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EgoTrigger: Toward Audio-Driven Image Capture for Human
Memory Enhancement in All-Day Energy-Efficient Smart Glasses
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Achin Kulshrestha , Andrea Colaco , Henry Fuchs , and Ishan Chatterjee

Camera turns on and off using EgoTrigger.

54% fewer frames on average while maintaining comparable
downstream performance on episodic memory task!

Smart glasses are capable of passive, intelligent
sensing while the user wears them all-day.

Smart Glasses EgoTrigger

Must be energy-efficient
in order to sense all-day.

Human Memory Enhancement

Microphone Camera

Did I take my medication
in the morning?

Yes, you took your
medication with water.

Camera

Mic

On-device audio classifier listens for salient
hand-object interaction events.

Fig. 1: We present EgoTrigger, an image capture approach designed for resource-constrained smart eyeglass systems. EgoTrigger 
uses a lightweight audio classification model and a custom classification head to trigger image capture from hand-object interaction 
(HOI) audio cues, such as the sound of a medication bottle being opened. Subsequently, image capture can be triggered off either 
based on a fixed duration (e.g., 1  second) or a  hysteresis-based a pproach. E goTrigger is capable of using 54% fewer frames on 
average while maintaining or exceeding performance on an episodic memory task, signifying potential for energy-efficient usage as a 
part of all-day smart glasses capable of human memory enhancement.

Abstract—All-day smart glasses are likely to emerge as platforms capable of continuous contextual sensing, uniquely positioning 
them for unprecedented assistance in our daily lives. Integrating the multi-modal AI agents required for human memory enhancement 
while performing continuous sensing, however, presents a major energy efficiency challenge for all-day usage. Achieving this balance 
requires intelligent, context-aware sensor management. Our approach, EgoTrigger, leverages audio cues from the microphone 
to selectively activate power-intensive cameras, enabling efficient sensing while preserving substantial utility for human memory 
enhancement. EgoTrigger uses a lightweight audio model (YAMNet) and a custom classification head to trigger image capture from 
hand-object interaction (HOI) audio cues, such as the sound of a drawer opening or a medication bottle being opened. In addition to 
evaluating on the QA-Ego4D dataset, we introduce and evaluate on the Human Memory Enhancement Question-Answer (HME-QA) 
dataset. Our dataset contains 340 human-annotated first-person QA pairs from full-length Ego4D videos that were curated to ensure 
that they contained audio, focusing on HOI moments critical for contextual understanding and memory. Our results show EgoTrigger 
can use 54% fewer frames on average, significantly saving energy in both power-hungry sensing components (e.g., cameras) and 
downstream operations (e.g., wireless transmission), while achieving comparable performance on datasets for an episodic memory 
task. We believe this context-aware triggering strategy represents a promising direction for enabling energy-efficient, functional smart 
glasses capable of all-day use — supporting applications like helping users recall where they placed their keys or information about 
their routine activities (e.g., taking medications).

Index Terms—Smart glasses, Microphones, Cameras, Multimodal sensing, Artificial intelligence, Energy efficient computing

1 INTRODUCTION

As an all-day wearable, smart glasses provide a unique platform to
enable continuous contextual sensing from an egocentric perspective.
This long-context sensing can be processed by powerful agentic multi-
modal foundation models (MLLMs) to enable unprecedented assistance
in our daily lives. For example, researchers have long envisioned
enhancing users’ memory of their daily actions via wearables and
glasses [13, 23, 43]. Users may eventually be able to ask in natural
language, "Where did I leave my keys earlier?" or "Did I turn the oven
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off before leaving?", among other things.
However, realizing this vision of memory enhancement hinges on

overcoming significant energy efficiency hurdles. As face-worn devices,
smart glasses face strict form-factor limitations, constraining battery
size, thermal dissipation, and onboard computation, and making all-day
operation challenging [6]. Even the most optimized, highly capable
MLLMs (e.g., Gemini Nano [48]) contain over a billion parameters,
making local deployment intractable on smart glasses hardware. Rather,
these MLLMs run on powerful processors in the cloud [1, 2, 48] with
the glasses passing their sensor data over wireless link by way of
a connected phone (e.g. Vuzix M400 [11], Ray-Ban Meta [42]) or
separate compute puck (e.g., Meta’s Orion Prototype [36]).

Despite offloading inference, a critical energy bottleneck for memory
enhancement remains: continuous environmental sensing and wireless
transmission to the agent, particularly from power-hungry and high-
bandwidth cameras required for visual understanding [28]. To enable
passive, intelligent sensing for applications like memory enhancement
without constant battery drain, smarter sensing strategies are required.

We hypothesize that inexpensive sensing modalities (e.g., audio from
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a microphone) will be readily available in future smart glasses and can
be leveraged to effectively trigger capture of imagery from the camera.
Prior research underscores the significance of hand-object interactions
(HOIs) in shaping our memories, emphasizing that bodily engagement,
particularly involving our hands, plays a crucial role in how we encode,
recall, and structure key life experiences [24]. Audio cues, such as
those indicating an HOI, can therefore serve as reliable indicators for
moments when capturing visual information is most pertinent.

Building on this insight, we introduce EgoTrigger, an energy-
efficient approach for episodic memory enhancement using audio-gated
visual capture. EgoTrigger employs a lightweight audio classification
model to detect salient audio events (e.g., HOI sounds like opening a
medication bottle) and trigger brief camera captures. This selective
capture strategy significantly reduces the need for continuous camera
operation, maintaining performance on challenging human memory
enhancement baselines. Our evaluations show EgoTrigger is capable
of using 54% fewer frames on average while achieving comparable per-
formance on downstream episodic memory question-answering tasks
compared to continuous capture and fixed decimation baselines.

The primary contributions of this work are:
• We present EgoTrigger, a novel framework that uses audio cues

from hand-object interactions (HOIs) to intelligently gate power-
intensive cameras, such as those that would be a part of smart
glasses. We validate its practical viability through an analysis
of HOI audio event detection, its robustness to environmental
noise, and a real-world assessment of its false positive rate on
continuous video streams.

• We demonstrate that this audio-driven strategy reduces required
visual frames by 54% on average while maintaining downstream
episodic memory task performance within 2% of continuous cap-
ture, achieving a near Pareto-optimal balance between utility and
energy savings.

• We introduce and release the Human Memory Enhancement
Question-Answer (HME-QA) dataset, the first multimodal ego-
centric QA dataset curated for HOI-centric scenarios with guaran-
teed, paired audio, to facilitate future research.

Our code and access to the HME-QA dataset annotations can be
found on our project page: https://egotrigger.github.io/

2 RELATED WORK

Energy-Efficient Sensing for Wearables. Wearable, network con-
nected devices have become increasingly prevalent in our daily lives
and typically feature a battery that needs to be recharged [38]. Such de-
vices, which most commonly include smart watches today, are expected
to last all day akin to our smartphones [28] in order to be usable. Prior
works on improving energy-efficiency in wearables include device-
specific optimization [26], energy harvesting [4], and adaptive device
management frameworks [30, 39, 46]. Frameworks like AdaSense [39]
and SmartAPM [30] have demonstrated significant energy savings in
wearables by dynamically adjusting sensor sampling rates and lever-
aging deep reinforcement learning for power management, achieving
up to 51% and 36% energy reductions respectively while preserving
user experience. Approaches specific to device capabilities such as
imaging have also been explored - for example, event cameras offer
compelling advantages such as low latency, high dynamic range, and
reduced power consumption, but are currently hindered by challenges
including high costs, limited availability, and the need for specialized
algorithms [7].

