing source image I_{src} while following the instruction. Formally:
 153

- 154 • **Text-guided Image Generation (TIG):** Given an instruction t_{ins} in natural language, the model
 155 synthesizes a new image $y = f(t_{\text{ins}})$.
- 156 • **Single Reference Image Generation (SRIG):** Given an instruction t_{ins} and a reference image I_{ref} ,
 157 the model generates a new image $y = f(I_{\text{ref}}, t_{\text{ins}})$ of the referenced entity (e.g., subject, object, or
 158 layout) in a different context, pose, or environment.
- 159 • **Multiple Reference Image Generation (MRIG):** Given an instruction t_{ins} and a set of reference
 160 images $\mathbf{I}_R = \{I_{\text{ref}}^1, I_{\text{ref}}^2, \dots\}$, the model synthesizes a new image $y = f(\mathbf{I}_R, t_{\text{ins}})$ that composes
 161 multiple visual concepts from the instruction and references.

Task	Text Instruction	Source Image	Image Conditions	Success Case	Failure Case
TIG (CG)	Forest scene showing bounding boxes around animals such as deer, rabbits, and birds.	—	—		
SRIG (P)	CT scan of a brain using the reference mask as the anatomical shape.	—			
MRIG (S)	Generate a pet simulation game interface with pet character designs from the first and second images and the home decoration style from the third image.	—			
TIE (T)	Change top text to “If AI learns from humans” and the bottom text to “Who’s coaching the coach?”		—		
SRIE (A)	Re-color the stylized portrait in image 1 using exclusively the specific color palette presented in image 2.				
MRIE (I)	In step 2, update the added pasta to resemble spaghetti noodles as shown in image 2. For steps 1 and 2, refine the water graphic, depicting it with the wave pattern style found in image 3.				

Figure 2: Illustrative examples from our dataset, showing successful and failure cases for each task

- Text-guided Image Editing (TIE): Given an instruction t_{ins} and a source image I_{src} , the model produces $y = f(t_{ins}, I_{src})$ by modifying I_{src} according to the instruction while preserving its core structure.
- Single Reference Image Editing (SRIE): Given an instruction t_{ins} , a source image I_{src} , and a reference image I_{ref} , the model edits I_{src} to $y = f(I_{ref}, t_{ins}, I_{src})$, adapting the reference entity to the specified instruction or style.
- Multiple Reference Image Editing (MRIE): Given an instruction t_{ins} , a source image I_{src} , and a set of reference images I_R , the model edits I_{src} to $y = f(I_R, t_{ins}, I_{src})$, aligning it with the visual attributes or semantics suggested by the instruction and references.

Dataset Curation Pipeline. To construct ImagenWorld, we curated a large-scale dataset through a combination of human annotation and automated refinement. Annotators wrote natural language prompts and paired them with corresponding reference or source images, ensuring that each instance aligned with one of the six benchmark tasks. To reflect real-world applications, our dataset covers six major topics: **Artworks (A)**, **Photorealistic Images (P)**, **Information Graphics (I)**, **Textual Graphics (T)**, **Computer Graphics (CG)**, and **Screenshots (S)**, each further divided into fine-grained subtopics to guarantee diverse use cases. In total, our dataset contains 3.6K entries, with 100 samples for each task-topic combination. Figure 2 shows representative examples from our dataset (see Appendix A.6 for details).

4 EVALUATION SETUP

Scoring Criteria. Our evaluation relies on four criteria that measure Prompt Relevance, Aesthetic Quality, Content Coherence, and Artifact, capturing complementary aspects of image generation and editing quality, similar to prior works (Xu et al., 2023; Ku et al., 2024b). Each criterion is rated on a 5-point Likert scale (1 = poor, 5 = excellent) and later rescaled to the range [0,1]. The definitions of the scoring dimensions are:

- Prompt Relevance:** Measures whether the image faithfully reflects the instruction.
- Aesthetic Quality:** Evaluates the overall visual appeal and design (e.g., overcrowded or poorly aligned elements, poor color schemes, inconsistent fonts).
- Content Coherence:** Assesses logical and semantic consistency (e.g., labels pointing to the wrong region, a chart titled “growth” showing decreasing values, or a figure labeled “Parts of a Flower” depicting tree anatomy).

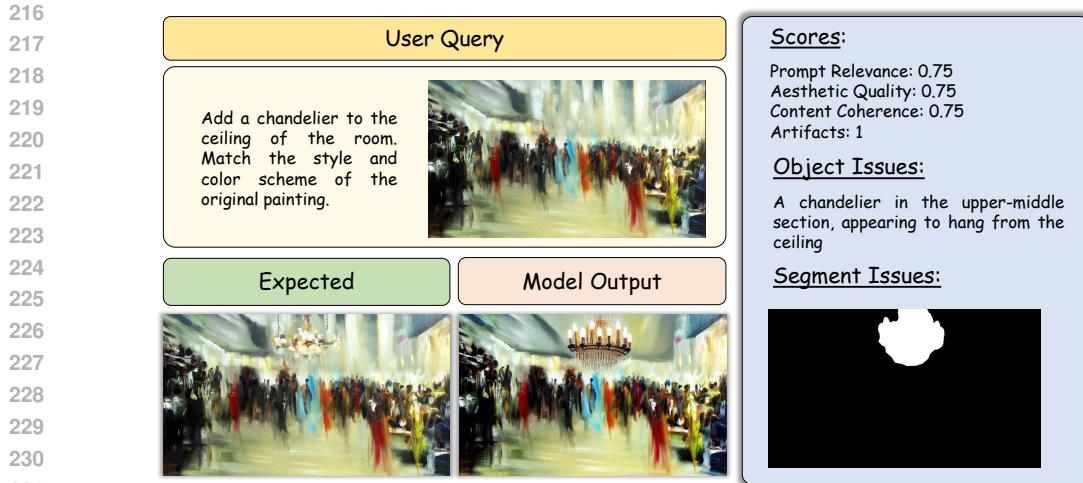


Figure 3: Examples include object-level issues, where expected objects are missing or distorted, and segment-level issues, where SoM partitions highlight specific regions with visual inconsistencies that affect evaluation scores.

- **Artifacts:** Captures visual flaws and technical issues caused by generation errors (e.g., distorted or gibberish text, warped edges, extra limbs, unnatural eyes, or repeated patterns).

Each criterion was evaluated both by human annotators and by automated scorers. Specifically, each image was rated by three annotators independently, while LLM-based scores were obtained using the Gemini-2.5-Flash model following the VIEScore (Ku et al., 2024a) paradigm, which produces ratings aligned with the same four criteria. In addition, CLIPScore (Hessel et al., 2021) and LPIPS (Zhang et al., 2018) were computed as auxiliary automated metrics to assess image quality.

Explainability via Object and Segment Issues. While many prior works focus on evaluating image generation quality, few consider the explainability of evaluation scores (Chen et al., 2023; Ku et al., 2024a). To improve interpretability, we define two complementary error taxonomies: **object-level issues** in text and **segment-level issues** in image. In addition to assigning ratings on the four criteria, annotators were asked to identify which objects or regions in the image negatively influenced their scores. For object-level issues, the instruction together with any source or reference images from our dataset were given to Gemini-2.5-Flash, and the model was queried to generate a list of objects expected to appear in the output image. Annotators reviewed this list and marked any objects that were missing, incorrectly rendered, or distorted. For segment-level issues, each generated image was partitioned into regions using the Set-of-Mark (SoM) (Yang et al., 2023), and annotators selected any segments that contained visual flaws or inconsistencies, thereby identifying specific areas of the image responsible for score deductions. Figure 3 illustrates examples of both object-level and segment-level annotations from our dataset.

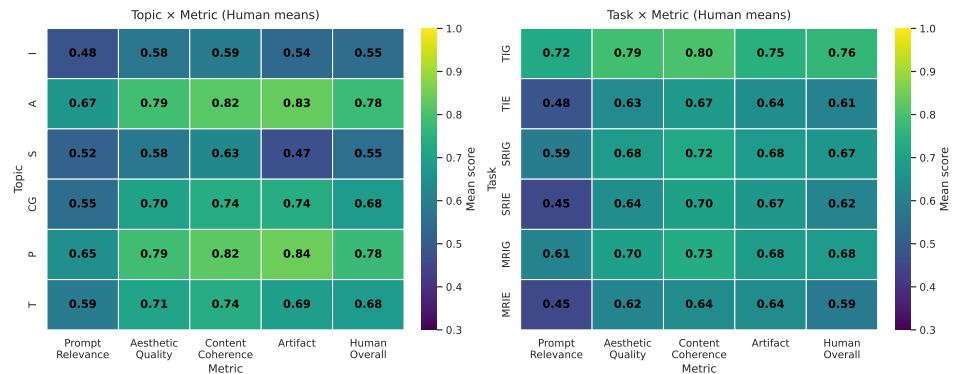
Baselines. We evaluate ImagenWorld using models from three major architectural families: diffusion models, autoregressive models, and hybrids that combine AR with diffusion decoders. Table 2 lists the evaluated models, their architectural families, and their task coverage. This set spans both unified models capable of all six tasks (GPT-Image-1 (Chen et al., 2025a), Gemini 2.0 Flash (Google, 2025), BAGEL (Deng et al., 2025), OmniGen2 (Wu et al., 2025b)) and expert models specialized for subsets of tasks (Wu et al., 2025a; BlackForestLabs et al., 2025; Liu et al., 2025; Han et al., 2025). This setup enables broad comparisons across architectures and between unified and expert approaches.

5 RESULTS AND ANALYSIS

We summarize our quantitative findings in Table 3, which reports human evaluation scores and VLM predictions across six tasks and four criteria. The subsections below analyze these results by task, topic, and evaluation metric (see Appendix A.5 for statistical tests).

270
 271 Table 2: Task coverage and architectural categorization of the evaluated models are shown in
 272 chronological order. We classify multimodal large language models as a form of autoregressive
 273 model, and group flow matching within the diffusion family, following recent literature (Xiong et al.,
 274 2025; Chang et al., 2025). For closed-source models where architectural details are unavailable, we
 275 label them as Unknown.

Model	Architecture	TIG	TIE	SRIG	SRIE	MRIG	MRIE
InstructPix2Pix (Brooks et al., 2023b)	Diffusion	X	✓	X	X	X	X
SDXL (Podell et al., 2023)	Diffusion	✓	X				
Infinity (Han et al., 2025)	AR	✓	X				
Janus Pro (Chen et al., 2025b)	AR + Diffusion	✓	X				
GPT-Image-1 (OpenAI, 2025)	Unknown	✓					
UNO (Wu et al., 2025c)	AR + Diffusion	✓	X	✓	X	✓	X
BAGEL (Deng et al., 2025)	AR	✓					
Step1X-Edit (Liu et al., 2025)	AR + Diffusion	X	✓	X	X	X	X
IC-Edit (Zhang et al., 2025)	Diffusion	X	✓	X	X	X	X
Gemini 2.0 Flash (Wu et al., 2025c)	Unknown	✓					
OmniGen2 (Wu et al., 2025b)	AR + Diffusion	✓					
Flux-1-Krea-dev (Lee et al., 2025)	Diffusion	✓	X				
Flux-1-Kontext-dev (BlackForestLabs et al., 2025)	Diffusion	X	✓	✓	X	X	X
Qwen-Image (Wu et al., 2025a)	Diffusion	✓	X				

300
 301 Figure 4: Mean human evaluation scores across metrics by topic (left) and task (right).
 302
 303304

5.1 QUANTITATIVE ANALYSIS

305
 306 **Task Level.** Across the six benchmark tasks, there is a clear gap between open- and closed-source
 307 models as reflected in Figure 4. GPT-Image-1 achieves the strongest overall performance, outper-
 308 ferring Gemini 2.0 Flash by about 0.1–0.2 points on average. This margin is particularly pronounced
 309 in editing tasks, where Gemini falls further behind. Despite this average gap, scale alone doesn’t
 310 determine success: several open-source models (e.g., Flux-Krea-dev, Qwen-Image, Flux-1-Kontext-
 311 Dev) outperform Gemini on text-guided generation and editing, showing that larger scale doesn’t
 312 always yield superior results. However, none of the open-source unified models can catch up with
 313 close-source models, as seen in Figure 5. Beyond scale effects, the distribution of scores further
 314 highlights differences in task difficulty: models consistently achieve lower performance on editing
 315 tasks (TIE, SRIE, MRIE) than on their generation counterparts (TIG, SRIG, MRIG), with an average
 316 gap of roughly 0.1. This pattern suggests that while generation has benefited from scaling and improved
 317 reasoning integration, localized modification remains a major bottleneck.

