


Abstract— To address the gaps between the static pre-set
“ thinking-planning-action” of humanoid robots in unfamiliar
scenarios and the highly programmed “call tool-return result”
due to the lack of autonomous coding capabilities, this work
designs a dynamic architecture connecting continuous thought
machines (CTM) and model context protocol (MCP). It
proposes a theoretical parallel solution through tick-slab and
uses rank compression to achieve parameter suppression to
provide a solution for achieving autonomous actions due to
autonomous coding. The researcher used a simulation-based
experiment using OpenAI's o4-mini-high as a tool to build the
experimental environment, and introduced the extended
SayCan dataset to conduct nine epochs of experiments. The
experimental results show that the CTM-MCP architecture is
feasible and effective through the data results of seven metrics:
task success rate (TSR), execution success rate (ESR), average
episode length (AEL), ROSCOE, REVEAL, proficiency
self-assessment (PSA), task effectiveness (TE). In practice, it
provides a reference experience for exploring the autonomous
dynamic coding of humanoid robots based on continuous
thinking to achieve human-like autonomous actions.

I.INTRODUCTION

As large language models (LLMs) continue to expand
towards multimodal interaction and autonomous operation,
the model context protocol (MCP) has gradually become an
important intermediary framework to promote the practical
application of AGI as a bridge between serial semantic
generation and external tool calls (Hou et al., 2025). In view of
the need for the integration of multimodal AI and control
machine learning, especially from the exploration of
Constitutional AI and tool-use orchestration by institutions
such as Anthropic and OpenAI, it enables the model to have a
clear and transferable encapsulation protocol when processing
context extension and instruction deconstruction (Anthropic,
2022; OpenAI, 2025).

MCP proposed by Anthropic (2024) is essentially an open
standard that enables developers to build secure bidirectional
connections between data sources and AI-driven tools (Fig. 1).
It aims to promote the consistency of communication
protocols between LLMs external data sources and tools. It is
committed to addressing the limitations of models due to data
silos, so that AI agents can access and operate local and remote
data more securely (Yang et al., 2025). The bidirectional
connection provides an interface to connect everything, which
enables developers to expose data through the MCP server and
more conveniently operate multiple tools such as applications
connected to the server (Narajala & Habler, 2025).

Based on the open standard of JSON-RPC 2.0 architecture,
the key technical core of MCP is to abstract external tools into
a schema-driven remote procedure call interface and realize
the automation of instruction scheduling through the tools
protocol (Ehtesham et al., 2025). It uses the internal
implementation logic including a two-way pairing mechanism
of capability declaration and structured arguments to enable
AI agents to dynamically generate function calls based on
context without pre-hard coding (Krishnan, 2025).

Fig. 1 MCP Architecture (Adapted from Sakal, 2025)

From an application perspective, MCP promotes generative
AI to become autonomous agents with the ability to execute
operations and self-manage tasks that can self-decompose
subtasks, select appropriate tools, call execution, and update
strategies based on feedback (Habler et al., 2025). As
technology matures and is widely used, it increasingly inspires
users to realize the embodiment of humanoid robots that
realize autonomous perception, decision-making, planning
and action close to that of humans. In light of vision and
purpose, humanoid robots present different development axes.
Electronic skeletal systems represented by Tesla emphasize
high-frequency response and integrated control to complete
specific repetitive tasks in factory scenarios; while
musculoskeletal humanoids represented by Clone Robotics
pursue the faithful reproduction of human movement
semantics and tactile feedback (Fig. 2).

Fig. 2 Tesla's Optimus and Clone Robotics' Protoclone
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However, video footage released by many companies and
research institutions shows a common problem: current
humanoid robots are unable to demonstrate autonomous
“thinking-planning-acting” capabilities close to those of
humans, and thus can only perform single functions and
special purposes (Spong, 2022; Li et al., 2024). The
fundamental gap that makes it difficult to address is that the
control systems of most humanoid robots use pre-arranged
rather than dynamically generated solutions to tasks (Bärmann
et al., 2024). It is not based on real-time scene understanding
and strategy construction, but is designed by AI engineers
through static coding or remote operation of preset parameters,
and embedded in the control system through structures such as
behavior tree, scripting modules or state transition graph
(Ghzouli et al., 2023). Although repetitive actions have been
gradually reduced, whether it is moving objects, dancing,
assembly work or even boxing competitions, the humanoid
robot has not yet demonstrated dynamic autonomous encoding
through perception in unknown environments in practice
(Bottega et al., 2025). It has led to the formation of a closed
loop architecture of "semantic recognition-strategy
fixation-execution output" in humanoid robots, which directly
limits its cross-scene adaptability and spontaneity of action. It
is the deep reason why this work introduces MCP to enhance
the ability of humanoid robots to respond to new tasks of
immediate perception in complex environments.