Smart glasses in particular face significant energy constraints due
to their compact form factors, limited battery capacities, and the con-
tinuous operation of power-intensive sensors like cameras [6]. These
constraints continue to be limiting for present day devices, such as the
Vuzix M400 [11] and Ray-Ban Meta [42], typically requiring some
kind of "split compute" system across a separate phone or puck in
order to enable meaningful user experiences with resource-constrained
smart glasses. Researchers have optimized energy use in XR devices
from the perspective that such devices will feature power-hungry dis-
plays that subsequently can be optimized using perceptually guided

techniques such as adaptive shading, adaptive frame rates, luminance
clipping, and color foveation [9, 25]. A co-optimization framework
that balances energy consumption, latency, and accuracy in specific
tasks such as scene reconstruction [49] has also been proposed and
shows promise for holistic system design in energy-constrained XR
applications. Lastly, approaches such as the intent-driven arbitration
framework by Gonzalez et al. [19] leverage pose and sensor data to en-
able energy-efficient XR interactions by seamlessly switching between
devices—such as smartphones, tablets, and smartwatches—based on
user gaze and proximity.

In contrast to prior works, EgoTrigger targets the usage of a less
expensive, common sensing modality, audio from a microphone, in
order to effectively gate image capture via pertinent audio cues (e.g.,
hand-object interaction audio cues). This enables energy savings specif-
ically for vision-centric smart glasses capable of passive, intelligent
sensing and human memory enhancement, without requiring contin-
uous multimodal sensing or sacrificing too much downstream task
performance.
Audio-based Context Recognition. Audio-based context recognition
has become a pivotal component in wearable and egocentric computing,
enabling devices to infer user activities and environmental cues with
minimal energy consumption. Foundational tools like openSMILE [16],
AudioSet [18], and YAMNet [22] have been instrumental in classifying
a wide range of audio events, from environmental sounds to speech
and emotion detection. Models inspired by such tools are particu-
larly valuable for resource-constrained devices due to their lightweight
architectures and real-time processing capabilities.

Recent advancements have focused on integrating audio with visual
data to enhance context recognition, especially in egocentric settings.
For instance, EPIC-Fusion [27] employs mid-level fusion of audio,
RGB, and optical flow modalities to improve action recognition in
first-person videos. Listen to Look [17], a framework that leverages
audio as a preview mechanism to reduce visual redundancy in action
recognition tasks, enables efficient recognition by distilling video fea-
tures from a single frame and its accompanying audio. Furthermore,
foundation models like Qwen-Audio [10] have demonstrated strong
performance across tasks such as audio classification, speech recog-
nition, and emotion recognition, indicating their potential for robust
audio understanding in diverse applications.

Prior works underscore the importance of audio as a low-power,
informative modality for context recognition in wearable devices. By
leveraging audio cues, systems like our proposed EgoTrigger can effi-
ciently manage sensor activation, reducing energy consumption while
maintaining performance in applications such as human memory en-
hancement.
Human Memory Enhancement from Egocentric Data. Research
on egocentric data, which most commonly involves visual data, has
increasingly focused on memory augmentation, leveraging wearable
devices to capture and retrieve personal experiences. Datasets like
Ego4D [20] and an extension of its episodic memory benchmark QA-
Ego4D [5] provide extensive egocentric video data paired with question-
answer annotations, supporting models that can answer queries such
as "Where did I leave my keys?". Building on this, Encode-Store-
Retrieve [45] introduces a system that encodes egocentric videos into
language representations stored in a vector database, enabling efficient
natural language querying and outperforming traditional models in
episodic recall tasks.

Computationally efficient approaches that leverage less expensive
sensor modalities, such as IMU in the case of EgoDistill [47] and audio
in the case of Listen to Look [17], aim to reduce visual redundancy
and enhance action recognition in egocentric videos. Additionally,
emerging datasets such as EgoSchema [35], EgoTempo [37], and Ego-
Life [50] aim to provide richer contextual information, including tem-
poral dynamics and daily activity patterns, to support the development
of more robust memory augmentation systems. These advancements
highlight the potential of integrating multimodal egocentric data to
create personalized, efficient, and context-aware memory aids.

In this paper, our proposed system, EgoTrigger, advances the vision
of all-day human memory enhancement by using lightweight audio
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Fig. 2: EgoTrigger. Our approach focuses on audio from smart glasses that are processed by a pre-trained YAMNet model to extract 1024-
dimensional embeddings, which are passed through a 4-layer dense network that serves as our custom, binary classification head. The resulting
class probabilities for C0 (indicates no hand-object interaction, or HOI) and C1 (HOI) are used to trigger image capture, enabling gated visual sensing
based on salient HOI audio events.

classification capable of on-device usage to selectively trigger image
capture during hand-object interaction moments, which in turn serve
as key cues for episodic memory and subsequently reduce the need for
continuous visual sensing while maintaining downstream performance
for human memory enhancement.

3 OUR APPROACH

3.1 EgoTrigger
We hypothesize that inexpensive sensing modalities (e.g., audio from
a microphone) will be readily available in future smart glasses and
can be leveraged to effectively trigger capture of imagery from the
camera. Prior research underscores the significance of hand-object
interactions (HOIs) in shaping our memories, emphasizing that bodily
engagement, particularly involving our hands, plays a crucial role in
how we encode, recall, and structure key life experiences [24]. Our
approach centers on utilizing audio cues characteristic of Hand-Object
Interactions (HOI) as a trigger mechanism for egocentric data capture.
The core component is a binary audio classifier, fθ , parameterized
by θ , trained to differentiate between audio segments containing HOI
events (C1) and those without HOI events (C0). This classifier forms
the foundation of our EgoTrigger system. EgoTrigger processes a
continuous audio stream X by applying fθ within a sliding window
framework. Specifically, it analyzes short, overlapping audio segments
xt extracted from X at time intervals corresponding to the window hop.
Let wd be the window duration (e.g., 4 seconds) and wh be the hop size
(e.g., 2 seconds).

xi = X [i ·wh : i ·wh +wd ]

The classifier outputs the posterior probability:

P(C1 | xi) = fθ (xi)

EgoTrigger activates a designated function when this probability
exceeds a predefined threshold τ:

P(C1 | xi)≥ τ

This provides contextually relevant activation based on audible user
interactions. EgoTrigger then translates the classifier’s output into
practical event triggers. When P(C1 | xi) ≥ τ , the system enters an
active state. Two primary control strategies manage this state. The first
employs a fixed ‘OFF’ duration, Tf ixed (e.g., 1 second). If the trigger
activates at the start time tstart = i ·wh of window i, the system remains
active for the interval:

[tstart , tstart +Tf ixed ]

The second strategy uses hysteresis with distinct ‘ON’ and
‘OFF’ thresholds, τon and τo f f respectively, where τon > τo f f (e.g.,
τon = 0.8, τo f f = 0.7). The system state St ∈ {ON,OFF} at time t is

updated based on the classifier’s output using the following hysteresis
rule:

St =




ON, if St−1 = OFF and P(C1 | xt)≥ τon

OFF, if St−1 = ON and P(C1 | xt)< τo f f
St−1, otherwise

This prevents rapid state changes due to minor probability fluctua-
tions. Both strategies output time intervals:

[tstart , tstop]

defining periods of system activation for reference.
As a part of our evaluation in Section 6.1, we evaluate EgoTrigger’s

ability to differentiate between audio segments containing HOI events
(C1) and those without HOI events (C0), additionally taking into ac-
count weighted results due to the inherent class imbalances to most
egocentric datasets involving audio. We also analyze trigger robust-
ness and false positives, including provision of a false positive rate.
In Section 6.2, we evaluate on the episodic memory task using both the
fixed ‘OFF’ duration, Tf ixed , strategy and the hysteresis with distinct
‘ON’ and ‘OFF’ thresholds strategy in contrast to continuous capture
and fixed decimation baselines.