318 **Topic Level.** Performance also varies substantially across topical domains. Figure 4 presents topic-
 319 level statistics (see Appendix A.4 for detailed results across the full model set). Among the six defined
 320 topics, Artworks (A) and Photorealistic Images (P) stand out as the most successful, with averages
 321 approaching 0.78 and the best model (GPT-Image-1) reaching around 0.9 in both categories. This
 322 reflects notable progress in rendering high-fidelity content in naturalistic and stylistic domains. In
 323 contrast, structured and symbolic topics reveal much larger gaps. Textual Graphics (T) and Computer
 324 Graphics (CG) both average near 0.68, while Screenshots (S) and Information Graphics (I) remain
 325 the most challenging, with averages closer to 0.55. Overall, these findings underscore persistent

324
 325 Table 3: All evaluated models across six core tasks with bolded maxima for the four human metrics
 326 and overall in each task. \bar{O}_{Human} denotes the human-annotated overall average; \bar{O}_{VLM} is the VLM-
 327 predicted overall. α is Krippendorff's alpha for inter-rater reliability and ρ_s is the Spearman's rank
 328 correlation for human-vlm alignment.

Model	Human				Overalls		Agreement	
	Prompt \uparrow Relevance	Aesthetic \uparrow Quality	Content \uparrow Coherence	Artifacts \uparrow	\bar{O}_{Human}	\bar{O}_{VLM}	α Kripp.	ρ_s Spear.
Text-guided Image Generation (TIG)								
GPT-Image-1	0.90±0.14	0.92±0.10	0.91±0.13	0.92±0.12	0.91±0.10	0.92±0.13	0.52	0.39
Qwen-Image	0.82±0.22	0.92±0.11	0.88±0.17	0.85±0.22	0.87±0.15	0.86±0.20	0.75	0.76
Flux.1-Krea-dev	0.77±0.23	0.85±0.16	0.84±0.18	0.80±0.22	0.82±0.17	0.82±0.23	0.67	0.79
Gemini-2.0-Flash	0.79±0.21	0.78±0.21	0.83±0.19	0.79±0.25	0.80±0.19	0.82±0.24	0.67	0.70
UNO	0.75±0.21	0.77±0.19	0.83±0.17	0.76±0.26	0.78±0.18	0.72±0.27	0.72	0.73
BAGEL	0.72±0.24	0.80±0.20	0.82±0.21	0.73±0.29	0.76±0.21	0.75±0.26	0.74	0.78
OmniGen2	0.67±0.25	0.77±0.23	0.78±0.24	0.72±0.32	0.74±0.23	0.75±0.27	0.71	0.80
Infinity	0.64±0.30	0.74±0.23	0.76±0.24	0.69±0.31	0.70±0.24	0.73±0.27	0.78	0.81
SDXL	0.55±0.29	0.70±0.25	0.70±0.27	0.61±0.31	0.64±0.25	0.65±0.30	0.75	0.79
Janus Pro	0.62±0.30	0.62±0.30	0.62±0.30	0.60±0.29	0.61±0.29	0.54±0.32	0.77	0.74
Text-guided Image Editing (TIE)								
GPT-Image-1	0.77±0.17	0.86±0.15	0.86±0.17	0.79±0.22	0.82±0.15	0.80±0.28	0.65	0.58
Flux.1-Kontext-dev	0.52±0.31	0.76±0.22	0.75±0.22	0.76±0.26	0.70±0.21	0.63±0.32	0.68	0.71
Gemini-2.0-Flash	0.62±0.29	0.68±0.25	0.75±0.24	0.70±0.28	0.69±0.23	0.64±0.35	0.70	0.64
BAGEL	0.59±0.28	0.64±0.26	0.73±0.23	0.70±0.25	0.67±0.22	0.59±0.33	0.62	0.66
OmniGen2	0.38±0.31	0.63±0.29	0.67±0.30	0.66±0.31	0.58±0.27	0.57±0.32	0.77	0.72
IC-Edit	0.38±0.28	0.54±0.23	0.56±0.22	0.52±0.24	0.50±0.22	0.49±0.29	0.65	0.58
Step1xEdit	0.34±0.28	0.46±0.29	0.51±0.29	0.51±0.32	0.46±0.26	0.43±0.36	0.73	0.71
InstructPix2Pix	0.26±0.24	0.48±0.25	0.56±0.26	0.51±0.27	0.45±0.22	0.41±0.30	0.64	0.66
Single Reference Image Generation (SRIG)								
GPT-Image-1	0.79±0.20	0.86±0.16	0.86±0.18	0.85±0.18	0.84±0.15	0.86±0.18	0.61	0.48
Gemini-2.0-Flash	0.62±0.26	0.65±0.24	0.74±0.24	0.69±0.28	0.67±0.22	0.70±0.28	0.66	0.60
BAGEL	0.57±0.24	0.67±0.25	0.69±0.24	0.64±0.29	0.64±0.22	0.65±0.28	0.66	0.66
UNO	0.57±0.25	0.62±0.23	0.65±0.23	0.59±0.25	0.61±0.21	0.60±0.29	0.65	0.65
OmniGen2	0.41±0.26	0.61±0.24	0.65±0.26	0.64±0.28	0.58±0.22	0.62±0.30	0.65	0.74
Single Reference Image Editing (SRIE)								
GPT-Image-1	0.73±0.22	0.80±0.20	0.86±0.17	0.80±0.22	0.80±0.16	0.76±0.29	0.63	0.46
Gemini-2.0-Flash	0.44±0.29	0.60±0.24	0.69±0.25	0.63±0.26	0.59±0.21	0.54±0.32	0.64	0.66
BAGEL	0.35±0.29	0.58±0.25	0.62±0.26	0.65±0.27	0.55±0.22	0.53±0.32	0.56	0.60
OmniGen2	0.30±0.27	0.60±0.27	0.62±0.28	0.62±0.30	0.54±0.24	0.54±0.31	0.66	0.72
Multiple Reference Image Generation (MRIG)								
GPT-Image-1	0.80±0.17	0.86±0.15	0.86±0.18	0.85±0.17	0.84±0.15	0.88±0.16	0.51	0.39
Gemini-2.0-Flash	0.69±0.25	0.72±0.24	0.81±0.20	0.72±0.29	0.73±0.22	0.68±0.30	0.73	0.73
BAGEL	0.56±0.26	0.63±0.26	0.66±0.26	0.60±0.30	0.61±0.24	0.59±0.31	0.67	0.65
OmniGen2	0.47±0.26	0.66±0.22	0.66±0.26	0.65±0.28	0.61±0.21	0.59±0.28	0.66	0.70
UNO	0.53±0.22	0.61±0.20	0.67±0.20	0.60±0.22	0.60±0.18	0.58±0.25	0.58	0.54
Multiple Reference Image Editing (MRIE)								
GPT-Image-1	0.72±0.19	0.82±0.18	0.82±0.20	0.80±0.21	0.79±0.17	0.75±0.27	0.66	0.55
Gemini-2.0-Flash	0.49±0.25	0.66±0.21	0.69±0.22	0.64±0.25	0.62±0.19	0.51±0.31	0.62	0.56
OmniGen2	0.32±0.20	0.56±0.25	0.55±0.28	0.60±0.28	0.51±0.22	0.45±0.30	0.69	0.66
BAGEL	0.28±0.22	0.44±0.26	0.48±0.29	0.51±0.28	0.43±0.23	0.38±0.28	0.67	0.64

366
 367 weaknesses in handling text-heavy and symbolic content, highlighting the need for targeted advances
 368 in these domains. We also observe similar trend but more obvious gap in unified models (Figure 5).

369
 370 **Evaluation Criteria.** Across the four defined metrics, we observe distinct patterns in model behavior
 371 from Figure 4. Prompt Relevance shows the largest variability across tasks, peaking in TIG (0.72)
 372 but dropping to 0.46 in editing tasks on average, underscoring the difficulty of aligning edits with
 373 instructions. Aesthetic Quality and Content Coherence are more stable, with maximum task-level
 374 gaps of 0.17 and 0.16, respectively. Both metrics (Aesthetic Quality/Content Coherence) achieve
 375 their highest values in Artworks (0.79/0.79) and Photorealistic Images (0.82/0.82) but decline in
 376 symbolic settings such as Screenshots (0.58/0.63) and Information Graphics (0.58/0.59). Artifact
 377 suppression appears more uniform at the task level (gap = 0.11), yet topic-level analysis reveals
 378 clear asymmetry: non-symbolic content is largely free of distortions, whereas text-heavy categories

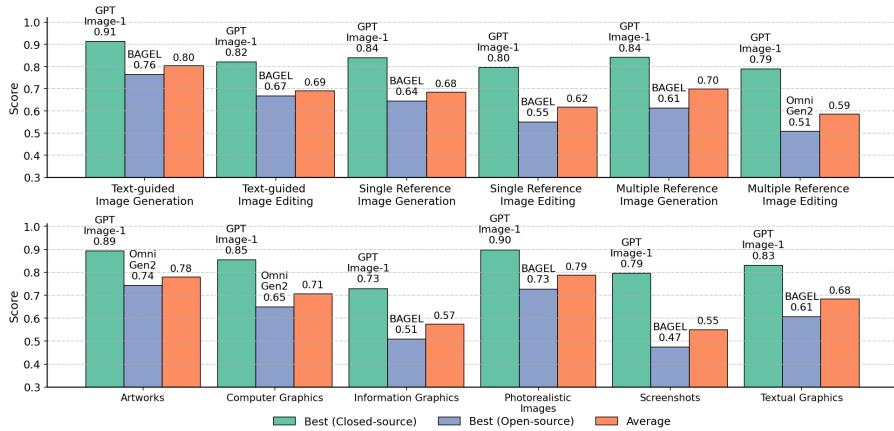


Figure 5: Overall human rating by task and topic for the four unified models that support all six tasks.

frequently suffer from unreadable or corrupted elements. Taken together, these results show that instruction following is the primary bottleneck across tasks, while artifact control remains the central challenge in text-intensive domains, particularly Screenshots.

5.2 QUALITATIVE ANALYSIS

Quantitative metrics alone fail to capture common mistakes that become clear when examining outputs more closely. These mistakes manifest in several recurring ways, as illustrated in Appendix A.3. Across tasks, models often skip parts of complex and multi-step instructions (Figure 8) or produce unreadable and corrupted text (Figure 13), a problem that persists across nearly all text-heavy domains. Numerical inconsistencies are also frequent in symbolic settings, such as pie chart percentages not summing to 100 or receipt totals not matching itemized values (Figure 9). Symbolic and structured domains add further challenges, including errors in understanding depth maps, frequent mismatches between chart legends and plotted data, and incomplete object detection in computer graphics where bounding boxes are poorly aligned with object boundaries (Figure 10). Editing tasks further expose critical weaknesses: models may alter the canvas, misplace objects, neglect shadows and reflections, return the original input unchanged, or even generate a completely new image instead of applying the requested modification (Figure 11). In generation, systems sometimes collapse to near-duplicates of references, ignore one or more references, or produce distorted human figures. These recurring errors clarify why artifact suppression and fine-grained alignment remain key open problems, even for the strongest models.

5.3 HUMAN VS. VLM AS JUDGE

To assess the reliability of automatic evaluation, we compare VLM-based judgments with human ratings across all four criteria. Table 4 reports fold-averaged¹ rank correlations (Spearman), Kendall’s accuracy, and VLM bias (the average signed difference between VLM and human ratings). Overall, the VLM exhibits moderate to strong agreement with human raters across evaluation dimensions, aligning well with human–human consistency. Spearman correlations between VLM and human ratings range from 0.57 for content coherence to 0.70 for prompt relevance, closely matching and in some cases exceeding human–human correlations. Kendall’s accuracy follows a similar trend, with values between 0.74 and 0.79, indicating that the VLM preserves the relative ranking of samples in line with human judgments. At the metric level, prompt relevance shows the strongest alignment, suggesting that the VLM is particularly effective at assessing semantic faithfulness to the input prompt. In contrast, for artifacts, VLM–human agreement lags behind human–human agreement, and the positive bias indicates that the VLM under-penalizes flaws such as unreadable text, boundary glitches, or misaligned layouts that humans consistently flag. [Taken together, the results suggest that](#)

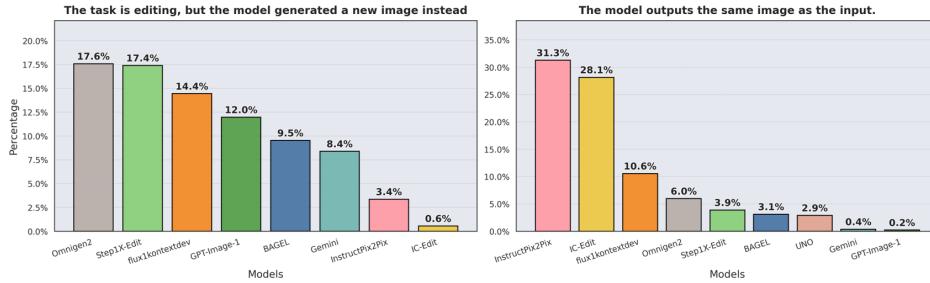
¹Fold-averaged results are computed using a leave-one-out procedure: each annotator (or the VLM) is compared against the mean of the other two, and results are averaged across folds.

432
 433 Table 4: Fold-averaged Spearman correlations, Kendall’s accuracy, and Bias (average signed difference
 434 between VLM and human ratings) comparing VLM-based judgments with human ratings across
 435 all criteria.