The second problem is that MCP may form a highly
programmed "call tool-return result" interaction mode in the
process of applying it to humanoid robot control system to
realize autonomous coding, autonomous planning and
autonomous action. It is a control system of embodied
intelligent robot that degenerates into a simple mechanical
mode due to lack of life cycle management in execution,
which is manifested as a rigid combination of functions like a
stitching monster. Although the protocol has characteristics of
interface universality and simplified scheduling, it fails to
provide integrated support for the compilation process of
dynamically generated code, static analysis mechanism,
sandbox execution protection and error feedback (Hou et al.,
2025; Krishnan, 2025). It makes it difficult for MCP to meet
the stability requirements of error detection, action
verification and version rollback in continuous operation and
real-time control in multiple scenarios in the process of
realizing humanoid robot autonomy. The fundamental gap that
causes the above problem comes from the lack of a thinking
module similar to the human brain's coherent strategic
reasoning and semantic constraint capabilities before the MCP
call process. It is committed to task-context resolution, tool
selection reasoning, parameter synthesis rules and error
causality forecasting as a structured thinking layer, so as to
build autonomy from task semantics to tool scheduling.

In view of the above gaps, the researcher introduced and
improved the continuous thought machines (CTM)
architecture proposed by Darlow et al (2025) and connected it
with MCP to realize the current humanoid robot's autonomous
and dynamic coding, thinking, planning and action scheduling
from a principle perspective.

Ⅱ.RELATED WORK

As evidenced by the work of Darlow et al. (2025), the
design of CTM deviates from the reasoning mode of

traditional transformer models, which is mainly based on
forward propagation and fixed attention mechanisms, and
turns to simulating the internal temporal dynamics of neurons.
This architecture uses neural synchronization and sequential
memory evolution as the core logic to construct a potential
structure with continuous thinking and adaptive computing
capabilities. The key is that each neuron maintains an
independent set of thought state records that include
pre-activations, post-activations, synchrony weights and time
decay parameters. It makes artificial neurons no longer static
mapping units, but can form multiple rounds of evolution steps
in the internal time dimension to perform repeated reasoning
and strategy adjustments (Darlow et al., 2025).

In terms of design principle, the internal thinking process of
CTM is built on recurrent inner loops. It allows the model to
self-update the thinking state in a single input time step and
adjust the temporal dependencies between different neurons
through a learned decay function. The synchronization matrix,
as a differentiable reasoning structure analogous to the
biological neural phase synchrony, enables the model to learn
context-coupled structures at different levels. In addition,
CTM not only provides the ability of delayed memory, but
also implements a dynamic computation controller embedded
in the neural representation space that allows neurons to
perform iterative structural search in internal time. Compared
to the transformer model that relies solely on positional
encoding and rigid layer configuration, CTM provides a
neural execution model with temporal flexibility and
computational density self-adjustment mechanism, which is
particularly suitable for task scenarios that require multi-stage,
hierarchical reasoning (Darlow et al., 2025).

Regarding the application and development of MCP
technology, Hou et al. (2025) focused on the structural
integration problem in the multimodal model architecture and
proposed to semantically connect the language model with the
external program logic in the form of a standardized
intermediate layer. It is based on the MCP principle and
focuses on establishing a three-level interaction system:
prompt routing, tool binding layer, and MCP host scheduler.
The core is to restructure the internal context output of the
language model into a function node that meets the
requirements of JSON-RPC calls, and to automatically match
semantic tags and construct parameters for external APIs in
the reasoning design capability declaration grammar. In terms
of technical principles, this design breaks the limitation that
traditional natural language input can only call static functions,
and instead uses dynamic context to correspond to functional
metadescriptors to form a dynamically combinable task graph.
Hou et al. demonstrated that MCP, as a mediating protocol
between models and external operation interfaces, has the
potential to transform language models into multi-functional
decision agents (Hou et al., 2025).

In addition, Krishnan (2025) conducted in-depth empirical
research on the application of MCP in multi-agent systems to
effectively address the problems of context retention and
orchestration disconnection. The design of the MAS
architecture combined with MCP was evaluated based on
knowledge management and distributed decision-making
tasks, and finally proved that MCP can share memory states
across agents to improve continuous reasoning and context



alignment capabilities (Krishnan, 2025). Narajala and Habler
(2025) explored the enterprise-level security deployment of
MCP and proposed a multi-layer defense strategy. It revealed
that MCP may suffer from tool poisoning, command injection,
and version rolling vulnerabilities in the tool scheduling
process, and established a risk model with Zero Trust as the
core (Narajala & Habler, 2025).