3.2 Implementation
The classifier fθ was implemented using TensorFlow [14], leveraging
transfer learning from a pretrained YAMNet [22] model. The final
classification layer of YAMNet was replaced with a custom four-layer
dense network, fine-tuned for binary hand-object interaction (HOI)
detection (C1 vs C0). The classifier head consists of a sequence of fully
connected layers with ReLU activations and dropout for regularization:
1024 → 256 → 384 → 192 → 384 → 2, with dropout rates of 0.15,
0.2, 0.25, and 0.2 respectively after each hidden layer.

At training time, input audio segments are pre-processed via a stan-
dardized pipeline that includes YAMNet as a base model to extract
embeddings. This process includes conversion to mono, resampling
to a target sampling rate Fs = 16 kHz, and amplitude normalization to
the range [−1.0, 1.0]. The model outputs logits z = [z0,z1], which are
converted to class probabilities using the softmax function:

P(Ck | xi) =
ezk

ez0 + ez1
, k ∈ {0,1}

A decision threshold τ (e.g., τ = 0.4) is then applied to P(C1 | xi)
to determine whether to activate the image capture trigger. We train
EgoTrigger using the binary cross-entropy loss:

L =− [y log fθ (x)+(1− y) log(1− fθ (x))]

where y ∈ {0,1} is the ground-truth label indicating the presence
(C1) or absence (C0) of a hand-object interaction, and fθ (x) is the
predicted probability of C1.
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In order to train EgoTrigger, we used a subset of the Ego4DSounds
dataset from [8]. Ego4DSounds is derived from Ego4D [20], an existing
large-scale egocentric video dataset, and contains video clips spanning
hundreds of different scenes and actions. Clips have a high action-
audio correspondence and contain time-stamped narrations indicating
actions performed by the camera-wearer, making them an excellent
candidate to build training and test data for our particular classification
task. We randomly sampled approximately 14,000 audio waveform
files for training and approximately 2,300 samples for testing. Using
Gemini 1.5 Pro, we additionally ran an audio understanding pass on
all samples in order to annotate them with a label, based on both the
audio and corresponding narration, indicating whether or not the audio
sample corresponded to a hand-object interaction (HOI). We include
further details regarding this process, including the prompt we utilized,
in our supplementary materials. To address class imbalance in the
Ego4DSounds dataset—where hand-object interaction (HOI) events
can dominate—we applied a class weighting strategy. Class weights
were computed from training set frequencies, resulting in a weight
of w0 = 5.6577 for the negative class (C0) and w1 = 0.5485 for the
positive class (C1). These weights were incorporated directly into the
loss function.

For deployment, particularly targeting resource-constrained edge
devices, the TensorFlow model was converted to the TensorFlow Lite
(TFLite) format [12], more recently known as LiteRT. Default opti-
mizations were applied to enhance efficiency. This resulted in a model
size reduction of 86.23%, bringing the model size from 23.60MB to
3.77MB. Additionally, it should be noted that YAMNet-based models
and the LiteRT optimized variants are highly capable of being deployed
on-device, with prior task benchmarks indicating an average latency on
a mobile device using CPU / GPU being 12.29 milliseconds [15]. This
can be further optimized by the usage of known techniques, such as
streaming convolutions [44] or quantization [32] that enables usage on
specific hardware components such as the "low power island" of the
AR1 Gen1 [41].

4 HME-QA
4.1 Motivation
Recent advancements in egocentric datasets, notably Ego4D [20],
have catalyzed the development of task-specific extensions aimed
at enhancing various aspects of video understanding. For in-
stance, EgoSchema [35] focuses on long-form video question an-
swering, requiring models to comprehend extended temporal contexts.
EgoTempo [37] emphasizes temporal reasoning capabilities, challeng-
ing models to integrate information across entire videos. Additionally,
datasets like QA-Ego4D [5] extend Ego4D’s tasks by pairing egocen-
tric videos with natural language questions and answers, facilitating
research in natural language query (NLQ) understanding.

Despite the richness of these datasets, a significant limitation persists:
the lack of comprehensive audio data and corresponding QA pairs.
Audio cues can be crucial for tasks involving hand-object interactions
(HOI), which are central to our approach. An analysis of the QA-
Ego4D dataset reveals that nearly 40% of its test split videos lack audio
tracks, rendering them unusable for audio-centric research. This gap
underscores the necessity for a curated dataset that ensures the presence
of meaningful audio, thereby enabling more robust exploration of
multimodal egocentric data.

4.2 Dataset
To address this limitation, we curated the HME-QA dataset, focusing
on videos that encompass both high-quality audio and IMU modali-
ties within the episodic memory benchmark of Ego4D. Our curation
process began by filtering the Ego4D dataset to identify 82 full-length
videos containing complete narrations and moments annotations. We
then employed FFMPEG to verify the presence of actual audio tracks,
resulting in a refined set of 50 valid videos. For these 50 videos, we
utilized Gemini 2.0 Flash to generate initial question-answer pairs, em-
phasizing semantic relevance to the camera wearer’s interactions. These
AI-generated pairs underwent meticulous review by an expert annota-
tor specializing in egocentric video datasets. The annotator discarded

low-quality pairs and retained those deemed high-quality, culminating
in a collection of 340 question-answer pairs.

The HME-QA dataset comprises 50 full-length Ego4D videos, on
average 12 minutes in duration, with some extending up to 30 minutes.
This dataset can serve as a valuable resource for advancing research
in human memory enhancement through multimodal egocentric data,
with a focus on ensuring high quality audio data is available in videos
utilized for evaluation.

QA-Ego4D

HME-QA

Q: Where did I leave my medication?
A: In the fridge drawer.

Q: In what location did I see the car?
A: Inside the house.

Fig. 3: Sample QA Pairs from Datasets. Example question-answer
pairs from QA-Ego4D (top) and HME-QA (bottom), each paired with the
relevant image sequence from which the answer is derived.