436 Metric	437 Human–Human		438 VLM–Human		
	439 Spearman ρ	440 Kendall Acc.	441 Spearman ρ	442 Kendall Acc.	443 Bias
Prompt Relevance	0.67 \pm 0.03	0.77 \pm 0.01	0.70 \pm 0.00	0.79 \pm 0.00	-0.07 \pm 0.01
Aesthetic Quality	0.55 \pm 0.01	0.73 \pm 0.00	0.62 \pm 0.01	0.76 \pm 0.00	-0.01 \pm 0.01
Content Coherence	0.50 \pm 0.01	0.71 \pm 0.01	0.57 \pm 0.01	0.74 \pm 0.01	-0.05 \pm 0.01
Artifact	0.64 \pm 0.01	0.76 \pm 0.01	0.59 \pm 0.01	0.75 \pm 0.00	0.06 \pm 0.00
Overall	0.68 \pm 0.02	0.76 \pm 0.01	0.72 \pm 0.00	0.78 \pm 0.00	-0.02 \pm 0.00

444
 445 VLM-based evaluation provides a reliable proxy for human scoring on high-level criteria such as
 446 prompt relevance and aesthetic quality, but human judgment remains crucial for more detailed criteria
 447 such as visual defects.

448 6 DISCUSSION



461 Figure 6: Percentage of cases where the model generating completely new image or simply return
 462 input in image editing tasks.

463
 464 **Targeted data curation boosts domain-specific performance.** While GPT-Image-1 achieves the
 465 strongest results across most domains, Qwen-Image demonstrates how deliberate data design can
 466 shift the balance in text-heavy scenarios. Unlike many models that struggle with textual content,
 467 Qwen-Image consistently outperforms even closed-source systems in artwork, photorealistic images,
 468 and especially textual graphics for text-guided generation (Figure 15). This advantage stems from a
 469 training pipeline enriched with synthetic text-rich samples and a progressive curriculum that gradually
 470 introduced increasingly complex layouts. Together with a balanced domain coverage, these choices
 471 directly improved text rendering, making Qwen-Image particularly effective in text-heavy tasks where
 472 most models perform poorly.

472
 473 **Architectural pathways and training objectives influence editing tasks behaviours.** The error
 474 rates in Figure 6 suggest that autoregressive-diffusion hybrids such as OmniGen2 and Step1X-Edit
 475 are more likely to generate entirely new images when asked to edit (17%), possibly reflecting their
 476 reliance on language-driven pathways that can override source conditioning. In contrast, diffusion-
 477 only editors like IC-Edit (0.6%) and InstructPix2Pix (3.4%) rarely disregard the source image,
 478 consistent with their architectures being explicitly optimized for localized modifications (though
 479 this may come at the cost of limited task coverage). Interestingly, Flux.1 Kontext, despite being
 480 diffusion-based, shows a higher rate of generating a new image (14.4%), likely due to its broader
 481 training scheme that mixes local edits, global edits, and reference-based composition. This unified
 482 in-context design improves versatility but makes the model less constrained to preserve the source
 483 image like InstructPix2Pix and IC-Edit.

483
 484 **Future Work.** The structure of our dataset, which includes human scores, object-level tags, and full
 485 model outputs, points to several directions for future research. (1) The collected human scores can be
 486 used as preference data to train models that better align with human judgments, for example through
 487 preference optimization or ranking-based fine-tuning (Wu et al., 2023; Liang et al., 2024). (2) The

486 object-level tags provide a basis for diagnostic and self-corrective approaches, enabling models to
 487 generate object-aware refinements or produce corrective instructions (Chen et al., 2024; Chakrabarty
 488 et al., 2023). (3) The combination of fine-grained annotations and human evaluations creates
 489 opportunities for developing more interpretable metrics that capture object-level errors, compositional
 490 inconsistencies, and prompt–object mismatches more faithfully than existing automatic metrics (Tan
 491 et al., 2024; Kirstain et al., 2023b). Taken together, we hope that these directions will support the
 492 development of more reliable, controllable, and human-aligned multimodal generation systems.
 493

494 7 CONCLUSION

495
 496 We present ImagenWorld, a benchmark that unifies six generation and editing tasks across six
 497 topical domains, supported by 20K fine-grained human annotations. Unlike prior benchmarks,
 498 ImagenWorld introduces an explainable evaluation schema with object-level and segment-level
 499 issue labels, enabling interpretable diagnosis of model failures beyond scalar scores. Evaluating 14
 500 models, we find consistent trends: models perform better on generation than on editing, struggle with
 501 symbolic and text-heavy domains, and show a persistent gap between closed-source and open-source
 502 models. Our structured human annotations capture localized errors and reveal insights that modern
 503 VLM-based metrics miss. By combining broad task coverage with explainable labeling, ImagenWorld
 504 serves not only as a rigorous benchmark but also as a diagnostic tool, laying the groundwork for more
 505 faithful and robust image generation systems.
 506

507 ETHICS STATEMENT

508
 509 The rapid advancement of image generation and editing technologies raises pressing safety and
 510 ethical concerns. Traditional photo manipulation tools such as Photoshop already enabled malicious
 511 uses, but modern AI-powered systems dramatically lower the technical barrier, making realistic
 512 forgeries accessible to a much broader audience. This democratization amplifies risks of fraud and
 513 deception in everyday contexts: for example, a user might alter a photo of delivered food to obtain
 514 fraudulent refunds, fabricate receipts for economic gain, or generate fake identification documents.
 515 More broadly, the same capabilities can be misused for deepfake creation, leading to non-consensual
 516 imagery, political disinformation, or privacy violations. Such misuse threatens not only businesses and
 517 institutions but also public trust in digital media and the safety of individuals. As generative models
 518 continue to improve in fidelity and controllability, it is critical to establish safeguards, encourage
 519 responsible deployment, and promote ethical practices. In releasing ImagenWorld, we will provide
 520 only sanitized data and annotations, exclude sensitive or personally identifiable content, and make all
 521 resources publicly available to support transparent and responsible research.
 522

523 REPRODUCIBILITY STATEMENT

524 All experiments were conducted with 8 NVIDIA A6000 GPUs using the ImagenHub (Ku et al.,
 525 2024b) inference library, into which we integrated the latest models when not already included. w
 526 For fairness, all model implementations followed the default configurations recommended in their
 527 respective papers or official releases, and all open-source models were evaluated under the same
 528 seed (42). Approximately \$1,000 USD were spent on API access for closed-source models and
 529 VLM-based evaluators. Code, dataset, and sanitized human annotations will be released on publicly
 530 accessible platforms (e.g., GitHub, HuggingFace).
 531

532 REFERENCES

533
 534 BlackForestLabs, Stephen Batifol, Andreas Blattmann, Frederic Boesel, Saksham Consul, Cyril
 535 Diagne, Tim Dockhorn, Jack English, Zion English, Patrick Esser, Sumith Kulal, Kyle Lacey, Yam
 536 Levi, Cheng Li, Dominik Lorenz, Jonas Müller, Dustin Podell, Robin Rombach, Harry Saini, Axel
 537 Sauer, and Luke Smith. Flux.1 kontext: Flow matching for in-context image generation and editing
 538 in latent space, 2025. URL <https://arxiv.org/abs/2506.15742>.
 539 Tim Brooks, Aleksander Holynski, and Alexei A. Efros. Instructpix2pix: Learning to follow image
 editing instructions. In *CVPR*, 2023a.

540 Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow image
 541 editing instructions. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 542 *recognition*, pp. 18392–18402, 2023b.

543

544 Tuhin Chakrabarty, Kanishk Singh, Arkadiy Saakyan, and Smaranda Muresan. Learning to follow
 545 object-centric image editing instructions faithfully. *arXiv preprint arXiv:2310.19145*, 2023.

546

547 Ziyi Chang, George Alex Koulieris, Hyung Jin Chang, and Hubert P. H. Shum. On the design
 548 fundamentals of diffusion models: A survey, 2025. URL <https://arxiv.org/abs/2306.04542>.

549

550 Sixiang Chen, Jinbin Bai, Zhuoran Zhao, Tian Ye, Qingyu Shi, Donghao Zhou, Wenhao Chai, Xin
 551 Lin, Jianzong Wu, Chao Tang, Shilin Xu, Tao Zhang, Haobo Yuan, Yikang Zhou, Wei Chow,
 552 Linfeng Li, Xiangtai Li, Lei Zhu, and Lu Qi. An empirical study of gpt-4o image generation
 553 capabilities, 2025a. URL <https://arxiv.org/abs/2504.05979>.

554

555 Xiaokang Chen, Zhiyu Wu, Xingchao Liu, Zizheng Pan, Wen Liu, Zhenda Xie, Xingkai Yu, and
 556 Chong Ruan. Janus-pro: Unified multimodal understanding and generation with data and model
 557 scaling. *arXiv preprint arXiv:2501.17811*, 2025b.

558

559 Xinyan Chen, Jiaxin Ge, Tianjun Zhang, Jiaming Liu, and Shanghang Zhang. Learning from
 560 mistakes: Iterative prompt relabeling for text-to-image diffusion model training. In *Findings of the*
 561 *Association for Computational Linguistics: EMNLP 2024*, pp. 2937–2952, 2024.

562

563 Yixiong Chen, Li Liu, and Chris Ding. X-iqe: explainable image quality evaluation for text-to-image
 564 generation with visual large language models. *arXiv preprint arXiv:2305.10843*, 2023.

565

566 Jaemin Cho, Yushi Hu, Roopal Garg, Peter Anderson, Ranjay Krishna, Jason Baldridge, Mohit Bansal,
 567 Jordi Pont-Tuset, and Su Wang. Davidsonian scene graph: Improving reliability in fine-grained
 568 evaluation for text-to-image generation. *arXiv preprint arXiv:2310.18235*, 2023.

569

570 Chaorui Deng, Deyao Zhu, Kunchang Li, Chenhui Gou, Feng Li, Zeyu Wang, Shu Zhong, Weihao Yu,
 571 Xiaonan Nie, Ziang Song, Guang Shi, and Haoqi Fan. Emerging properties in unified multimodal
 572 pretraining. *arXiv preprint arXiv:2505.14683*, 2025.

573

574 Google. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long context, and
 575 next generation agentic capabilities, 2025. URL <https://arxiv.org/abs/2507.06261>.

576

577 Jian Han, Jinlai Liu, Yi Jiang, Bin Yan, Yuqi Zhang, Zehuan Yuan, Bingyue Peng, and Xiaobing
 578 Liu. Infinity: Scaling bitwise autoregressive modeling for high-resolution image synthesis. In
 579 *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 15733–15744, 2025.

580

581 Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. CLIPScore: a
 582 reference-free evaluation metric for image captioning. In *EMNLP*, 2021.

583

584 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
 585 trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in neural*
 586 *information processing systems*, 30, 2017.

587

588 Hexiang Hu, Kelvin Chan, Yu-Chuan Su, Wenhui Chen, Yandong Li, Zhao Yang, Xue Ben, Boqing
 589 Gong, William W Cohen, Ming-Wei Chang, and Xuhui Jia. Instruct-Imagen: Image generation
 590 with multi-modal instruction. *arXiv preprint arXiv:2401.01952*, 2024.

591

592 Yushi Hu, Benlin Liu, Jungo Kasai, Yizhong Wang, Mari Ostendorf, Ranjay Krishna, and Noah A
 593 Smith. Tifa: Accurate and interpretable text-to-image faithfulness evaluation with question
 594 answering. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp.
 595 20406–20417, 2023.

596

597 Hang Hua, Ziyun Zeng, Yizhi Song, Yunlong Tang, Liu He, Daniel Aliaga, Wei Xiong, and Jiebo
 598 Luo. Mmig-bench: Towards comprehensive and explainable evaluation of multi-modal image
 599 generation models, 2025. URL <https://arxiv.org/abs/2505.19415>.

594 Yi Huang, Jiancheng Huang, Yifan Liu, Mingfu Yan, Jiaxi Lv, Jianzhuang Liu, Wei Xiong, He Zhang,
 595 Liangliang Cao, and Shifeng Chen. Diffusion model-based image editing: A survey. *IEEE*
 596 *Transactions on Pattern Analysis and Machine Intelligence*, 47(6):4409–4437, June 2025. ISSN
 597 1939-3539. doi: 10.1109/tpami.2025.3541625. URL <http://dx.doi.org/10.1109/tpami.2025.3541625>.

599 Yuzhou Huang, Liangbin Xie, Xintao Wang, Ziyang Yuan, Xiaodong Cun, Yixiao Ge, Jiantao
 600 Zhou, Chao Dong, Rui Huang, Ruimao Zhang, and Ying Shan. Smartedit: Exploring complex
 601 instruction-based image editing with multimodal large language models, 2023. URL <https://arxiv.org/abs/2312.06739>.

603 Dongfu Jiang, Max Ku, Tianle Li, Yuansheng Ni, Shizhuo Sun, Rongqi Fan, and Wenhua Chen. Genai
 604 arena: An open evaluation platform for generative models, 2024. URL <https://arxiv.org/abs/2406.04485>.