Ⅲ.ARCHITECTURE

The architecture proposed aims to prove the feasibility of
connecting continuous thought machines (CTM) and model
context protocol (MCP), so that humanoids simulate real-time
human thinking in complex situations to realize autonomous
coding execution (Fig. 3). It constructs a slab builder to
concurrently generate k parallel reasoning branches in the
synchronous control flow, and synchronizes the results that
first pass the threshold through the consensus aggregator to
achieve substantial parallelization under low-latency
conditions. To control parameter inflation and computational
overhead, it designed and introduced lightweight dynamic
modules such as low-rank μ-MLP and syncrank1updater. It is
committed to each reasoning branch share a low-rank
parameter update mechanism to synchronously maintain
thinking consistency and resource efficiency.

Fig.3 CTM-MCP Architecture

In the process of integrating the improved CTM architecture
with the structural connection of MCP, after receiving

instructions or sensing data, the humanoid robot no longer
directly calls the tool but continuously tracks the task context
and environmental variables through CTM to generate a acting
chain through semantic reasoning and strategic planning. This
architecture theoretically realizes the continuous closed-loop
control mechanism of the robot's autonomous thinking,
autonomous coding, and autonomous action. Its specific
modules and algorithms are shown below.

A. Sensor Ingestion
In the architecture, the sensor ingestion module, as the input

layer of the control system, is responsible for the modal
separation and preliminary encoding of the sensory data. It has
the core function of maintaining the original semantic
structure and corresponding to the downstream dedicated
encoder. Each component of this module is directed to the
corresponding dedicated next module according to its signal
characteristics to form a directional data flow path. Among the
components, the vision capture transmits the RGB-D data to
the vision backbone through the image sequence processing
flow. The design follows the principles of residual stacking
and spatial tensor preservation to extract environmental
structures, object boundaries, and action dependencies
through multi-layer convolutions, while keeping the time
dimension unfolded for subsequent timing module calls.

The signals of proprioceptive poll and tactile array belong to
the body's internal sensing. The perception is semantically
mapped to joint displacement, pressure distribution and end
force estimation. Therefore, they are jointly transmitted to the
joint angle MLP, and the space-action correspondence is
encoded using nonlinear mapping and multi-layer hidden
layers to form a semantic vector with posture structure
connotation. In contrast, audio capture first performs
short-time Fourier transform to map the original audio signal
to spectral space, and then inputs it into Spectro CNN for
convolution processing to retain the language features, rhythm
changes and prompt signals implicit in the sound modality.
The algorithm used in this module is as follows:

) xtanh(y W

where x represents the modality-specific input vector (pixels,
mel-bins, joints ⊕ tactile); W belongs to ℝdout*ℝdin, it means
thatW is a real matrix with dimensions ℝdout and ℝdin.

Notably, the design of each modal data flow path is not
parallel fusion, but semantically guided diversion based on
task perception requirements, which enables each signal to
enter a module with semantic parsing capabilities for
structural compression and feature reduction.

B.Perception Encoder

The perception encoder module receives the raw perception
signals output by the sensor ingestion and performs
specialized vector encoding based on the multimodal
structural characteristics and semantic requirements. The core
goal of this process is to establish a set of high-dimensional
feature spaces that are normalized and aligned with the task
context so that subsequent modules can dynamically expand
reasoning in memory iterations. Among the components of
this module, the vision backbone receives time series images
from visual sensing. It uses a residual convolutional structure
and adjustable regularized weights to ensure that high



semantic features such as environmental depth, boundary
contours, and object relationships are retained while
maintaining spatial geometric continuity. The Joint angle
MLP receives tensor inputs from proprioceptive and tactile
arrays that include joint angular velocity, angular
displacement, and end force distribution. It constructs a latent
representation of the body's internal dynamic state through
nonlinear mapping and feature decomposition using multiple
layers of perceptrons. The Audio spectro CNN is a
time-frequency convolutional network designed to process
acoustic inputs. Its processing flow includes short-time
Fourier transform preprocessing and spectrogram convolution
operations within a time window. It performs spectral domain
decomposition of voice commands, trigger prompts, and
environmental reverberations in the sound, extracting rhythm
variations and speech semantic cues.

The three sets of modal vectors are combined and feature
orthogonalized at the semantic level in fusion dense, and
cross-modal dynamic context coupling is achieved by sharing
semantic space embedding weights. The algorithm is as
follows:

])y||y||[y tanh( f proaudvisfW

where || concatenates all modality latents; Wf projects the
224-dim concat into a 256-vector f.

The output of this stage is not just a simple feature fusion,
but a primary semantic vector that is used for subsequent
reasoning. This vector is not only data passed into the synapse
operator, but also marks the formal start of the thinking
process. The synapse operator uses the context vector to
coordinate the initial state of the neural loop, dynamic timing
logic, and tick-slab generation starting point to achieve the
transformation process from perception to cognitive
reasoning.