5 EXPERIMENTAL SETUP

We trained the EgoTrigger audio classifier using a batch size of 64,
categorical cross-entropy loss, and the AdamW [31, 33] optimizer with
a learning rate η = 3×10−3 and weight decay λ = 0.01. Training was
conducted for 50 epochs. Model performance on the Ego4DSounds test
set was evaluated using standard classification metrics: precision (Pr),
recall (Re), and F1-score, defined as F1 =

2·Pr·Re
Pr+Re . We analyzed perfor-

mance trade-offs across various decision thresholds τ through Figure 4.
For evaluation, we performed the same filtering of videos for audio

done in Section 4 for the QA-Ego4D dataset - taking us from an initial
test set comprised of 1854 QA pairs across 166 unique videos to a final
test set comprised of 1071 QA pairs across 104 unique videos. We
paired these processed videos with their corresponding question-answer
pairs and used a large language model (LLM) to score the correctness
of predicted answers. Following prior work [29,34,37,40], we adopted
an LLM-as-a-judge evaluation protocol. Specifically, we employed
Gemini models with a fixed seed of 1337 and a temperature of 0.2
to ensure consistent results. For generating answers from processed
videos and questions, we utilized Gemini 1.5 Pro, while for judging
we utilized Gemini 1.5 Pro in a separate pass. To isolate attention and
ensure precise evaluation, each prompt contained a single question
paired with its corresponding video segment. Further details, including
the exact prompts used, are provided in the supplementary materials.

6 EVALUATION

6.1 Performance Evaluation of EgoTrigger
We evaluate EgoTrigger’s ability to detect hand-object interaction
(HOI) events by comparing several strategies to handle the imbalanced
Ego4DSounds test set, with detailed results shown in Tab. 1. Our base-
line approach using class weights achieves strong performance on the
positive majority class (C1), attaining an F1-score of 0.91. However,
performance on the negative minority class (C0) is poor, with an F1-
score of only 0.15. To address this, we implemented an oversampling
strategy using SMOTE. This approach dramatically improves perfor-
mance for the minority class, boosting the F1-score for C0 from 0.15 to

Authorized licensed use limited to: Stanford University Libraries. Downloaded on January 24,2026 at 01:25:30 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 31, NO. 11, NOVEMBER 20259724

0.54, while maintaining excellent performance on C1 (0.90 F1-score).
This results in a superior overall model, increasing the weighted aver-
age F1-score from 0.83 to 0.86. For completeness, we also evaluated
random undersampling, which improved the C0 F1-score to 0.47 but
degraded the C1 F1-score significantly, lowering the overall weighted
average. Given these results, we will adopt the model trained with
SMOTE for our subsequent experiments.

Table 1: HOI Classification Performance. Evaluation of binary hand-
object interaction (HOI) classification on the test set using three different
training strategies. The support numbers remain constant as resampling
is only applied to training data.

Strategy Class Prec. Recall F1 Supp.

Class Weights
(Original)

C0 (No HOI) 0.17 0.14 0.15 251
C1 (HOI) 0.90 0.92 0.91 2095
Weighted Avg 0.82 0.84 0.83 2346

Oversampling
(SMOTE)

C0 (No HOI) 0.46 0.65 0.54 251
C1 (HOI) 0.93 0.87 0.90 2095
Weighted Avg 0.88 0.85 0.86 2346

Undersampling
(Random)

C0 (No HOI) 0.35 0.70 0.47 251
C1 (HOI) 0.94 0.74 0.83 2095
Weighted Avg 0.88 0.73 0.79 2346

To analyze the effect of the decision threshold τ , we report precision,
recall, and F1-score for class C1 across a range of thresholds in Fig. 4.
Results indicate that EgoTrigger maintains robust F1-scores (≥ 0.9) for
a wide range of thresholds (τ ≤ 0.5), highlighting the reliability of the
classifier across deployment settings. As τ increases, the model favors
precision over recall, enabling applications to trade off between false
positives and false negatives depending on the energy constraints and
tolerance for missed events.

Fig. 4: C1 Metrics vs. Threshold. Precision, recall, and F1-score
for class C1 as a function of decision threshold. Precision remains
high across thresholds, while recall decreases more rapidly. F1-score
peaks near the region where precision and recall are balanced, guiding
threshold selection for optimal tradeoff.

To further assess the robustness and real-world viability of our HOI
trigger, we conducted a series of experiments to quantify its perfor-
mance against non-HOI sounds, additive noise, and in continuous,
uncurated video streams. The results are summarized in Tab. 2.

First, we evaluated the trigger’s specificity by testing it against
two datasets that should not contain HOI events: the standard ESC-
50 environmental sound dataset and a curated (rather than randomly
sampled) subset of Ego4DSounds including human speech. Our trained
model demonstrates high specificity, with a False Positive Rate (FPR)
of only 7.1% on the diverse environmental sounds of ESC-50 and a
very low 2.3% on a version of the Ego4DSounds test set that includes
speech. This indicates that EgoTrigger is well-tuned to HOI sounds
and is not trivially triggered by general ambient noise or conversation.

Second, we tested the trigger’s resilience to noise by adding white
noise to our Ego4DSounds test set at various Signal-to-Noise Ratios
(SNRs). While performance degrades in noisier conditions, the model
maintains a strong weighted F1-score of 0.78 even at a higher noise
level (σ2 = 0.1).

Finally, to evaluate real-world performance, we tested the system on
five full-length videos from our HME-QA dataset, manually identify-
ing false triggers unrelated to human-object interactions. The system
generated an average of 2.4 false positives per minute (FPPM). This
rate allows the system to remain in standby mode most of the time
while avoiding continuous recording, making it viable for practical
deployment despite remaining challenges with noise robustness.

Table 2: Trigger Robustness and False Positive Analysis. False Pos-
itive Rate (FPR) is shown on non-HOI datasets, alongside F1-score
degradation with additive noise and the in-the-wild False Positives Per
Minute (FPPM) rate.

Experiment / Condition Value

Specificity (FPR)
ESC-50 Environmental Sounds 7.1%
Ego4DSounds (Non-HOI Test Clips) 2.3%

Robustness to Noise (F1-score)
Clean (σ2=0) 0.86
Low Noise (σ2 = 0.01) 0.78
High Noise (σ2 = 0.1) 0.59

In-the-Wild Perf. (FPPM)
5 HME-QA Videos (avg. 12 min) 2.4

6.2 Performance on Egocentric QA Datasets
To simulate EgoTrigger-based image capture on input video, we first
processed the input audio waveform using a sliding window approach
with a window duration wd = 4 seconds and a hop size wh = 2 sec-
onds. EgoTrigger includes an offline operation mode that processes
pre-recorded video by simulating trigger behavior using predicted times-
tamps for when image capture would be activated or suppressed. Using
the predicted activation intervals, we generate timestamped JSON files
for each video. These are then used to modify the original videos via
FFMPEG by blacking out all frames that would not have been captured
by EgoTrigger.

We evaluated four approaches—continuous full capture (Full),
naive decimation (Decimated), EgoTrigger with fixed-duration trig-
gering (ET-1s), and EgoTrigger with hysteresis-based control (ET-
Hyst.)—on both the HME-QA and QA-Ego4D datasets. Naive dec-
imation—uniformly dropping frames at fixed intervals—can reduce
bitrate and energy consumption but often sacrifices temporal coherence,
leading to degraded performance on downstream video understanding
tasks [21]. Our naive decimation approach involves processing a video
such that frames are only captured once every five seconds, effectively
operating at 0.2 FPS. On HME-QA, the Full baseline achieved the
highest accuracy at 77.3%. Both EgoTrigger variants maintained more
comparable performance, with ET-1s and ET-Hyst. achieving 75.7%
and 74.7% accuracy, respectively. In contrast, decimation dropped
performance to 71.9%. On QA-Ego4D, the Full approach reached
41.08% accuracy, followed closely by ET-1s (40.1%) and ET-Hyst.
(39.2%), while decimation again underperformed at 34.6%. These
results indicate that EgoTrigger can significantly reduce visual data
while preserving QA performance close to the full capture baseline.
Qualitative examples are shown in Figure 5.

