

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 GROKKING IN LLM PRETRAINING? MONITOR MEMORIZATION-TO-GENERALIZATION WITHOUT TEST

Anonymous authors

Paper under double-blind review

ABSTRACT

This paper presents *the first study of grokking in practical LLM pretraining*. Specifically, we investigate when an LLM memorizes the training data, when its generalization on downstream tasks starts to improve, and what happens if there is a lag between the two. Unlike existing works studying when a small model generalizes to limited and specified tasks during thousands epochs’ training on algorithmic data, we focus on a practical setting for LLMs, i.e., [near single-pass](#) pretraining of next-token prediction on a cross-domain, large-scale corpus, and generalization on diverse benchmark tasks covering math/commonsense reasoning, code generation, and domain-specific retrieval. Our study, *for the first time, verifies that grokking still emerges in pretraining mixture-of-experts (MoE) LLMs*, though different local data groups may enter their grokking stages asynchronously due to the heterogeneity of their distributions and attributions to others. To find a mechanistic interpretation of this local grokking, we investigate the dynamics of training data’s pathways (i.e., expert choices across layers in MoE). Our primary discovery is that *the pathways evolve from random, non-smooth across layers, instance-specific to more structured and transferable across samples*, despite the converged pretraining loss. This depicts a transition from memorization to generalization. Two novel metrics are developed to quantify these patterns: one computes the pathway similarity between samples, while the other measures the consistency of aggregated experts between subsequent layers for each sample. These training data based metrics induce [near](#) zero cost but can faithfully track and monitor the generalization of LLMs on downstream tasks, [reducing reliance on costly instruction tuning and benchmark evaluations](#). We also ground our findings in a theoretical analysis of one-layer MoE, showing that more structured pathways improve the generalization bound.

1 INTRODUCTION

Large language models (LLMs) with Transformer (Vaswani et al., 2017) architectures have demonstrated that pretraining for a general-purpose task such as autoregressive prediction on a large corpus can gain powerful generalization across diverse downstream tasks and domains (Brown et al., 2020; Touvron et al., 2023; Bai et al., 2023; Zhao et al., 2025). Capabilities such as prompting (Wei et al., 2023), reasoning (Huang & Chang, 2023; Ahn et al., 2024), and in-context learning also emerge during training. However, a counter-intuitive “grokking” (Power et al., 2022; Nanda et al., 2023; Tan & Huang, 2024; Lv et al., 2025) has been widely observed in training Transformer models: the generalization starts to improve or even sharply rises long after training loss converged or plateaued—an indicator of overfitting in conventional machine learning. While grokking indicates a transition from memorization to generalization (Huang et al., 2024), it challenges our fundamental understanding of training dynamics and the underlying mechanism of generalization.

Despite recent attempts to explain the generalization induced by grokking, they have been largely confined to small models trained for hundreds to thousands of epochs on algorithm-synthesized small-scale data with generalization to limited and highly specified tasks (Power et al., 2022; Liu et al., 2022a; Nanda et al., 2023; Merrill et al., 2023; Humayun et al., 2024; DeMoss et al., 2024; Prieto et al., 2025). Instead, LLMs’ pre-training often takes only one epoch on a web-scale corpus of heterogeneous, cross-domain data that usually contains noise, imbalance, and redundancy (Brown et al., 2020; Zhao et al., 2025). Hence, LLMs’ learning dynamics can vary drastically across different data, leaving whether grokking still emerges in LLM pretraining an open problem. It is also unclear

whether and when different data are memorized with converged loss, and, whether they are memorized at the same time. Moreover, without the repeated replay of the same data and a decrease in loss, the conversion from memorizing training tokens to generalizing on downstream tasks remains mysterious: When does the model start to generalize to different tasks? Is memorization a prerequisite? How does generalization performance change after memorization?

Unfortunately, these questions cannot be answered by the dynamics of pretraining loss since the generalization performance can still vary after the loss plateaued, as observed in previous studies of grokking (Power et al., 2022; Nanda et al., 2023). For LLMs, it is also practically expensive to monitor its generalization performance during pretraining, since the model has to be finetuned to gain instruction-following capability before being evaluated on downstream tasks. Hence, developing an efficient-to-compute metric to accurately track the generalization can offer critical insights on better understanding and improving the pretraining of LLMs.

Main Contributions In this paper, we investigate the training dynamics and grokking in LLM pre-training for a mechanistic interpretation of its emergent generalization on downstream tasks. Our study is conducted on the open-sourced pretraining checkpoints of a 7B mixture-of-experts (MoE) LLM, OLMoE (Muennighoff et al., 2024). While our study mainly focuses on OLMoE, its pretraining and evaluation setups are common among other LLMs. For the first time, we verify the existence of local grokking during LLM pretraining. However, unlike the previously observed global and synchronous grokking for most data (Power et al., 2022; Merrill et al., 2023; Nanda et al., 2023), *LLM memorizes domains/groups of training data at different training steps and takes varying amounts of steps to generalize to related benchmark tasks*. The starting time and lasting steps of such local grokking vary across data groups. As a result, generalization performance is usually unstable during the earlier pretraining stages but starts to steadily improve once sufficient data have been memorized. This local difference also reflects data difficulty: the later memorized data group often takes longer to generalize.

Another primary challenge is to explain how the continual pretraining after memorization completed leads to the delayed sharp rise of the generalization performance. To investigate the mechanism of memorization-to-generalization transition, we explore internal states of LLMs track their major changes after loss converges. Specifically, we study how the pathways (the expert choices across layers for training samples) in OLMoE change. We introduce two metrics to measure their complexity how it changes over time: (1) the edit distance between different samples' pathways; and (2) the consistency of selected experts' embedding between consecutive layers for each sample.

Our empirical analysis on four domains reveals a prominent trend of the pathway complexity during grokking: the edit distance declines and the consistency increases, despite the converged training loss and more data being learned. This change in pathway complexity reflects a transition to smarter memorization: it keeps discovering more transferable knowledge across samples to encode data more efficiently. *It explains why generalization improves with plateaued training loss: the model keeps finding more generalizable and shareable structures to memorize training data*. Additionally, we provide a theoretical explanation relating the pathway complexity to a generalization bound of a one-layer MoE. Practically, the two metrics show strong correlations with the evaluation results on standard benchmarks after instruction finetuning. Therefore, they provide a zero-cost, finetuning and benchmark evaluation-free tool to monitor generalization during pretraining, which is critical to LLM developers and practitioners. These discoveries take the first step toward bridging the gaps of understanding grokking and memorization-to-generalization transition in LLM pretraining. Our key findings and contributions can be summarized as:

- Grokking still occurs during the [near single-pass](#) pretraining of practical-scale LLMs, but it is local and asynchronous for different data groups, unlike global grokking for all data in previous works.
- Grokking's memorization-to-generalization transition can be explained by the dynamics of pathways in MoE: pathway similarity between samples and consistency across layers increase. A theoretical connection is also built between the pathway complexity and a generalization bound.
- The two metrics we developed to measure pathway complexity provide a finetuning and evaluation-free tool with almost zero cost to monitor the generalization during LLM pretraining.

2 RELATED WORK

Previous studies on grokking have primarily focused on relatively small models and simplistic tasks. Grokking was first identified by Power et al. (2022), who observed the phenomenon using a

108 two-layer transformer trained on a small-scale algorithmic dataset. Subsequent investigations have
 109 extended these findings to shallow transformers and densely connected networks (Nanda et al., 2023;
 110 Notsawo Jr et al., 2023; Merrill et al., 2023; Liu et al., 2022b; Fan et al., 2024), and CNNs (Humayun
 111 et al., 2024). Notably, all aforementioned studies employ multi-epoch training paradigms, which
 112 differ substantially from the one-pass training approach typical in LLM pretraining. Although Lv
 113 et al. (2025) examined grokking behavior using a 162M parameter transformer pretrained on 40
 114 billion tokens for a copying task, the scale of their model, dataset, and the simplicity of the task
 115 remain distant from practical, real-world scenarios. In contrast, our study is the first to investigate
 116 grokking in a 7-billion parameter LLM across diverse and practical tasks, including mathematical
 117 reasoning, code generation, commonsense understanding, and domain-specific knowledge retrieval.
 118

119 Several works have focused on revealing the mechanisms behind grokking behavior. Liu et al.
 120 (2022a) demonstrated in a simplified setting that grokking results from structured representations
 121 emerging during training. Nanda et al. (2023) further revealed that grokking can be attributed to
 122 the gradual amplification of structured mechanisms encoded within model weights. Wang et al.
 123 (2024) showed that even small Transformers trained from scratch on synthetic reasoning tasks
 124 exhibit a grokking-driven emergence of implicit reasoning, where generalization arises only after
 125 extended overfitting and internal structure formation. Using a single-layer ReLU network, Merrill
 126 et al. (2023) associated grokking with subnetwork sparsity. Meanwhile, Humayun et al. (2024)
 127 observed that decision boundaries become smoother during the grokking phase in CNN classification
 128 tasks. Beyond interpretability-focused research, Notsawo Jr et al. (2023) identified oscillatory
 129 patterns in early training loss as predictors of subsequent grokking phenomena. Distinct from these
 130 works, our research provides an explanation of grokking within significantly larger LLMs through
 131 an interpretative analysis of MoE architectures. Additionally, we introduce practical indicators for
 132 monitoring generative behavior throughout LLM pretraining.
 133

3 GROKKING (DELAYED GENERALIZATION) IN LLM PRETRAINING

134 While most existing works study grokking of small models on specified algorithmic tasks, investigating
 135 similar phenomena in LLM pretraining poses several new unique challenges, which inherently
 136 motivate several designs in our experimental settings.
 137

- 138 • **Training-test evaluation gap:** most LLMs are trained for the next token(s) prediction while
 139 evaluated on diverse benchmark tasks, making the conventional comparison between training and
 140 test loss/accuracy invalid. Hence, we need to adapt the definition of grokking to the LLM setting.
 141
- 142 • **Heterogeneous, web-sourced, cross-domain training data:** While previous grokking studies
 143 focus on clean training data with the same distribution/format, most LLMs are pretrained on het-
 144 erogeneous, cross-domain, web-sourced data that contain redundant, contaminated, or imbalanced
 145 samples. Hence, their loss may converge at different rates and pose distinct effects on downstream
 146 tasks. To address these challenges, we carefully filter and group the data in our analysis.
 147
- 148 • **Generalization to diverse downstream tasks:** Previous studies of grokking focus on general-
 149 ization to highly-specified and limited tasks, while practical LLMs are expected to generalize
 150 to arbitrary tasks or domains via prompting. Hence, LLMs’ generalization behaviors may vary
 151 drastically across different downstream tasks/benchmarks and difficulty levels during pretraining.
 152
- 153 • **Near single-pass pretraining:** Most LLMs’ pretraining only takes **approximately** one epoch, so
 154 the model has been trained only once on each sample, and its training loss may even converge
 155 before visiting later data. However, such “memorization” of unseen data is not caused by overfitting
 156 or repeated replay. Instead, it reflects the interpolation or composition of learned data, which might
 157 be counted as “generalization” in previous works but differs from the emergent generalization
 158 of LLMs on new tasks.
 159