C.Tick-Slab CTM Runtime

As a key thinking module in the architecture, the tick-slab
CTM runtime is designed to simulate the dynamic memory
update, local inference synchronization and multi-path
thinking bifurcation of humans in the process of continuous
reasoning. The synapse operator at the head end acts as the hub
from semantics to neural mapping, performing neural
dimension projection on the multimodal semantic vector
generated by fusion dense, and converting the tensor into an
activation seed that can be interpreted by the neural circuit.
The principle is based on the residual concatenation of the
semantic tensor and the diachronic memory state, and then
generates a composite weight expansion through a shared fully
connected layer and a micro MLP module. It ensures that the
semantic information has completed semantic normalization
and spatial tensor alignment before being translated into
tick-slab units. The corresponding algorithm is as follows:
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where z~t represents the intermediate state vector at the current
time step t; zt-1 is previous hidden state; f is the fusion vector;
Ws map ℝD+256→ℝD.

The tick slab fusion unit is the core component of the time
recurrence structure. It expands continuous slab units

according to the time evolution of thought nodes so that
multiple tick-level calculation frameworks are encapsulated in
each slab. This unit synchronously expands the semantic
projection sequence in a time-increasing manner, and updates
the state according to the current context vector, the previous
tick state and the coupling of the slab internal parameters. The
technical key is that the slab architecture allows horizontal
expansion and calculation of trajectories, so that each memory
unit can evolve adaptively in an independent tick, thereby
breaking through the blocking problem of traditional recurrent
models in time series.

The low rank μ-MLP is designed to address the problem of
parameter explosion and semantic dilution caused by
long-term memory stacking. Its mechanism compresses the
semantic space into several μ-level low-rank sub-tensors
through kronecker-based tensor decomposition, and uses a
shared weight library to selectively and dynamically encode
the memory blocks required for each slab. The corresponding
algorithm is as follows:
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where A∈ ℝM*r, B∈ ℝD*rare shared low-rank factors; Hdt,m is
the m-th entry of the depth history buffer for neuron d; bd0 is a
scalar bias.

The low Rank μ-MLP implements compressed
back-projection mapping on the computational side to
preserve sequence correlation and action intention dimension.
At the same time, it suppresses the redundant expansion
phenomenon in high-dimensional continuous reasoning,
which is the core support for the scalability of the overall
memory module.

Sync rank 1 updater is responsible for establishing temporal
consistency between slabs, and its principle is derived from
neural phase synchronization (Darlow et al., 2025). This
module evaluates the rank-1 distribution of the structure
vector output by the tick slab, and calculates the dynamic
sparse matrix of information convergence in the time domain
using the entropy decay model. This design enables each
reasoning round to reconstruct the sequential dependencies of
past thought evolution and strengthen the coherence of context
retention and strategy transfer. The corresponding algorithm is
as follows:
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where Sk is k-th synchrony accumulator (one per index-pair (pk,
qk)); L ticks in the current slab; zj,*is the hidden state at tick j;
decay=0.999.

The updated synchronization matrix then enters the
certainty estimator, which generates a differentiable
uncertainty vector through the entropy mask and softmax
entropy mapping mechanism.The corresponding algorithm is
as follows:
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where S is the P-dim synchrony vector; Wc ∈ ℝC*P
(LOGIT_SCALE = 8.0); C = 4 logits.

In the parallel thinking flowchart (Fig. 4), the system uses
entropy head as the monitoring module for convergence and
overall information entropy change to monitor whether the
current slab expansion sequence has reached the thinking
termination threshold. After entering the affect epsilon, the
system will calculate whether the slab expansion needs to be
interrupted based on the variability and synchronization status
of the semantic tensor within time. After that, the threshold
hold is used as a threshold controller to make a binary decision.
If the entropy change and the reasoning signal within the slab
are stable, it will be directed to the output writer for semantic
output and recording; otherwise, it will enter the slab builder
next slab to start the parallel planning of the next slab unit. The
core intention of this design is to achieve slab-level time
expansion and parallelization.

Fig. 4 Parallel workflow of CTM

Slab transfers its internal state to the planner route via gated
carry update to execute strategy scheduling and execution
logic configuration. It is then sent to the consensus aggregator
together with the memory vector generated by sync256 from
another branch for vote integration and semantic coordination.
The integrated slab's decision output will be distributed to the
main CTM loop and gated carry update to maintain the
recursive thinking and synchronous recursive operations
respectively. Finally, all slabs will be connected to the
depth-batch kernel by the slab builder, which contains the
synapse FC layer and multi-way micro-MLP structure. The
rank 1 scan integrates the semantic focus range of the output

nodes to achieve the convergence and reorganization of the
semantic parallel path.

D.Consensus Aggregator

The consensus aggregator module accepts multiple
synchronization vectors and logit structures generated by the
certainty estimator. Its purpose is to perform
confidence-weighted integration of the results of each CTM
slab after the multi-branch parallel reasoning is completed.
The Waits for extra slab function is a strategic delay module.
Its logic is based on retaining a candidate CTM branch after
the main branch returns. And it obtains the synchronization
vector with the second highest confidence by forcing an extra
slab to wait. Confidence vote merge adopts an entropy-based
soft confidence weight mechanism to perform softmax and
entropy evaluation on each CTM logit vector. It derives the
relative confidence of each candidate vector and uses it as a
weighted synthesis coefficient for the synchronization vector,
and finally outputs a main synchronization tensor representing
the overall consensus of multiple reasoning branches.The
corresponding algorithm is as follows:
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where si is sync vector from branch i; hi is its logits.

