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ABSTRACT

This paper presents the first study of grokking in practical LLM pretraining. Specif-
ically, we investigate when an LLM memorizes the training data, when its gener-
alization on downstream tasks starts to improve, and what happens if there is a lag
between the two. Unlike existing works studying when a small model generalizes
to limited and specified tasks during thousands epochs’ training on algorithmic
data, we focus on a practical setting for LLMs, i.e., near single-pass pretraining of
next-token prediction on a cross-domain, large-scale corpus, and generalization on
diverse benchmark tasks covering math/commonsense reasoning, code generation,
and domain-specific retrieval. Our study, for the first time, verifies that grokking still
emerges in pretraining mixture-of-experts (MoE) LLMs, though different local data
groups may enter their grokking stages asynchronously due to the heterogeneity
of their distributions and attributions to others. To find a mechanistic interpretation
of this local grokking, we investigate the dynamics of training data’s pathways
(i.e., expert choices across layers in MoE). Our primary discovery is that the path-
ways evolve from random, non-smooth across layers, instance-specific to more
structured and transferable across samples, despite the converged pretraining loss.
This depicts a transition from memorization to generalization. Two novel metrics
are developed to quantify these patterns: one computes the pathway similarity
between samples, while the other measures the consistency of aggregated experts
between subsequent layers for each sample. These training data based metrics in-
duce near zero cost but can faithfully track and monitor the generalization of LLMs
on downstream tasks, reducing reliance on costly instruction tuning and benchmark
evaluations. We also ground our findings in a theoretical analysis of one-layer
MoE, showing that more structured pathways improve the generalization bound.

1 INTRODUCTION

Large language models (LLMs) with Transformer (Vaswani et al., 2017) architectures have demon-
strated that pretraining for a general-purpose task such as autoregressive prediction on a large corpus
can gain powerful generalization across diverse downstream tasks and domains (Brown et al., 2020;
Touvron et al., 2023; Bai et al., 2023; Zhao et al., 2025). Capabilities such as prompting (Wei et al.,
2023), reasoning (Huang & Chang, 2023; Ahn et al., 2024), and in-context learning also emerge
during training. However, a counter-intuitive “grokking” (Power et al., 2022; Nanda et al., 2023; Tan
& Huang, 2024; Lv et al., 2025) has been widely observed in training Transformer models: the gener-
alization starts to improve or even sharply rises long after training loss converged or plateaued—an
indicator of overfitting in conventional machine learning. While grokking indicates a transition from
memorization to generalization (Huang et al., 2024), it challenges our fundamental understanding of
training dynamics and the underlying mechanism of generalization.

Despite recent attempts to explain the generalization induced by grokking, they have been largely
confined to small models trained for hundreds to thousands of epochs on algorithm-synthesized
small-scale data with generalization to limited and highly specified tasks (Power et al., 2022; Liu
et al., 2022a; Nanda et al., 2023; Merrill et al., 2023; Humayun et al., 2024; DeMoss et al., 2024;
Prieto et al., 2025). Instead, LLMs’ pre-training often takes only one epoch on a web-scale corpus of
heterogeneous, cross-domain data that usually contains noise, imbalance, and redundancy (Brown
et al., 2020; Zhao et al., 2025). Hence, LLMs’ learning dynamics can vary drastically across different
data, leaving whether grokking still emerges in LLM pretraining an open problem. It is also unclear
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whether and when different data are memorized with converged loss, and, whether they are memorized
at the same time. Moreover, without the repeated replay of the same data and a decrease in loss, the
conversion from memorizing training tokens to generalizing on downstream tasks remains mysterious:
When does the model start to generalize to different tasks? Is memorization a prerequisite? How does
generalization performance change after memorization?

Unfortunately, these questions cannot be answered by the dynamics of pretraining loss since the
generalization performance can still vary after the loss plateaued, as observed in previous studies
of grokking (Power et al., 2022; Nanda et al., 2023). For LLMs, it is also practically expensive to
monitor its generalization performance during pretraining, since the model has to be finetuned to gain
instruction-following capability before being evaluated on downstream tasks. Hence, developing an
efficient-to-compute metric to accurately track the generalization can offer critical insights on better
understanding and improving the pretraining of LLMs.

Main Contributions In this paper, we investigate the training dynamics and grokking in LLM pre-
training for a mechanistic interpretation of its emergent generalization on downstream tasks. Our study
is conducted on the open-sourced pretraining checkpoints of a 7B mixture-of-experts (MoE) LLM,
OLMoE (Muennighoff et al., 2024). While our study mainly focuses on OLMoE, its pretraining and
evaluation setups are common among other LLMs. For the first time, we verify the existence of local
grokking during LLM pretraining. However, unlike the previously observed global and synchronous
grokking for most data (Power et al., 2022; Merrill et al., 2023; Nanda et al., 2023), LLM memorizes
domains/groups of training data at different training steps and takes varying amounts of steps to
generalize to related benchmark tasks. The starting time and lasting steps of such local grokking
vary across data groups. As a result, generalization performance is usually unstable during the earlier
pretraining stages but starts to steadily improve once sufficient data have been memorized. This local
difference also reflects data difficulty: the later memorized data group often takes longer to generalize.

Another primary challenge is to explain how the continual pretraining after memorization completed
leads to the delayed sharp rise of the generalization performance. To investigate the mechanism
of memorization-to-generalization transition, we explore internal states of LLMs track their major
changes after loss converges. Specifically, we study how the pathways (the expert choices across
layers for training samples) in OLMoE change. We introduce two metrics to measure their complexity
how it changes over time: (1) the edit distance between different samples’ pathways; and (2) the
consistency of selected experts’ embedding between consecutive layers for each sample.

Our empirical analysis on four domains reveals a prominent trend of the pathway complexity during
grokking: the edit distance declines and the consistency increases, despite the converged training
loss and more data being learned. This change in pathway complexity reflects a transition to smarter
memorization: it keeps discovering more transferable knowledge across samples to encode data
more efficiently. It explains why generalization improves with plateaued training loss: the model
keeps finding more generalizable and shareable structures to memorize training data. Additionally,
we provide a theoretical explanation relating the pathway complexity to a generalization bound of
a one-layer MoE. Practically, the two metrics show strong correlations with the evaluation results
on standard benchmarks after instruction finetuning. Therefore, they provide a zero-cost, finetuning
and benchmark evaluation-free tool to monitor generalization during pretraining, which is critical
to LLM developers and practitioners. These discoveries take the first step toward bridging the gaps
of understanding grokking and memorization-to-generalization transition in LLM pretraining. Our
key findings and contributions can be summarized as:

• Grokking still occurs during the near single-pass pretraining of practical-scale LLMs, but it is local
and asynchronous for different data groups, unlike global grokking for all data in previous works.

• Grokking’s memorization-to-generalization transition can be explained by the dynamics of
pathways in MoE: pathway similarity between samples and consistency across layers increase.
A theoretical connection is also built between the pathway complexity and a generalization bound.

• The two metrics we developed to measure pathway complexity provide a finetuning and
evaluation-free tool with almost zero cost to monitor the generalization during LLM pretraining.

2 RELATED WORK

Previous studies on grokking have primarily focused on relatively small models and simplistic
tasks. Grokking was first identified by Power et al. (2022), who observed the phenomenon using a
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two-layer transformer trained on a small-scale algorithmic dataset. Subsequent investigations have
extended these findings to shallow transformers and densely connected networks (Nanda et al., 2023;
Notsawo Jr et al., 2023; Merrill et al., 2023; Liu et al., 2022b; Fan et al., 2024), and CNNs (Humayun
et al., 2024). Notably, all aforementioned studies employ multi-epoch training paradigms, which
differ substantially from the one-pass training approach typical in LLM pretraining. Although Lv
et al. (2025) examined grokking behavior using a 162M parameter transformer pretrained on 40
billion tokens for a copying task, the scale of their model, dataset, and the simplicity of the task
remain distant from practical, real-world scenarios. In contrast, our study is the first to investigate
grokking in a 7-billion parameter LLM across diverse and practical tasks, including mathematical
reasoning, code generation, commonsense understanding, and domain-specific knowledge retrieval.