607 Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy. Pick-a-
 608 pic: An open dataset of user preferences for text-to-image generation. 2023a.

609 Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy. Pick-
 610 a-pic: An open dataset of user preferences for text-to-image generation. *Advances in neural*
 611 *information processing systems*, 36:36652–36663, 2023b.

613 Max Ku, Dongfu Jiang, Cong Wei, Xiang Yue, and Wenhua Chen. VIEScore: Towards explainable
 614 metrics for conditional image synthesis evaluation. In Lun-Wei Ku, Andre Martins, and Vivek
 615 Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational*
 616 *Linguistics (Volume 1: Long Papers)*, pp. 12268–12290, Bangkok, Thailand, August 2024a.
 617 Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.663. URL <https://aclanthology.org/2024.acl-long.663/>.

619 Max Ku, Tianle Li, Kai Zhang, Yujie Lu, Xingyu Fu, Wenwen Zhuang, and Wenhua Chen. Ima-
 620 genhub: Standardizing the evaluation of conditional image generation models. In *The Twelfth*
 621 *International Conference on Learning Representations*, 2024b. URL <https://openreview.net/forum?id=OuV9ZrkQlc>.

623 Sangwu Lee, Titus Ebbecke, Erwann Millon, Will Beddow, Le Zhuo, Iker García-Ferrero, Liam
 624 Esparraguera, Mihai Petrescu, Gian Saß, Gabriel Menezes, and Victor Perez. Flux.1 krea [dev].
 625 <https://github.com/krea-ai/flux-krea>, 2025.

627 Tianle Li, Max Ku, Cong Wei, and Wenhua Chen. Dreamedit: Subject-driven image editing. *arXiv*
 628 *preprint arXiv:2306.12624*, 2023.

629 Youwei Liang, Junfeng He, Gang Li, Peizhao Li, Arseniy Klimovskiy, Nicholas Carolan, Jiao Sun,
 630 Jordi Pont-Tuset, Sarah Young, Feng Yang, et al. Rich human feedback for text-to-image generation.
 631 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 632 19401–19411, 2024.

634 Zhiqiu Lin, Deepak Pathak, Baiqi Li, Jiayao Li, Xide Xia, Graham Neubig, Pengchuan Zhang, and
 635 Deva Ramanan. Evaluating text-to-visual generation with image-to-text generation, 2024. URL
 636 <https://arxiv.org/abs/2404.01291>.

637 Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 638 for generative modeling, 2023. URL <https://arxiv.org/abs/2210.02747>.

639 Shiyu Liu, Yucheng Han, Peng Xing, Fukun Yin, Rui Wang, Wei Cheng, Jiaqi Liao, Yingming Wang,
 640 Honghao Fu, Chunrui Han, et al. Step1x-edit: A practical framework for general image editing.
 641 *arXiv preprint arXiv:2504.17761*, 2025.

643 Yawei Ma, Jiayi Ji, Ke Ye, Weihuang Lin, Zhibin Wang, Yonghan Zheng, Qiang Zhou, Xiaoshuai
 644 Sun, and Rongrong Ji. I2ebench: A comprehensive benchmark for instruction-based image editing,
 645 2024. URL <https://arxiv.org/abs/2408.14180>.

647 Yuhang Ma, Yunhao Shui, Xiaoshi Wu, Keqiang Sun, and Hongsheng Li. Hpsv3: Towards wide-
 648 spectrum human preference score, 2025. URL <https://arxiv.org/abs/2508.03789>.

648 Yuwei Niu, Munan Ning, Mengren Zheng, Weiyang Jin, Bin Lin, Peng Jin, Jiaqi Liao, Chaoran Feng,
 649 Kunpeng Ning, Bin Zhu, and Li Yuan. Wise: A world knowledge-informed semantic evaluation
 650 for text-to-image generation, 2025. URL <https://arxiv.org/abs/2503.07265>.

651 652 OpenAI. Introducing 40 image generation. <https://openai.com/index/introducing-40-image-generation/>, March 2025. Image generation example
 653 from the official OpenAI announcement.

654 655 Yulin Pan, Xiangteng He, Chaojie Mao, Zhen Han, Zeyinzi Jiang, Jingfeng Zhang, and Yu Liu.
 656 Ice-bench: A unified and comprehensive benchmark for image creating and editing, 2025. URL
 657 <https://arxiv.org/abs/2503.14482>.

658 659 Yuang Peng, Yuxin Cui, Haomiao Tang, Zekun Qi, Runpei Dong, Jing Bai, Chunrui Han, Zheng Ge,
 660 Xiangyu Zhang, and Shu-Tao Xia. Dreambench++: A human-aligned benchmark for personalized
 661 image generation. In The Thirteenth International Conference on Learning Representations, 2025.
 662 URL <https://dreambenchplus.github.io/>.

663 664 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 665 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 666 synthesis. arXiv preprint arXiv:2307.01952, 2023.

667 668 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 669 resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
 670 conference on computer vision and pattern recognition, pp. 10684–10695, 2022.

671 672 Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aber-
 673 man. Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation.
 674 In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
 675 22500–22510, 2023.

676 677 runwayml. Stable diffusion inpainting, 2023. URL <https://huggingface.co/runwayml/stable-diffusion-inpainting>.

678 679 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
 680 Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
 681 text-to-image diffusion models with deep language understanding. Advances in Neural Information
 682 Processing Systems, 35:36479–36494, 2022.

683 684 stability.ai. Stable diffusion xl, 2023. URL <https://stability.ai/stable-diffusion>.

685 686 Zhiyu Tan, Xiaomeng Yang, Luozheng Qin, Mengping Yang, Cheng Zhang, and Hao Li. Evalalign:
 687 Supervised fine-tuning multimodal llms with human-aligned data for evaluating text-to-image
 688 models. arXiv preprint arXiv:2406.16562, 2024.

689 690 Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:
 691 Scalable image generation via next-scale prediction, 2024. URL <https://arxiv.org/abs/2404.02905>.

692 693 Yuxiang Tuo, Wangmeng Xiang, Jun-Yan He, Yifeng Geng, and Xuansong Xie. Anytext: Multilingual
 694 visual text generation and editing, 2024. URL <https://arxiv.org/abs/2311.03054>.

695 696 Olivia Wiles, Chuhan Zhang, Isabela Albuquerque, Ivana Kajic, Su Wang, Emanuele Bugliarello,
 697 Yasumasa Onoe, Pinelopi Papalampidi, Ira Ktena, Christopher Knutson, Cyrus Rashtchian,
 698 Anant Nawalgaria, Jordi Pont-Tuset, and Aida Nematzadeh. Revisiting text-to-image eval-
 699 uation with gecko: on metrics, prompts, and human rating. In The Thirteenth International
 700 Conference on Learning Representations, 2025. URL <https://openreview.net/forum?id=Im2neAMlre>.

701 702 Chenfei Wu, Jiahao Li, Jingren Zhou, Junyang Lin, Kaiyuan Gao, Kun Yan, Sheng ming Yin, Shuai
 703 Bai, Xiao Xu, Yilei Chen, Yuxiang Chen, Zecheng Tang, Zekai Zhang, Zhengyi Wang, An Yang,
 704 Bowen Yu, Chen Cheng, Dayiheng Liu, Deqing Li, Hang Zhang, Hao Meng, Hu Wei, Jingyuan
 705 Ni, Kai Chen, Kuan Cao, Liang Peng, Lin Qu, Minggang Wu, Peng Wang, Shuteng Yu, Tingkun
 706 Wen, Wensen Feng, Xiaoxiao Xu, Yi Wang, Yichang Zhang, Yongqiang Zhu, Yujia Wu, Yuxuan
 707 Cai, and Zenan Liu. Qwen-image technical report, 2025a. URL <https://arxiv.org/abs/2508.02324>.

702 Chenyuan Wu, Pengfei Zheng, Ruiran Yan, Shitao Xiao, Xin Luo, Yueze Wang, Wanli Li, Xiyan
 703 Jiang, Yixin Liu, Junjie Zhou, Ze Liu, Ziyi Xia, Chaofan Li, Haoge Deng, Jiahao Wang, Kun Luo,
 704 Bo Zhang, Defu Lian, Xinlong Wang, Zhongyuan Wang, Tiejun Huang, and Zheng Liu. Omnigen2:
 705 Exploration to advanced multimodal generation. [arXiv preprint arXiv:2506.18871](https://arxiv.org/abs/2506.18871), 2025b.

706 Shaojin Wu, Mengqi Huang, Wenxu Wu, Yufeng Cheng, Fei Ding, and Qian He. Less-to-more general-
 707 ization: Unlocking more controllability by in-context generation. [arXiv preprint arXiv:2504.02160](https://arxiv.org/abs/2504.02160),
 708 2025c.

710 Shengqiong Wu, Hao Fei, Leigang Qu, Wei Ji, and Tat-Seng Chua. Next-gpt: Any-to-any multimodal
 711 llm. In [Proceedings of the International Conference on Machine Learning](https://proceedings.mlr.press/v160/), pp. 53366–53397,
 712 2024.

713 Xiaoshi Wu, Keqiang Sun, Feng Zhu, Rui Zhao, and Hongsheng Li. Human preference score:
 714 Better aligning text-to-image models with human preference. In [Proceedings of the IEEE/CVF](https://proceedings.cvf.org/dmvcv/)
 715 [International Conference on Computer Vision](https://proceedings.cvf.org/dmvcv/), pp. 2096–2105, 2023.

717 Jing Xiong, Gongye Liu, Lun Huang, Chengyue Wu, Taiqiang Wu, Yao Mu, Yuan Yao, Hui Shen,
 718 Zhongwei Wan, Jinfa Huang, Chaofan Tao, Shen Yan, Huaxiu Yao, Lingpeng Kong, Hongxia
 719 Yang, Mi Zhang, Guillermo Sapiro, Jiebo Luo, Ping Luo, and Ngai Wong. Autoregressive models
 720 in vision: A survey, 2025. URL <https://arxiv.org/abs/2411.05902>.

721 Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao Dong.
 722 Imagereward: Learning and evaluating human preferences for text-to-image generation, 2023.

724 Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan Li, and Jianfeng Gao. Set-of-mark
 725 prompting unleashes extraordinary visual grounding in gpt-4v. [arXiv preprint arXiv:2310.11441](https://arxiv.org/abs/2310.11441),
 726 2023. URL <https://arxiv.org/abs/2310.11441>.

727 Shih-Ying Yeh, Yu-Guan Hsieh, Zhidong Gao, Bernard B W Yang, Giyeong Oh, and Yanmin Gong.
 728 Navigating text-to-image customization: From lycoris fine-tuning to model evaluation, 2024. URL
 729 <https://arxiv.org/abs/2309.14859>.

731 Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan,
 732 Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, Ben Hutchinson, Wei Han, Zarana Parekh, Xin
 733 Li, Han Zhang, Jason Baldridge, and Yonghui Wu. Scaling autoregressive models for content-rich
 734 text-to-image generation, 2022. URL <https://arxiv.org/abs/2206.10789>.

735 Lvmin Zhang and Maneesh Agrawala. Adding conditional control to text-to-image diffusion models.
 736 [arXiv preprint arXiv:2302.05543](https://arxiv.org/abs/2302.05543), 2023.

737 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
 738 effectiveness of deep features as a perceptual metric. In [CVPR](https://cvpr2018.thecvf.com/), 2018.

740 Zechuan Zhang, Ji Xie, Yu Lu, Zongxin Yang, and Yi Yang. In-context edit: Enabling instructional
 741 image editing with in-context generation in large scale diffusion transformer, 2025. URL <https://arxiv.org/abs/2504.20690>.

743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755

756 **A APPENDIX**
757759 **A.1 USE OF LLM IN WRITING**
760761 We used ChatGPT to improve the writing, mainly on grammar fix.
762764 **A.2 HUMAN ANNOTATION DETAILS**
765766 During the annotation stage, we recruited 22 expert annotators, primarily graduate students fluent in
767 English. Each annotator evaluated approximately 500–1,000 images, with each annotation taking
768 30–90 seconds. To reduce fatigue and ensure consistent quality, we restricted annotators to a
769 maximum of 200 samples per week. The entire process was conducted using Label Studio, which
770 provided a user-friendly interface. Potential object-level and segment-level issues were pre-listed
771 using a vision-language model (VLM) and Set-of-Marks (SOM), allowing annotators to simply select
772 them via checkboxes. For cases where the VLM and SOM failed to capture issues, annotators could
773 switch to a manual mode to input text or create bounding boxes. The full annotation process spanned
774 two months, during which all data were collected. Below we present the guidelines for annotators,
775 and Figure 7 illustrates the annotation interface.
776778 **Prompt Relevance**779 Definition: Whether the image accurately reflects or responds to the prompt.
780 Ask yourself: Does the image actually follow the instructions or topic in the prompt?781 Common issues:782

- Prompt: “Explain the water cycle.” → Image shows the food chain.
- Prompt: “Slide about diabetes symptoms.” → Image shows a kidney structure.
- Prompt: “Compare apples and oranges.” → Image compares apples and bananas.