6.3 Performance versus Energy Efficiency
Tables 4 and 5 present a comparative analysis of four image capture
strategies across two egocentric QA datasets: HME-QA and QA-
Ego4D. These include continuous full capture (Full), uniform frame
decimation (Decimated), EgoTrigger with a fixed 1-second OFF du-
ration (ET-1s), and EgoTrigger with a hysteresis-based OFF trigger
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Fig. 5: EgoTrigger QA Results. Sample question-answer outcomes on QA-Ego4D (left) and HME-QA (right) using different video sampling
strategies. EgoTrigger variants preserve key visual content necessary for correct answers while significantly reducing the number of frames,
compared to full or naively decimated baselines.

(ET-Hyst.). Figure 6 contains a visualization of the accuracy versus
frame reduction trade-off.

Table 3: Accuracy (%) across Datasets. Comparison of correctness
(rating ≥ 3) scores across approaches on HME-QA (N = 340) and QA-
Ego4D (N = 1071). The best result is in bold, while the second best result
is underlined.

Approach HME-QA QA-Ego4D

Full 77.3 41.08
Decimated 71.9 34.6
ET-1s 75.7 40.1
ET-Hyst. 74.7 39.2

Across both datasets, EgoTrigger variants consistently reduce frame
usage by a substantial margin while maintaining QA accuracy close to
that of full capture, in contrast to the decimated baseline. For HME-QA,
ET-1s achieves a 54.39% reduction in frames and only a 1.7 percentage
point drop in accuracy compared to Full. Similarly, on QA-Ego4D,
ET-1s reduces frame count by 54.28% with only a 0.98 percentage
point drop in accuracy. In contrast, decimation saves the most frames
(79.5%) but at a greater accuracy cost, especially on QA-Ego4D where
it drops by nearly 6.48 percentage points.

These reductions can translate directly to bitrate savings. ET-1s
approximately halves the bitrate on both datasets (HME-QA: 2.50
Mbps vs. 5.47 Mbps Full; QA-Ego4D: 0.60 Mbps vs. 1.31 Mbps Full).
We inferred these values using black frame durations calculated via
FFMPEG and video file sizes. Black frames replace periods where the
trigger was off, and thus serve as a reliable estimate of when camera
capture can be off and effective data transmission avoided.

7 DISCUSSION

Our evaluation demonstrates the potential of EgoTrigger as an energy-
efficient strategy for capturing visually relevant moments for memory

Table 4: Performance and Efficiency on HME-QA. Comparison of
accuracy, frame reduction, and estimated bitrate across baselines and
EgoTrigger variants on the HME-QA dataset.

Approach Correct (%) Frames Reduced (%) Est. Bitrate (Mbps)

Full 77.3 – 5.47
Decimated 71.9 79.48 1.13
ET-1s 75.7 54.39 2.50
ET-Hyst. 74.7 27.88 3.96

Table 5: Performance and Efficiency on QA-Ego4D. Comparison of
accuracy, frame reduction, and estimated bitrate across baselines and
EgoTrigger variants on the QA-Ego4D dataset.

Approach Correct (%) Frames Reduced (%) Est. Bitrate (Mbps)

Full 41.08 – 1.31
Decimated 34.6 79.41 0.27
ET-1s 40.1 54.28 0.60
ET-Hyst. 39.2 23.22 1.01

enhancement, triggered by audio cues. We now discuss the implications
of our findings, framed around the specific evaluation areas, followed
by limitations and future directions.

7.1 Performance Evaluation of EgoTrigger
The core technical feasibility of our approach hinges on reliably detect-
ing Hand-Object Interactions (HOIs) from audio using a lightweight
model suitable for on-device deployment. Our evaluation (Section 6.1)
confirmed that the fine-tuned YAMNet-based classifier can effectively
identify characteristic HOI sounds within egocentric audio streams,
even amidst significant class imbalance (Tab. 1). This validates the
fundamental premise that salient audio cues can serve as effective trig-
gers for visual capture. Furthermore, the classifier’s robustness across
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various decision thresholds (Fig. 4) suggests practical deployability,
allowing system designers to tune the trade-off between trigger sen-
sitivity (recall) and specificity (precision) based on application needs
and energy constraints. While classification performance on non-HOI
sounds (C0) was lower, the downstream task results indicate that the
positive HOI signal is sufficiently discriminative for the intended mem-
ory enhancement application.

7.2 Performance on Egocentric QA Datasets
The key utility of EgoTrigger lies in its ability to support downstream
applications while reducing resource consumption. Our evaluation
on the HME-QA and QA-Ego4D datasets (Section 6.2) reveals a cru-
cial insight: selectively capturing visual frames around detected HOIs
can preserve the essential information required to answer challeng-
ing episodic memory questions. Both EgoTrigger variants maintained
question-answering correctness remarkably close to that achieved using
the full, continuous video stream (Section 6.3). This outcome contrasts
sharply with naive temporal decimation, which, despite potentially
higher frame reduction, incurred a more significant performance penalty.
This suggests that the context-aware nature of EgoTrigger—focusing
capture on moments of interaction—is substantially more effective at
retaining task-relevant visual details than uniform subsampling. These
findings support the hypothesis that HOIs often coincide with moments
of high visual salience critical for memory encoding and retrieval, at
least for the interaction-centric queries common in egocentric memory
tasks. The evaluation also underscores the value of curated datasets like
HME-QA, which guarantee audio availability for multimodal analysis
(Section 4).

To further analyze these post-trigger recognition characteristics, it is
important to clarify how intermittent video is processed. Our method
does not create disjointed clips; rather, it blacks out frames from the
original continuous video stream (Section 6.2). This means the down-
stream Large Multimodal Model (LMM) receives a video that retains
its original duration and temporal structure, ensuring that the timing
and distance between triggered events remain coherent. Our approach
is effectively "training-free" for the downstream task; no architectural
changes or fine-tuning were performed on the Gemini 1.5 Pro model.
The minimal performance degradation observed between EgoTrigger
and the "Full" capture baseline (e.g., a <2% drop for ET-1s on HME-
QA) can be seen as the empirical answer to how performance fundamen-
tally differs. We attribute this robustness to two factors: 1) the inherent
capability of large foundation models, trained on vast and varied web-
scale data, to perform reasoning with incomplete or sparse information,
and 2) our system’s success in preserving the most information-dense
segments (HOIs) critical for this specific episodic memory task.

7.3 Performance versus Energy-Efficiency
Achieving all-day operation in form-factor constrained smart glasses
necessitates aggressive energy management. The substantial frame
reduction achieved by EgoTrigger (e.g., over 54% reduction for ET-1s,
see Tab. 4, Tab. 5) directly translates to potential energy savings by
minimizing the active time of the most power-hungry components in
the visual pipeline: the camera sensor, image signal processor (ISP),
compression hardware, and wireless transmitter. Given the significant
power draw associated with continuous high-resolution video streaming
(estimated at 770 mW in our analysis, rapidly depleting typical smart
glass batteries), the savings realized by gating these components during
periods deemed less critical by the audio trigger can drastically extend
device longevity.