Several works have focused on revealing the mechanisms behind grokking behavior. Liu et al.
(2022a) demonstrated in a simplified setting that grokking results from structured representations
emerging during training. Nanda et al. (2023) further revealed that grokking can be attributed to
the gradual amplification of structured mechanisms encoded within model weights. Wang et al.
(2024) showed that even small Transformers trained from scratch on synthetic reasoning tasks
exhibit a grokking-driven emergence of implicit reasoning, where generalization arises only after
extended overfitting and internal structure formation. Using a single-layer ReLU network, Merrill
et al. (2023) associated grokking with subnetwork sparsity. Meanwhile, Humayun et al. (2024)
observed that decision boundaries become smoother during the grokking phase in CNN classification
tasks. Beyond interpretability-focused research, Notsawo Jr et al. (2023) identified oscillatory
patterns in early training loss as predictors of subsequent grokking phenomena. Distinct from these
works, our research provides an explanation of grokking within significantly larger LLMs through
an interpretative analysis of MoE architectures. Additionally, we introduce practical indicators for
monitoring generative behavior throughout LLM pretraining.

3 GROKKING (DELAYED GENERALIZATION) IN LLM PRETRAINING

While most existing works study grokking of small models on specified algorithmic tasks, investigat-
ing similar phenomena in LLM pretraining poses several new unique challenges, which inherently
motivate several designs in our experimental settings.

• Training-test evaluation gap: most LLMs are trained for the next token(s) prediction while
evaluated on diverse benchmark tasks, making the conventional comparison between training and
test loss/accuracy invalid. Hence, we need to adapt the definition of grokking to the LLM setting.

• Heterogeneous, web-sourced, cross-domain training data: While previous grokking studies
focus on clean training data with the same distribution/format, most LLMs are pretrained on het-
erogeneous, cross-domain, web-sourced data that contain redundant, contaminated, or imbalanced
samples. Hence, their loss may converge at different rates and pose distinct effects on downstream
tasks. To address these challenges, we carefully filter and group the data in our analysis.

• Generalization to diverse downstream tasks: Previous studies of grokking focus on general-
ization to highly-specified and limited tasks, while practical LLMs are expected to generalize
to arbitrary tasks or domains via prompting. Hence, LLMs’ generalization behaviors may vary
drastically across different downstream tasks/benchmarks and difficulty levels during pretraining.

• Near single-pass pretraining: Most LLMs’ pretraining only takes approximately one epoch, so
the model has been trained only once on each sample, and its training loss may even converge
before visiting later data. However, such “memorization” of unseen data is not caused by overfitting
or repeated replay. Instead, it reflects the interpolation or composition of learned data, which might
be counted as “generalization” in previous works but differs from the emergent generalization
of LLMs on new tasks.

3.1 STUDY TRAINING DYNAMICS OF LLM PRETRAINING

Memorization is measured by the pretraining objective. Next token prediction (NTP) is the
most widely adopted pretraining objective for LLMs. Let the pretraining corpus be Dtrain, it aims to
minimize the negative log-likelihood (NLL) of each token xi,j given previous tokens xi,<j in a text

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

sequence xi = (xi,1, . . . , xi,|j|) drawn from Dtrain:

ℓi(θ) = − 1

|xi|

|xi|∑
j=1

log pθ(xi,j |xi,<j) . (1)

Since ℓi(θ) directly measures how the model memorizes each token in xi, we will track it in
the pretraining process and identify the sample with consistently small and converged loss across
checkpoints as memorized. Specifically, for a sample xi with loss ℓi(θt) at pretraining step t, we
identify it as memorized since step t∗i if ℓi(θt) ≤ ε and |ℓi(θt)− ℓi(θT )| ≤ δ for all t ≥ t∗i , where ε
is a small threshold, δ enforces stability over time, and T indexes the final pretraining checkpoint.
In Appendix E.3, We verify that varying ε and δ does not change the post-memorization behavior
analyzed in Section 4.

Generalization is measured on standard benchmarks after instruction tuning. As foundation
models with various emergent capabilities, LLMs are expected to generalize to an open set of unseen
tasks through simple prompting/instructions. Hence, their generalization performance is usually
measured across standard benchmarks defined on diverse downstream tasks. To equip a pretrained
LLM θ with the instruction-following capability, an instruction tuning algorithm AIT further finetunes
θ on a dataset DIT. The generalization performance on benchmark-i is then measured by

Gi = Evali(θIT , Di), θIT = AIT(θ,DIT), (2)

where Di is the dataset in benchmark-i and Evali defines the corresponding evaluation metric, which
varies across benchmarks for different types of tasks. For example, accuracy is usually used in
multi-choice QA tasks while BLEU/ROUGE scores are used in summarization and generation tasks.
For code generation tasks, the generalization performance is usually measured by unit tests, where a
test case is considered correct if the generated code can pass the unit tests.

Grokking refers to delayed generalization improvement after memorization is completed.
Following the same spirit of previous works on grokking, we mainly focus on the phenomenon that
Gi starts to surge long after ℓi(θ) has converged/plateaued. We also use the training loss to track
memorization as previous works. However, the test loss adopted by previous grokking analysis is no
longer an ideal metric for LLM generalization, since it focuses on token-level matching to ground
truths while downstream tasks focus on semantic-level matching, and some of them do not provide
ground truths (e.g., code generation).

Experimental Setup We equidistantly sample 10 checkpoints from the OLMoE pretraining trajectory.
To evaluate memorization, we probe OLMoE on samples drawn directly from its pretraining corpus
Dtrain, ensuring fidelity to the model’s original distribution. We evaluate generalization on widely
used benchmarks spanning four domains: math, code, commonsense QA, and domain-specific QA
(10k pretraining and 10k test samples per domain; see Appendix A). To exclude contaminated
benchmark samples from the generalization analysis, we apply the Min-K%++ membership inference
method (Zhang et al., 2024) to identify them. Moreover, we mainly focus on the samples whose
model predictions become consistently correct before the pretraining ends, and analyze when this
generalization emerges and how long it persists. For downstream tasks, we apply lightweight LoRA-
based instruction tuning AIT on DIT to equip checkpoints with basic instruction-following capability
while preserving pretrained capabilities (Appendix B).

3.2 ASYNCHRONOUS MEMORIZATION, DELAYED GENERALIZATION, & LOCAL GROKKING

To understand when memorization unfolds during pretraining and how it affects generalization,
Figure 1 contrasts the number of memorized training samples (using the criterion defined above)
at each pretraining checkpoint with benchmark performance for each domain. It shows that (1)
training samples are memorized at different pretraining steps; (2) generalization typically follows
memorization with a lag: benchmark performance starts to achieve stable gains after sufficient data has
been memorized. An interesting discovery is that the lag length varies across domains: generalization
leap on math and coding tasks requires memorizing many more samples than commonsense and
domain-specific QA tasks.

These observations reveal the complex training dynamics of LLMs caused by training data hetero-
geneity and their uneven attributions to different benchmark tasks. It implies that the widely studied
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Figure 1: Memorized training samples at different pretraining steps and the generalization per-
formance on standard benchmarks for each domain. It shows asynchronous memorization of different
data in each domain and a delayed generalization leap after memorizing a certain amount of data.

global grokking—a synchronous memorization of most training data and a delayed contemporary
generalization leap on most test samples—cannot be found in LLM pretraining. That being said, the
memorization of certain data is plausible to impose a long-term, delayed effect on the generalization to
specific downstream tasks. To investigate such local dynamic patterns, we group data in each domain
by their memorization steps t∗i and particularly focus on the early-memorized groups, as they leave
more checkpoints after t∗i to study the subsequent dynamics of generalization. Accordingly, we group
samples in benchmarks by the training steps since when their predictions become consistently correct.
To enable an analysis of how memorization drives downstream generalization performance, we pair
each training data group with its most relevant benchmark samples via bipartite graph matching (by
Hungarian algorithm (Kuhn, 1955)), with the training-test data similarity defined in the embedding
space of SentenceTransformer (Reimers & Gurevych, 2019). Additional implementation details of
the pairing procedure are provided in Appendix B.1.
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Figure 2: Pretraining objective (blue) and benchmark performance (red) across four paired
training-test data groups from the math domain. Pretrain@p → Test@q denotes a paired
training–test group, where Pretrain@p is the training subset whose samples reach stable memorization
at step p, and Test@q is the benchmark subset whose accuracy stabilizes at step q. These pairs
are formed using embedding-based Hungarian matching, as detailed in Appendix B.1. We observe
local grokking on each pair: a delayed generalization leap on benchmark tasks after the pretraining
objective plateaued. From left to right, more difficult data memorized (converged) later associate
with a longer delay towards grokking.