3.1 STUDY TRAINING DYNAMICS OF LLM PRETRAINING

160 **Memorization is measured by the pretraining objective.** Next token prediction (NTP) is the
 161 most widely adopted pretraining objective for LLMs. Let the pretraining corpus be D_{train} , it aims to
 162 minimize the negative log-likelihood (NLL) of each token $x_{i,j}$ given previous tokens $x_{i,<j}$ in a text

162 sequence $x_i = (x_{i,1}, \dots, x_{i,|j|})$ drawn from D_{train} :
 163

$$164 \quad 165 \quad 166 \quad \ell_i(\theta) = -\frac{1}{|x_i|} \sum_{j=1}^{|x_i|} \log p_\theta(x_{i,j} | x_{i,<j}). \quad (1)$$

167 Since $\ell_i(\theta)$ directly measures how the model memorizes each token in x_i , we will track it in
 168 the pretraining process and identify the sample with consistently small and converged loss across
 169 checkpoints as memorized. Specifically, for a sample x_i with loss $\ell_i(\theta_t)$ at pretraining step t , we
 170 identify it as *memorized* since step t_i^* if $\ell_i(\theta_t) \leq \varepsilon$ and $|\ell_i(\theta_t) - \ell_i(\theta_T)| \leq \delta$ for all $t \geq t_i^*$, where ε
 171 is a small threshold, δ enforces stability over time, and T indexes the final pretraining checkpoint.
 172 [In Appendix E.3, We verify that varying \$\varepsilon\$ and \$\delta\$ does not change the post-memorization behavior](#)
 173 [analyzed in Section 4.](#)

174 **Generalization is measured on standard benchmarks after instruction tuning.** As foundation
 175 models with various emergent capabilities, LLMs are expected to generalize to an open set of unseen
 176 tasks through simple prompting/instructions. Hence, their generalization performance is usually
 177 measured across standard benchmarks defined on diverse downstream tasks. To equip a pretrained
 178 LLM θ with the instruction-following capability, an instruction tuning algorithm \mathcal{A}_{IT} further finetunes
 179 θ on a dataset D_{IT} . The generalization performance on benchmark- i is then measured by

$$180 \quad 181 \quad \mathcal{G}_i = \text{Eval}_i(\theta_{\text{IT}}, D_i), \theta_{\text{IT}} = \mathcal{A}_{\text{IT}}(\theta, D_{\text{IT}}), \quad (2)$$

182 where D_i is the dataset in benchmark- i and Eval_i defines the corresponding evaluation metric, which
 183 varies across benchmarks for different types of tasks. For example, accuracy is usually used in
 184 multi-choice QA tasks while BLEU/ROUGE scores are used in summarization and generation tasks.
 185 For code generation tasks, the generalization performance is usually measured by unit tests, where a
 186 test case is considered correct if the generated code can pass the unit tests.

187 **Grokking refers to delayed generalization improvement after memorization is completed.**
 188 Following the same spirit of previous works on grokking, we mainly focus on the phenomenon that
 189 \mathcal{G}_i starts to surge long after $\ell_i(\theta)$ has converged/plateaued. We also use the training loss to track
 190 memorization as previous works. However, the test loss adopted by previous grokking analysis is no
 191 longer an ideal metric for LLM generalization, since it focuses on token-level matching to ground
 192 truths while downstream tasks focus on semantic-level matching, and some of them do not provide
 193 ground truths (e.g., code generation).

194 **Experimental Setup** We equidistantly sample 10 checkpoints from the OLMoE pretraining trajectory.
 195 To evaluate memorization, we probe OLMoE on samples drawn directly from its pretraining corpus
 196 D_{train} , ensuring fidelity to the model’s original distribution. We evaluate generalization on widely
 197 used benchmarks spanning four domains: *math*, *code*, *commonsense QA*, and *domain-specific QA*
 198 (10k pretraining and 10k test samples per domain; see Appendix A). To exclude contaminated
 199 benchmark samples from the generalization analysis, we apply the Min-K%++ membership inference
 200 method (Zhang et al., 2024) to identify them. Moreover, we mainly focus on the samples whose
 201 model predictions become consistently correct before the pretraining ends, and analyze when this
 202 generalization emerges and how long it persists. For downstream tasks, we apply lightweight LoRA-
 203 based instruction tuning \mathcal{A}_{IT} on D_{IT} to equip checkpoints with basic instruction-following capability
 204 while preserving pretrained capabilities (Appendix B).

205 3.2 ASYNCHRONOUS MEMORIZATION, DELAYED GENERALIZATION, & LOCAL GROKKING

206 To understand when memorization unfolds during pretraining and how it affects generalization,
 207 Figure 1 contrasts the number of memorized training samples (using the criterion defined above)
 208 at each pretraining checkpoint with benchmark performance for each domain. It shows that (1)
 209 training samples are memorized at different pretraining steps; (2) generalization typically follows
 210 memorization with a lag: benchmark performance starts to achieve stable gains after sufficient data has
 211 been memorized. An interesting discovery is that the lag length varies across domains: generalization
 212 leap on math and coding tasks requires memorizing many more samples than commonsense and
 213 domain-specific QA tasks.

214 These observations reveal the complex training dynamics of LLMs caused by training data hetero-
 215 geneity and their uneven attributions to different benchmark tasks. It implies that the widely studied

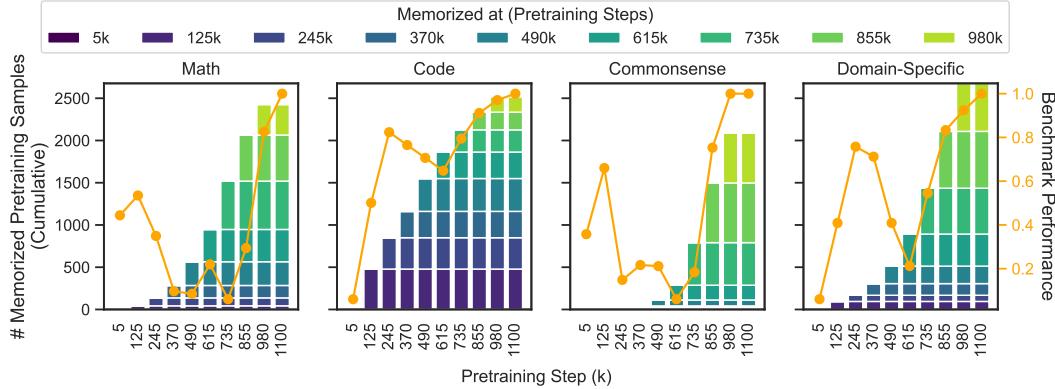


Figure 1: **Memorized training samples at different pretraining steps and the generalization performance** on standard benchmarks for each domain. It shows asynchronous memorization of different data in each domain and a delayed generalization leap after memorizing a certain amount of data.

global grokking—a synchronous memorization of most training data and a delayed contemporary generalization leap on most test samples—cannot be found in LLM pretraining. That being said, the memorization of certain data is plausible to impose a long-term, delayed effect on the generalization to specific downstream tasks. To investigate such local dynamic patterns, we group data in each domain by their memorization steps t_i^* and particularly focus on the early-memorized groups, as they leave more checkpoints after t_i^* to study the subsequent dynamics of generalization. Accordingly, we group samples in benchmarks by the training steps since when their predictions become consistently correct. To enable an analysis of how memorization drives downstream generalization performance, we pair each training data group with its most relevant benchmark samples via bipartite graph matching (by Hungarian algorithm (Kuhn, 1955)), with the training-test data similarity defined in the embedding space of SentenceTransformer (Reimers & Gurevych, 2019). [Additional implementation details of the pairing procedure are provided in Appendix B.1.](#)

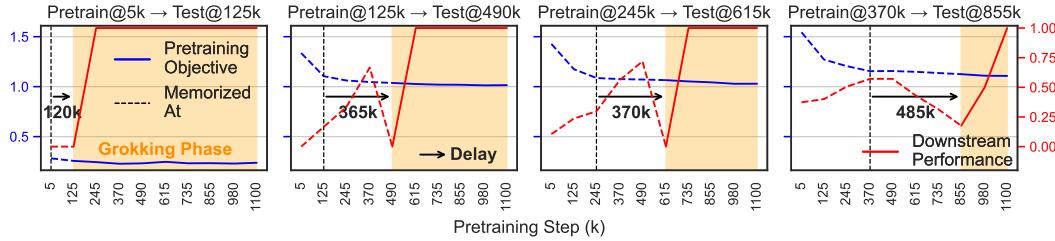


Figure 2: **Pretraining objective (blue) and benchmark performance (red) across four paired training-test data groups from the math domain.** $\text{Pretrain}@p \rightarrow \text{Test}@q$ denotes a paired training-test group, where $\text{Pretrain}@p$ is the training subset whose samples reach stable memorization at step p , and $\text{Test}@q$ is the benchmark subset whose accuracy stabilizes at step q . These pairs are formed using embedding-based Hungarian matching, as detailed in [Appendix B.1](#). We observe local grokking on each pair: a delayed generalization leap on benchmark tasks after the pretraining objective plateaued. From left to right, more difficult data memorized (converged) later associate with a longer delay towards grokking.

Figure 2 visualizes the memorization and generalization on four groups: all training-test pairs exhibit a delayed generalization leap on benchmark tasks after the pretraining objective stably converged on the training data. Hence, the training objective cannot monitor or predict the generalization performance. Moreover, earlier-converging groups generalize sooner after loss converged, while later-converging groups associate with substantially longer delays. Notably, this delay scales with data difficulty, which affects not only the number of steps taken to memorize the data but also the duration of memorization to generalization transition.

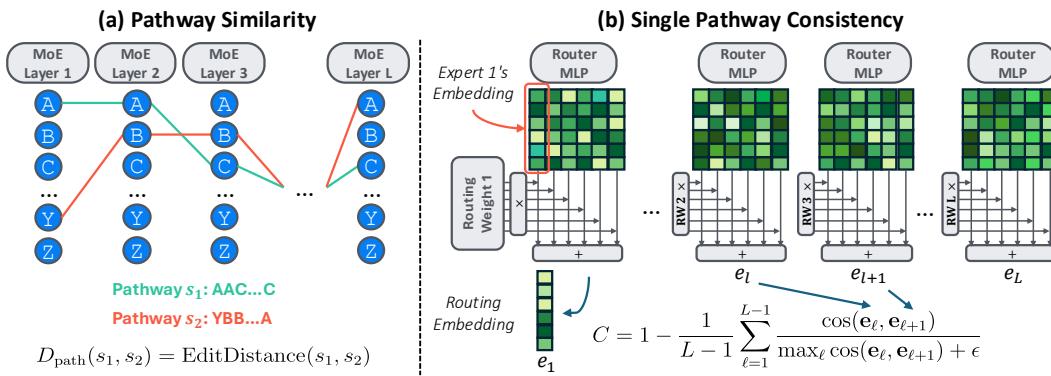
Remaining Question This local grokking indicates that the model’s internal states, except its pretraining loss, might track generalization or reflect the transition better. This raises a fundamental question for understanding the emergence of capability in LLM: *What internal state changes within an LLM signify the emergence of generalization?* Investigating this problem can provide critical insights

270 to uncover the mechanisms of memorization-to-generalization transition and monitor the pretraining
 271 progress in practice. To this end, we probe LLMs' internal state dynamics to address the challenge.
 272

273 4 MONITOR MEMORIZATION-TO-GENERALIZATION TRANSITION BY 274 TRAINING DYNAMICS OF ROUTING PATHWAYS

275 As shown in Section 3, generalization in LLMs emerges well after memorization, suggesting that
 276 internal reorganization underlies this transition. Such dynamics are difficult to track in dense archi-
 277 tectures, where all neurons are simultaneously involved. MoEs simplify this process: by organizing
 278 computation into experts, each input activates only a subset of experts, forming a discrete *routing path-
 279 way* across layers (Figure 3(a)). These pathways reveal how computation is allocated and reorganized
 280 during pretraining, providing a mechanistic view of the memorization-to-generalization transition.
 281

282 In this section, we analyze the evolution of *routing pathway* during pretraining and introduce two
 283 metrics to quantify these changes (Figure 3): (i) the similarity of pathways across different inputs
 284 (Section 4.1), and (ii) the consistency of a single input's pathway (Section 4.2). Importantly, all
 285 metrics are computed on pretraining samples that have already been memorized, i.e., those whose
 286 training objective has stabilized at low values beyond specific checkpoints, and trace how their
 287 internal routing continue to evolve from memorization to generalization. We then assess these metrics
 288 as robust generalization monitors (Section 4.3) and conclude by establishing a spectral framework
 289 connecting routing geometry to generalization bounds (Section 4.4).
 290



303 **Figure 3: Pathway Complexity Metrics to Monitor Grokking.** (a) Pathway similarity between
 304 samples is measured by edit distance on their sequences of expert choices across layers. (b) Pathway
 305 consistency quantifies the smoothness of expert transitions between subsequent layers for the same
 306 sample by cosine similarity of their weighted expert embeddings.