However, a complete energy analysis must also consider the cost of
the trigger mechanism itself. While EgoTrigger saves power by deacti-
vating the visual pipeline, it requires the audio pipeline (microphone,
front-end processing) and the audio classifier to run continuously or
near-continuously. The energy consumption associated with this – par-
ticularly the on-device model’s inference cost – represents an overhead
compared to a completely idle system. Quantifying this overhead pre-
cisely requires measurements on target hardware, as it depends heavily
on the chosen platform (e.g., specific chipset capabilities like low-power
DSPs or AI accelerators), the final model architecture, and the level

of optimization applied (potentially involving frameworks like TFLite
Micro for highly constrained devices).

Despite this inference cost, the energy savings from selectively de-
activating the significantly more power-intensive visual pipeline are
expected to yield substantial net power reduction compared to contin-
uous visual capture. The favorable position of EgoTrigger variants
on the accuracy-versus-reduction Pareto frontier (Figure 6) indicates a
promising balance. Furthermore, the different triggering strategies (ET-
1s vs. ET-Hyst.) offer tunability, enabling system designers to adapt
the balance between energy conservation and potential information loss
based on specific device limitations and user requirements, paving the
way towards practical all-day assistive smart glasses.

Fig. 6: Accuracy vs. Frame Reduction Tradeoff. EgoTrigger variants
(ET-1s and ET-Hyst.) lie close to the Pareto frontier, balancing QA
accuracy with reduced frame count. Results are shown for both HME-QA
and QA-Ego4D datasets, with dataset indicated by marker shape (circles
for HME-QA, squares for QA-Ego4D) and estimated bitrate reflected by
marker size. Outlined markers highlight our proposed methods. Variant
ET-1s in particular reduces frame usage and subsequently bitrate while
preserving accuracy close to full-frame baselines.

7.4 Empirical Power Consumption Analysis

To empirically validate energy savings, which is infeasible on closed-
platform commercial smart glasses, we constructed a simple hardware
prototype. This system consists of a Raspberry Pi 5, a USB camera, and
a USB microphone, with total power measured using a high-precision
USB multimeter. Using this hardware, we measured the total system
power draw across several key operating states: an idle baseline (0
FPS), our EgoTrigger (ET-1s) approach, a naive decimation baseline,
and two high-power baselines representing continuous capture and
continuous capture with Wi-Fi transmission.

The empirical results in Tab. 6 demonstrate tangible power savings.
Our prototype establishes a 2.37 W idle power floor. From this, the
average power for EgoTrigger is 4.11 W, representing a 17.3% power
reduction compared to the 4.97 W continuous capture baseline. This
shows substantial savings from selective sensing alone. Furthermore,
by reducing captured data by 54%, EgoTrigger avoids the high over-
head of continuous wireless transmission (5.51 W), a critical factor for
enabling all-day battery life. While this prototype provides a valuable
comparison, we note that a commercial product would use a highly op-
timized embedded system (e.g., an MCU or ASIC) with a much lower
absolute power draw. However, we expect the relative energy savings
demonstrated by our selective triggering strategy to be comparable in
such a specialized system.
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Table 6: Empirical Power Analysis. Measured power (Watts) of the
Raspberry Pi 5 prototype, showing total system draw for each operating
state and the contribution of its core components.

Operating Condition / Component Power (W)

System Idle (0 FPS Capture) 2.37
Raspberry Pi 5 System (Idle) 2.20
Microphone (Connected) 0.17

Baseline (Continuous Capture) 4.97
Raspberry Pi 5 System (Processing) 4.20
Microphone (Always-On) 0.17
Camera (Always-On) 0.60

Baseline + Continuous Wi-Fi Tx 5.51
Raspberry Pi 5 System (Proc. + Tx) 4.74
Microphone (Always-On) 0.17
Camera (Always-On) 0.60

Decimated (0.2 FPS) 3.02
Raspberry Pi 5 System (Processing) 2.60
Microphone (Always-On) 0.17
Camera (Gated, Avg.) 0.25

EgoTrigger (ET-1s, Avg. Power) 4.11
Raspberry Pi 5 System (Processing) 3.50
Microphone (Always-On) 0.17
Camera (Gated, Avg.) 0.44

8 LIMITATIONS AND FUTURE WORK

Despite the promising results, our work highlights several limitations
and opens avenues for future investigation:

Hardware Validation, Optimization, and Power Modeling: Our cur-
rent evaluation relied on offline processing of datasets and high-level
energy estimations based on component datasheets and a simple hard-
ware prototype. Validating EgoTrigger on real smart glasses hardware
is essential to measure true end-to-end performance, latency, and power
consumption under real-world conditions. This includes accurately
quantifying the on-device model’s inference cost. Furthermore, deploy-
ing the machine learning model effectively onto resource-constrained
smart glasses hardware will necessitate significant optimization efforts,
potentially leveraging frameworks like TensorFlow Lite Micro (TFLM)
which are designed for such environments, going beyond the TFLite
conversion explored here. Crucially, such optimizations often involve
trade-offs, and the potential impact on model accuracy or other perfor-
mance metrics resulting from these necessary optimization steps has
not been quantified in this study.

Trigger Robustness and Scope: The current system depends exclu-
sively on audible Hand-Object Interactions (HOIs) as triggers. This
limits its applicability in scenarios involving silent actions (e.g., picking
up a soft object), purely visual memories (e.g., observing something
without interaction), or environments with high levels of masking noise
or unfamiliar sounds that could affect trigger accuracy. Future work
should explore integrating complementary low-power sensor modal-
ities. This could include onboard Inertial Measurement Unit (IMU)
data from the glasses to detect motion patterns associated with interac-
tions, or even fusing data streams from other wearable devices the user
might be wearing concurrently, such as smartwatches, fitness trackers,
or potentially IMUs integrated into footwear. Combining these sig-
nals could help detect non-auditory interactions, disambiguate sounds,
and improve overall trigger robustness. Additionally, exploring more
advanced or personalized on-device audio models could enhance ro-
bustness to noise and user-specific interaction sounds. Furthermore,
future work could explore learning audio representations from unla-
beled video, inspired by seminal works like SoundNet [3]. While our
current system relies on a pre-trained YAMNet and supervised fine-
tuning, a cross-modal self-supervised approach could learn more robust
features by leveraging the natural synchronization between visual data
and audio. For example, by using a visual model to detect hand-object

interactions in unlabeled egocentric videos, we could automatically
generate weak labels to train an audio model to recognize the corre-
sponding HOI sounds. This could significantly enhance the trigger’s
robustness across diverse environments and reduce the dependency on
manually curated audio datasets, representing a promising direction for
scalable and adaptive on-device sensing.

Evaluation Scope: While the LLM-based Question-Answering eval-
uation provides valuable insights into downstream task performance, it
should be complemented by real-time user studies. Assessing the prac-
tical usability and effectiveness of EgoTrigger in diverse, real-world
scenarios with human participants is crucial. Exploring integration
with active user interaction models, such as allowing users to explicitly
query their memories or providing feedback via a display, would also
be valuable future directions.