Figure 2 visualizes the memorization and generalization on four groups: all training-test pairs exhibit
a delayed generalization leap on benchmark tasks after the pretraining objective stably converged
on the training data. Hence, the training objective cannot monitor or predict the generalization
performance. Moreover, earlier-converging groups generalize sooner after loss converged, while
later-converged groups associate with substantially longer delays. Notably, this delay scales with
data difficulty, which affects not only the number of steps taken to memorize the data but also the
duration of memorization to generalization transition.

Remaining Question This local grokking indicates that the model’s internal states, except its
pretraining loss, might track generalization or reflect the transition better. This raises a fundamental
question for understanding the emergence of capability in LLM: What internal state changes within an
LLM signify the emergence of generalization? Investigating this problem can provide critical insights
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to uncover the mechanisms of memorization-to-generalization transition and monitor the pretraining
progress in practice. To this end, we probe LLMs’ internal state dynamics to address the challenge.

4 MONITOR MEMORIZATION-TO-GENERALIZATION TRANSITION BY
TRAINING DYNAMICS OF ROUTING PATHWAYS

As shown in Section 3, generalization in LLMs emerges well after memorization, suggesting that
internal reorganization underlies this transition. Such dynamics are difficult to track in dense archi-
tectures, where all neurons are simultaneously involved. MoEs simplify this process: by organizing
computation into experts, each input activates only a subset of experts, forming a discrete routing path-
way across layers (Figure 3(a)). These pathways reveal how computation is allocated and reorganized
during pretraining, providing a mechanistic view of the memorization-to-generalization transition.

In this section, we analyze the evolution of routing pathway during pretraining and introduce two
metrics to quantify these changes (Figure 3): (i) the similarity of pathways across different inputs
(Section 4.1), and (ii) the consistency of a single input’s pathway (Section 4.2). Importantly, all
metrics are computed on pretraining samples that have already been memorized, i.e., those whose
training objective has stabilized at low values beyond specific checkpoints, and trace how their
internal routing continue to evolve from memorization to generalization. We then assess these metrics
as robust generalization monitors (Section 4.3) and conclude by establishing a spectral framework
connecting routing geometry to generalization bounds (Section 4.4).
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Figure 3: Pathway Complexity Metrics to Monitor Grokking. (a) Pathway similarity between
samples is measured by edit distance on their sequences of expert choices across layers. (b) Pathway
consistency quantifies the smoothness of expert transitions between subsequent layers for the same
sample by cosine similarity of their weighted expert embeddings.

4.1 PATHWAY DISTANCE AND KNOWLEDGE SHARING BETWEEN TRAINING SAMPLES

Building on prior findings that grokking coincides with the emergence of structured internal mecha-
nisms (Liu et al., 2022a; Nanda et al., 2023; Wang et al., 2024), we hypothesize that as the model
begins to generalize, it transitions from highly individualized, input-specific computation toward
more shared, structured computation across related inputs. This shift should manifest as increasing
pathway similarity—the convergence of routing patterns across similar samples—indicating that the
model is developing common mechanisms for solving related tasks.

We test this by examining how the similarity of expert pathway evolves during pretraining. Each
input’s pathway is the ordered sequence of selected experts through the L MoE layers. Specifically,
for input xi, we define its pathway si as: si = concat(e

(i)
1 , e

(i)
2 , . . . , e

(i)
L ), where e

(i)
ℓ denotes the

ordered list of expert indices at layer ℓ, obtained by ranking experts according to the mean routing
weights across all tokens for input xi. To determine which experts are included, we first rank experts
based on their routing weight and then select top-ranked experts until their cumulative routing weight
exceeds a predefined threshold. The weight threshold selects the experts that actually drive each
input’s computation, rather than picking a fixed number of experts. In our main analysis, we use
a cumulative routing-weight threshold of 0.7, and Appendix E.1 shows that the observed pathway
trends remain consistent when varying this threshold. The selected experts are then concatenated
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as a comma-separated string (e.g., ‘3,1,5’) which are later joined across layers with hyphens
(e.g., ‘3,1,5-...-9,1’).

We use the Levenshtein edit distance Dpath(si, sj) = EditDistance
(
si, sj), which counts the

minimum insertions, deletions, or substitutions required to align two pathways, to measure pathway
similarity. This metric captures both local deviations in expert choice and global shifts in pathway
structure, reflecting differences in selection, length, and ordering. We monitor the average pairwise
distance across samples throughout pretraining to track the emergence of shared routing.

Overall pattern. Our analysis, shown in Figure 4, reveals a clear trajectory in pathway dynamics.
Early in pretraining, most inputs share nearly identical routes, producing low edit distance Dpath.
As the model memorizes individual inputs, pathways diverge and Dpath rises. Crucially, Dpath

decreases after memorization, which indicates that semantically related inputs then converge into
similar routing sequences, signaling the emergence of shared pathways that support generalization.

Layerwise pattern. While prior work (Lo et al., 2025) reports static depth-dependent specialization in
trained MoEs, our results show that the memorization-to-generalization transition is also dynamically
depth-dependent during pretraining (Figure 5). Shallow layers show the steepest decline in Dpath after
memorization, indicating rapid convergence to shared pathways. Deeper layers exhibit smaller reduc-
tions, and the final layer even shows an increase in Dpath post-memorization. These patterns suggest
a depth-specific reorganization: early layers consolidate universal representations, while later layers
retain or enhance routing flexibility, balancing shared computation with task-specific specialization.
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Figure 4: Pathway edit distance and pretraining objective of two data groups (memorized
at 125k and 245k steps) during pretraining across four domains. The global panel (leftmost) fits
the overall quadratic trend over all domains, while domain panels fit separate trends after the
corresponding convergence step. Despite early training objective plateauing, pathway edit distance
continues to decline, indicating a declining complexity of internal memorization.
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Figure 5: Layer-wise evolution of pathway edit distance during pretraining for the data group
memorized at 245k step. Overall distance decreases from early to later layers, indicating higher
complexity in early layers. After pretraining objective convergence, early-layer routing among
similar samples simplifies quickly, later layers adapt more gradually, and the final layer diversifies
after memorization.

4.2 PATHWAY CONSISTENCY AND COMPLEXITY FOR SINGLE SAMPLES

We next analyze how the routing complexity of individual inputs evolves during pretraining. Our
hypothesis is that increasingly streamlined and consistent expert selection across layers reflects
the reuse of shared pathways, signaling the emergence of generalizable processing strategies. To
capture this, we define single-sample pathway consistency, which measures the smoothness of
expert transitions across consecutive layers.
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In a typical MoE, the router at layer ℓ is a single-layer MLP—a linear transformation followed by a
softmax—producing scores over K experts, with weight matrix Wℓ ∈ RK×d. We define the expert
embedding for expert k as vk

ℓ := Wℓ[k], k = 1, . . . ,K, which serves as an anchor vector to compute
routing scores. For input xi, its routing embedding is the weighted sum:

e
(i)
ℓ =

∑K
k=1 g

(i,k)
ℓ · vk

ℓ ,

where g
(i,k)
ℓ is the routing weight assigned to expert k. Although experts are independently pa-

rameterized, the strong correlations between adjacent layers in deep networks (He et al., 2016) and
MoEs (Li & Zhou, 2025) suggest that {vk

ℓ } can be comparable across neighboring layers, supporting
structural analysis of routing behavior.

To quantify routing smoothness, we define pathway consistency Ci as the normalized average cosine
similarity between consecutive layer embeddings for input xi:

Ci = 1− 1

L− 1

L−1∑
ℓ=1

cos(ei,ℓ, ei,ℓ+1)

maxℓ cos(ei,ℓ, ei,ℓ+1) + ϵ
,

where ϵ = 10−8 ensures numerical stability. Higher Ci indicates more erratic transitions, while
lower values reflect smoother, more consistent routing across layers.

Figure 6 tracks the evolution of pathway consistency and pretraining objective across four
domains. A key finding is that even after the objective stabilizes, pathway consistency continues
to improve—revealing ongoing refinement in the internal routing of the model. This suggests that
smoother, more coherent cross-layer transitions emerge well after memorization, positioning pathway
consistency as a valuable lens for understanding generalization beyond what the training objective
alone captures.
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Figure 6: Pathway consistency vs. training objective on four domains during pretraining. The
global panel (leftmost) shows that the path consistency consistently improves over all data, while
each domain panel shows the same trend on two data groups (memorized at 490k and 615k) from
each domain after the training objective converges. This reflects a progressively smoother transition
of experts between consecutive layers after memorization.