The vector will be passed to the affect decoder of the
emotional state loop module to drive the emotion modulation
loop and dynamically adjust the uncertainty valve, which
constitutes the negotiation gate before the perception and
reasoning results enter the main control strategy loop.

E.Emotional State Loop

The emotional state loop module consists of an affect
decoder and a certainty modulator, which is designed to
dynamically adjust the trust logic and semantic stability
threshold in the process of thought evolution. The affect
decoder is responsible for receiving the semantic tensor from
the main synchronization vector. It parses the strategic tension
and semantic divergence in the context through multi-layer
tensor reconstruction and feature attention gating, then
transforms it into a situation-oriented dynamic activation
signal. The output is used as a semantic marker of the
emotional state. On the one hand, it is provided to the
serialization module in the MCP envelope router for strategic
scheduling; on the other hand, it is handed over to the certainty
modulator to adjust the uncertainty control parameters in the
cognitive module. The corresponding algorithm is as follows:

)S)  tanh(tanh( e 12 WWt 

where W1 ∈ ℝ32*P, W2 ∈ ℝ8*32; Output is the 8-dim affect
vector.

The certainty modulator calculates entropy change and
tension difference based on the current context activation and
the emotion intensity gradient generated by the previous round
of reasoning. It modulates threshold by adjusting the threshold
parameter ε used by the certainty estimator in the tick-slab
CTM module. The specific algorithm is as follows:
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where εt is the uncertainty gain coefficient after emotion
modulation at the current time t; ε0 is the initial benchmark
confidence scaling factor; α is the modulation sensitivity
coefficient; ||et||2 is the L2 norm of the emotion vector et at
time t, it is the total intensity of emotional activation.

The algorithm of gated hidden-state carry (feedback after
planner route) is as follows:
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where zt+1 represents the updated state vector; β is the
smoothing coefficient that controls the proportion of the
previous state in the current update; zt represents the state
representation at the current time t, which is the internal
vector memory stored in the past time steps; z~t+1 represents
the candidate output calculated at the current moment.

F.MCP Envelope Router

The MCP envelope router module is the central node in the
architecture that connects the thinking and reasoning results
with motion control. It has multi-level control functions such
as synchronization encapsulation, strategy diversion, branch
competition and fault-tolerant transfer. The serializer formats
and encapsulates the synchronization vectors, historical slabs
generated by the CTM runtime, and the semantic and
emotional information extracted by the affect decoder. It uses
structured JSON encoding internally to ensure the semantic
consistency and time stability of cross-module transmission.
The encapsulation output is the lowest semantic unit of the
action command passed to the control layer.

The policy gate makes decisions based on the comparison
between the reasoning confidence value estimated by the
certainty estimator and the threshold parameter γ. If the
confidence value is low, the CTM is directed to execute the
next round of thought evolution; if the confidence value is
high, the action control process is entered. The parallel branch
nanager, based on the branch prediction parallelism
emphasized in the architecture, realizes the synchronous
thinking competition of multiple CTM clones, and selects the
first one to reach the confidence threshold as the main decision
response. If no branch is reached, the result of the last
completion is taken.

The timeout safe pass module is the core of the
fault-tolerant design. When any branch fails to meet the stop
condition within a certain time, the module will use the
previously cached synchronization vector to automatically
trigger the action output process and enter the actuator
controller. From a technical perspective, the output vector
directly enters the trajectory planner in the actuator controller
module to fill the gap when the planner module is blocked for
a long time or fails unexpectedly. The principle ensures that
the system maintains stable operation and prevent non-output
interruption action in low-confidence and high-latency
scenarios.

G.Actuator Controller

The actuator controller is the translation hub from semantic
decision to physical execution, which means it is responsible
for the layer-by-layer mapping from semantic drive to control
signal. The trajectory planner is responsible for deconstructing
the synchronization vector into the correspondence between

high-level behavioral semantics and spatial targets, and
internally adopts timestamp-oriented joint path interpolation
logic. According to the action phase and control node
represented by the vector tensor, a continuously differentiable
reference displacement curve is generated. It ensures that the
action output is no longer a discrete point, but a
time-consistent action trajectory. The algorithm is as follows:
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where τ is the output torque vector to be optimized; K is a
constant mapping matrix; smerged represents the expected input
of the merged state; τmin / τmax are the upper and lower limits of
the torque for each joint.