Privacy Considerations: As with any system involving continuous
environmental sensing, particularly audio, careful consideration of user
privacy is paramount. Deploying such technology requires robust safe-
guards, transparent user controls regarding data capture and processing,
and adherence to ethical guidelines to ensure user trust and acceptance.
EgoTrigger shows promise in this direction by gating the transmission
of sensor data unless required by a specific experience - in this case,
particular human-object interactions for human memory enhancement.

Addressing these points will be crucial for realizing the full potential
of passive, intelligent multimodal sensing systems for applications such
as human memory enhancement, through wearable devices such as
smart glasses.

9 CONCLUSION

Enabling all-day human memory enhancement via smart glasses de-
mands solutions to the significant energy cost associated with continu-
ous camera operation. This paper introduced EgoTrigger, an approach
leveraging lightweight audio classification of hand-object interactions
(HOIs) to intelligently trigger selective image capture. Our evalua-
tions demonstrated that EgoTrigger can reduce the number of captured
visual frames by an average of 54% while maintaining comparable
performance on demanding episodic memory question-answering tasks,
significantly outperforming naive decimation strategies. By selectively
activating power-hungry visual sensors primarily when contextually rel-
evant audio cues indicate moments likely critical for memory encoding,
EgoTrigger offers a practical pathway towards realizing energy-efficient
smart glasses capable of passive, all-day sensing. This supports appli-
cations such as helping users recall daily activities or object locations.
The proposed context-aware triggering strategy represents a meaning-
ful step forward for assistive wearable computing, highlighting the
potential of using low-power sensor modalities to intelligently manage
high-power ones.

10 ACKNOWLEDGMENTS

Akshay Paruchuri conducted this research during an internship under
the mentorship of Ishan Chatterjee at Google AR in Seattle, WA, USA.
The authors thank the following colleagues at Google for insightful
discussions around multimodal sensing and energy efficient computing:
Zhihan Zhang, Jake Garrison, Shamik Ganguly, Zixuan Qu, and Anish
Prabhu.

Authorized licensed use limited to: Stanford University Libraries. Downloaded on January 24,2026 at 01:25:30 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 31, NO. 11, NOVEMBER 20259728

REFERENCES

[1] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,
D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023. 1

[2] A. Anthropic. The claude 3 model family: Opus, sonnet, haiku. Claude-3
Model Card, 1:1, 2024. 1

[3] Y. Aytar, C. Vondrick, and A. Torralba. Soundnet: Learning sound repre-
sentations from unlabeled video. Advances in neural information process-
ing systems, 29, 2016. 8

[4] J.-H. Bahk, H. Fang, K. Yazawa, and A. Shakouri. Flexible thermoelectric
materials and device optimization for wearable energy harvesting. Journal
of Materials Chemistry C, 3(40):10362–10374, 2015. 2

[5] L. Bärmann and A. Waibel. Where did i leave my keys?-episodic-memory-
based question answering on egocentric videos. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
1560–1568, 2022. 2, 4

[6] M. Billinghurst and T. Starner. Wearable devices: new ways to manage
information. Computer, 32(1):57–64, 1999. doi: 10.1109/2.738305 1, 2

[7] B. Chakravarthi, A. A. Verma, K. Daniilidis, C. Fermuller, and Y. Yang. Re-
cent event camera innovations: A survey. arXiv preprint arXiv:2408.13627,
2024. 2

[8] C. Chen, P. Peng, A. Baid, Z. Xue, W.-N. Hsu, D. Harwath, and K. Grau-
man. Action2sound: Ambient-aware generation of action sounds from
egocentric videos. In European Conference on Computer Vision, pp.
277–295. Springer, 2024. 4

[9] K. Chen, T. Wan, N. Matsuda, A. Ninan, A. Chapiro, and Q. Sun. Pea-
pods: Perceptual evaluation of algorithms for power optimization in xr
displays. ACM Transactions on Graphics (TOG), 43(4):1–17, 2024. 2

[10] Y. Chu, J. Xu, X. Zhou, Q. Yang, S. Zhang, Z. Yan, C. Zhou, and J. Zhou.
Qwen-audio: Advancing universal audio understanding via unified large-
scale audio-language models. arXiv preprint arXiv:2311.07919, 2023.
2

[11] V. Corporation. Vuzix m400™ smart glasses. Accessed: 2025-04-10. 1, 2
[12] R. David, J. Duke, A. Jain, V. Janapa Reddi, N. Jeffries, J. Li, N. Kreeger,

I. Nappier, M. Natraj, T. Wang, et al. Tensorflow lite micro: Embedded
machine learning for tinyml systems. Proceedings of Machine Learning
and Systems, 3:800–811, 2021. 4

[13] R. W. DeVaul, A. S. Pentland, and V. R. Corey. The memory glasses:
Subliminal vs. overt memory support with imperfect information. In
Proceedings of the 7th IEEE International Symposium on Wearable Com-
puters, ISWC ’03, p. 146. IEEE Computer Society, USA, 2003. 1

[14] T. Developers. Tensorflow. Zenodo, 2022. 3
[15] G. A. Edge. Audio classification guide, 2024. Accessed: 2025-04-11. 4
[16] F. Eyben, M. Wöllmer, and B. Schuller. Opensmile: the munich versatile

and fast open-source audio feature extractor. In Proceedings of the 18th
ACM international conference on Multimedia, pp. 1459–1462, 2010. 2

[17] R. Gao, T.-H. Oh, K. Grauman, and L. Torresani. Listen to look: Action
recognition by previewing audio. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10457–10467, 2020.
2

[18] J. F. Gemmeke, D. P. Ellis, D. Freedman, A. Jansen, W. Lawrence, R. C.
Moore, M. Plakal, and M. Ritter. Audio set: An ontology and human-
labeled dataset for audio events. In 2017 IEEE international conference
on acoustics, speech and signal processing (ICASSP), pp. 776–780. IEEE,
2017. 2

[19] E. J. Gonzalez, I. Chatterjee, M. Gonzalez-Franco, A. Colaço, and
K. Ahuja. Intent-driven input device arbitration for xr. In Extended Ab-
stracts of the CHI Conference on Human Factors in Computing Systems,
pp. 1–5, 2024. 2

[20] K. Grauman, A. Westbury, E. Byrne, Z. Chavis, A. Furnari, R. Girdhar,
J. Hamburger, H. Jiang, M. Liu, X. Liu, et al. Ego4d: Around the world
in 3,000 hours of egocentric video. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 18995–19012,
2022. 2, 4

[21] C. Herglotz, M. Kränzler, R. Ludwig, and A. Kaup. Video decoding
energy reduction using temporal-domain filtering. In Proceedings of the
First International Workshop on Green Multimedia Systems, pp. 22–27,
2023. 5

[22] S. Hershey, S. Chaudhuri, D. P. W. Ellis, J. F. Gemmeke, A. Jansen,
C. Moore, M. Plakal, D. Platt, R. A. Saurous, B. Seybold, M. Slaney,
R. Weiss, and K. Wilson. Cnn architectures for large-scale audio classi-
fication. In International Conference on Acoustics, Speech and Signal

Processing (ICASSP). 2017. 2, 3
[23] J. Hoisko. Context triggered visual episodic memory prosthesis. In