785 Rating (1–5):786

1. Completely unrelated to the prompt.
2. Mostly incorrect; vague connections with many mismatches.
3. Partially relevant; key ideas present but with errors/omissions.
4. Mostly accurate; follows the prompt with minor issues.
5. Fully aligned with the prompt; clear, focused, and complete.

795 **Aesthetic Quality / Visual Appeal**796 Definition: Whether the image is visually appealing, clean, and easy to interpret.
797 Ask yourself: Is this image pleasant to look at, readable, and professionally designed?798 Common issues:800

- Text too small/hard to read or blending into the background.
- Cluttered or misaligned layout.
- Poor color combinations; inconsistent fonts or spacing.

803 Rating (1–5):804

1. Visually poor; unattractive, hard to read, or confusing.
2. Below average; noticeable design flaws, poor readability.
3. Decent; generally readable with minor layout/design issues.
4. Clean and aesthetically good; few flaws.
5. Polished and visually excellent.

810

Content CoherenceDefinition: Whether the content is logically consistent and fits together meaningfully.Ask yourself: Does everything in the image belong together and make sense as a whole?Common issues:

- Labels pointing to the wrong part (e.g., “liver” pointing to lungs).
- Chart shows decreasing values titled “growth over time.”
- Title: “Parts of a Flower” but the figure shows tree anatomy.

Rating (1–5):

1. Internally inconsistent or nonsensical; contradictory parts.
2. Some logic present, but components are confusing/mismatched.
3. Mostly coherent, with noticeable mismatches or awkward parts.
4. Logically sound overall; only minor inconsistencies.
5. Completely coherent and internally consistent.

825

826

827

828

829

Artifacts / Visual ErrorsDefinition: Whether the image has visual flaws due to generation errors (e.g., distortions, glitches).Ask yourself: Are there technical visual issues like melting edges, strange text, or broken parts?Common issues:

- Gibberish or distorted text (e.g., “#di%et@es” instead of “diabetes”).
- Warped borders, duplicated textures, or glitched areas.
- Extra limbs, broken symmetry, over-smoothed or pixelated regions.

Rating (1–5):

1. Severe artifacts that ruin the image.
2. Major flaws that are clearly noticeable.
3. Minor artifacts; image remains usable.
4. Mostly clean; very subtle flaws if any.
5. No visible artifacts.

839

840

841

842

843

844

845

846

847

848

Issue Tagging

- Object-level issues (model output): Select any item that has issues. If none apply, choose “None of the objects have issues.”
- Segmentation issues (segmentation map): Select any index with issues. If none apply, choose “None.”
- Other issues: If your score is not 5/5 and the issue is not covered above, briefly describe it here.

Important: Selecting “None” may mean either (i) there is no issue, or (ii) your issue is not listed. In the latter case, provide a brief explanation under “Other issues.” If your score is not full (5/5), you must either select a corresponding issue or provide a short explanation.

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

Refined Prompt:

Edit image 1, which shows a calendar for May 2025. Change the active date to May 12, 2025. This requires deselecting the current active date, '11' (marked with a blue circular highlight in the second row of dates, second from the right), and selecting '12' by applying a similar blue circular highlight to it (located in the third row of dates, first from the left).

Reference Images

Generated Image

Prompt Relevance

Aesthetic Quality

Content Coherence

Artifacts or Visual Defects (5 = no artifacts or defects)

Object-Level Issues (Model Output)

- calendar grid structure^[6]
- "May 2025" text^[6]
- navigation arrow symbols^[7]
- weekday labels (M, T, W, T, F, S, S)^[8]
- calendar date numbers (e.g., 1, 2, ..., 31)^[9]
- week numbers (e.g., 18, 19, ..., 23) on the left side^[0]

Segmentation Issues (Segmentation Map)

Problems

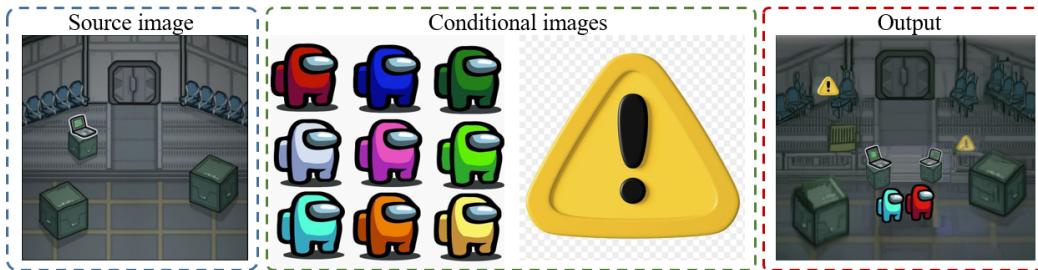
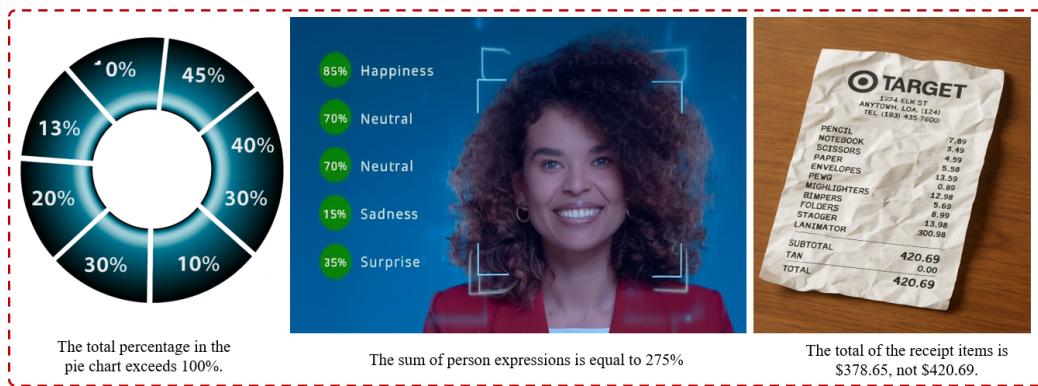
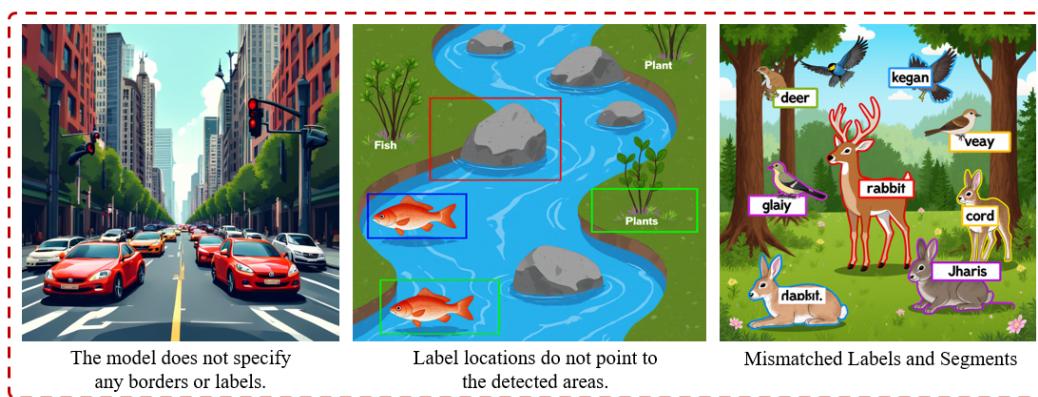
Other Issues (Not Captured Above)

Describe any additional issues not captured by object-level or segmentation-level selections.

Add

The model incorrectly changed the date '11' to '12', resulting in two '12's and no '11' on the calendar. It also highlighted the wrong '12', failing to follow the spatial instructions in the prompt.

Figure 7: Label Studio interface: annotators read the prompt, inspect the image, rate four criteria (1–5), and flag VLM/SoM-suggested object- and segment-level issues.

918 A.3 EXAMPLES OF FAILURES
919920 A.3.1 MODEL FAILS TO PRECISELY FOLLOW INSTRUCTIONS.
921922 Prompt: Edit image 1. Replace the top-left crate with the yellow warning sign from image 3. Place
923 the pink crewmate (from the center of image 2) and the yellow crewmate (from the bottom right
924 of image 2) standing side-by-side on the central doorway in image 1. Ensure all new elements are
925 integrated with correct perspective, lighting, and scale.
926936 Figure 8: Instruction-following problem: The model placed red and green crewmates instead of pink
937 and yellow, and the yellow sign's position does not match the request.
938939 A.3.2 NUMERICAL INCONSISTENCIES
940953 Figure 9: Examples of numerical inconsistencies.
954955 A.3.3 SEGMENTS AND LABELING ISSUES
956970 Figure 10: Examples of labeling issues.
971

972 A.3.4 GENERATE NEW IMAGE IN EDITING
973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1015 Figure 11: Examples of generating a new image when the task is editing.

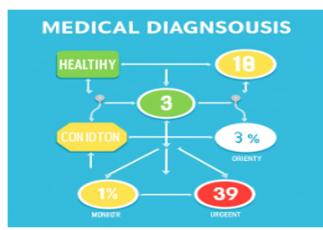
1026 A.3.5 PLOTS AND CHART ERRORS
1027

1028

1029 Visualize a bubble chart of 2025 SaaS startups: x-axis
1030 = monthly burn rate (\$M), y-axis = ARR growth %,
1031 bubble size = employees, bubble hue = industry
1032 vertical (FinTech, HealthTech, AdTech, EdTech,
1033 ClimateTech)

1034 Instead of company names, the text in all
1035 bubbles is 'Employees'.
1036

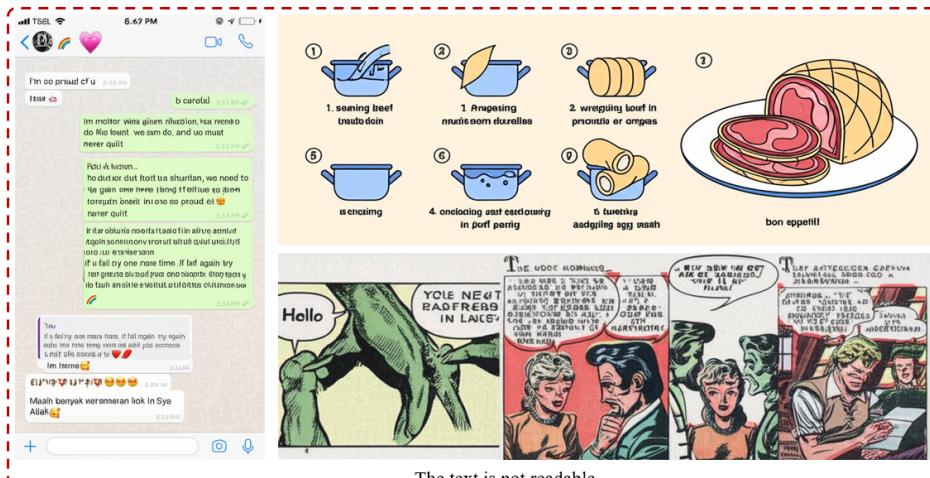
1037 Visualize a decision tree for medical diagnosis with
1038 branching pathways, probability percentages at each
1039 node, colored outcome leaves (green=healthy,
1040 yellow=monitor, red=urgent), and stethoscope icons.
1041



1042 The tree does not have clear instructions
1043 and flow for diagnosis.
1044

Figure 12: Examples of plots and diagram issues.

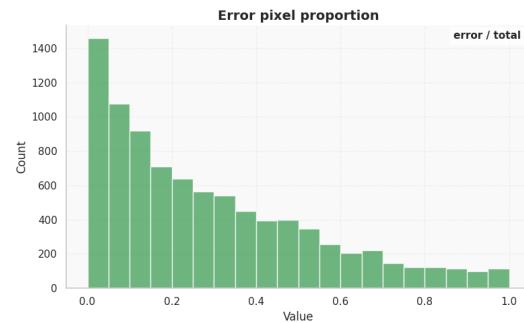
A.3.6 UNREADABLE TEXT



1046 The text is not readable
1047

Figure 13: Examples of text issues.