The compliance filter mainly uses analog compliance
compensation, and then processes the above trajectory output
and suppresses the unstable high-frequency components in the
path signal to prevent the rigid drive from causing reverse
interference to the structure. The filter combines forward
differential and sliding average operations internally, so that
the control output has both real-time and smoothness, which is
especially suitable for continuous joint control scenarios. The
torque mapper finally maps the motion trajectory after
compliance processing to the corresponding control voltage or
PWM output range. Its core logic is the segmented linear
mapping table and gain factor adjustment mechanism to
ensure that each channel signal can be converted into a
low-level execution signal with physical consistency.

Ⅳ.EXPERIMENTS

Given research onion, this work adopts the philosophical
paradigm of positivism that stems from the nature of the
research object (Saunders et al., 2009). In terms of
experimental methods, the researcher chose to use a
simulation-based experiment as the main empirical means.
This method uses a high-fidelity virtual environment to
simulate real operating conditions to verify the validity and
stability of the internal thinking process and action strategy of
the humanoid control system in a specific situation (HSaglam
& Papelis, 2024). It is particularly suitable for systems
involving high-degree-of-freedom control outputs,
multi-stage semantics and signal translation processes that
require observation, and systems that cannot be directly
observed by human operation (Li et al., 2024). Specifically,
since the actuator controller module of this architecture
already covers from semantic vectors to actual control signals.
It may be difficult to verify physical consistency and signal
stability using only instruction-level testing in real
experiments, which makes it difficult to analyze the
architecture's ability to adjust to real mission scenarios.

Simulation-based experiments facilitate control
comparison of strategy selection and semantic evolution
paths without being interfered by hardware limitations,
thereby providing behavioral-level explanation capabilities
far superior to static verification (Saglam & Papelis, 2024). In
addition, without simplifying the architecture logic and data
flow model, the simulation environment can fully support the
closed structure of CTM-MCP. It allows researchers to
observe the state changes of the entire path from semantic
thinking to action output, thereby constructing a verified
physical action mapping logic (Li et al., 2024).



A. Experimental Setup

The necessity of choosing o4-mini-high as the core
execution platform for simulation experiments is not due to
its universality as a replacement for traditional control tools,
but rather due to the architecture's need for structural
synchronization of cross-layer data flows between semantics,
reasoning, decision-making, and control. Current tools for
building robot control systems, such as ROS, Gazebo, or
Isaac Sim, focus more on kinematics solving, sensor
modeling, and underlying physical simulation (Salimpour et
al., 2025). However, this work requires support for
continuous thinking and evolution at the semantic level, such
as the tick-slab recurrent memory constructed by CTM and
the need for encapsulated semantic synchronization
operations between multiple modules. In addition, the
package vector generated by MCP needs to go through
continuous semantic judgment and confidence vote before
entering the control signal mapping layer, which has to rely
on the language layer reasoning model to complete slab
expansion, vector sorting, threshold update and other logic.

The researcher designed and wrote the architecture code of
each module and the experimental code using Python 3.13
IDLE according to the principle of CTM and MCP in this
work, which is used to run on o4-mini-high. The designed
experimental group code follows the tick-slab CTM runtime,
MCP envelope router and other modules to build the
experimental environment throughout the process. Since the
latest version of ChatGPT supports the function of
dynamically running code, the researcher can run the entire
process of module logic, verify semantic flow delivery,
encapsulation decision and control signal mapping, and then
simulate the complete "thinking-planning-execution" of the
humanoid robot. The control group selected NVIDIA's
open-source Isaac GR00T code, whose thinking, reasoning,
planning, and cognitive control code structure is open on
GitHub. To ensure that the control group code and the
experimental group eliminate the hidden dangers of
unfairness during operation, the researcher adjusted the
original code format and calling order while retaining the
original functional design of NVIDIA Isaac GR00T. The
architecture code and experimental code are uploaded to the
Github repository and are publicly available.

B.Dataset

This work uses SayCan proposed by Ahn et al. (2022) of
the Google DeepMind team as the semantic task dataset. The
dataset is designed to integrate language model reasoning and
the action planning framework of robot operation
decision-making. 100 task examples released by the official
are widely used in LLM-to-robot action generation research
(Ahn et al., 2022). It accurately describes the
multidimensional properties of the robot's language-to-action
translation process, and corresponds to the CTM-MCP
architecture in semantic continuous reasoning and
encapsulated decision-making structure. Compared with
other task datasets such as ALFRED, BEHAVIOR or TEACh,
the semantic task structure provided by SayCan just meets the
needs of tick-slab thinking and semantic synchronization
vector update within the slab.

Considering that the original SayCan only has 100
open-source tasks, the researcher synthesized an additional
900 tasks based on the semantic arrangement of the tasks, the
scope of operational variables, and the logical flow of the
tasks. These synthetic data were verified through
performance testing and semantic stability to ensure that they
are consistent with the original samples in terms of function
and logical action. The process of synthesizing data follows
the contextual internal structure of the original data, retaining
the logical hierarchy of "goal-operation path-expected
response" in each task to ensure semantic coherence and
reasoning universality.