307 4.1 PATHWAY DISTANCE AND KNOWLEDGE SHARING BETWEEN TRAINING SAMPLES

309 Building on prior findings that grokking coincides with the emergence of *structured internal mecha-
 310 nisms* (Liu et al., 2022a; Nanda et al., 2023; Wang et al., 2024), we hypothesize that as the model
 311 begins to generalize, it transitions from highly individualized, input-specific computation toward
 312 more *shared, structured computation across related inputs*. This shift should manifest as increasing
 313 **pathway similarity**—the convergence of routing patterns across similar samples—indicating that the
 314 model is developing common mechanisms for solving related tasks.

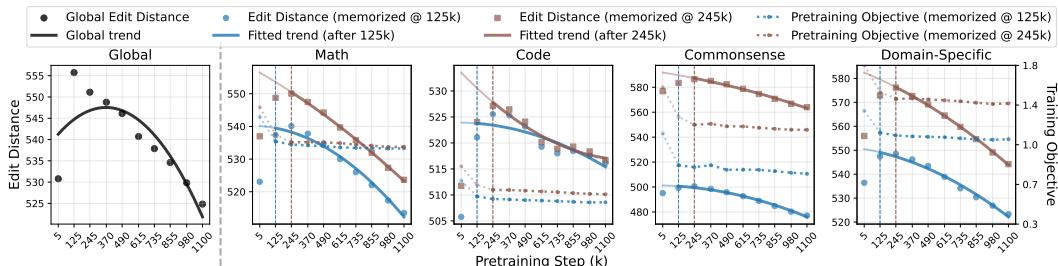
315 We test this by examining how the similarity of expert pathway evolves during pretraining. Each
 316 input's pathway is the ordered sequence of selected experts through the L MoE layers. Specifically,
 317 for input x_i , we define its pathway s_i as: $s_i = \text{concat}(e_1^{(i)}, e_2^{(i)}, \dots, e_L^{(i)})$, where $e_\ell^{(i)}$ denotes the
 318 ordered list of expert indices at layer ℓ , obtained by ranking experts according to the mean routing
 319 weights across all tokens for input x_i . To determine which experts are included, we first rank experts
 320 based on their routing weight and then select top-ranked experts until their cumulative routing weight
 321 exceeds a predefined threshold. The weight threshold selects the experts that actually drive each
 322 input's computation, rather than picking a fixed number of experts. In our main analysis, we use
 323 a cumulative routing-weight threshold of 0.7, and Appendix E.1 shows that the observed pathway
 324 trends remain consistent when varying this threshold. The selected experts are then concatenated

324 as a comma-separated string (e.g., '3,1,5') which are later joined across layers with hyphens
 325 (e.g., '3,1,5-...-9,1').

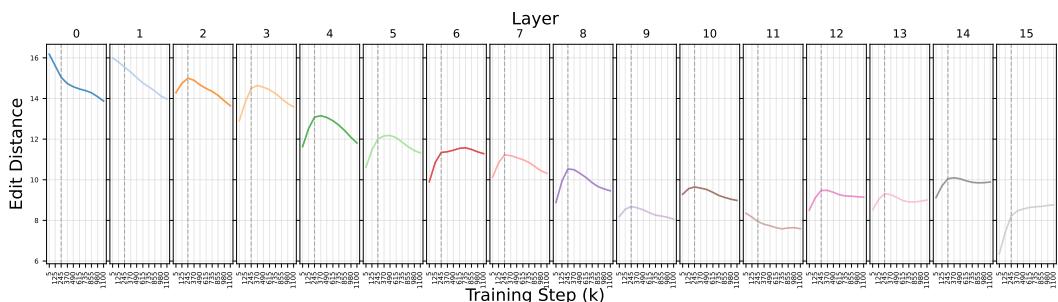
326 We use the Levenshtein edit distance $D_{\text{path}}(s_i, s_j) = \text{EditDistance}(s_i, s_j)$, which counts the
 327 minimum insertions, deletions, or substitutions required to align two pathways, to measure pathway
 328 similarity. This metric captures both local deviations in expert choice and global shifts in pathway
 329 structure, reflecting differences in selection, length, and ordering. We monitor the average pairwise
 330 distance across samples throughout pretraining to track the emergence of shared routing.
 331

332 **Overall pattern.** Our analysis, shown in Figure 4, reveals a clear trajectory in pathway dynamics.
 333 Early in pretraining, most inputs share nearly identical routes, producing low edit distance D_{path} .
 334 As the model memorizes individual inputs, pathways diverge and D_{path} rises. Crucially, D_{path}
 335 decreases after memorization, which indicates that semantically related inputs then converge into
 336 similar routing sequences, signaling the **emergence of shared pathways** that support generalization.
 337

338 **Layerwise pattern.** While prior work (Lo et al., 2025) reports static depth-dependent specialization in
 339 trained MoEs, our results show that the memorization-to-generalization transition is also dynamically
 340 depth-dependent during pretraining (Figure 5). Shallow layers show the steepest decline in D_{path} after
 341 memorization, indicating rapid convergence to shared pathways. Deeper layers exhibit smaller reductions,
 342 and the final layer even shows an increase in D_{path} post-memorization. These patterns suggest
 343 a depth-specific reorganization: early layers consolidate universal representations, while later layers
 344 retain or enhance routing flexibility, balancing shared computation with task-specific specialization.
 345



352 **Figure 4: Pathway edit distance and pretraining objective of two data groups** (memorized
 353 at 125k and 245k steps) during pretraining across four domains. The global panel (leftmost) fits
 354 the overall quadratic trend over all domains, while domain panels fit separate trends after the
 355 corresponding convergence step. Despite early training objective plateauing, pathway edit distance
 356 continues to decline, indicating a declining complexity of internal memorization.



357 **Figure 5: Layer-wise evolution of pathway edit distance during pretraining** for the data group
 358 memorized at 245k step. Overall distance decreases from early to later layers, indicating higher
 359 complexity in early layers. After pretraining objective convergence, early-layer routing among
 360 similar samples simplifies quickly, later layers adapt more gradually, and the final layer diversifies
 361 after memorization.

362 4.2 PATHWAY CONSISTENCY AND COMPLEXITY FOR SINGLE SAMPLES

363 We next analyze how the routing complexity of individual inputs evolves during pretraining. Our
 364 hypothesis is that increasingly streamlined and consistent expert selection across layers reflects
 365 the reuse of shared pathways, signaling the emergence of generalizable processing strategies. To
 366 capture this, we define **single-sample pathway consistency**, which measures the smoothness of
 367 expert transitions across consecutive layers.

In a typical MoE, the router at layer ℓ is a single-layer MLP—a linear transformation followed by a softmax—producing scores over K experts, with weight matrix $\mathbf{W}_\ell \in \mathbb{R}^{K \times d}$. We define the *expert embedding* for expert k as $\mathbf{v}_\ell^k := \mathbf{W}_\ell[k]$, $k = 1, \dots, K$, which serves as an anchor vector to compute routing scores. For input x_i , its *routing embedding* is the weighted sum:

$$\mathbf{e}_\ell^{(i)} = \sum_{k=1}^K g_\ell^{(i,k)} \cdot \mathbf{v}_\ell^k,$$

where $g_\ell^{(i,k)}$ is the routing weight assigned to expert k . Although experts are independently parameterized, the strong correlations between adjacent layers in deep networks (He et al., 2016) and MoEs (Li & Zhou, 2025) suggest that $\{\mathbf{v}_\ell^k\}$ can be comparable across neighboring layers, supporting structural analysis of routing behavior.

To quantify routing smoothness, we define **pathway consistency** C_i as the normalized average cosine similarity between consecutive layer embeddings for input x_i :

$$C_i = 1 - \frac{1}{L-1} \sum_{\ell=1}^{L-1} \frac{\cos(\mathbf{e}_{i,\ell}, \mathbf{e}_{i,\ell+1})}{\max_\ell \cos(\mathbf{e}_{i,\ell}, \mathbf{e}_{i,\ell+1}) + \epsilon},$$

where $\epsilon = 10^{-8}$ ensures numerical stability. Higher C_i indicates more erratic transitions, while lower values reflect smoother, more consistent routing across layers.

Figure 6 tracks the evolution of pathway consistency and pretraining objective across four domains. A key finding is that even after the objective stabilizes, pathway consistency continues to improve—revealing ongoing refinement in the internal routing of the model. This suggests that smoother, more coherent cross-layer transitions emerge well after memorization, positioning pathway consistency as a valuable lens for understanding generalization beyond what the training objective alone captures.

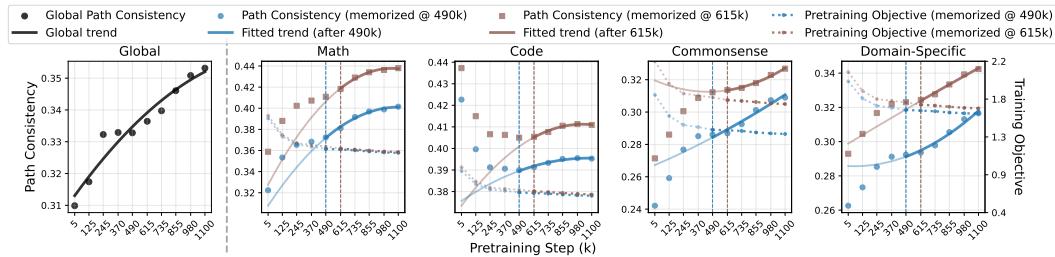


Figure 6: **Pathway consistency vs. training objective** on four domains during pretraining. The global panel (leftmost) shows that the path consistency consistently improves over all data, while each domain panel shows the same trend on two data groups (memorized at 490k and 615k) from each domain after the training objective converges. This reflects a progressively smoother transition of experts between consecutive layers after memorization.