A.3.7 ERROR MASK STATISTICS



1066 Figure 14: Distribution of error pixel proportions across the dataset. Histograms illustrate the fraction
1067 of error pixels relative to total mask pixels, excluding masks with none or all pixels marked as errors.
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

1080 A.4 TASK AND TOPIC STATISTICS
1081

1082 Model	1083 Artworks	1084 Computer Graphics	1084 Information Graphics	1084 Photorealistic Images	1084 Screenshots	1084 Textual Graphics
1085 Text-guided Image Generation						
1086 GPT-Image-1	0.95±0.06	0.90±0.09	0.81±0.13	0.96±0.06	0.93±0.09	0.92±0.08
1087 Qwen-Image	0.97±0.03	0.81±0.14	0.79±0.18	0.97±0.07	0.73±0.14	0.94±0.11
1088 Flux.1-Krea-dev	0.92±0.06	0.75±0.18	0.67±0.22	0.94±0.08	0.73±0.12	0.88±0.13
1089 Gemini 2.0 Flash	0.87±0.09	0.73±0.20	0.61±0.26	0.94±0.09	0.75±0.12	0.88±0.14
1090 UNO	0.89±0.08	0.73±0.16	0.62±0.21	0.86±0.13	0.64±0.13	0.92±0.09
1091 BAGEL	0.95±0.04	0.66±0.19	0.66±0.23	0.91±0.09	0.62±0.17	0.79±0.17
1092 Infinity	0.93±0.08	0.69±0.18	0.56±0.27	0.85±0.15	0.44±0.12	0.76±0.22
1093 OmniGen2	0.86±0.11	0.77±0.19	0.52±0.29	0.89±0.11	0.52±0.13	0.87±0.13
1094 SDXL	0.90±0.10	0.43±0.27	0.55±0.25	0.82±0.14	0.57±0.18	0.57±0.19
1095 Janus Pro	0.87±0.13	0.49±0.27	0.42±0.29	0.81±0.23	0.50±0.22	0.60±0.27
1096 Text-guided Image Editing						
1097 GPT-Image-1	0.86±0.09	0.90±0.12	0.69±0.19	0.88±0.09	0.73±0.13	0.86±0.12
1098 Flux.1-Kontext-dev	0.73±0.14	0.83±0.14	0.50±0.23	0.76±0.12	0.56±0.20	0.82±0.17
1099 Gemini 2.0 Flash	0.72±0.16	0.75±0.21	0.50±0.23	0.83±0.17	0.51±0.19	0.83±0.18
1100 BAGEL	0.64±0.20	0.86±0.14	0.45±0.22	0.71±0.16	0.61±0.18	0.73±0.21
1101 OmniGen2	0.74±0.13	0.72±0.23	0.40±0.21	0.81±0.14	0.36±0.22	0.48±0.24
1102 IC-Edit	0.59±0.20	0.57±0.24	0.35±0.18	0.55±0.21	0.39±0.18	0.56±0.21
1103 Step1X-Edit	0.53±0.26	0.39±0.30	0.19±0.15	0.65±0.19	0.47±0.20	0.50±0.20
1104 InstructPix2Pix	0.49±0.22	0.53±0.23	0.32±0.16	0.52±0.25	0.48±0.19	0.36±0.18
1105 Single Reference Image Generation						
1106 GPT-Image-1	0.95±0.08	0.86±0.13	0.72±0.18	0.87±0.10	0.83±0.14	0.81±0.15
1107 BAGEL	0.83±0.17	0.76±0.23	0.57±0.19	0.67±0.16	0.52±0.19	0.52±0.19
1108 Gemini 2.0 Flash	0.77±0.19	0.73±0.19	0.52±0.19	0.81±0.19	0.56±0.18	0.66±0.20
1109 UNO	0.78±0.20	0.65±0.20	0.49±0.19	0.68±0.20	0.56±0.15	0.49±0.19
1110 OmniGen2	0.78±0.16	0.68±0.18	0.43±0.19	0.66±0.17	0.41±0.20	0.50±0.16
1111 Single Reference Image Editing						
1112 GPT-4o	0.79±0.16	0.79±0.18	0.80±0.17	0.89±0.08	0.63±0.15	0.86±0.11
1113 Gemini 2.0 Flash	0.59±0.19	0.63±0.22	0.39±0.14	0.64±0.20	0.39±0.14	0.63±0.19
1114 BAGEL	0.54±0.24	0.53±0.22	0.50±0.26	0.68±0.19	0.47±0.17	0.58±0.19
1115 OmniGen2	0.62±0.17	0.57±0.23	0.27±0.14	0.57±0.23	0.27±0.14	0.47±0.20
1116 Multiple Reference Image Generation						
1117 GPT-Image-1	0.96±0.03	0.81±0.12	0.66±0.17	0.86±0.07	0.83±0.12	0.92±0.10
1118 Gemini 2.0 Flash	0.91±0.12	0.71±0.20	0.53±0.17	0.85±0.15	0.54±0.15	0.86±0.15
1119 OmniGen2	0.80±0.14	0.62±0.18	0.46±0.15	0.69±0.17	0.40±0.18	0.68±0.17
1120 BAGEL	0.79±0.17	0.49±0.22	0.47±0.16	0.80±0.17	0.42±0.20	0.71±0.17
1121 UNO	0.70±0.12	0.66±0.14	0.41±0.13	0.63±0.14	0.51±0.15	0.71±0.20
1122 Multiple Reference Image Editing						
1123 GPT-Image-1	0.85±0.11	0.85±0.10	0.69±0.20	0.92±0.05	0.81±0.12	0.62±0.18
1124 Gemini 2.0 Flash	0.76±0.16	0.58±0.17	0.62±0.25	0.70±0.13	0.56±0.16	0.50±0.16
1125 OmniGen2	0.66±0.13	0.53±0.18	0.44±0.22	0.68±0.19	0.32±0.15	0.41±0.15
1126 BAGEL	0.53±0.23	0.50±0.20	0.41±0.23	0.59±0.15	0.21±0.11	0.32±0.16

1127 Table 5: Topic-wise performance across six tasks. Bolded entries are the per-topic best within each
1128 task.
1129
1130
1131
1132
1133

1134

1135

1136 All Models — Best Model by Task \times Topic

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

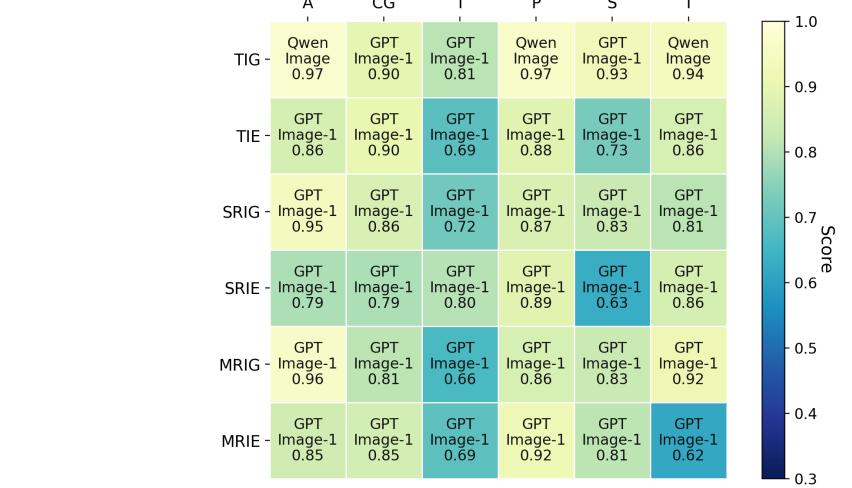
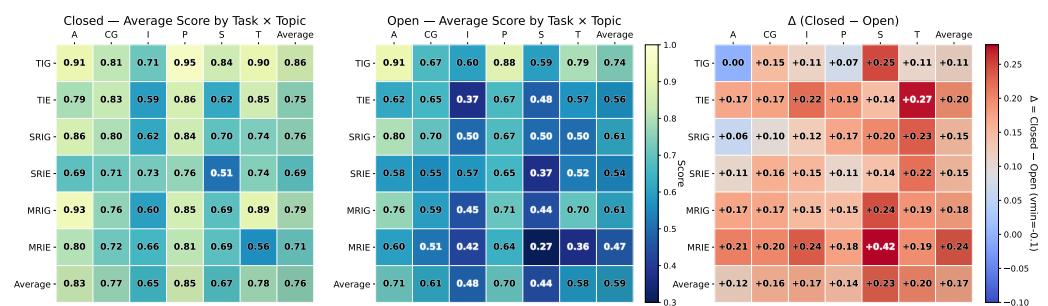
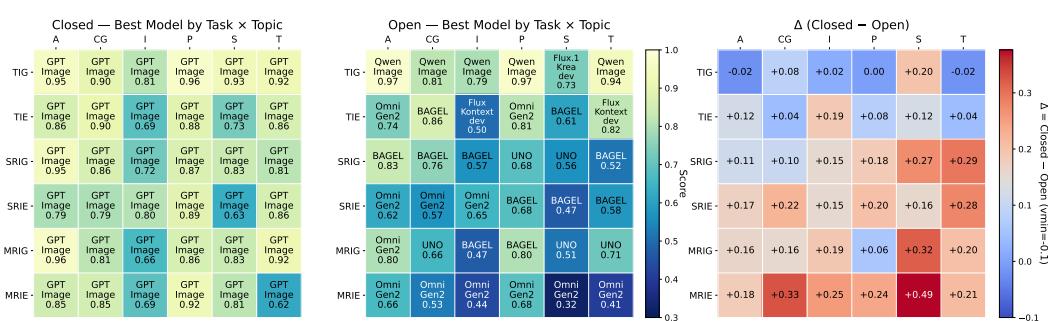
1183

1184

1185

1186

1187

Figure 15: Best-performing model per task \times topic across all of our 14 baselines.Figure 16: Best-performing model per task \times topic for closed-source (left) and open-source (middle) models based on human overall scores; the Δ panel (right) shows Δ = Closed – Open.Figure 17: Average human score per task \times topic for closed-source (left) and open-source (middle) models; the Δ panel (right) shows Δ = Closed – Open.

1188 A.5 STATISTICAL SIGNIFICANCE ANALYSIS
1189
11901191 We conduct statistical significance tests to quantify the robustness of the performance differences
1192 reported in the paper. All analyses operate on human ratings, where each human score denotes the
1193 average of the three independent annotators for a given (task_id, model) pair. The tests are performed
1194 on a per-item basis. Paired two-sided t -tests are used when comparing two models (or model families)
1195 evaluated on the same instances, while Welch's t -test is used when comparing two disjoint groups of
1196 items (e.g., generation vs. editing tasks).
11971198 **I. GPT-Image-1 vs. Gemini 2.0 Flash.** We compare GPT-Image-1 and Gemini across all task
1199 instances. GPT-Image-1 receives significantly higher ratings overall compared to Gemini 2.0 Flash.
12001201 • **Overall:** $n = 1080$, mean diff = 0.5961, std = 0.7706, $t = 25.42$, $p = 4.3 \times 10^{-112}$.
12021203 **II. Closed vs. Open Model Families.** We compare the family-wise means of closed-source models
1204 with open-source ones using a paired test across tasks.
12051206 • **Overall:** $n = 1080$, mean diff = 0.6821, std = 0.5840, $t = 38.38$, $p = 6.6 \times 10^{-204}$.
12071208 **III. Generation vs. Editing Tasks (Unified Models).** To assess task difficulty, we compare human
1209 ratings on generation and editing tasks over our unified models: {Bagel, Gemini 2.0 Flash, GPT-
1210 Image-1, OmniGen2}.
12111212 • **Overall:** generation ($n = 2158$, mean = 3.9152), editing ($n = 2160$, mean = 3.5244), $t = 13.71$,
1213 $p = 6.6 \times 10^{-42}$.
12141215 **IV. Symbolic vs. Non-Symbolic Topics.** We compare human ratings on symbolic and text-heavy do-
1216 mains (Information Graphics, Screenshots) against non-symbolic domains (Artworks, Photorealistic
1217 Images).
12181219 • **Overall:** non-symbolic ($n = 2159$, mean = 4.1067), symbolic ($n = 2157$, mean = 3.1905),
1220 $t = 34.26$, $p = 7.3 \times 10^{-227}$.
1221 • **Artifacts:** non-symbolic ($n = 2159$, mean = 4.3522), symbolic ($n = 2157$, mean = 3.0163),
1222 $t = 46.23$, $p < 10^{-196}$.
12231224 **V. Human vs. VLM-as-Judge Agreement.** We compare Gemini's automatic scores with human-
1225 mean ratings for all 6,469 (task_id, model) instances.
12261227 • **Prompt Relevance:** mean diff = -0.2704, std = 1.0185, $t = -21.35$, $p = 8.4 \times 10^{-98}$.
1228 • **Aesthetic Quality:** mean diff = -0.0529, std = 1.0135, $t = -4.20$, $p = 2.7 \times 10^{-5}$.
1229 • **Content Coherence:** mean diff = -0.2069, std = 1.2741, $t = -13.06$, $p = 1.7 \times 10^{-38}$.
1230 • **Artifacts:** mean diff = +0.2220, std = 1.1207, $t = 15.93$, $p = 4.2 \times 10^{-56}$.
1231 • **Overall:** mean diff = -0.0770, std = 0.8516, $t = -7.28$, $p = 3.9 \times 10^{-13}$.
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