C.Implementation

The researcher first passed the framework code and
experimental code designed and tested by Python 3.13 IDLE
into the OpenAI o4-mini-high model to build an experimental
environment as the operating core of the semantic framework
simulation environment. The framework code is responsible
for initializing various modules, encapsulation nodes and
control translation layers such as tick-slab CTM runtime and
MCP envelope route. The experimental code builds the
semantic perception and action simulation environment.
Through continuous context maintenance and state
progression during the operation of o4-mini-high, a semantic
simulation covering the "thinking-planning-action"
closed-loop logic is gradually formed. Subsequently, the
researcher imported the expanded and synthesized SayCan
dataset into the control system simulated by o4-mini-high to
start the verification of the structured semantic task execution.
To construct a control group benchmark, the researcher input
the formatted and sequence-aligned NVIDIA Isaac GR00T
code in another independent o4-mini-high dialogue session.
The same SayCan dataset was then imported to ensure that
the semantic processing and logical delivery paths between
modules were structurally consistent and comparable.

Considering the uncertainties such as execution
interruption, unstable transmission and memory conflict that
may occur during the simulation experiment, this work
repeats the entire experimental process for 9 epochs. In each
epoch, multiple debugging, restart and repair operations are
performed for abnormal execution and erroneous logic.
Finally, only a set of results with the most stable performance
and the most complete task logic are selected for recording.
The experimental records have been uploaded to the GitHub
repository for open access to ensure data credibility and
experimental traceability.

In addition, during the data analysis phase, the researcher
used seven metrics: task success rate (TSR), execution
success rate (ESR), average episode length (AEL), ROSCOE,
REVEAL, proficiency self-assessment (PSA), and task
effectiveness (TE).

Ⅴ. RESULT & DISCUSSION

As the experiment was completed and recorded, this work
used the mathematical formulas based on the seven
evaluation indicators to calculate the data results of the
experimental group and the control group in the o4-mini-high
model. OpenAI's o4-mini-high model uses high-frequency
memory maintenance and powerful computing power to



stably convert the execution results generated by each epoch
experiment into quantifiable values, which improves the
objective reliability and validity of this study. Table 1 and
table 2 respectively present the execution results of the
CTM-MCP simulation control system and the NVIDIA Isaac
GR00T control system in the nine epochs simulation
experiment as a basis for performance comparison.

Table 1 The metrics for the CTM-MCP

Epochs TSR ESR AEL ROSCOE REVEAL PSA TE

1 0.902 0.799 10.152 0.787 0.829 0.882 0.859
2 0.876 0.781 10.223 0.780 0.777 0.878 0.857
3 0.894 0.803 9.412 0.789 0.782 0.849 0.855
4 0.901 0.795 10.486 0.788 0.826 0.874 0.854
5 0.891 0.777 10.032 0.779 0.773 0.864 0.839
6 0.906 0.801 9.957 0.785 0.823 0.884 0.858
7 0.893 0.801 10.128 0.784 0.783 0.889 0.861
8 0.888 0.794 9.681 0.786 0.822 0.873 0.856
9 0.911 0.803 9.875 0.791 0.783 0.887 0.861

Table 2 The metrics for the NVIDIA Isaac GR00T

Epochs TSR ESR AEL ROSCOE REVEAL PSA TE

1 0.660 0.732 9.536 0.655 0.675 0.715 0.786
2 0.652 0.724 9.620 0.667 0.689 0.721 0.787
3 0.667 0.725 9.477 0.661 0.683 0.721 0.780
4 0.657 0.737 9.637 0.666 0.680 0.722 0.789
5 0.668 0.727 9.593 0.664 0.681 0.720 0.782
6 0.658 0.732 9.510 0.667 0.684 0.724 0.776
7 0.655 0.740 9.592 0.667 0.687 0.728 0.787
8 0.652 0.734 9.470 0.654 0.688 0.728 0.776
9 0.652 0.737 9.474 0.661 0.675 0.721 0.777

The researcher then used a line graph to show the changing
trends of seven evaluation indicators of the control system
simulated by CTM-MCP and NVIDIA Isaac GR00T in nine
rounds of simulation experiments (Fig.5). This visual
approach helps to observe the performance fluctuations of
each metric and the quantitative evidence of the operating
bottleneck, which supports the conclusions drawn in stability
comparison and system resilience analysis.