4.3 PATHWAY COMPLEXITY METRICS AS MONITORS OF GENERALIZATION

Table 1: **Correlation between pathway complexity metrics and generalization** (test accuracy) across four domains, with the comparison to training/validation loss. p -value: $p < 0.1$, $p < 0.05$, $p < 0.01$, $p < 0.001$, $p > 0.1$, $p > 0.5$, $p > 0.8$. Preferred correlation: positive , negative .

Metric	Math		Code		Commonsense		Domain-Specific	
	Pearson	Spearman	Pearson	Spearman	Pearson	Spearman	Pearson	Spearman
Pathway Distance (pairwise)	-0.9471	-0.9487	-0.9290	-0.9276	-0.9821	-0.9747	-0.9254	-0.9487
Pathway Consistency (sample-wise)	0.9246	0.9487	0.9786	0.9856	0.9804	0.9747	0.9917	0.9487
Training Loss	-0.0435	-0.2108	-0.0680	-0.2052	0.6427	0.4104	0.7944	0.9487
Training Loss (moving average)	0.4714	0.3162	0.2481	-0.2052	0.7931	0.6669	0.8705	0.9487
Validation Loss	0.4801	-0.1054	0.5466	0.8721	-0.5752	-0.4617	-0.3339	-0.3162

Given the strong link between routing dynamics and generalization, we ask: *To what extent do our pathway metrics predict test performance across domains?* To answer this, we compute Pearson and Spearman correlations between downstream performance and two metrics across pretraining checkpoints. [As described in Section 3.1](#), we apply a lightweight LoRA-based instruction tuning (rank = 32; see Appendix B) solely to equip pretrained checkpoints with basic instruction-following

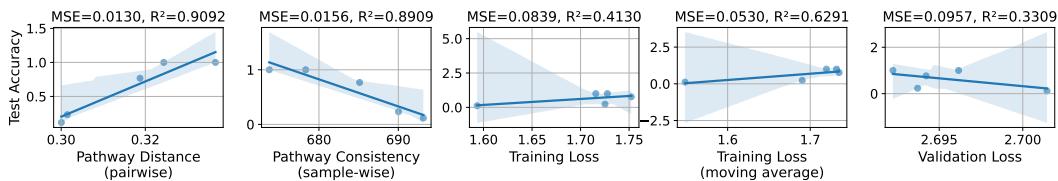


Figure 7: Correlation of the two pathway complexity metrics with benchmark performance. Compared to the training objective and its moving average, both the pathway edit distance and consistency are highly correlated with the test accuracy, though they are also computed on training data.

ability for benchmark evaluation. The robustness of this setup is further supported by the LoRA rank ablation in Appendix E.2. Our correlation analysis focuses on checkpoints after domain-level accuracy begins its sustained rise (shown in Figure 1), thereby isolating the mechanisms that drive generalization beyond the random-accuracy phase.

Table 1 summarizes the correlation results across four tasks. Pathway consistency (sample-wise) shows exceptionally strong positive correlations with test accuracy—often exceeding 0.97 and highly significant—indicating that coherent, stable routing across layers is a key marker of generalization. In contrast, pairwise pathway similarity consistently yields strong negative correlations (around -0.93), suggesting that as generalization improves, inputs tend to follow increasingly similar expert routes. By comparison, as shown in Figure 7, training and validation loss metrics exhibit weaker and less consistent correlations. Notably, while moving-average training loss shows relatively high correlation in certain domains (e.g., Code, Domain-Specific), its direction is inconsistent with expectation: since loss is minimized during training, we would expect a *negative* correlation with test accuracy—not the *positive* one observed here. This mismatch further underscores that conventional pretraining metrics fail to reflect the internal transition from memorization to generalization.

These findings position pathway metrics as robust, domain-general indicators of generalization. Importantly, they rely only on training dynamics—without requiring held-out validation data—making them especially valuable for real-time monitoring in large-scale or resource-constrained settings.

4.4 THEORETICAL CONNECTIONS & EXPLANATIONS

We connect expert routing patterns with model generalization via the *complexity* of routing, formalized through the *effective dimension* of the routing kernel. This effective dimension will serve as the key determinant of MoE generalization.

Concretely, \mathbf{H}^* is the Gram matrix of the routing kernel with entries $\mathbf{H}_{ij}^* = \Theta_{\text{route}}(x_i, x_j)$, capturing similarity between inputs induced by both routing overlap and expert functions. The effective dimension is defined as $\text{Tr}(\mathbf{H}^*(\mathbf{H}^* + \lambda I)^{-1})$, measuring the complexity of the function space induced by routing.

Theorem 4.1 (Generalization Bound). *Under NTK regime with K experts, with probability $1 - \delta$ over n samples, where C_1, C_2 are NTK-dependent constants and λ is the regularization parameter:*

$$\mathcal{E} \leq \underbrace{\frac{C_1 \lambda^2}{n} \mathbf{y}^\top (\mathbf{H}^* + \lambda I)^{-2} \mathbf{y}}_{\text{Bias}} + \underbrace{C_2 \left(\frac{\sigma^2 \text{Tr}(\mathbf{H}^*(\mathbf{H}^* + \lambda I)^{-1})}{n} + \frac{\sigma^2 \log(1/\delta)}{n} \right)}_{\text{Variance + Noise}}$$

This provides a lens on grokking: as routing evolves from random to structured, the effective dimension collapses, triggering improvements in generalization. Intuitively, this collapse corresponds to a simplification of routing pathways: the kernel spectrum becomes more concentrated, reducing the hypothesis space and mitigating overfitting. The full theoretical setup, assumptions, and proof are detailed in Appendix C, while Appendix C.4 empirically confirms that effective dimension is tightly aligned with routing edit distance, establishing pathway complexity as a key driver of MoE generalization.

5 DISCUSSION

Why studying OLMoE matters. OLMoE is the only publicly available large-scale MoE LLM with full pretraining checkpoints, providing a rare opportunity to study pretraining dynamics directly. Its

486 architecture, including top- k routing, load-balancing loss, AdamW, RMSNorm, and RoPE, follows
 487 standard MoE practices and thus reflects typical large-scale designs. While additional pretraining
 488 checkpoints are not yet available, recent studies on other MoE models such as DeepSeekMoE (Dai
 489 et al., 2024) and Qwen3-MoE (Yang et al., 2025) show that promoting similar routing pathways
 490 across related samples improves generalization through post-training (Li et al., 2025b) or test-time
 491 adaptation (Li et al., 2025a). These findings support our conclusion that pathway similarity is a
 492 general signal of model generalization and that the mechanisms observed in OLMoE extend to other
 493 MoE architectures.

494

495 **Ruling out global routing effects.** To ensure that the observed decrease in pathway distance
 496 is not driven by global factors such as load balancing, we conduct two analyses. First, a cross-
 497 domain comparison (Appendix E.4) shows that pathway distances between different domains (e.g.,
 498 math \times code) fluctuate irregularly without a consistent downward trend, in contrast to the observed
 499 group- and domain-specific decreases in Figure 4, confirming that pathway reorganization is a
 500 localized phenomenon driven by memorization rather than a global routing effect. Second, the
 501 correlation between routing entropy and pathway edit distance is weak ($r = 0.24$, $\sim 6\%$ variance
 502 explained; Appendix E.5), indicating that balanced or saturated routing alone does not account for
 503 our findings. Together, these results demonstrate that pathway reorganization arises from structured,
 504 domain-specific computation rather than global changes in routing behavior.

505

505 **Consistent Findings on another MoE (nanoMoE) pretraining justify the generality of our**
 506 **study.** To further assess the generality of our findings, we train a separate MoE model from scratch
 507 (nanoMoE; Appendix E.6) to obtain fully observable pretraining dynamics. Despite differences in
 508 scale, data, and training setup, the model exhibits the same post-memorization routing behavior,
 509 where pathway distance decreases and pathway consistency increases, and both metrics show strong
 510 correlations with downstream benchmark performance. This independent experiment confirms that
 511 the pathway–generalization relationship is a robust property of MoE training dynamics rather than an
 512 artifact of OLMoE.

513

514

6 CONCLUSION

515

516 This paper provides the first empirical evidence that, in large-scale LLM pretraining, generalization
 517 can emerge well after memorization has been achieved. Through an analysis of routing dynamics
 518 in a 7B-parameter MoE model, we propose two novel pathway-based metrics that accurately track
 519 generalization without requiring finetuning or external validation sets. Our findings reveal a transition
 520 from memorization to generalization, marked by increased pathway similarity and consistency, and
 521 supported by theoretical connections between routing structure and generalization bounds. These
 522 insights offer a foundation for more transparent and reliable monitoring of generalization in large-
 523 scale models. Future work will extend these pathway-based metrics beyond MoE, by constructing
 524 analogous “virtual pathways” in dense models, moving toward a unified framework for tracking
 525 generalization in foundation models.

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540 REFERENCES
541

542 Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui Zhang, and Wenpeng Yin. Large language models
543 for mathematical reasoning: Progresses and challenges, 2024. URL <https://arxiv.org/abs/2402.00157>.

544 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
545 Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu,
546 Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi
547 Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng
548 Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi
549 Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang
550 Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report, 2023. URL
551 <https://arxiv.org/abs/2309.16609>.

552 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
553 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
554 Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
555 Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
556 Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
557 Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL <https://arxiv.org/abs/2005.14165>.

558 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
559 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
560 *arXiv preprint arXiv:1803.05457*, 2018.

561 Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
562 Zeng, Xingkai Yu, Yu Wu, et al. Deepseekmoe: Towards ultimate expert specialization in mixture-
563 of-experts language models. *arXiv preprint arXiv:2401.06066*, 2024.

564 Branton DeMoss, Silvia Sapora, Jakob Foerster, Nick Hawes, and Ingmar Posner. The complexity
565 dynamics of grokking, 2024. URL <https://arxiv.org/abs/2412.09810>.

566 Simin Fan, Razvan Pascanu, and Martin Jaggi. Deep grokking: Would deep neural networks
567 generalize better?, 2024. URL <https://arxiv.org/abs/2405.19454>.

568 Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,
569 Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The Pile: An 800gb
570 dataset of diverse text for language modeling. *arXiv preprint arXiv:2101.00027*, 2020.

571 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
572 recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
573 pp. 770–778, 2016.

574 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
575 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

576 Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A survey,
577 2023. URL <https://arxiv.org/abs/2212.10403>.

578 Yufei Huang, Shengding Hu, Xu Han, Zhiyuan Liu, and Maosong Sun. Unified view of grokking,
579 double descent and emergent abilities: A perspective from circuits competition, 2024. URL
580 <https://arxiv.org/abs/2402.15175>.

581 Ahmed Imtiaz Humayun, Randall Balestriero, and Richard Baraniuk. Deep networks always grok
582 and here is why, 2024. URL <https://arxiv.org/abs/2402.15555>.

583 Harold W Kuhn. The hungarian method for the assignment problem. *Naval research logistics
584 quarterly*, 2(1-2):83–97, 1955.

585 Zhongyang Li, Ziyue Li, and Tianyi Zhou. C3po: Critical-layer, core-expert, collaborative pathway
586 optimization for test-time expert re-mixing. *arXiv preprint arXiv:2504.07964*, 2025a.