Proceedings of the 4th IEEE International Symposium on Wearable Com-
puters, ISWC ’00, p. 185. IEEE Computer Society, USA, 2000. 1

[24] F. Ianì. Embodied memories: Reviewing the role of the body in memory
processes. Psychonomic bulletin & review, 26(6):1747–1766, 2019. 2, 3

[25] A. Jindal, K. Wolski, K. Myszkowski, and R. K. Mantiuk. Perceptual
model for adaptive local shading and refresh rate. ACM Transactions on
Graphics (TOG), 40(6):1–18, 2021. 2

[26] H. Kalantarian, N. Alshurafa, M. Pourhomayoun, and M. Sarrafzadeh.
Power optimization for wearable devices. In 2015 IEEE International Con-
ference on Pervasive Computing and Communication Workshops (PerCom
Workshops), pp. 568–573. IEEE, 2015. 2

[27] E. Kazakos, A. Nagrani, A. Zisserman, and D. Damen. Epic-fusion: Audio-
visual temporal binding for egocentric action recognition. In Proceedings
of the IEEE/CVF international conference on computer vision, pp. 5492–
5501, 2019. 2

[28] I. Khan, S. Khusro, S. Ali, and J. Ahmad. Sensors are power hungry:
An investigation of smartphone sensors impact on battery power from
lifelogging perspective. Bahria University Journal of Information &
Communication Technology, 9(2):8–19, 2016. 1, 2

[29] M. U. Khattak, M. F. Naeem, J. Hassan, M. Naseer, F. Tombari, F. S.
Khan, and S. Khan. How good is my video lmm? complex video rea-
soning and robustness evaluation suite for video-lmms. arXiv preprint
arXiv:2405.03690, 2024. 4

[30] P. Kindt, D. Yunge, M. Gopp, and S. Chakraborty. Adaptive online power-
management for bluetooth low energy. In 2015 IEEE Conference on
Computer Communications (INFOCOM), pp. 2695–2703. IEEE, 2015. 2

[31] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014. 4

[32] A. Krishna, H. Shankaranarayanan, H. P. Oleti, A. Chauhan, A. van
Schaik, M. Mehendale, and C. S. Thakur. Tinyml acoustic classification
using raman accelerator and neuromorphic cochlea. In 2023 IEEE Asia
Pacific Conference On Postgraduate Research In Microelectronics And
Electronics (PRIMEAsia), pp. 44–45. IEEE, 2023. 4

[33] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. arXiv
preprint arXiv:1711.05101, 2017. 4

[34] M. Maaz, H. Rasheed, S. Khan, and F. S. Khan. Video-chatgpt: Towards
detailed video understanding via large vision and language models. arXiv
preprint arXiv:2306.05424, 2023. 4

[35] K. Mangalam, R. Akshulakov, and J. Malik. Egoschema: A diagnostic
benchmark for very long-form video language understanding. Advances
in Neural Information Processing Systems, 36:46212–46244, 2023. 2, 4

[36] Meta. Introducing orion, our first true augmented reality glasses, Sept.
2024. Accessed: 2025-04-10. 1

[37] C. Plizzari, A. Tonioni, Y. Xian, A. Kulshrestha, and F. Tombari. Omnia
de egotempo: Benchmarking temporal understanding of multi-modal llms
in egocentric videos. arXiv preprint arXiv:2503.13646, 2025. 2, 4

[38] W. B. Qaim, A. Ometov, A. Molinaro, I. Lener, C. Campolo, E. S. Lohan,
and J. Nurmi. Towards energy efficiency in the internet of wearable things:
A systematic review. IEEE Access, 8:175412–175435, 2020. 2

[39] X. Qi, M. Keally, G. Zhou, Y. Li, and Z. Ren. Adasense: Adapting sam-
pling rates for activity recognition in body sensor networks. In 2013 IEEE
19th Real-Time and Embedded Technology and Applications Symposium
(RTAS), pp. 163–172. IEEE, 2013. 2

[40] Y. Qian, H. Zhang, Y. Yang, and Z. Gan. How easy is it to fool your
multimodal llms? an empirical analysis on deceptive prompts. arXiv
preprint arXiv:2402.13220, 2(7), 2024. 4

[41] I. Qualcomm Technologies. Snapdragon ar1 gen 1 platform.
https://www.qualcomm.com/products/mobile/snapdragon/
xr-vr-ar/snapdragon-ar1-gen-1-platform, 2023. Accessed:
2025-04-11. 4

[42] Ray-Ban and Meta. Ray-Ban Meta Smart Glasses. https://www.
ray-ban.com/usa/discover-ray-ban-meta-smart-glasses. Ac-
cessed: 2025-04-07. 1, 2

[43] B. J. Rhodes. The wearable remembrance agent: a system for augmented
memory. In Proceedings of the 1st IEEE International Symposium on
Wearable Computers, ISWC ’97, p. 123. IEEE Computer Society, USA,
1997. 1

[44] O. Rybakov, N. Kononenko, N. Subrahmanya, M. Visontai, and S. Lau-
renzo. Streaming keyword spotting on mobile devices. arXiv preprint
arXiv:2005.06720, 2020. 4

[45] J. Shen, J. J. Dudley, and P. O. Kristensson. Encode-store-retrieve: Aug-

Authorized licensed use limited to: Stanford University Libraries. Downloaded on January 24,2026 at 01:25:30 UTC from IEEE Xplore.  Restrictions apply. 



9729paruchuri ET AL.: EGOTRIGGER: TOWARD AUDIO-DRIVEN IMAGE CAPTURE FOR HUMAN MEMORY ENHANCEMENT...

menting human memory through language-encoded egocentric perception.
In 2024 IEEE International Symposium on Mixed and Augmented Reality
(ISMAR), pp. 923–931. IEEE, 2024. 2

[46] R. Sunder, U. K. Lilhore, A. K. Rai, E. Ghith, M. Tlija, S. Simaiya, and
A. H. Majeed. Smartapm framework for adaptive power management in
wearable devices using deep reinforcement learning. Scientific Reports,
15(1):6911, 2025. 2

[47] S. Tan, T. Nagarajan, and K. Grauman. Egodistill: Egocentric head
motion distillation for efficient video understanding. Advances in Neural
Information Processing Systems, 36:33485–33498, 2023. 2

[48] G. Team, R. Anil, S. Borgeaud, J.-B. Alayrac, J. Yu, R. Soricut, J. Schalk-
wyk, A. M. Dai, A. Hauth, K. Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023. 1

[49] B. Tian, Y. Pang, M. Huzaifa, S. Wang, and S. Adve. Towards energy-
efficiency by navigating the trilemma of energy, latency, and accuracy. In
2024 IEEE International Symposium on Mixed and Augmented Reality
(ISMAR), pp. 913–922. IEEE, 2024. 2

[50] J. Yang, S. Liu, H. Guo, Y. Dong, X. Zhang, S. Zhang, P. Wang, Z. Zhou,
B. Xie, Z. Wang, et al. Egolife: Towards egocentric life assistant. arXiv
preprint arXiv:2503.03803, 2025. 2

Authorized licensed use limited to: Stanford University Libraries. Downloaded on January 24,2026 at 01:25:30 UTC from IEEE Xplore.  Restrictions apply. 