Fig. 5 Comparison of the trends of 7 metrics between
CTM-MCP and NVIDIA Isaac GR00T

In the results of 9 epochs, CTM-MCP showed higher
maximum values and lower standard deviations in all seven
metrics, which means excellent performance and high stability.
In terms of TSR, its highest value is 0.911, and the standard
deviation is only 0.0105. It is much better than NVIDIA Isaac
GR00T's 0.668 and 0.0062. In terms of ESR, CTM-MCP
reached 0.803, while Isaac GR00T only reached a maximum
of 0.740. In the AEL part, CTM-MCP reached a maximum of
10.486, which means that it is more detailed in task analysis

and action selection. Although the volatility is high, it is
explained by the complexity of the task and the flexibility of
the path; the maximum value of the control group is only 9.637
and the volatility is very small, which shows that the behavior
execution is relatively rigid. Analysis of the two composite
cognitive representation metrics ROSCOE and REVEAL
revealed that CTM-MCP achieved the highest values of 0.791
and 0.829 respectively and remained stable; Isaac GR00T was
0.667 and 0.689, and the fluctuation was significantly larger.
PSA and TE also showed consistent trends. The maximum
value of CTM-MCP was 0.889, which indicated that the
module had strong self-assessment ability; the latter was 0.861,
which reflected the high consistency of overall task
performance. The relative value of Isaac GR00T was
significantly lower, with the highest values of PSA and TE
being 0.728 and 0.789 respectively.

The line graph verifies the stable performance of
CTM-MCP on various indicators. Except for the predictable
high and low fluctuations of AEL, other indicators such as
TSR and ROSCOE all show a stable upward or flat trend,
showing that this architecture has high reliability and strong
resilience. In contrast, the Isaac GR00T curve changes more
irregularly, showing problems such as large volatility and
insufficient accuracy. The above line graph results consolidate
the systematic advantages and stable structure of CTM-MCP
in multi-indicator evaluation. Through the cross-analysis of
objective data and images, the credibility and universal
potential of CTM-MCP are strengthened.

Ⅵ. LIMITATION & FUTURE RESEARCH

Given that the simulations were run with OpenAI's
o4-mini-high model, verifying CTM's parallel acceleration in
practice would require replacing list loops with fused CUDA
or Triton kernels. The current architecture code and
experimental code simulate logic but cannot achieve
responsive acceleration based on compute power. This is
acceptable for research demonstrations, but for product
prototypes, the learned parameters need to be loaded. The
latency and quota limitations of LLMs may mask CTM's
millisecond adaptive computing advantage, which limits the
real-time reflection of the measurement environment to the
humanoid robot control system. If end-to-end timing is
performed through the API, CTM's millisecond pause
advantage is less significant.

Future researchers will need to run locally to achieve time
parity. Local CPU/GPU fallback scripts will also be needed
for timing, so that the results do not depend on OpenAI's
queue delays. In addition, this work only studies
"thinking-planning-execution" based on clear semantics, and
does not involve data multimodality in the perception field. In
other words, the state of the art in the field of sensors and
multimodality of humanoid robots will affect whether clear
semantics can be obtained.

Ⅶ. CONCLUSION

In response to the long-standing cognitive and behavioral
disconnect in humanoid robots, this work proposes a
CTM-MCP architecture for use in control systems. It addresss
the problem that traditional humanoid robots have difficulty
in “thinking-planning-acting” in real time for a single specific
purpose in unfamiliar scenarios. It provides a solution to the



current situation based on static preset rules and
engineer-instruction coding, which lacks the ability to
reorganize sensory inputs in real time and dynamically reason.
In addition, CTM-MCP addresss the current situation that
humanoid robots are difficult to autonomously encode in time
to achieve autonomous actions due to the highly programmed
"call tool-return result" model. This architecture contributes
to solving the above-mentioned technical gap. Through
continuous thinking, MCP operating tools are driven by
perception dynamic modeling and semantic translation
control to achieve truly autonomous coding and self-driven
actions.

The tick-slab CTM runtime converts the original sequential
reasoning operation into a parallelizable module process
through Tick-Slab fusion and rank compression mechanism,
breaking through the limitations and proposing a specific
parallel solution in CTM theory. It cooperates with the
synchronous rank-one updater and low-rank μ-MLP to
suppress the problem of lengthy deep parameters, so that the
model no longer relies on large-scale parameter stacking. The
MCP envelope router structures the high- and low-confidence
policy gating and branch management mechanisms to achieve
the encapsulation and operation translation of semantic
decisions, and ultimately the corresponding trigger action
control is executed by the execution module.

In the simulation-based experiments, this work uses
o4-mini-high as the execution platform and completes nine
epochs of cross-comparison tests. Compared with the control
group NVIDIA Isaac GR00T, the experimental group
CTM-MCP shows continuous leadership and stability in
seven metrics on the SayCan dataset task accuracy and
execution stability indicators. Overall, the CTM-MCP
architecture breaks through the logical bottleneck of existing
models, enabling humanoid robots to have the closed-loop
ability to drive internal semantic thinking with scene
perception, and then extend to timely action planning and
dynamic operation. It provides a reference experience for
autonomous bodies to get rid of external artificial coding and
move towards internal self-coding of the scene to achieve
human-like dynamics and autonomy.
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