4.3 PATHWAY COMPLEXITY METRICS AS MONITORS OF GENERALIZATION

Table 1: Correlation between pathway complexity metrics and generalization (test accuracy)
across four domains, with the comparison to training/validation loss. p-value: p < 0.1 , p < 0.05 ,
p < 0.01 , p < 0.001 , p > 0.1 , p > 0.5 , p > 0.8 . Preferred correlation: positive , negative .

Metric Math Code Commonsense Domain-Specific
Pearson Spearman Pearson Spearman Pearson Spearman Pearson Spearman

Pathway Distance (pairwise) -0.9471 -0.9487 -0.9290 -0.9276 -0.9821 -0.9747 -0.9254 -0.9487
Pathway Consistency (sample-wise) 0.9246 0.9487 0.9786 0.9856 0.9804 0.9747 0.9917 0.9487

Training Loss -0.0435 -0.2108 -0.0680 -0.2052 0.6427 0.4104 0.7944 0.9487
Training Loss (moving average) 0.4714 0.3162 0.2481 -0.2052 0.7931 0.6669 0.8705 0.9487
Validation Loss 0.4801 -0.1054 0.5466 0.8721 -0.5752 -0.4617 -0.3339 -0.3162

Given the strong link between routing dynamics and generalization, we ask: To what extent do our
pathway metrics predict test performance across domains? To answer this, we compute Pearson
and Spearman correlations between downstream performance and two metrics across pretraining
checkpoints. As described in Section 3.1, we apply a lightweight LoRA-based instruction tuning
(rank = 32; see Appendix B) solely to equip pretrained checkpoints with basic instruction-following
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Figure 7: Correlation of the two pathway complexity metrics with benchmark performance. Com-
pared to the training objective and its moving average, both the pathway edit distance and consistency
are highly correlated with the test accuracy, though they are also computed on training data.

ability for benchmark evaluation. The robustness of this setup is further supported by the LoRA
rank ablation in Appendix E.2. Our correlation analysis focuses on checkpoints after domain-level
accuracy begins its sustained rise (shown in Figure 1), thereby isolating the mechanisms that drive
generalization beyond the random-accuracy phase.

Table 1 summarizes the correlation results across four tasks. Pathway consistency (sample-wise)
shows exceptionally strong positive correlations with test accuracy—often exceeding 0.97 and highly
significant—indicating that coherent, stable routing across layers is a key marker of generalization. In
contrast, pairwise pathway similarity consistently yields strong negative correlations (around -0.93),
suggesting that as generalization improves, inputs tend to follow increasingly similar expert routes.
By comparison, as shown in Figure 7, training and validation loss metrics exhibit weaker and less
consistent correlations. Notably, while moving-average training loss shows relatively high correlation
in certain domains (e.g., Code, Domain-Specific), its direction is inconsistent with expectation: since
loss is minimized during training, we would expect a negative correlation with test accuracy—not the
positive one observed here. This mismatch further underscores that conventional pretraining metrics
fail to reflect the internal transition from memorization to generalization.

These findings position pathway metrics as robust, domain-general indicators of generalization.
Importantly, they rely only on training dynamics—without requiring held-out validation data—making
them especially valuable for real-time monitoring in large-scale or resource-constrained settings.

4.4 THEORETICAL CONNECTIONS & EXPLANATIONS

We connect expert routing patterns with model generalization via the complexity of routing, formalized
through the effective dimension of the routing kernel. This effective dimension will serve as the key
determinant of MoE generalization.

Concretely, H∗ is the Gram matrix of the routing kernel with entries H∗
ij = Θroute(xi, xj), capturing

similarity between inputs induced by both routing overlap and expert functions. The effective
dimension is defined as Tr(H∗(H∗ + λI)−1), measuring the complexity of the function space
induced by routing.
Theorem 4.1 (Generalization Bound). Under NTK regime with K experts, with probability 1− δ
over n samples, where C1, C2 are NTK-dependent constants and λ is the regularization parameter:

E ≤ C1λ
2

n
y⊤(H∗ + λI)−2y︸ ︷︷ ︸

Bias

+C2

(
σ2Tr(H∗(H∗ + λI)−1)

n
+

σ2 log(1/δ)

n

)
︸ ︷︷ ︸

Variance + Noise

This provides a lens on grokking: as routing evolves from random to structured, the effective
dimension collapses, triggering improvements in generalization. Intuitively, this collapse corresponds
to a simplification of routing pathways: the kernel spectrum becomes more concentrated, reducing
the hypothesis space and mitigating overfitting. The full theoretical setup, assumptions, and proof
are detailed in Appendix C, while Appendix C.4 empirically confirms that effective dimension is
tightly aligned with routing edit distance, establishing pathway complexity as a key driver of MoE
generalization.

5 DISCUSSION

Why studying OLMoE matters. OLMoE is the only publicly available large-scale MoE LLM with
full pretraining checkpoints, providing a rare opportunity to study pretraining dynamics directly. Its

9
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architecture, including top-k routing, load-balancing loss, AdamW, RMSNorm, and RoPE, follows
standard MoE practices and thus reflects typical large-scale designs. While additional pretraining
checkpoints are not yet available, recent studies on other MoE models such as DeepSeekMoE (Dai
et al., 2024) and Qwen3-MoE (Yang et al., 2025) show that promoting similar routing pathways
across related samples improves generalization through post-training (Li et al., 2025b) or test-time
adaptation (Li et al., 2025a). These findings support our conclusion that pathway similarity is a
general signal of model generalization and that the mechanisms observed in OLMoE extend to other
MoE architectures.

Ruling out global routing effects. To ensure that the observed decrease in pathway distance
is not driven by global factors such as load balancing, we conduct two analyses. First, a cross-
domain comparison (Appendix E.4) shows that pathway distances between different domains (e.g.,
math × code) fluctuate irregularly without a consistent downward trend, in contrast to the observed
group- and domain-specific decreases in Figure 4, confirming that pathway reorganization is a
localized phenomenon driven by memorization rather than a global routing effect. Second, the
correlation between routing entropy and pathway edit distance is weak (r = 0.24, ∼6% variance
explained; Appendix E.5), indicating that balanced or saturated routing alone does not account for
our findings. Together, these results demonstrate that pathway reorganization arises from structured,
domain-specific computation rather than global changes in routing behavior.

Consistent Findings on another MoE (nanoMoE) pretraining justify the generality of our
study. To further assess the generality of our findings, we train a separate MoE model from scratch
(nanoMoE; Appendix E.6) to obtain fully observable pretraining dynamics. Despite differences in
scale, data, and training setup, the model exhibits the same post-memorization routing behavior,
where pathway distance decreases and pathway consistency increases, and both metrics show strong
correlations with downstream benchmark performance. This independent experiment confirms that
the pathway–generalization relationship is a robust property of MoE training dynamics rather than an
artifact of OLMoE.

6 CONCLUSION

This paper provides the first empirical evidence that, in large-scale LLM pretraining, generalization
can emerge well after memorization has been achieved. Through an analysis of routing dynamics
in a 7B-parameter MoE model, we propose two novel pathway-based metrics that accurately track
generalization without requiring finetuning or external validation sets. Our findings reveal a transition
from memorization to generalization, marked by increased pathway similarity and consistency, and
supported by theoretical connections between routing structure and generalization bounds. These
insights offer a foundation for more transparent and reliable monitoring of generalization in large-
scale models. Future work will extend these pathway-based metrics beyond MoE, by constructing
analogous “virtual pathways” in dense models, moving toward a unified framework for tracking
generalization in foundation models.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui Zhang, and Wenpeng Yin. Large language models
for mathematical reasoning: Progresses and challenges, 2024. URL https://arxiv.org/
abs/2402.00157.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu,
Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi
Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng
Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi
Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report, 2023. URL
https://arxiv.org/abs/2309.16609.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL https:
//arxiv.org/abs/2005.14165.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
Zeng, Xingkai Yu, Yu Wu, et al. Deepseekmoe: Towards ultimate expert specialization in mixture-
of-experts language models. arXiv preprint arXiv:2401.06066, 2024.

Branton DeMoss, Silvia Sapora, Jakob Foerster, Nick Hawes, and Ingmar Posner. The complexity
dynamics of grokking, 2024. URL https://arxiv.org/abs/2412.09810.