594 Zhongyang Li, Ziyue Li, and Tianyi Zhou. Routing manifold alignment improves generalization of
 595 mixture-of-experts llms. *arXiv preprint arXiv:2511.07419*, 2025b.
 596

597 Ziyue Li and Tianyi Zhou. Sparser mixture-of-adapters with cross-layer generalization. In *Pro-
 598 ceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association
 599 for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp.
 600 3988–4002, 2025.

601 Ziming Liu, Ouail Kitouni, Niklas S Nolte, Eric Michaud, Max Tegmark, and Mike Williams.
 602 Towards understanding grokking: An effective theory of representation learning. *Advances in
 603 Neural Information Processing Systems*, 35:34651–34663, 2022a.

604 Ziming Liu, Eric J Michaud, and Max Tegmark. Omnidrok: Grokking beyond algorithmic data.
 605 *arXiv preprint arXiv:2210.01117*, 2022b.
 606

607 Ka Man Lo, Zeyu Huang, Zihan Qiu, Zili Wang, and Jie Fu. A closer look into mixture-of-experts
 608 in large language models. In *Findings of the Association for Computational Linguistics: NAACL
 609 2025*, pp. 4427–4447, 2025.

610 Ang Lv, Ruobing Xie, Xingwu Sun, Zhanhui Kang, and Rui Yan. Language models "grok" to copy,
 611 2025. URL <https://arxiv.org/abs/2409.09281>.
 612

613 William Merrill, Nikolaos Tsilivis, and Aman Shukla. A tale of two circuits: Grokking as competition
 614 of sparse and dense subnetworks, 2023. URL <https://arxiv.org/abs/2303.11873>.
 615

616 Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
 617 electricity? a new dataset for open book question answering. *arXiv preprint arXiv:1809.02789*,
 618 2018.

619 Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Jacob Morrison, Sewon Min, Weijia
 620 Shi, Pete Walsh, Oyvind Tafjord, Nathan Lambert, Yuling Gu, Shane Arora, Akshita Bhagia,
 621 Dustin Schwenk, David Wadden, Alexander Wettig, Binyuan Hui, Tim Dettmers, Douwe Kiela, Ali
 622 Farhadi, Noah A. Smith, Pang Wei Koh, Amanpreet Singh, and Hannaneh Hajishirzi. Olmoe: Open
 623 mixture-of-experts language models, 2024. URL <https://arxiv.org/abs/2409.02060>.
 624

625 Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures
 626 for grokking via mechanistic interpretability. *arXiv preprint arXiv:2301.05217*, 2023.

627 Pascal Notsawo Jr, Hattie Zhou, Mohammad Pezeshki, Irina Rish, Guillaume Dumas, et al. Predicting
 628 grokking long before it happens: A look into the loss landscape of models which grok. *arXiv
 629 preprint arXiv:2306.13253*, 2023.

630 Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Gen-
 631 eralization beyond overfitting on small algorithmic datasets. *arXiv preprint arXiv:2201.02177*,
 632 2022.

633 Lucas Prieto, Melih Barsbey, Pedro A. M. Mediano, and Tolga Birdal. Grokking at the edge of
 634 numerical stability, 2025. URL <https://arxiv.org/abs/2501.04697>.
 635

636 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 637 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.

638 Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
 639 In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing*.
 640 Association for Computational Linguistics, 11 2019. URL [https://arxiv.org/abs/1908.
 641 10084](https://arxiv.org/abs/1908.10084).

642 Zhiqian Tan and Weiran Huang. Understanding grokking through a robustness viewpoint, 2024.
 643 URL <https://arxiv.org/abs/2311.06597>.
 644

645 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 646 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
 647 Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
 648 models, 2023. URL <https://arxiv.org/abs/2302.13971>.

648 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
 649 Kaiser, and Illia Polosukhin. Attention is all you need. 2017. URL <https://arxiv.org/pdf/1706.03762.pdf>.

650

651 Boshi Wang, Xiang Yue, Yu Su, and Huan Sun. Grokked transformers are implicit reasoners: A
 652 mechanistic journey to the edge of generalization. *arXiv preprint arXiv:2405.15071*, 2024.

653

654 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
 655 and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023.
 656 URL <https://arxiv.org/abs/2201.11903>.

657

658 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 659 Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*,
 660 2025.

661 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
 662 really finish your sentence? *arXiv preprint arXiv:1905.07830*, 2019.

663

664 Jingyang Zhang, Jingwei Sun, Eric Yeats, Yang Ouyang, Martin Kuo, Jianyi Zhang, Hao Frank Yang,
 665 and Hai Li. Min-k%++: Improved baseline for detecting pre-training data from large language
 666 models. *arXiv preprint arXiv:2404.02936*, 2024.

667 Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
 668 Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen,
 669 Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and
 670 Ji-Rong Wen. A survey of large language models, 2025. URL <https://arxiv.org/abs/2303.18223>.

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A DATASET DETAILS**
703704 We evaluate OLMoE on four domains used during pretraining: **math**, **code**, **commonsense**, and
705 **domain-specific** (scientific text). For each domain, we construct three sets:
706707

- 708 • **Pretraining sample set:** 10,000 examples drawn from OLMoE’s pretraining data.
709
- 710 • **Test sample set:** 10,000 examples from a benchmark dataset in the same domain, following
711 OLMoE’s categorization where available.
712
- 713 • **Validation set:** a disjoint dataset used solely to compute validation loss, enabling correlation
714 analysis between in-domain learning and test generalization.
715

716 For the domain-specific case, we filter the scientific pretraining data using the keyword “*Organic*
717 *Chemistry*”, aligning the training distribution with the “college_chemistry” benchmark in MMLU.
718719 Table 2 summarizes all dataset sources. All pretraining sets are directly drawn from OLMoE’s
720 pretraining corpora; test benchmarks are standard evaluation datasets; validation sets are only used
721 for correlation analysis.
722723 Table 2: Datasets used in our domain-level evaluation. Pretraining samples are from OLMoE corpora,
724 test benchmarks are used for evaluation, and validation sets are disjoint corpora used only for loss-
725 accuracy correlation. All datasets accessed via HuggingFace.
726

727 Domain	728 Pretraining Source	729 Test Dataset	730 Validation Dataset
724 Math	725 open-web-math/ open-web-math	726 hkust-nlp/ dart-math-pool-math	727 qwedsacf/ competition_math
726 Code	727 bigcode/ starcoderdata	728 evalplus/ humanevalplus	729 newfacade/ LeetCodeDataset
728 Commonsense	729 emozilla/ dolma-v1.7-books	730 tau/commonsense_qa	731 kowndinya23/ flan2021-commonsense
729 Domain- 730 Specific	731 blester125/ mediawiki-dolma (filtered “Organic Chemistry”)	732 cais/mmlu 733 (“college_chemistry” subset)	734 chemNLP/ chemistry-bookshelves -merged

734 **B EXPERIMENT DETAILS**
735736 **Compute Resources.** All experiments are conducted on NVIDIA A100 GPUs with 80GB memory,
737 using public OLMoE checkpoints.
738739 **Instruction Tuning.** The raw OLMoE checkpoints exhibit weak instruction-following ability, making
740 direct evaluation of generalization behavior unreliable—particularly in text-based domains such as
741 commonsense reasoning or code completion. To address this, we apply light instruction tuning using
742 LoRA (Hu et al., 2022) to make the pretrained model *follow prompts in a human-readable way*. This
743 ensures we can evaluate generalization while preserving the original pretraining behavior.
744745 To avoid overriding pretraining representations, we adopt minimal finetuning using a small number
746 of epochs and low-rank parameter updates. Specifically:
747748

- 749 • **Math:** Finetune with LoRA for 3 epochs on the same math SFT dataset meta-math/
750 MetaMathQA used by OLMoE.
- 751 • **Code:** Finetune for 3 epochs on HuggingFaceH4/CodeAlpaca_20K.
- 752 • **Commonsense & Domain-Specific:** Finetune for 3 epochs on yahma/alpaca-cleaned.
753

754 Key configurations of LoRA include:
755756

- 757 • **Target modules:** q_proj, k_proj, v_proj
- 758 • **LoRA rank:** 32
- 759 • **LoRA dropout:** 0.1

756 • **Learning rate:** 5e-5
 757 • **Batch size:** 4
 759 • **Max sequence length:** 2048

761 **Applying Min-K%++ for Training-Test Separation.** To maintain a rigorous separation between the
 762 pretraining and test datasets, we employ the Min-K%++ membership inference attack (Zhang et al.,
 763 2024), a state-of-the-art, reference-free method designed to detect whether specific data samples are
 764 part of a model’s training corpus.

765 Specifically, we apply the Min-K%++ method to the test dataset to identify samples that the model is
 766 most likely to have encountered during training. Determining an optimal threshold for classification
 767 is challenging due to variability in model behaviors and data distributions. To address this, we adopt
 768 a conservative approach by removing the top 10% of test samples with the highest Min-K%++ scores,
 769 thereby minimizing the risk of training data contamination in the test set.

770 This strategy ensures that our evaluation metrics accurately reflect the model’s generalization capabilities
 771 on truly unseen data, enhancing the validity of our experimental results.

773 **B.1 CONSTRUCTION OF TRAINING-TEST PAIRED GROUPS.**

775 Here we provide additional details on how we construct the training–test paired groups used in
 776 Figure 2 to analyze the temporal relation between memorization and generalization. The overall
 777 procedure is introduced in Section 3.2; here, we summarize the specific grouping and matching setup
 778 for clarity and reproducibility.

779 **Training groups.** For each pretraining sample, we track its token-level loss across checkpoints and
 780 mark the earliest step t_i^* when the loss remains below a threshold ε and deviates by less than δ from
 781 its final value for all later checkpoints. Samples sharing the same t_i^* form a *training group* denoted as
 782 *Pretrain@ t_i^** . For (ε, δ) , δ is fixed at 0.05 across domains, while ε is domain-specific and determined
 783 based on the average loss scale of each domain. We test ε in increments of 0.1 to ensure that the
 784 cumulative proportion of memorized samples before the final checkpoint remains between 20–25%
 785 across domains, balancing sufficient data coverage with stable per-domain scaling. Ablation studies
 786 on the robustness of (ε, δ) is provided in Appendix E.3.

787 **Test groups.** Each test sample’s accuracy trajectory is recorded across checkpoints. A test sample is
 788 considered to have generalized at the earliest step $t_j^{\#}$ where its accuracy remains consistently correct
 789 thereafter, with mean accuracy above 0.8 and at most one error in the following checkpoints. Samples
 790 sharing the same $t_j^{\#}$ form a *test group* denoted as *Test@ $t_j^{\#}$* .

793 **Embedding-based pairing.** To align semantically related training and test groups, we compute
 794 sentence embeddings for all samples using the SentenceTransformer model “all-MiniLM-L6-v2”
 795 and measure pairwise cosine similarity between groups within each domain. The average similarity
 796 between every pair of groups forms a similarity matrix, and a one-to-one mapping between training
 797 and test groups is obtained using the Hungarian algorithm implemented in SciPy, which maximizes
 798 overall semantic similarity. The notation *Pretrain@ p → Test@ q* thus indicates that the training group
 799 memorized at step p is semantically aligned with a test group whose performance stabilizes at step q .