1242

A.6 DATASET DETAILS

1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260

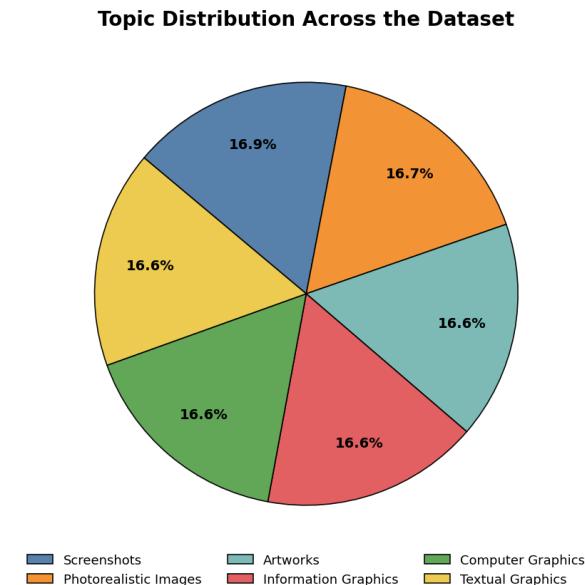


Figure 18: Topic distribution for the entire dataset

1265
1266
1267

Word Cloud of Subtopics Across the Dataset

1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290

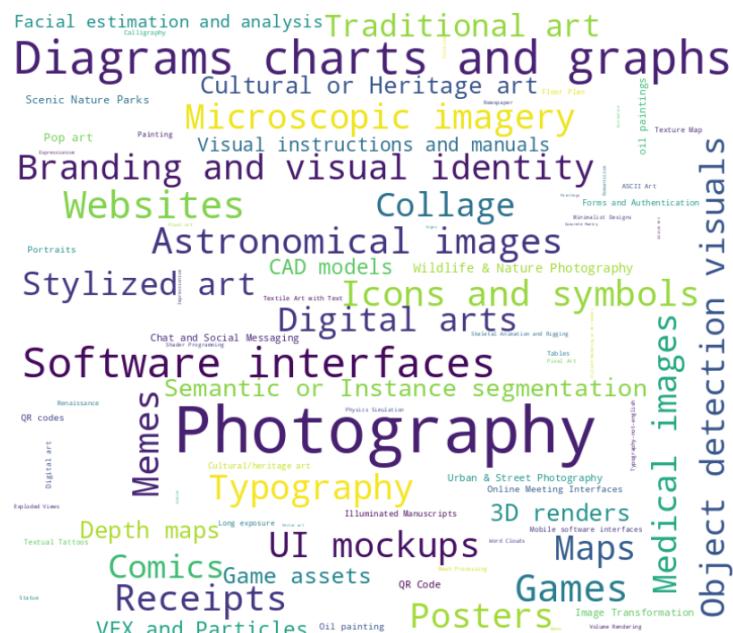


Figure 19: Word cloud of subtopics across the entire dataset, with word size proportional to frequency

1292
1293
1294
1295

1296	Task	Topic	Subtopics (Count)
1297	TIG	A	Collage (26), Cultural/heritage art (9), Digital arts (15), Glitch Art (3), Pixel Art (5), Pop art (5), Stylized art (11), Traditional art (11), oil paintings (16)
1298		CG	3D renders (17), CAD models (13), Depth maps (11), Facial estimation and analysis (3), Game assets (8), Object detection visuals (11), Semantic or Instance segmentation (16), Texture Map (8), Texture maps (1), VFX and Particles (12)
1299		I	Diagrams, charts, and graphs (25), Icons and symbols (26), Maps (17), UI mockups (21), Visual instructions and manuals (11)
1300		P	Astronomical images (18), Long exposure (7), Medical Images (1), Medical images (21), Microscopic imagery (20), Minimalist Designs (5), Photography (28), Retro Futurism (2)
1301		S	Games (19), Receipts (35), Software interfaces (19), Websites (27)
1302		T	ASCII Art (6), Branding and visual identity (7), Calligraphy (6), Comics (13), Concrete Poetry (3), Graffiti (Text-based) (9), Illuminated Manuscripts (9), Memes (11), Posters (12), Textile Art with Text (6), Textual Tattoos (7), Typography (6), Word Clouds (5)
1303	SRIG	A	Collage (16), Cultural or Heritage art (14), Digital arts (24), Portraits (1), Stylized art (32), Traditional art (14)
1304		CG	3D renders (12), CAD models (12), Depth maps (13), Facial estimation and analysis (13), Game Assets (1), Game assets (12), Object detection visuals (13), Semantic or Instance segmentation (13), VFX and Particles (12)
1305		I	Diagrams, charts, and graphs (25), Icons and symbols (21), Maps (14), UI mockups (20), Visual instructions and manuals (20)
1306		P	Astronomical images (28), Medical images (22), Microscopic imagery (23), Photography (27)
1307		S	Games (24), Receipts (18), Software interfaces (28), Websites (30)
1308		T	Branding and visual identity (11), Comics (15), Memes (25), Newspaper (3), Posters (22), Typography (22), Website (2)
1309	MRIG	A	Collage (13), Cultural or Heritage art (23), Digital arts (29), Stylized art (19), Traditional art (16)
1310		CG	3D renders (12), CAD models (11), Depth maps (13), Facial estimation and analysis (10), Game assets (11), Object detection visuals (23), Semantic or Instance segmentation (10), VFX and Particles (10)
1311		I	Diagrams, charts, and graphs (38), Icons and symbols (15), Maps (18), UI mockups (18), Visual instructions and manuals (11)
1312		P	Astronomical images (6), Microscopic imagery (13), Photography (81)
1313		S	Games (24), Receipts (23), Software interfaces (31), Websites (22)
1314		T	Branding and visual identity (24), Comics (15), Memes (16), Posters (23), Typography (18), Typography-not-english (5)

Table 6: Subtopics across generation tasks (TIG, SRIG, MRIG).

1350	1351	Task	Topic	Subtopics (Count)
1352	1353	TIE	A	Animation (2), Blueprint (1), Ceramic art (1), Collage (4), Conceptual art (1), Cropping (1), Cubism (3), Cultural or Heritage art (4), Digital art (8), Digital arts (2), Expressionism (4), Fauvism (2), Futurism (4), Graffiti (1), Graffiti art (1), Hand drawn blueprint (1), Impressionism (4), Medieval art (1), Neoclassicism (2), Oil Painting (1), Painting (8), Paintings (3), Pixel art (4), Pixel arts (2), Pop art (3), Post-Impressionism (2), Renaissance (6), Renaissance arts (1), Romanticism (4), Sketches (2), Statue (5), Surrealism (3), Traditional art (4), Traditional arts (1), Vector art (3), Vector arts (1)
1354	1355		CG	3D renders (10), CAD models (10), Depth maps (10), Facial estimation and analysis (10), Game assets (10), Mesh Processing (5), Object detection visuals (10), Physics Simulation (5), Semantic or Instance segmentation (10), Shader Programming (5), Skeletal Animation and Rigging (5), VFX and Particles (5), Volume Rendering (5)
1356	1357		I	Diagrams, charts, and graphs (61), Exploded Views (5), Exploded views (2), Floor Plan (8), Icons and symbols (8), Maps (5), Tables (6), UI mockups (5)
1358	1359		P	Astronomical images (21), Medical images (15), Microscopic imagery (20), Photography (45)
1360	1361		S	Game Screenshots (1), Games (26), Mobile software interfaces (7), QR codes (11), Receipts (3), Software interfaces (50), Websites (14)
1362	1363		T	Branding and visual identity (27), Comics (15), Memes (26), Posters (16), Typography (16)
1364	1365	SRIE	A	Collage (20), Cultural or Heritage art (19), Digital arts (20), Stylized art (20), Traditional art (21)
1366	1367		CG	3D renders (11), CAD models (6), Depth maps (13), Facial estimation and analysis (13), Game assets (13), Image Transformation (15), Object detection visuals (18), Semantic or Instance segmentation (11)
1368	1369		I	Diagrams, charts, and graphs (30), Icons and symbols (20), Maps (26), UI mockups (24)
1370	1371		P	Astronomical images (30), Medical images (23), Microscopic imagery (20), Photography (27)
1372	1373		S	Games (25), Receipts (25), Software interfaces (25), Websites (25)
1374	1375		T	Branding and visual identity (22), Comics (22), Memes (20), Posters (16), Typography (20)
1376	1377	MRIE	A	Collage (20), Cultural or Heritage art (12), Digital arts (9), Oil painting (12), Pop art (14), Portraits (10), Stylized art (9), Traditional art (14)
1378	1379		CG	3D Character Integration (1), 3D renders (7), Augmented Reality or Computer Vision Visualization (1), CAD models (1), Computer Animation (1), Computer Animation or Stylized Rendering (1), Depth maps (10), Game assets (9), Geometric Modeling or Stylized Rendering (1), Global Illumination (2), Non-Photorealistic Rendering (1), Object detection visuals (23), Scene Editing (1), Semantic or Instance segmentation (19), Stylized Rendering (1), Stylized Rendering or 3D renders (4), Stylized Rendering or Computer Animation (2), Stylized Rendering or Visual Effects (1), UI Design or Stylized Rendering (1), VFX and Particles (13)
1380	1381		I	Diagrams, charts, and graphs (23), Icons and symbols (22), Maps (25), UI mockups (23), Visual instructions and manuals (8)
1382	1383		P	Astronomical images (15), Medical images (15), Microscopic imagery (10), Scenic Nature Parks (19), Urban & Street Photography (16), Wildlife & Nature Photography (25)
1384	1385		S	Chat and Social Messaging (14), Forms and Authentication (9), Games (14), Online Meeting Interfaces (11), QR Code (14), Receipts (15), Software interfaces (11), Software interfaces - farsi (1), Websites (11)
1386	1401		T	Advertisements (1), Book (1), Branding and visual identity (12), Card (1), Comics (9), Flyers (2), Fonts (1), Magazine (2), Meme (1), Memes (18), Menu (4), Newspaper (2), Newspapers (1), Nutrition Fact (1), Poster (2), Posters (15), Products (1), Signs (5), Subtitle (1), Typography (20)

Table 7: Subtopics across editing tasks (TIE, SRIE, MRIE).

A.7 AUTOMATED EVALUATIONS

Model	LLM-based				Embedding & perceptual		
	Prompt relevance	Aesthetic quality	Content Coherence	Artifact	Overall	CLIP	LPIPS
Text-guided Image Generation							
GPT-4o	0.89±0.20	0.95±0.12	0.91±0.23	0.96±0.13	0.93±0.13	0.25±0.12	N/A
Qwen-Image	0.79±0.29	0.93±0.17	0.86±0.28	0.88±0.24	0.87±0.20	0.24±0.12	N/A
Flux.1-Krea-dev	0.74±0.30	0.89±0.20	0.82±0.33	0.89±0.25	0.84±0.23	0.24±0.12	N/A
Janus Pro	0.40±0.31	0.52±0.34	0.60±0.41	0.58±0.38	0.52±0.32	0.23±0.10	N/A
Gemini 2.0 Flash	0.79±0.27	0.86±0.23	0.84±0.31	0.83±0.29	0.83±0.23	0.24±0.11	N/A
BAGEL	0.65±0.33	0.83±0.24	0.76±0.37	0.81±0.29	0.76±0.26	0.24±0.12	N/A
UNO	0.61±0.31	0.80±0.25	0.79±0.34	0.80±0.30	0.75±0.25	0.24±0.11	N/A
OmniGen2	0.62±0.31	0.81±0.26	0.74±0.38	0.81±0.33	0.74±0.27	0.24±0.12	N/A
Infinity	0.58±0.33	0.79±0.27	0.76±0.36	0.76±0.33	0.72±0.28	0.24±0.11	N/A
SDXL	0.49±0.33	0.72±0.31	0.71±0.39	0.72±0.35	0.66±0.30	0.24±0.11	N/A
Janus Pro	0.40±0.31	0.52±0.34	0.60±0.41	0.58±0.38	0.52±0.32	0.23±0.10	N/A
Text-guided Image Editing							
GPT-4o	0.77±0.31	0.81±0.30	0.79±0.35	0.84±0.32	0.80±0.28	0.25±0.10	0.54±0.15
Flux.1-Kontext-dev	0.52±0.38	0.66±0.34	0.67±0.41	0.76±0.36	0.65±0.31	0.25±0.10	0.52±0.18
BAGEL	0.56±0.37	0.61±0.35	0.68±0.39	0.70±0.37	0.64±0.32	0.25±0.09	0.33±0.23
Gemini 2.0 Flash	0.57±0.37	0.61±0.36	0.63±0.42	0.68±0.40	0.62±0.34	0.25±0.09	0.39±0.23
OmniGen2	0.34±0.35	0.56±0.35	0.61±0.43	0.72±0.39	0.56±0.32	0.25±0.09	0.42±0.25
IC-Edit	0.25±0.34	0.50±0.35	0.63±0.41	0.66±0.40	0.51±0.30	0.25±0.09	0.23±0.19
InstructPix2Pix	0.16±0.27	0.45±0.35	0.58±0.43	0.61±0.43	0.45±0.30	0.25±0.09	0.27±0.19
Step1X-Edit	0.35±0.34	0.44±0.37	0.46±0.43	0.53±0.42	0.44±0.34	0.25±0.09	0.36±0.27
Single Reference Image Generation							
GPT-Image-1	0.77±0.28	0.91±0.16	0.88±0.24	0.93±0.20	0.88±0.17	0.15±0.09	0.73±0.08
Gemini 2.0 Flash	0.61±0.32	0.73±0.35	0.73±0.38	0.77±0.35	0.69±0.28	0.17±0.10	0.59±0.16
BAGEL	0.51±0.30	0.68±0.32	0.65±0.42	0.73±0.37	0.64±0.30	0.17±0.10	0.68±0.17
UNO	0.40±0.30	0.65±0.27	0.66±0.40	0.73±0.37	0.61±0.29	0.16±0.10	0.66±0.14
OmniGen2	0.41±0.33	0.63±0.35	0.64±0.42	0.74±0.37	0.61±0.31	0.17±0.11	0.53±0.24
Single Reference Image Editing							
GPT-Image-1	0.75±0.30	0.80±0.29	0.78±0.35	0.84±0.32	0.79±0.27	0.24±0.10	0.66±0.12
Gemini 2.0 Flash	0.40±0.35	0.55±0.35	0.59±0.42	0.67±0.39	0.55±0.32	0.24±0.10	0.59±0.16
OmniGen2	0.30±0.30	0.59±0.34	0.58±0.43	0.70±0.40	0.54±0.30	0.24±0.11	0.69±0.11
BAGEL	0.31±0.33	0.56±0.35	0.59±0.42	0.67±0.38	0.53±0.30	0.24±0.10	0.57±0.16
Multiple Reference Image Generation							
GPT-Image-1	0.69±0.31	0.75±0.30	0.73±0.37	0.80±0.33	0.74±0.29	0.16±0.10	0.72±0.07
UNO	0.35±0.24	0.64±0.27	0.62±0.39	0.73±0.36	0.59±0.26	0.13±0.09	0.73±0.09
Gemini 2.0 Flash	0.35±0.30	0.49±0.35	0.50±0.42	0.59±0.41	0.48±0.32	0.17±0.10	0.69±0.09
OmniGen2	0.26±0.28	0.51±0.34	0.45±0.42	0.63±0.40	0.46±0.30	0.16±0.11	0.72±0.09
BAGEL	0.23±0.28	0.39±0.34	0.36±0.40	0.49±0.40	0.37±0.29	0.14±0.09	0.70±0.09
Multiple Reference Image Editing							
GPT-Image-1	0.69±0.31	0.75±0.30	0.73±0.37	0.80±0.33	0.74±0.29	0.16±0.10	0.72±0.07
Gemini 2.0 Flash	0.35±0.30	0.49±0.35	0.50±0.42	0.59±0.41	0.48±0.32	0.17±0.10	0.69±0.09
OmniGen2	0.26±0.26	0.51±0.34	0.45±0.42	0.63±0.40	0.46±0.30	0.16±0.11	0.73±0.07
BAGEL	0.23±0.24	0.39±0.34	0.36±0.40	0.49±0.40	0.37±0.29	0.16±0.10	0.70±0.09