Simin Fan, Razvan Pascanu, and Martin Jaggi. Deep grokking: Would deep neural networks
generalize better?, 2024. URL https://arxiv.org/abs/2405.19454.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The Pile: An 800gb
dataset of diverse text for language modeling. arXiv preprint arXiv:2101.00027, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A survey,
2023. URL https://arxiv.org/abs/2212.10403.

Yufei Huang, Shengding Hu, Xu Han, Zhiyuan Liu, and Maosong Sun. Unified view of grokking,
double descent and emergent abilities: A perspective from circuits competition, 2024. URL
https://arxiv.org/abs/2402.15175.

Ahmed Imtiaz Humayun, Randall Balestriero, and Richard Baraniuk. Deep networks always grok
and here is why, 2024. URL https://arxiv.org/abs/2402.15555.

Harold W Kuhn. The hungarian method for the assignment problem. Naval research logistics
quarterly, 2(1-2):83–97, 1955.

Zhongyang Li, Ziyue Li, and Tianyi Zhou. C3po: Critical-layer, core-expert, collaborative pathway
optimization for test-time expert re-mixing. arXiv preprint arXiv:2504.07964, 2025a.

11

https://arxiv.org/abs/2402.00157
https://arxiv.org/abs/2402.00157
https://arxiv.org/abs/2309.16609
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2412.09810
https://arxiv.org/abs/2405.19454
https://arxiv.org/abs/2212.10403
https://arxiv.org/abs/2402.15175
https://arxiv.org/abs/2402.15555


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhongyang Li, Ziyue Li, and Tianyi Zhou. Routing manifold alignment improves generalization of
mixture-of-experts llms. arXiv preprint arXiv:2511.07419, 2025b.

Ziyue Li and Tianyi Zhou. Sparser mixture-of-adapters with cross-layer generalization. In Pro-
ceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association
for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pp.
3988–4002, 2025.

Ziming Liu, Ouail Kitouni, Niklas S Nolte, Eric Michaud, Max Tegmark, and Mike Williams.
Towards understanding grokking: An effective theory of representation learning. Advances in
Neural Information Processing Systems, 35:34651–34663, 2022a.

Ziming Liu, Eric J Michaud, and Max Tegmark. Omnigrok: Grokking beyond algorithmic data.
arXiv preprint arXiv:2210.01117, 2022b.

Ka Man Lo, Zeyu Huang, Zihan Qiu, Zili Wang, and Jie Fu. A closer look into mixture-of-experts
in large language models. In Findings of the Association for Computational Linguistics: NAACL
2025, pp. 4427–4447, 2025.

Ang Lv, Ruobing Xie, Xingwu Sun, Zhanhui Kang, and Rui Yan. Language models ”grok” to copy,
2025. URL https://arxiv.org/abs/2409.09281.

William Merrill, Nikolaos Tsilivis, and Aman Shukla. A tale of two circuits: Grokking as competition
of sparse and dense subnetworks, 2023. URL https://arxiv.org/abs/2303.11873.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Jacob Morrison, Sewon Min, Weijia
Shi, Pete Walsh, Oyvind Tafjord, Nathan Lambert, Yuling Gu, Shane Arora, Akshita Bhagia,
Dustin Schwenk, David Wadden, Alexander Wettig, Binyuan Hui, Tim Dettmers, Douwe Kiela, Ali
Farhadi, Noah A. Smith, Pang Wei Koh, Amanpreet Singh, and Hannaneh Hajishirzi. Olmoe: Open
mixture-of-experts language models, 2024. URL https://arxiv.org/abs/2409.02060.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures
for grokking via mechanistic interpretability. arXiv preprint arXiv:2301.05217, 2023.

Pascal Notsawo Jr, Hattie Zhou, Mohammad Pezeshki, Irina Rish, Guillaume Dumas, et al. Predicting
grokking long before it happens: A look into the loss landscape of models which grok. arXiv
preprint arXiv:2306.13253, 2023.

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Gen-
eralization beyond overfitting on small algorithmic datasets. arXiv preprint arXiv:2201.02177,
2022.

Lucas Prieto, Melih Barsbey, Pedro A. M. Mediano, and Tolga Birdal. Grokking at the edge of
numerical stability, 2025. URL https://arxiv.org/abs/2501.04697.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, 11 2019. URL https://arxiv.org/abs/1908.
10084.

Zhiquan Tan and Weiran Huang. Understanding grokking through a robustness viewpoint, 2024.
URL https://arxiv.org/abs/2311.06597.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models, 2023. URL https://arxiv.org/abs/2302.13971.

12

https://arxiv.org/abs/2409.09281
https://arxiv.org/abs/2303.11873
https://arxiv.org/abs/2409.02060
https://arxiv.org/abs/2501.04697
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/2311.06597
https://arxiv.org/abs/2302.13971


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. 2017. URL https://arxiv.org/
pdf/1706.03762.pdf.

Boshi Wang, Xiang Yue, Yu Su, and Huan Sun. Grokked transformers are implicit reasoners: A
mechanistic journey to the edge of generalization. arXiv preprint arXiv:2405.15071, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023.
URL https://arxiv.org/abs/2201.11903.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388,
2025.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Jingyang Zhang, Jingwei Sun, Eric Yeats, Yang Ouyang, Martin Kuo, Jianyi Zhang, Hao Frank Yang,
and Hai Li. Min-k%++: Improved baseline for detecting pre-training data from large language
models. arXiv preprint arXiv:2404.02936, 2024.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen,
Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and
Ji-Rong Wen. A survey of large language models, 2025. URL https://arxiv.org/abs/
2303.18223.

13

https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2303.18223


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A DATASET DETAILS

We evaluate OLMoE on four domains used during pretraining: math, code, commonsense, and
domain-specific (scientific text). For each domain, we construct three sets:

• Pretraining sample set: 10,000 examples drawn from OLMoE’s pretraining data.

• Test sample set: 10,000 examples from a benchmark dataset in the same domain, following
OLMoE’s categorization where available.

• Validation set: a disjoint dataset used solely to compute validation loss, enabling correlation
analysis between in-domain learning and test generalization.

For the domain-specific case, we filter the scientific pretraining data using the keyword “Organic
Chemistry”, aligning the training distribution with the “college chemistry” benchmark in MMLU.

Table 2 summarizes all dataset sources. All pretraining sets are directly drawn from OLMoE’s
pretraining corpora; test benchmarks are standard evaluation datasets; validation sets are only used
for correlation analysis.

Table 2: Datasets used in our domain-level evaluation. Pretraining samples are from OLMoE corpora,
test benchmarks are used for evaluation, and validation sets are disjoint corpora used only for loss–
accuracy correlation. All datasets accessed via HuggingFace.

Domain Pretraining Source Test Dataset Validation Dataset
Math open-web-math/

open-web-math
hkust-nlp/
dart-math-pool-math

qwedsacf/
competition math

Code bigcode/
starcoderdata

evalplus/
humanevalplus

newfacade/
LeetCodeDataset

Commonsense emozilla/
dolma-v1 7-books

tau/commonsense qa kowndinya23/
flan2021-commonsense

Domain-
Specific

blester125/
mediawiki-dolma
(filtered “Organic Chemistry”)

cais/mmlu
(“college chemistry” subset)

chemNLP/
chemistry-bookshelves
-merged

B EXPERIMENT DETAILS

Compute Resources. All experiments are conducted on NVIDIA A100 GPUs with 80GB memory,
using public OLMoE checkpoints.

Instruction Tuning. The raw OLMoE checkpoints exhibit weak instruction-following ability, making
direct evaluation of generalization behavior unreliable—particularly in text-based domains such as
commonsense reasoning or code completion. To address this, we apply light instruction tuning using
LoRA (Hu et al., 2022) to make the pretrained model follow prompts in a human-readable way. This
ensures we can evaluate generalization while preserving the original pretraining behavior.

To avoid overriding pretraining representations, we adopt minimal finetuning using a small number
of epochs and low-rank parameter updates. Specifically:

• Math: Finetune with LoRA for 3 epochs on the same math SFT dataset meta-math/
MetaMathQA used by OLMoE.

• Code: Finetune for 3 epochs on HuggingFaceH4/CodeAlpaca_20K.

• Commonsense & Domain-Specific: Finetune for 3 epochs on yahma/alpaca-cleaned.