800 **C GENERALIZATION BOUND FOR MOE WITH ROUTING KERNEL**

802 **C.1 MODEL SETUP AND ASSUMPTIONS**

804 Consider a MoE model where the router is fixed after pretraining, and the expert networks are
 805 trainable. Let K be the total number of experts in the model.

807 • $f_k(\phi_k, x) \in \mathbb{R}$ be the k -th expert’s output, with trainable parameters ϕ_k .
 808 • $g_k(x) \in [0, 1]$ be the k -th routing weight, which is fixed and pre-determined for any input x .
 809 We assume $\sum_{k=1}^K g_k(x) = 1$ (e.g., from a fixed softmax layer or pre-computed weights).

810 • Full model: $F(\theta, x) = \sum_{k=1}^K g_k(x) f_k(\phi_k, x)$, where $\theta = (\phi_1, \dots, \phi_K)$ is the collection of
 811 all trainable expert parameters.
 812

813 **Key Assumptions:**

814 1. **NTK Regime for Experts:** Expert parameters $\theta = (\phi_1, \dots, \phi_K)$ are initialized as $\phi_k(0) \sim$
 815 $\mathcal{N}(0, I)$ for each k , and remain ϵ -close to initialization ($\|\theta(t) - \theta(0)\| = O(1/\sqrt{\text{width}})$),
 816 enabling linearization via Neural Tangent Kernel (NTK). We assume $\phi_k(0)$ are independent
 817 across different experts k .
 818 2. **Fixed Routing:** The routing weights $g_k(x)$ are fixed for all inputs x and do not contain any
 819 trainable parameters. They satisfy $\max_k \|g_k\|_\infty \leq 1$.
 820 3. **Label Noise:** Training labels $y_i = f^*(x_i) + \epsilon_i$ with $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$, independent of x_i .
 821

822 **C.2 ROUTING KERNEL DEFINITION**

823 Define the NTK for this MoE configuration. Consistent with the general routing kernel definition in
 824 the main text, $\Theta_{\text{route}}(x, x')$ here is specifically instantiated as:
 825

$$\begin{aligned} \Theta_{\text{route}}(x, x') &= \mathbb{E}_{\theta(0)} \left[\left\langle \frac{\partial F(\theta(0), x)}{\partial \theta}, \frac{\partial F(\theta(0), x')}{\partial \theta} \right\rangle \right] \\ &= \sum_{j=1}^K g_j(x) g_j(x') \mathbb{E}_{\phi_j(0)} \left[\left\langle \frac{\partial f_j(\phi_j(0), x)}{\partial \phi_j}, \frac{\partial f_j(\phi_j(0), x')}{\partial \phi_j} \right\rangle \right] \end{aligned}$$

826 Let $K_{f_j}(x, x') = \mathbb{E}_{\phi_j(0)} \left[\left\langle \frac{\partial f_j(\phi_j(0), x)}{\partial \phi_j}, \frac{\partial f_j(\phi_j(0), x')}{\partial \phi_j} \right\rangle \right]$ be the NTK for the j -th expert network.
 827 Then, the Routing Kernel in this fixed-routing scenario is:
 828

$$\Theta_{\text{route}}(x, x') = \sum_{j=1}^K g_j(x) g_j(x') K_{f_j}(x, x')$$

829 The structure of $\Theta_{\text{route}}(x, x')$ in this fixed-routing setup provides crucial insights into how routing in-
 830 fluences generalization. It is composed of two primary factors: the gating weight product $g_j(x) g_j(x')$,
 831 and the individual expert NTKs $K_{f_j}(x, x')$. The term $g_j(x) g_j(x')$ signifies the importance of the
 832 j -th expert for both inputs x and x' , highlighting that two inputs are considered "similar" by the
 833 kernel if they are significantly routed to the *same* experts. If inputs x and x' are routed to distinct sets
 834 of experts, their contribution to the sum for a given j will be diminished. Simultaneously, $K_{f_j}(x, x')$
 835 captures the functional similarity learned by the j -th expert for inputs x and x' . Thus, the overall
 836 routing kernel measures a compounded similarity: inputs are similar not only if they are guided
 837 through similar pathways (weighted by $g_j(x) g_j(x')$), but also if the specific experts they pass through
 838 exhibit similar functional behavior for those inputs ($K_{f_j}(x, x')$). This decomposition underscores
 839 how fixed routing patterns (reflected in $g_j(x)$) set the stage for expert specialization and ultimately
 840 shape the generalization properties of the MoE model.
 841

842 **C.3 MAIN THEOREM**

843 **Theorem C.1** (Generalization Bound for MoE Experts). *Under Assumptions 1-3, with probability*
 844 $1 - \delta$ *over training samples $(x_i, y_i)_{i=1}^n$, the excess risk satisfies:*

$$\begin{aligned} \mathbb{E}_{x,y} [(F(\theta^*, x) - f^*(x))^2] &\leq \underbrace{\frac{C_1 \lambda^2}{n} \mathbf{y}^\top (\mathbf{H}^* + \lambda I)^{-2} \mathbf{y}}_{\text{Bias}} \\ &\quad + \underbrace{C_2 \left(\frac{\sigma^2 \text{Tr}(\mathbf{H}^* (\mathbf{H}^* + \lambda I)^{-1})}{n} + \frac{\sigma^2 \log(1/\delta)}{n} \right)}_{\text{Variance + Noise}} \end{aligned}$$

845 where $\mathbf{H}_{i,j}^* = \Theta_{\text{route}}(x_i, x_j)$, $\lambda > 0$ is regularization, and C_1, C_2 are constants depending on the
 846 properties of $g_k(x)$ and $f_k(x)$. The bound decays as $O(\frac{1}{n})$ when $\lambda = \Theta(1)$.
 847

864 *Proof.* Under NTK regime, the model can be linearized around initialization:
 865

$$\begin{aligned} 866 \quad F(\theta, x) &\approx F(\theta(0), x) + \langle \nabla_{\theta} F(\theta(0), x), \theta - \theta(0) \rangle \\ 867 \quad &= \underbrace{F(\theta(0), x)}_{\text{Initial Output}} + \Phi(x)^{\top} \Delta \theta \\ 868 \quad & \end{aligned}$$

869 where $\Phi(x) = \nabla_{\theta} F(\theta(0), x)$ and $\Delta \theta = \theta - \theta(0)$. The quadratic error term $\|\Delta \theta\|^2$ is $O(1/\text{width})$
 870 and thus negligible.
 871

872 Define centered labels $\tilde{y}_i = y_i - F(\theta(0), x_i)$. The problem reduces to ridge regression:
 873

$$874 \quad \min_{\Delta \theta} \frac{1}{2} \sum_{i=1}^n (\Phi(x_i)^{\top} \Delta \theta - \tilde{y}_i)^2 + \frac{\lambda}{2} \|\Delta \theta\|^2 \\ 875$$

876 with closed-form solution:
 877

$$878 \quad \Delta \theta^* = (\Phi \Phi^{\top} + \lambda I)^{-1} \Phi \tilde{\mathbf{y}} = \Phi^{\top} (\mathbf{H}^* + \lambda I)^{-1} \tilde{\mathbf{y}}$$

879 where $\mathbf{H}^* = \Phi \Phi^{\top}$ is the kernel matrix with $\mathbf{H}_{i,j}^* = \Theta_{\text{route}}(x_i, x_j)$.
 880

881 The excess risk decomposes as:
 882

$$883 \quad \mathbb{E}[(F(\theta^*, x) - f^*(x))^2] = \underbrace{(\mathbb{E}[\hat{f}(x)] - f^*(x))^2}_{\text{Bias}^2} + \underbrace{\mathbb{E}[(\hat{f}(x) - \mathbb{E}[\hat{f}(x)])^2]}_{\text{Variance}} + \sigma^2 \\ 884$$

885 • **Bias Term:**

$$886 \quad \text{Bias}^2 \leq \frac{\lambda^2}{n^2} \mathbf{y}^{\top} (\mathbf{H}^* + \lambda I)^{-2} \mathbf{y} \leq \frac{C_1 \lambda^2}{n} \mathbf{y}^{\top} (\mathbf{H}^* + \lambda I)^{-2} \mathbf{y}$$

887 where C_1 absorbs constants related to the magnitudes of $g_k(x)$ and expert gradients.
 888

889 • **Variance Term:** The parameter covariance is $\text{Cov}(\Delta \theta^*) = \sigma^2 (\Phi \Phi^{\top} + \lambda I)^{-1} \Phi \Phi^{\top} (\Phi \Phi^{\top} + \lambda I)^{-1}$. For prediction variance:
 890

$$891 \quad \text{Variance} = \mathbb{E}_x [\Phi(x)^{\top} \text{Cov}(\Delta \theta^*) \Phi(x)] = \frac{\sigma^2}{n} \text{Tr}(\mathbf{H}^* (\mathbf{H}^* + \lambda I)^{-1}) \\ 892$$

893 • **Confidence Term:** By standard concentration inequalities (e.g., for sub-Gaussian noise),
 894

$$895 \quad \mathbb{P} \left(\left| \frac{1}{n} \sum_{i=1}^n \epsilon_i^2 - \sigma^2 \right| \geq t \right) \leq e^{-nt^2/(2\sigma^4)} \implies \frac{\sigma^2 \log(1/\delta)}{n}$$

896 Collecting all components and adjusting constants C_1, C_2 completes the proof. \square
 897

902 **C.4 CONNECTING EDIT DISTANCE TO EFFECTIVE DIMENSION**

903 The bound shows that simple (low-dimensional) routing kernels generalize better. We now empirically
 904 test how routing pattern complexity (via edit distance) correlates with this effective dimension
 905 $d_{\text{eff}} = \text{Tr}(\mathbf{H}^* (\mathbf{H}^* + \lambda I)^{-1})$.
 906

907 Our setup involves a lightweight MoE architecture with 16 experts and a 100-dimensional input space.
 908 Input data are synthetic Gaussian clusters, providing a controlled environment to analyze pre-defined
 909 routing strategies. For each experimental trial, 200 samples are split into training and validation sets.
 910 We train a one-layer MoE model with ReLU activations where only expert networks are trainable;
 911 the router's weights are initialized once and then frozen. To explore diverse fixed routing patterns, we
 912 perform multiple independent runs, *each starting with a different random initialization of the router*.
 913

914 Following training, we extract the average edit distance of the pre-determined expert routing paths
 915 and the effective dimension. As illustrated in Figure 8, we observe a strong positive correlation
 916 between these two quantities. This empirically demonstrates that the structural properties of fixed
 917 routing, measured by edit distance, meaningfully impact the complexity of the function space learned
 918 by the experts, as predicted by d_{eff} . This alignment supports edit distance as a valuable diagnostic for
 919 MoE generalization.

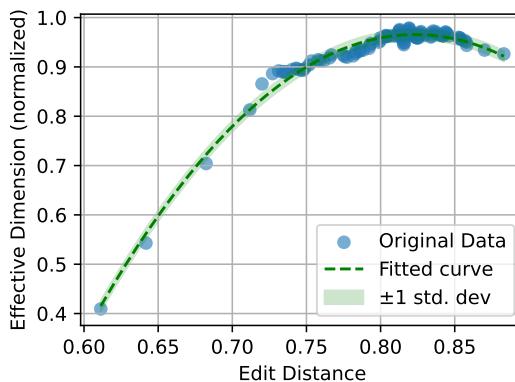


Figure 8: **Correlation of Edit Distance with Effective Dimension.** Each point represents an independent experimental run where the router is initialized with a different random seed and then fixed for expert training. This varying initialization leads to diverse fixed routing patterns. We observe a strong positive correlation. This suggests that the structural diversity of pre-defined routing significantly impacts the complexity of the function space learned by experts.