Table 8: Automatic evaluations on all entries in our dataset

1458
1459
1460
1461
1462
1463

Model	LLM-based				Embedding & perceptual		
	Prompt relevance	Aesthetic quality	Content Coherence	Artifact	Overall	CLIP	LPIPS
Text-guided Image Generation							
GPT-Image-1	0.88±0.22	0.95±0.13	0.91±0.23	0.96±0.13	0.92±0.13	0.24±0.12	N/A
Qwen-Image	0.77±0.31	0.93±0.17	0.87±0.28	0.89±0.24	0.86±0.20	0.23±0.12	N/A
Flux.1-Krea-dev	0.72±0.31	0.88±0.21	0.80±0.35	0.89±0.26	0.82±0.23	0.23±0.12	N/A
Gemini 2.0 Flash	0.78±0.28	0.85±0.23	0.82±0.31	0.83±0.29	0.82±0.24	0.24±0.12	N/A
BAGEL	0.62±0.34	0.83±0.23	0.74±0.37	0.82±0.30	0.75±0.26	0.23±0.12	N/A
OmniGen2	0.62±0.33	0.81±0.25	0.73±0.37	0.82±0.31	0.75±0.27	0.22±0.12	N/A
UNO	0.57±0.32	0.79±0.26	0.75±0.37	0.78±0.31	0.72±0.27	0.23±0.12	N/A
Infinity	0.58±0.32	0.80±0.26	0.76±0.36	0.75±0.34	0.73±0.27	0.22±0.11	N/A
SDXL	0.48±0.33	0.72±0.32	0.71±0.39	0.71±0.36	0.65±0.30	0.23±0.11	N/A
Janus Pro	0.41±0.30	0.55±0.33	0.62±0.41	0.60±0.37	0.54±0.32	0.22±0.10	N/A
Text-guided Image Editing							
GPT-Image-1	0.77±0.31	0.81±0.30	0.79±0.35	0.85±0.31	0.80±0.28	0.24±0.10	0.55±0.15
Gemini 2.0 Flash	0.59±0.37	0.62±0.37	0.66±0.41	0.68±0.40	0.64±0.35	0.24±0.10	0.42±0.23
Flux.1-Kontext-dev	0.48±0.36	0.66±0.35	0.64±0.42	0.75±0.37	0.63±0.32	0.24±0.10	0.52±0.19
BAGEL	0.51±0.37	0.57±0.37	0.65±0.41	0.64±0.39	0.59±0.33	0.24±0.10	0.35±0.25
OmniGen2	0.34±0.36	0.58±0.35	0.63±0.43	0.74±0.38	0.57±0.32	0.25±0.10	0.41±0.26
IC-Edit	0.23±0.32	0.48±0.35	0.60±0.40	0.64±0.41	0.49±0.29	0.24±0.09	0.23±0.18
Step1X-Edit	0.34±0.35	0.43±0.38	0.45±0.45	0.52±0.43	0.43±0.36	0.24±0.09	0.39±0.30
InstructPix2Pix	0.14±0.25	0.41±0.35	0.52±0.43	0.58±0.44	0.41±0.30	0.24±0.09	0.26±0.19
Single Reference Image Generation							
GPT-Image-1	0.73±0.28	0.91±0.16	0.87±0.24	0.92±0.22	0.86±0.18	0.16±0.10	0.73±0.18
Gemini 2.0 Flash	0.58±0.33	0.72±0.35	0.74±0.38	0.76±0.35	0.70±0.28	0.16±0.10	0.59±0.16
BAGEL	0.49±0.30	0.68±0.32	0.65±0.42	0.73±0.37	0.65±0.28	0.16±0.10	0.69±0.17
OmniGen2	0.41±0.33	0.63±0.35	0.64±0.42	0.74±0.37	0.62±0.30	0.17±0.11	0.55±0.24
UNO	0.38±0.29	0.64±0.32	0.65±0.40	0.73±0.37	0.60±0.29	0.15±0.10	0.68±0.14
Single Reference Image Editing							
GPT-4o	0.67±0.30	0.77±0.29	0.78±0.35	0.84±0.32	0.76±0.29	0.24±0.10	0.65±0.13
OmniGen2	0.29±0.31	0.58±0.34	0.58±0.43	0.70±0.40	0.54±0.31	0.24±0.10	0.69±0.11
BAGEL	0.38±0.35	0.54±0.36	0.60±0.42	0.65±0.38	0.53±0.32	0.24±0.10	0.56±0.17
Gemini 2.0 Flash	0.42±0.36	0.52±0.37	0.59±0.42	0.68±0.40	0.51±0.32	0.24±0.10	0.59±0.16
Multiple Reference Image Generation							
GPT-Image-1	0.79±0.25	0.91±0.17	0.90±0.25	0.93±0.21	0.88±0.16	0.14±0.09	0.73±0.08
Gemini 2.0 Flash	0.59±0.31	0.70±0.30	0.70±0.39	0.74±0.37	0.68±0.30	0.14±0.09	0.74±0.09
OmniGen2	0.40±0.28	0.64±0.28	0.58±0.40	0.74±0.38	0.59±0.28	0.13±0.10	0.72±0.09
BAGEL	0.47±0.26	0.61±0.33	0.61±0.41	0.68±0.39	0.59±0.31	0.14±0.09	0.74±0.08
UNO	0.35±0.25	0.65±0.26	0.62±0.39	0.72±0.36	0.58±0.25	0.13±0.09	0.74±0.08
Multiple Reference Image Editing							
GPT-Image-1	0.67±0.31	0.77±0.30	0.73±0.36	0.82±0.32	0.75±0.28	0.16±0.10	0.72±0.08
Gemini 2.0 Flash	0.36±0.30	0.51±0.35	0.53±0.42	0.62±0.41	0.51±0.31	0.17±0.10	0.69±0.09
OmniGen2	0.23±0.23	0.50±0.34	0.42±0.42	0.64±0.41	0.45±0.30	0.15±0.11	0.73±0.07
BAGEL	0.23±0.25	0.40±0.33	0.37±0.39	0.52±0.40	0.38±0.28	0.16±0.10	0.70±0.09

Table 9: Automatic evaluations on our human-annotated subset

1505
1506
1507
1508
1509
1510
1511

1512 A.8 PROMPT TEMPLATES
15131514 Prompt Template for Image Generation & Editing
1515

1516 You are an expert visual generation assistant.
 1517 Task: {TASK_NAME}
 1518 Task Definition: {TASK_DEFINITION}
 1519 Visual Domain: {TOPIC_NAME}
 1520 User Objective: {USER_PROMPT}
 1521 Attached Images: {IMG_LIST} (None for Text-guided image generation)
 1522 Please generate an image that fulfills the user's objective, adheres to the task definition, and fits
 1523 within the specified visual domain.

1524 **TASK_NAME:**
 1525 • Text-guided Image Generation
 1526 • Text-guided Image Editing
 1527 • Single Reference-guided Image Generation
 1528 • Single Reference-guided Image Editing
 1529 • Multiple References-guided Image Generation
 1530 • Multiple References-guided Image Editing
 1531

1532 **TASK_DEFINITION:**
 1533 • Text-guided Image Generation: Generate a completely new image based only on a descriptive
 1534 text prompt. No source or reference images are provided.
 1535 • Text-guided Image Editing: Edit an existing image using a descriptive text prompt. Decide
 1536 what to modify in the image based on the prompt. No mask or marked region is given.
 1537 • Single Reference-guided Image Generation: Create a new image by combining visual cues
 1538 from one reference image with instructions from a descriptive text prompt.
 1539 • Single Reference-guided Image Editing: Edit an existing image using both a reference
 1540 image and a text prompt. Use the reference image to guide the style or content of the edits.
 1541 • Multiple References-guided Image Generation: Generate a new image using several reference
 1542 images along with a text prompt. The new image should reflect visual elements from the
 1543 references and follow the prompt's description.
 1544 • Multiple References-guided Image Editing: Modify an existing image using multiple
 1545 reference images and a descriptive text prompt. The edits should be guided by both the
 1546 style or content of the references and the instructions in the prompt.

1547 **TOPIC_NAME:**
 1548 • Information Graphics
 1549 • Artworks
 1550 • Screenshots
 1551 • Computer Graphics
 1552 • Photorealistic Images
 1553 • Textual Graphics
 1554

1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565

1566

1567

1568

1569

Prompt Template for Image Evaluation

1570

1571

1572

1573

1574

1575

1576

You are an expert AI image evaluator. Your task is to rate a generated image based on a provided text prompt and any reference images.

Use the following guidelines for your assessment. Provide a rating from 1 to 5 for each criterion. Do NOT include any additional text or explanations in your response. The response **MUST** be a single JSON object.

Quality Assessment

1577

• Prompt Relevance

Definition: Whether the image accurately reflects or responds to the prompt.

Rating Guide (1–5):

- 1 – Completely unrelated to the prompt.
- 2 – Mostly incorrect; some vague connections but many mismatches.
- 3 – Partially relevant; key ideas are present but with errors or omissions.
- 4 – Mostly accurate; follows the prompt well with minor issues.
- 5 – Fully aligned with the prompt; clear, focused, and complete.

• Aesthetic Quality / Visual Appeal

Definition: Whether the image is visually appealing, clean, and easy to interpret.

Rating Guide (1–5):

- 1 – Visually poor; unattractive, hard to read or confusing.
- 2 – Below average; noticeable design flaws, poor readability.
- 3 – Decent; generally readable but has minor layout/design issues.
- 4 – Clean and aesthetically good; professional feel with few flaws.
- 5 – Beautiful, polished, and visually excellent.

• Content Coherence

Definition: Whether the content in the image is logically consistent and fits together meaningfully.

Rating Guide (1–5):

- 1 – Internally inconsistent or nonsensical; parts contradict each other.
- 2 – Some logic, but confusing or mismatched components.
- 3 – Mostly coherent, though there are noticeable mismatches or awkward parts.
- 4 – Logically sound overall, with only minor inconsistencies.
- 5 – Completely coherent and internally consistent.

• Artifacts / Visual Errors

Definition: Whether the image has visual flaws due to generation errors (e.g., distortions, glitches).

Rating Guide (1–5):

- 1 – Severe artifacts that ruin the image.
- 2 – Major flaws that are clearly noticeable.
- 3 – Some minor artifacts, but the image remains usable.
- 4 – Mostly clean; only very subtle flaws if any.
- 5 – Perfectly clean; no visible artifacts at all.

Expected Output (single JSON object):

```
{
  "prompt_relevance": <rating>,
  "aesthetic_quality": <rating>,
  "content_coherence": <rating>,
  "artifacts": <rating>
}
```

1618

1619