Key configurations of LoRA include:

• Target modules: q proj, k proj, v proj

• LoRA rank: 32

• LoRA dropout: 0.1

14

meta-math/MetaMathQA
meta-math/MetaMathQA
HuggingFaceH4/CodeAlpaca_20K
yahma/alpaca-cleaned


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

• Learning rate: 5e-5

• Batch size: 4

• Max sequence length: 2048

Applying Min-K%++ for Training-Test Separation. To maintain a rigorous separation between the
pretraining and test datasets, we employ the Min-K%++ membership inference attack (Zhang et al.,
2024), a state-of-the-art, reference-free method designed to detect whether specific data samples are
part of a model’s training corpus.

Specifically, we apply the Min-K%++ method to the test dataset to identify samples that the model is
most likely to have encountered during training. Determining an optimal threshold for classification
is challenging due to variability in model behaviors and data distributions. To address this, we adopt
a conservative approach by removing the top 10% of test samples with the highest Min-K%++ scores,
thereby minimizing the risk of training data contamination in the test set.

This strategy ensures that our evaluation metrics accurately reflect the model’s generalization capabil-
ities on truly unseen data, enhancing the validity of our experimental results.

B.1 CONSTRUCTION OF TRAINING–TEST PAIRED GROUPS.

Here we provide additional details on how we construct the training–test paired groups used in
Figure 2 to analyze the temporal relation between memorization and generalization. The overall
procedure is introduced in Section 3.2; here, we summarize the specific grouping and matching setup
for clarity and reproducibility.

Training groups. For each pretraining sample, we track its token-level loss across checkpoints and
mark the earliest step t∗i when the loss remains below a threshold ε and deviates by less than δ from
its final value for all later checkpoints. Samples sharing the same t∗i form a training group denoted as
Pretrain@t∗i . For (ε, δ), δ is fixed at 0.05 across domains, while ε is domain-specific and determined
based on the average loss scale of each domain. We test ε in increments of 0.1 to ensure that the
cumulative proportion of memorized samples before the final checkpoint remains between 20–25%
across domains, balancing sufficient data coverage with stable per-domain scaling. Ablation studies
on the robustness of (ε, δ) is provided in Appendix E.3.

Test groups. Each test sample’s accuracy trajectory is recorded across checkpoints. A test sample is
considered to have generalized at the earliest step t#j where its accuracy remains consistently correct
thereafter, with mean accuracy above 0.8 and at most one error in the following checkpoints. Samples
sharing the same t#j form a test group denoted as Test@t#j .

Embedding-based pairing. To align semantically related training and test groups, we compute
sentence embeddings for all samples using the SentenceTransformer model “all-MiniLM-L6-v2”
and measure pairwise cosine similarity between groups within each domain. The average similarity
between every pair of groups forms a similarity matrix, and a one-to-one mapping between training
and test groups is obtained using the Hungarian algorithm implemented in SciPy, which maximizes
overall semantic similarity. The notation Pretrain@p→ Test@q thus indicates that the training group
memorized at step p is semantically aligned with a test group whose performance stabilizes at step q.

C GENERALIZATION BOUND FOR MOE WITH ROUTING KERNEL

C.1 MODEL SETUP AND ASSUMPTIONS

Consider a MoE model where the router is fixed after pretraining, and the expert networks are
trainable. Let K be the total number of experts in the model.

• fk(ϕk, x) ∈ R be the k-th expert’s output, with trainable parameters ϕk.

• gk(x) ∈ [0, 1] be the k-th routing weight, which is fixed and pre-determined for any input x.
We assume

∑K
k=1 gk(x) = 1 (e.g., from a fixed softmax layer or pre-computed weights).
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• Full model: F (θ, x) =
∑K

k=1 gk(x)fk(ϕk, x), where θ = (ϕ1, . . . , ϕK) is the collection of
all trainable expert parameters.

Key Assumptions:

1. NTK Regime for Experts: Expert parameters θ = (ϕ1, . . . , ϕK) are initialized as ϕk(0) ∼
N (0, I) for each k, and remain ϵ-close to initialization (∥θ(t) − θ(0)∥ = O(1/

√
width)),

enabling linearization via Neural Tangent Kernel (NTK). We assume ϕk(0) are independent
across different experts k.

2. Fixed Routing: The routing weights gk(x) are fixed for all inputs x and do not contain any
trainable parameters. They satisfy maxk ∥gk∥∞ ≤ 1.

3. Label Noise: Training labels yi = f∗(xi) + ϵi with ϵi ∼ N (0, σ2), independent of xi.

C.2 ROUTING KERNEL DEFINITION

Define the NTK for this MoE configuration. Consistent with the general routing kernel definition in
the main text, Θroute(x, x

′) here is specifically instantiated as:

Θroute(x, x
′) = Eθ(0)

[〈
∂F (θ(0), x)

∂θ
,
∂F (θ(0), x′)

∂θ

〉]
=

K∑
j=1

gj(x)gj(x
′)Eϕj(0)

[〈
∂fj(ϕj(0), x)

∂ϕj
,
∂fj(ϕj(0), x

′)

∂ϕj

〉]
Let Kfj (x, x

′) = Eϕj(0)

[〈
∂fj(ϕj(0),x)

∂ϕj
,
∂fj(ϕj(0),x

′)
∂ϕj

〉]
be the NTK for the j-th expert network.

Then, the Routing Kernel in this fixed-routing scenario is:

Θroute(x, x
′) =

K∑
j=1

gj(x)gj(x
′)Kfj (x, x

′)

The structure of Θroute(x, x
′) in this fixed-routing setup provides crucial insights into how routing in-

fluences generalization. It is composed of two primary factors: the gating weight product gj(x)gj(x′),
and the individual expert NTKs Kfj (x, x

′). The term gj(x)gj(x
′) signifies the importance of the

j-th expert for both inputs x and x′, highlighting that two inputs are considered ”similar” by the
kernel if they are significantly routed to the same experts. If inputs x and x′ are routed to distinct sets
of experts, their contribution to the sum for a given j will be diminished. Simultaneously, Kfj (x, x

′)
captures the functional similarity learned by the j-th expert for inputs x and x′. Thus, the overall
routing kernel measures a compounded similarity: inputs are similar not only if they are guided
through similar pathways (weighted by gj(x)gj(x

′)), but also if the specific experts they pass through
exhibit similar functional behavior for those inputs (Kfj (x, x

′)). This decomposition underscores
how fixed routing patterns (reflected in gj(x)) set the stage for expert specialization and ultimately
shape the generalization properties of the MoE model.

C.3 MAIN THEOREM

Theorem C.1 (Generalization Bound for MoE Experts). Under Assumptions 1-3, with probability
1− δ over training samples (xi, yi)

n
i=1, the excess risk satisfies:

Ex,y

[
(F (θ∗, x)− f∗(x))2

]
≤ C1λ

2

n
y⊤(H∗ + λI)−2y︸ ︷︷ ︸

Bias

+ C2

(
σ2Tr(H∗(H∗ + λI)−1)

n
+

σ2 log(1/δ)

n

)
︸ ︷︷ ︸

Variance + Noise

where H∗
i,j = Θroute(xi, xj), λ > 0 is regularization, and C1, C2 are constants depending on the

properties of gk(x) and fk(x). The bound decays as O
(
1
n

)
when λ = Θ(1).

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Proof. Under NTK regime, the model can be linearized around initialization:

F (θ, x) ≈ F (θ(0), x) + ⟨∇θF (θ(0), x), θ − θ(0)⟩
= F (θ(0), x)︸ ︷︷ ︸

Initial Output

+Φ(x)⊤∆θ

where Φ(x) = ∇θF (θ(0), x) and ∆θ = θ − θ(0). The quadratic error term ∥∆θ∥2 is O(1/width)
and thus negligible.

Define centered labels ỹi = yi − F (θ(0), xi). The problem reduces to ridge regression:

min
∆θ

1

2

n∑
i=1

(
Φ(xi)

⊤∆θ − ỹi
)2

+
λ

2
∥∆θ∥2

with closed-form solution:

∆θ∗ = (ΦΦ⊤ + λI)−1Φỹ = Φ⊤(H∗ + λI)−1ỹ

where H∗ = ΦΦ⊤ is the kernel matrix with H∗
i,j = Θroute(xi, xj).