D ROUTING DYNAMICS ANALYSIS

To investigate whether routing evolution arises primarily from router-layer updates or other weight updates, we analyze convergence speed and stability across parameter types.

Results. Table 3 reports convergence speed (magnitude drop-off over time) and stability (consistency of updates). Router weights adapt fastest while expert weights stabilize most gradually, indicating a division of labor: routing decisions are steered by fast-updating routers atop slow-evolving expert features. Attention layers lie in between.

Table 3: Convergence speed and stability across parameter types. Higher values indicate faster convergence or greater stability.

Parameter Type	Convergence Speed \uparrow	Stability \uparrow
Router	0.151 (fastest)	5.63
Expert	0.063 (slowest)	7.32
Attention	0.083	6.01

Layerwise Routing Dynamics. To localize routing evolution, we compute the edit distance of routing assignments across layers. Layers 0–3 exhibit the most post-convergence change, suggesting that early layers remain active in refining pathways.

Metric Computation. We periodically snapshot parameter L2 norms during training. For each parameter type, we compute the mean absolute norm change between checkpoints, normalized by average scale. *Convergence speed* is defined as the drop in change magnitude from early to late training, while *stability* is the inverse standard deviation of these normalized changes. This simple but robust analysis consistently reveals router–expert asymmetries.

E ANALYSIS

E.1 EFFECT OF ROUTING-WEIGHT THRESHOLD ON PATHWAY DYNAMICS

To examine the robustness of our findings with respect to the routing-weight threshold used for pathway construction, we repeat the analysis in Fig. 4 under different cumulative routing-weight

thresholds ranging from 0.5 to 0.8 (interval 0.1). This threshold determines how many experts are considered *active* in each layer when forming the pathway sequence: a higher threshold includes more experts, while a lower threshold selects only the most dominant ones.

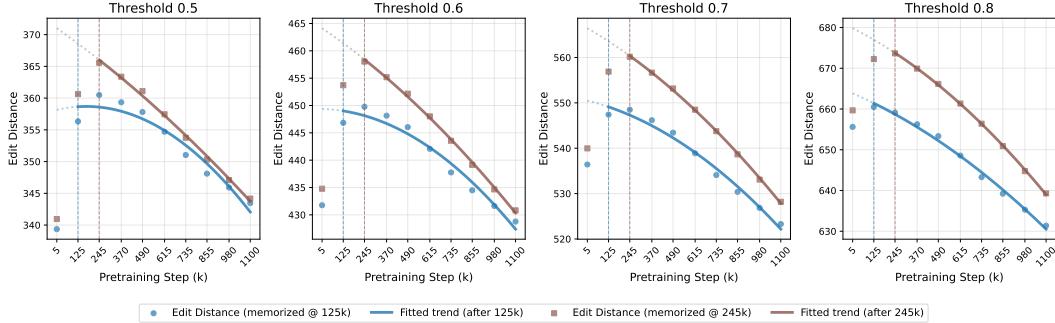


Figure 9: **Effect of routing-weight threshold on pathway edit distance on domain-specific QA tasks.** Each panel shows the average pathway edit distance for this domain under a different cumulative routing-weight threshold (0.5–0.8, interval 0.1). Higher thresholds include more active experts, leading to longer absolute distances, but all settings exhibit the same qualitative pattern: pathway edit distance decreases consistently after memorization, confirming that the observed dynamics are robust to the threshold choice.

Figure 9 presents the results for the domain-specific QA tasks. Although the absolute values of edit distance increase with larger thresholds—reflecting the longer sequences formed when more experts are included—the qualitative trends remain consistent across all settings. For every threshold, the pathway edit distance decreases after memorization (marked by vertical dashed lines), and the decrease becomes more pronounced at later checkpoints.

These results demonstrate that our conclusions are **robust to the choice of routing-weight threshold**. The observed reduction in pathway complexity after memorization, corresponding to the **emergence of shared pathways**, persists across all threshold settings.

E.2 EFFECT OF LORA RANK ON PATHWAY–GENERALIZATION CORRELATION

To examine whether the correlation between pathway metrics and generalization depends on the configuration of instruction tuning, we conduct an ablation on the LoRA rank used during lightweight finetuning. As described in Appendix B, the default setup adopts a rank of 32 for all domains. Here, we additionally train a LoRA adapter with rank 64 on the *commonsense* domain, following the same data, training steps, and hyperparameters as in the main experiments.

Table 4 reports the correlation between pathway complexity metrics and downstream test accuracy under the two LoRA ranks. The results show that increasing the rank from 32 to 64 yields nearly identical correlations for both *Pathway Distance* and *Pathway Consistency*, while training and validation losses remain weakly correlated. This consistency indicates that the observed relationships between pathway metrics and generalization are **robust to LoRA configuration** and primarily reflect intrinsic pretraining-phase dynamics rather than artifacts of instruction tuning.

E.3 EFFECT OF MEMORIZATION THRESHOLDS ε AND δ

We conduct an ablation study on the two hyperparameters that define the memorization criterion in Section 3.1: the loss threshold ε and the stability threshold δ . Specifically, for a sample x_i with loss $\ell_i(\theta_t)$ at pretraining step t , it is considered *memorized* from step t_i^* if $\ell_i(\theta_t) \leq \varepsilon$ and $|\ell_i(\theta_t) - \ell_i(\theta_T)| \leq \delta$ for all $t \geq t_i^*$. We evaluate how sensitive the pathway trends are to these two parameters using the domain-specific QA task.

Varying ε . Figure 10 shows results when fixing $\delta = 0.05$ and varying ε from 1.5 to 2.0. Across all settings, the pathway edit distance consistently decreases with training, and the

Table 4: **Effect of LoRA Rank on the Correlation Between Pathway Metrics and Generalization** (Commonsense reasoning domain). The results show that increasing the LoRA rank from 32 to 64 yields nearly identical correlations, confirming that the observed trends are robust to LoRA configuration. p -value: $p < 0.1$, $p < 0.05$, $p < 0.01$, $p > 0.1$, $p > 0.5$, $p > 0.8$. Preferred correlation: positive , negative .

Metric	LoRA Rank = 32		LoRA Rank = 64	
	Pearson	Spearman	Pearson	Spearman
Pathway Distance (pairwise)	-0.9821	-0.9747	-0.9927	-0.9487
Pathway Consistency (sample-wise)	0.9804	0.9747	0.9559	0.9487
Training Loss	0.6427	0.4104	0.6197	0.4617
Training Loss (moving average)	0.7931	0.6669	0.6871	0.2052
Validation Loss	-0.5752	-0.4617	-0.6631	-0.4104

overall trend remains stable—indicating that ε only shifts the point where samples are considered memorized but does not affect the post-memorization dynamics.

Varying δ . Figure 11 reports the results when fixing $\varepsilon = 2.0$ and varying δ between 0.03 and 0.05. Similarly, the decreasing trend of edit distance after memorization persists, and the fitted trajectories show negligible variation across δ values.

This confirms that the proposed pathway-based observations are **robust to the choice of ε and δ** .

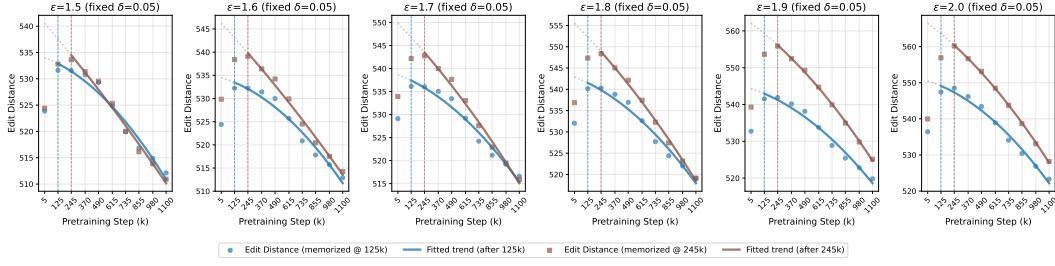


Figure 10: **Effect of the loss threshold ε on pathway dynamics.** The stability threshold is fixed at $\delta = 0.05$. All curves show a consistent post-memorization decrease in edit distance, indicating that the results are robust to ε .

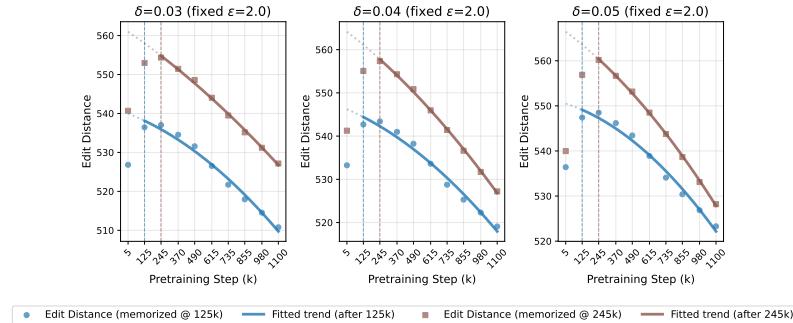
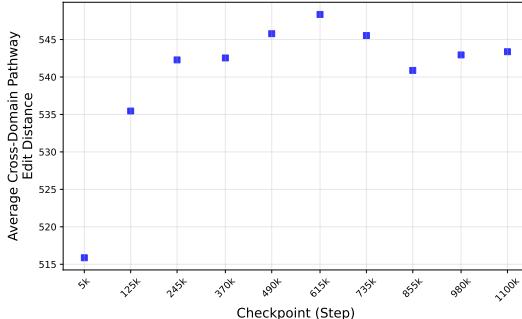


Figure 11: **Effect of the stability threshold δ on pathway dynamics.** The loss threshold is fixed at $\varepsilon = 2.0$. The same decreasing trend holds across different δ values, confirming robustness to this parameter.

E.4 CROSS-DOMAIN ANALYSIS OF PATHWAY DYNAMICS

To verify that the observed changes in pathway edit distance are due to the emergence of shared pathways within specific domains rather than uniform effects across all data, such as load balancing

1080
 1081 or regularization, we conduct an additional analysis focusing on the *cross-domain* samples. Using the
 1082 same cumulative routing-weight threshold (0.7) as in the main experiments, we compute average path-
 1083 way edit distances for samples drawn from two different domains across checkpoints—specifically,
 1084 `math` \times `code`—under identical configurations.



1096
 1097 Figure 12: **Cross-domain pathway edit distance (math \times code).** The figure shows the global trend
 1098 of average pathway edit distance during pretraining when computed across two different domains.
 1099 The cross-domain distances fluctuate irregularly, exhibiting both increases and decreases but no
 1100 systematic downward trend. This contrasts with the localized decreases observed within domains
 1101 (Fig. 4), indicating that pathway reorganization occurs locally among semantically related data rather
 1102 than globally across domains.