The excess risk decomposes as:

E[(F (θ∗, x)− f∗(x))2] = (E[f̂(x)]− f∗(x))2︸ ︷︷ ︸
Bias2

+E[(f̂(x)− E[f̂(x)])2]︸ ︷︷ ︸
Variance

+σ2

• Bias Term:

Bias2 ≤ λ2

n2
y⊤(H∗ + λI)−2y ≤ C1λ

2

n
y⊤(H∗ + λI)−2y

where C1 absorbs constants related to the magnitudes of gk(x) and expert gradients.

• Variance Term: The parameter covariance is Cov(∆θ∗) = σ2(ΦΦ⊤ +λI)−1ΦΦ⊤(ΦΦ⊤ +
λI)−1. For prediction variance:

Variance = Ex[Φ(x)
⊤Cov(∆θ∗)Φ(x)] =

σ2

n
Tr(H∗(H∗ + λI)−1)

• Confidence Term: By standard concentration inequalities (e.g., for sub-Gaussian noise),

P

(∣∣∣∣∣ 1n
n∑

i=1

ϵ2i − σ2

∣∣∣∣∣ ≥ t

)
≤ e−nt2/(2σ4) =⇒ σ2 log(1/δ)

n

Collecting all components and adjusting constants C1, C2 completes the proof.

C.4 CONNECTING EDIT DISTANCE TO EFFECTIVE DIMENSION

The bound shows that simple (low-dimensional) routing kernels generalize better. We now empirically
test how routing pattern complexity (via edit distance) correlates with this effective dimension
deff = Tr(H∗(H∗ + λI)−1).

Our setup involves a lightweight MoE architecture with 16 experts and a 100-dimensional input space.
Input data are synthetic Gaussian clusters, providing a controlled environment to analyze pre-defined
routing strategies. For each experimental trial, 200 samples are split into training and validation sets.
We train a one-layer MoE model with ReLU activations where only expert networks are trainable;
the router’s weights are initialized once and then frozen. To explore diverse fixed routing patterns, we
perform multiple independent runs, each starting with a different random initialization of the router.

Following training, we extract the average edit distance of the pre-determined expert routing paths
and the effective dimension. As illustrated in Figure 8, we observe a strong positive correlation
between these two quantities. This empirically demonstrates that the structural properties of fixed
routing, measured by edit distance, meaningfully impact the complexity of the function space learned
by the experts, as predicted by deff . This alignment supports edit distance as a valuable diagnostic for
MoE generalization.
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Figure 8: Correlation of Edit Distance with Effective Dimension. Each point represents an
independent experimental run where the router is initialized with a different random seed and then
fixed for expert training. This varying initialization leads to diverse fixed routing patterns. We
observe a strong positive correlation. This suggests that the structural diversity of pre-defined routing
significantly impacts the complexity of the function space learned by experts.

D ROUTING DYNAMICS ANALYSIS

To investigate whether routing evolution arises primarily from router-layer updates or other weight
updates, we analyze convergence speed and stability across parameter types.

Results. Table 3 reports convergence speed (magnitude drop-off over time) and stability (con-
sistency of updates). Router weights adapt fastest while expert weights stabilize most gradually,
indicating a division of labor: routing decisions are steered by fast-updating routers atop slow-evolving
expert features. Attention layers lie in between.

Table 3: Convergence speed and stability across parameter types. Higher values indicate faster
convergence or greater stability.

Parameter Type Convergence Speed ↑ Stability ↑
Router 0.151 (fastest) 5.63
Expert 0.063 (slowest) 7.32
Attention 0.083 6.01

Layerwise Routing Dynamics. To localize routing evolution, we compute the edit distance of
routing assignments across layers. Layers 0–3 exhibit the most post-convergence change, suggesting
that early layers remain active in refining pathways.

Metric Computation. We periodically snapshot parameter L2 norms during training. For each
parameter type, we compute the mean absolute norm change between checkpoints, normalized by
average scale. Convergence speed is defined as the drop in change magnitude from early to late
training, while stability is the inverse standard deviation of these normalized changes. This simple
but robust analysis consistently reveals router–expert asymmetries.

E ANALYSIS

E.1 EFFECT OF ROUTING-WEIGHT THRESHOLD ON PATHWAY DYNAMICS

To examine the robustness of our findings with respect to the routing-weight threshold used for
pathway construction, we repeat the analysis in Fig. 4 under different cumulative routing-weight

18
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thresholds ranging from 0.5 to 0.8 (interval 0.1). This threshold determines how many experts are
considered active in each layer when forming the pathway sequence: a higher threshold includes
more experts, while a lower threshold selects only the most dominant ones.
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Figure 9: Effect of routing-weight threshold on pathway edit distance on domain-specific
QA tasks. Each panel shows the average pathway edit distance for this domain under a different
cumulative routing-weight threshold (0.5–0.8, interval 0.1). Higher thresholds include more active
experts, leading to longer absolute distances, but all settings exhibit the same qualitative pattern:
pathway edit distance decreases consistently after memorization, confirming that the observed
dynamics are robust to the threshold choice.

Figure 9 presents the results for the domain-specific QA tasks. Although the absolute values of
edit distance increase with larger thresholds—reflecting the longer sequences formed when more
experts are included—the qualitative trends remain consistent across all settings. For every threshold,
the pathway edit distance decreases after memorization (marked by vertical dashed lines), and the
decrease becomes more pronounced at later checkpoints.

These results demonstrate that our conclusions are robust to the choice of routing-weight threshold.
The observed reduction in pathway complexity after memorization, corresponding to the emergence
of shared pathways, persists across all threshold settings.

E.2 EFFECT OF LORA RANK ON PATHWAY–GENERALIZATION CORRELATION

To examine whether the correlation between pathway metrics and generalization depends on the
configuration of instruction tuning, we conduct an ablation on the LoRA rank used during lightweight
finetuning. As described in Appendix B, the default setup adopts a rank of 32 for all domains. Here,
we additionally train a LoRA adapter with rank 64 on the commonsense domain, following the same
data, training steps, and hyperparameters as in the main experiments.

Table 4 reports the correlation between pathway complexity metrics and downstream test accuracy
under the two LoRA ranks. The results show that increasing the rank from 32 to 64 yields nearly
identical correlations for both Pathway Distance and Pathway Consistency, while training and
validation losses remain weakly correlated. This consistency indicates that the observed relationships
between pathway metrics and generalization are robust to LoRA configuration and primarily reflect
intrinsic pretraining-phase dynamics rather than artifacts of instruction tuning.

E.3 EFFECT OF MEMORIZATION THRESHOLDS ε AND δ

We conduct an ablation study on the two hyperparameters that define the memorization criterion
in Section 3.1: the loss threshold ε and the stability threshold δ. Specifically, for a sample xi

with loss ℓi(θt) at pretraining step t, it is considered memorized from step t∗i if ℓi(θt) ≤ ε and
|ℓi(θt)− ℓi(θT )| ≤ δ for all t ≥ t∗i . We evaluate how sensitive the pathway trends are to these two
parameters using the domain-specific QA task.

Varying ε. Figure 10 shows results when fixing δ = 0.05 and varying ε from 1.5 to 2.0. Across all
settings, the pathway edit distance after memorization consistently decreases with training, and the
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Table 4: Effect of LoRA Rank on the Correlation Between Pathway Metrics and Generalization
(Commonsense reasoning domain). The results show that increasing the LoRA rank from 32
to 64 yields nearly identical correlations, confirming that the observed trends are robust to
LoRA configuration. p-value: p < 0.1 , p < 0.05 , p < 0.01 , p > 0.1 , p > 0.5 , p > 0.8 . Preferred
correlation: positive , negative .

Metric LoRA Rank = 32 LoRA Rank = 64
Pearson Spearman Pearson Spearman

Pathway Distance (pairwise) -0.9821 -0.9747 -0.9927 -0.9487
Pathway Consistency (sample-wise) 0.9804 0.9747 0.9559 0.9487

Training Loss 0.6427 0.4104 0.6197 0.4617
Training Loss (moving average) 0.7931 0.6669 0.6871 0.2052
Validation Loss -0.5752 -0.4617 -0.6631 -0.4104

overall trend remains stable—indicating that ε only shifts the point where samples are considered
memorized but does not affect the post-memorization dynamics.

Varying δ. Figure 11 reports the results when fixing ε = 2.0 and varying δ between 0.03 and 0.05.
Similarly, the decreasing trend of edit distance after memorization persists, and the fitted trajectories
show negligible variation across δ values.