1103 As shown in Fig. 12, the cross-domain edit distance fluctuates throughout pretraining, showing irreg-
 1104 ular increases and decreases without any consistent downward trend. In contrast, Fig. 4 demonstrates
 1105 that within-domain pathway distances decrease only for groups of samples that become memorized
 1106 at different points in training, with each domain exhibiting its own localized transition rather than a
 1107 global drop. These observations confirm that the structural changes we observe are **domain- and**
 1108 **group-specific**, reflecting the **emergence of shared pathways among semantically related samples**
 1109 rather than a global effect of routing behavior.

E.5 RELATIONSHIP BETWEEN ROUTING ENTROPY AND EDIT DISTANCE

1110 We investigate whether changes in routing diversity could trivially explain the observed trends in
 1111 pathway edit distance. Specifically, we test whether routing entropy—high when expert usage is
 1112 balanced and low when a few experts dominate—can drive edit distance dynamics.

1113 For each sample, routing entropy is computed *per layer* from the full routing-weight vector (no
 1114 thresholding or selection) and averaged across layers. For each sample pair, we take the mean of the
 1115 two samples’ entropies and compute their pathway edit distance using a cumulative routing-weight
 1116 threshold of 0.8, which provides sufficient expert coverage for analysis.

1117 We sample 141,530 pairs across checkpoints spanning both the `math` and `code` domains, including
 1118 within-domain and cross-domain pairs. Figure 13 shows a weak correlation between average routing
 1119 entropy and edit distance ($r = 0.24$, explaining about 6% of the variance) with no clear monotonic
 1120 or directional trend. This indicates that neither more balanced routing (higher entropy) nor more
 1121 concentrated routing (lower entropy) systematically reduces pathway distance. Therefore, the
 1122 decrease in within-domain pathway distance observed after memorization is unlikely to result from
 1123 overall changes in routing balance; instead, it reflects domain- and group-specific reorganization of
 1124 computation.

E.6 CONSISTENT FINDINGS ON ANOTHER MOE (NANO²MOE)

1125 To further validate the generality of our findings beyond OLMoE, we conduct additional experiments
 1126 on a 55M-parameter MoE model, **nano²MoE**¹. NanoMoE provides a small, fully trainable MoE
 1127 architecture for which we can obtain complete pretraining checkpoints, making it suitable for analysis
 1128 of routing dynamics.

1129
 1130 ¹<https://github.com/wolfecameron/nanoMoE>

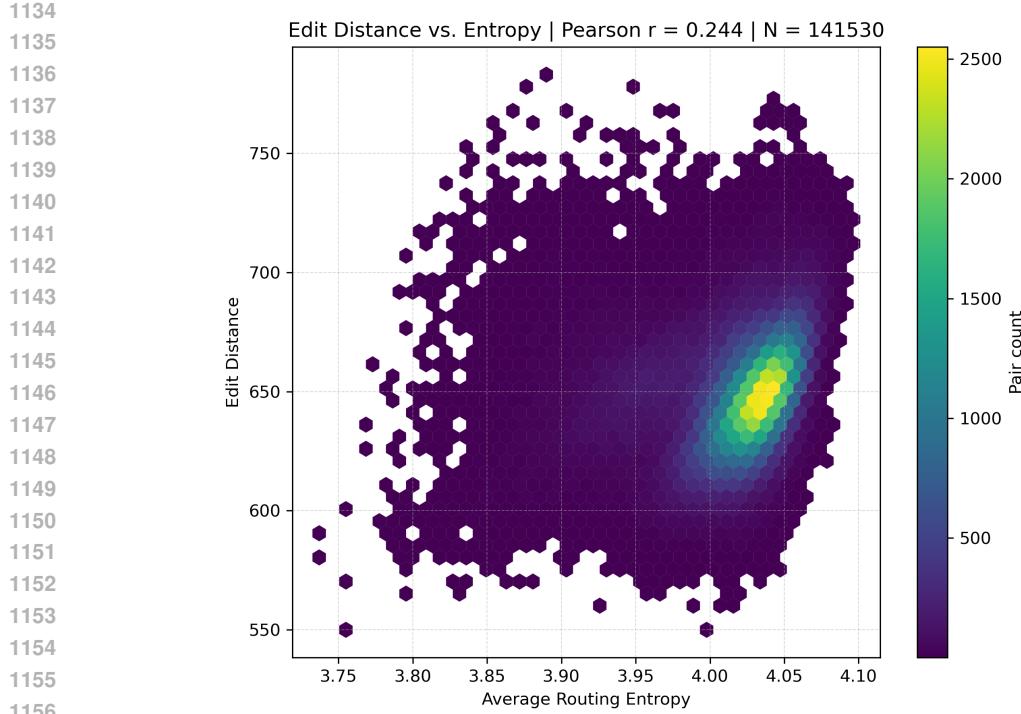


Figure 13: **Edit distance vs. routing entropy.** Each hexagon aggregates sample pairs ($N = 141,530$) drawn across checkpoints and across the *math* and *code* domains. Routing entropy is computed from the *full* routing-weight vectors (no thresholding); pathway edit distance uses pathways built with a cumulative cutoff of 0.8. The weak correlation ($r = 0.24$) indicates that routing balance does not systematically determine pathway similarity.

Training setup. We train nanoMoE on $\sim 25B$ tokens of the OpenWebText dataset (Gao et al., 2020) for 50k iterations on two NVIDIA H100 GPUs and uniformly sample ten checkpoints for analysis. OpenWebText is a mixed-domain web corpus with a heavy emphasis on commonsense and general knowledge content. To approximate a domain setting, we construct a commonsense subset by filtering 10,000 randomly sampled training samples using Qwen3-8B (Yang et al., 2025) to select those semantically related to commonsense reasoning, yielding 7,857 samples in total. Following the same methodology as our main experiments, we identify memorized samples based on token-level loss stability and compute pathway dynamics for this subset across checkpoints.

Pathway-metric dynamics. Consistent with our large-scale results, we observe that after memorization, **pathway edit distance decreases while pathway consistency increases** as shown in Figure 14 and 15. These trends mirror the post-memorization reorganization we identify in OLMoE, demonstrating that even the smaller MoE model reorganizes routing toward more structured, shared computation after the loss has already converged.

Correlation with downstream performance. We further evaluate all ten checkpoints in a zero-shot setting on standard commonsense reasoning benchmarks (ARC-Easy/Challenge (Clark et al., 2018), HellaSwag (Zellers et al., 2019), and OpenBookQA (Mihaylov et al., 2018)). Zero-shot evaluation is justified because models pretrained on OpenWebText, including GPT-2 (Radford et al., 2019), have been shown to achieve strong zero-shot performance on commonsense benchmarks. As in the large-scale setting, both pathway metrics exhibit strong correlations with benchmark accuracy ($|r| \approx 0.8\text{--}1.0$), as reported in Table 5, substantially outperforming training loss or its moving average. This confirms that routing dynamics remain tightly coupled with downstream generalization.

The nanoMoE results reinforce our central claim: *post-memorization routing reorganization is not an artifact of model scale, data size, or specific MoE implementation*. Instead, it reflects an inherent property of MoE training dynamics. Combined with the large-scale OLMoE study, these

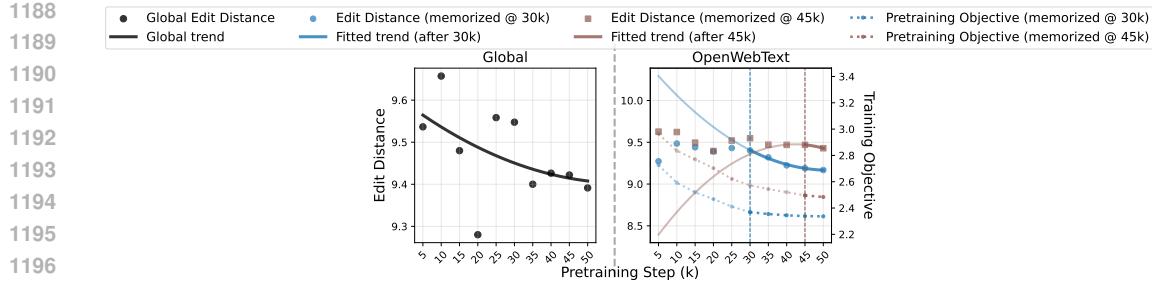


Figure 14: **Pathway edit distance and pretraining objective on nanoMoE during pretraining.** The left panel reports the overall pathway edit-distance trajectory across checkpoints without grouping samples by their memorization steps. The right panel instead visualizes pathway dynamics for two memorized data groups (memorized at 30k and 45k steps). After their respective memorization points, both groups exhibit a consistent post-memorization decline in edit distance despite a plateaued pretraining objective, indicating that nanoMoE continues to reorganize routing pathways toward more structured and shared computation. This mirrors the memorization-to-generalization transition observed in large-scale OLMoE.

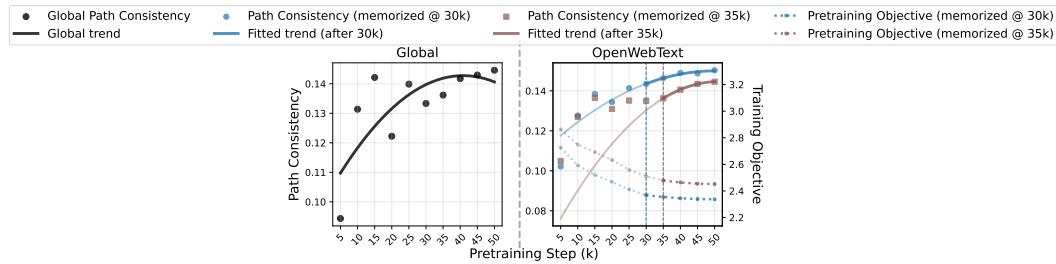


Figure 15: **Evolution of pathway consistency in nanoMoE.** The left panel reports the overall progression of pathway consistency across checkpoints. The right panel further analyzes two memorized data groups (memorized at 30k and 35k steps), showing that once memorization is achieved, each group undergoes continued refinement of its layer-to-layer routing transitions.

findings establish pathway metrics as stable, architecture-intrinsic indicators of the memorization-to-generalization transition.

Table 5: **Correlation Between Pathway Metrics and Downstream Accuracy on nanoMoE** across four commonsense benchmarks (ARC-Easy, ARC-Challenge, HellaSwag, OpenBookQA). p -value:

$p < 0.1$, $p < 0.05$, $p < 0.01$, $p > 0.1$, $p > 0.5$, $p > 0.8$. Preferred correlation: positive , negative .

Metric	ARC-Easy		ARC-Challenge		HellaSwag		OpenBookQA	
	Pearson	Spearman	Pearson	Spearman	Pearson	Spearman	Pearson	Spearman
Pathway Distance (pairwise)	-0.8113	-1.0000	-1.0000	-1.0000	-0.9713	-1.0000	-0.8366	-0.9000
Pathway Consistency (sample-wise)	0.9416	1.0000	0.8818	1.0000	0.9234	0.8000	0.9979	1.0000
Training Loss	0.3301	-0.1000	-0.7799	-0.5000	-0.2182	-0.2000	0.5984	0.8000
Training Loss (moving avg.)	0.4664	0.4000	-0.6078	-0.8000	-0.3580	0.2000	-0.8655	-0.4000

LLM USAGE STATEMENT

In preparing this manuscript, we used LLM solely as a writing assistance tool. Specifically, the model was employed to aid in grammar correction, sentence refinement, and improving clarity of exposition. It did not contribute to research ideation, experimental design, data analysis, or interpretation of results.