This confirms that the proposed pathway-based observations are robust to the choice of ε and δ.
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Figure 10: Effect of the loss threshold ε on pathway dynamics. The stability threshold is fixed at
δ = 0.05. All curves show a consistent post-memorization decrease in edit distance, indicating that
the results are robust to ε.
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Figure 11: Effect of the stability threshold δ on pathway dynamics. The loss threshold is fixed at
ε = 2.0. The same decreasing trend holds across different δ values, confirming robustness to this
parameter.

E.4 CROSS-DOMAIN ANALYSIS OF PATHWAY DYNAMICS

To verify that the observed changes in pathway edit distance are due to the emergence of shared
pathways within specific domains rather than uniform effects across all data, such as load balancing
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or regularization, we conduct an additional analysis focusing on the cross-domain samples. Using the
same cumulative routing-weight threshold (0.7) as in the main experiments, we compute average path-
way edit distances for samples drawn from two different domains across checkpoints—specifically,
math × code—under identical configurations.

5k
12

5k
24

5k
37

0k
49

0k
61

5k
73

5k
85

5k
98

0k
11

00
k

Checkpoint (Step)

515

520

525

530

535

540

545

Av
er

ag
e 

Cr
os

s-
Do

m
ai

n 
Pa

th
wa

y
Ed

it 
Di

st
an

ce

Figure 12: Cross-domain pathway edit distance (math × code). The figure shows the global trend
of average pathway edit distance during pretraining when computed across two different domains.
The cross-domain distances fluctuate irregularly, exhibiting both increases and decreases but no
systematic downward trend. This contrasts with the localized decreases observed within domains
(Fig. 4), indicating that pathway reorganization occurs locally among semantically related data rather
than globally across domains.

As shown in Fig. 12, the cross-domain edit distance fluctuates throughout pretraining, showing irreg-
ular increases and decreases without any consistent downward trend. In contrast, Fig. 4 demonstrates
that within-domain pathway distances decrease only for groups of samples that become memorized
at different points in training, with each domain exhibiting its own localized transition rather than a
global drop. These observations confirm that the structural changes we observe are domain- and
group-specific, reflecting the emergence of shared pathways among semantically related samples
rather than a global effect of routing behavior.

E.5 RELATIONSHIP BETWEEN ROUTING ENTROPY AND EDIT DISTANCE

We investigate whether changes in routing diversity could trivially explain the observed trends in
pathway edit distance. Specifically, we test whether routing entropy—high when expert usage is
balanced and low when a few experts dominate—can drive edit distance dynamics.

For each sample, routing entropy is computed per layer from the full routing-weight vector (no
thresholding or selection) and averaged across layers. For each sample pair, we take the mean of the
two samples’ entropies and compute their pathway edit distance using a cumulative routing-weight
threshold of 0.8, which provides sufficient expert coverage for analysis.

We sample 141,530 pairs across checkpoints spanning both the math and code domains, including
within-domain and cross-domain pairs. Figure 13 shows a weak correlation between average routing
entropy and edit distance (r = 0.24, explaining about 6% of the variance) with no clear monotonic
or directional trend. This indicates that neither more balanced routing (higher entropy) nor more
concentrated routing (lower entropy) systematically reduces pathway distance. Therefore, the
decrease in within-domain pathway distance observed after memorization is unlikely to result from
overall changes in routing balance; instead, it reflects domain- and group-specific reorganization of
computation.

E.6 CONSISTENT FINDINGS ON ANOTHER MOE (NANOMOE)

To further validate the generality of our findings beyond OLMoE, we conduct additional experiments
on a 55M-parameter MoE model, nanoMoE1. NanoMoE provides a small, fully trainable MoE
architecture for which we can obtain complete pretraining checkpoints, making it suitable for analysis
of routing dynamics.

1https://github.com/wolfecameron/nanoMoE
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Figure 13: Edit distance vs. routing entropy. Each hexagon aggregates sample pairs (N = 141,530)
drawn across checkpoints and across the math and code domains. Routing entropy is computed from
the full routing-weight vectors (no thresholding); pathway edit distance uses pathways built with a
cumulative cutoff of 0.8. The weak correlation (r = 0.24) indicates that routing balance does not
systematically determine pathway similarity.

Training setup. We train nanoMoE on ∼25B tokens of the OpenWebText dataset (Gao et al.,
2020) for 50k iterations on two NVIDIA H100 GPUs and uniformly sample ten checkpoints for
analysis. OpenWebText is a mixed-domain web corpus with a heavy emphasis on commonsense and
general knowledge content. To approximate a domain setting, we construct a commonsense subset by
filtering 10,000 randomly sampled training samples using Qwen3-8B (Yang et al., 2025) to select
those semantically related to commonsense reasoning, yielding 7,857 samples in total. Following the
same methodology as our main experiments, we identify memorized samples based on token-level
loss stability and compute pathway dynamics for this subset across checkpoints.

Pathway-metric dynamics. Consistent with our large-scale results, we observe that after mem-
orization, pathway edit distance decreases while pathway consistency increases as shown in
Figure 14 and 15. These trends mirror the post-memorization reorganization we identify in OLMoE,
demonstrating that even the smaller MoE model reorganizes routing toward more structured, shared
computation after the loss has already converged.

Correlation with downstream performance. We further evaluate all ten checkpoints in a zero-shot
setting on standard commonsense reasoning benchmarks (ARC-Easy/Challenge (Clark et al., 2018),
HellaSwag (Zellers et al., 2019), and OpenBookQA (Mihaylov et al., 2018)). Zero-shot evaluation
is justified because models pretrained on OpenWebText, including GPT-2 (Radford et al., 2019),
have been shown to achieve strong zero-shot performance on commonsense benchmarks. As in
the large-scale setting, both pathway metrics exhibit strong correlations with benchmark accuracy
(|r| ≈ 0.8–1.0), as reported in Table 5, substantially outperforming training loss or its moving average.
This confirms that routing dynamics remain tightly coupled with downstream generalization.

The nanoMoE results reinforce our central claim: post-memorization routing reorganization is
not an artifact of model scale, data size, or specific MoE implementation. Instead, it reflects an
inherent property of MoE training dynamics. Combined with the large-scale OLMoE study, these
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Figure 14: Pathway edit distance and pretraining objective on nanoMoE during pretraining. The
left panel reports the overall pathway edit-distance trajectory across checkpoints without grouping
samples by their memorization steps. The right panel instead visualizes pathway dynamics for two
memorized data groups (memorized at 30k and 45k steps). After their respective memorization
points, both groups exhibit a consistent post-memorization decline in edit distance despite a plateaued
pretraining objective, indicating that nanoMoE continues to reorganize routing pathways toward
more structured and shared computation. This mirrors the memorization-to-generalization transition
observed in large-scale OLMoE.
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Figure 15: Evolution of pathway consistency in nanoMoE. The left panel reports the overall
progression of pathway consistency across checkpoints. The right panel further analyzes two
memorized data groups (memorized at 30k and 35k steps), showing that once memorization is
achieved, each group undergoes continued refinement of its layer-to-layer routing transitions.

findings establish pathway metrics as stable, architecture-intrinsic indicators of the memorization-to-
generalization transition.

Table 5: Correlation Between Pathway Metrics and Downstream Accuracy on nanoMoE across
four commonsense benchmarks (ARC-Easy, ARC-Challenge, HellaSwag, OpenBookQA). p-value:
p < 0.1 , p < 0.05 , p < 0.01 , p > 0.1 , p > 0.5 , p > 0.8 . Preferred correlation: positive , negative .

Metric ARC-Easy ARC-Challenge HellaSwag OpenBookQA
Pearson Spearman Pearson Spearman Pearson Spearman Pearson Spearman

Pathway Distance (pairwise) -0.8113 -1.0000 -1.0000 -1.0000 -0.9713 -1.0000 -0.8366 -0.9000
Pathway Consistency (sample-wise) 0.9416 1.0000 0.8818 1.0000 0.9234 0.8000 0.9979 1.0000
Training Loss 0.3301 -0.1000 -0.7799 -0.5000 -0.2182 -0.2000 0.5984 0.8000
Training Loss (moving avg.) 0.4664 0.4000 -0.6078 -0.8000 -0.3580 0.2000 -0.8655 -0.4000

LLM USAGE STATEMENT

In preparing this manuscript, we used LLM solely as a writing assistance tool. Specifically, the model
was employed to aid in grammar correction, sentence refinement, and improving clarity of exposition.
It did not contribute to research ideation, experimental design, data analysis, or interpretation of
results.
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