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Abstract

Denoising Diffusion (score-based) generative
models have been widely used for modeling
various types of complex data, including im-
ages, audio, point clouds, and biomolecules. Re-
cently, the deep connection between forward-
backward stochastic differential equations (SDEs)
and diffusion-based models has been revealed,
and several new variants of SDEs are proposed
(e.g., sub-VP, critically-damped Langevin) along
this line. Despite the empirical success of sev-
eral hand-crafted forward SDEs, a great quantity
of potentially promising forward SDEs remains
unexplored. In this work, we propose a gen-
eral framework for parameterizing the diffusion
models, especially the spatial part of the forward
SDEs. A systematic formalism is introduced with
theoretical guarantees, and its connection with
previous diffusion models is leveraged. Finally,
we demonstrate the theoretical advantage of our
method from the variational optimization perspec-
tive. Numerical experiments on synthetic datasets,
MNIST and CIFAR10 are presented to validate
the effectiveness of our framework.

1. Introduction
Denoising Diffusion (score-based) models, which origi-
nated from non-equilibrium statistical physics, have recently
shown impressive success on sample generations of a wide
range of types, including images (Ho et al., 2020; Nichol and
Dhariwal, 2021; Song et al., 2020a; Dhariwal and Nichol,
2021; Rombach et al., 2022), 3D point clouds (Luo and
Hu, 2021; Du et al., 2021), audio (Kong et al., 2020; Liu
et al., 2021), and biomolecules generation (Xu et al., 2022;
Hoogeboom et al., 2022; Schneuing et al., 2022). In addi-
tion to practical applications of various diffusion generative
models, it is also desirable to analyze them in an appropriate
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and flexible framework, by which novel improvements can
be further developed.

Currently, one of the promising formal frameworks for uni-
fying different types of diffusion models is to utilize the
stochastic differential equations (SDEs), as proposed in
(Song et al., 2020a). Under this formalism, a diffusion
model consists of a forward (noising) process and a back-
ward (denoising) process. The forward process keeps adding
noise to the real data, and the backward (generative) process
can be viewed as reversing the forward process in terms of
probability. Furthermore, with the help of the Feynman-Kac
formula and Girsanov transform (Da Prato, 2014), the score-
matching training scheme has been proved to be equivalent
to certain log-likelihood (ELBO) training in the infinite-
dimensional path space (Huang et al., 2021).

From the variational optimization point of view, although
the ELBO optimization function of diffusion models explic-
itly contains both the forward and backward ingredients, the
forward (noising) process is usually hand-crafted and set
to be fixed throughout the training process (Huang et al.,
2021). If we treat the forward-backward processes as an
encoder-decoder pair, then there exists an obvious mismatch
between the current training framework of diffusion models
and other log-likelihood based models (e.g., Hierarchical
VAE (Vahdat and Kautz, 2020)) which also optimize the
encoder. Moreover, since the reverse (generative) process is
uniquely determined by the forward process, the total flex-
ibility of the model actually lies in parameterizing the for-
ward process. Given the fact that different noising schedules
have proven to affect the empirical performances (e.g., the
different forward processes including VE, VP, sub-VP (Song
et al., 2020a) and damped Langevin diffusion (Dockhorn
et al., 2022) displayed distinct generation performances),
freezing the forward process is both theoretical and practical
incomplete. Therefore, the main research question of this
paper is: Can we introduce a theoretically grounded pa-
rameterization for the forward process, so that the diffusion
model can automatically optimize it from data?

To address this problem, it is crucial to incorporate flexi-
ble parameterized forward processes into the general SDE
framework in (Song et al., 2020a). Though the idea of train-
ing the forward process is intuitively reasonable, the imple-
mentation is far from straightforward. The first challenge is
to find the appropriate sub-class within the grand function
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A Flexible Diffusion Model

space consisting of the whole stochastic processes. A hard
constraint is that the stationary distribution of the candidate
stochastic processes must be simple (usually the centered
Gaussian), which will be set as the generative SDE’s prior
distribution. The second challenge is how to make sure that
our parameterization is flexible enough to include all proper
SDEs. In fact, even parameterizing the noise schedule of
the forward process (the one-dimensional time component)
would improve the diffusion model’s performance, as it was
shown in (Kingma et al., 2021). However, how to efficiently
parameterize the space components of the forward process
remains to be explored, especially taking into account the
complex structure of the data distribution (Narayanan and
Mitter, 2010).

This paper concentrates on both theoretical and practical
aspects of solving the flexibility challenge of the diffusion
model in a unified way, emphasizing the spatial components
of the forward process. First of all, inspired by concepts
from Riemannian geometry and Hamilton Monte-Carlo
methods, we define a flexible class of diffusion processes
(FP-Diffusion) that rigorously satisfies the fixed Gaussian
stationary distribution condition with theoretical guarantees.
To highlight the advantages of flexible diffusion models, we
also discuss the theoretical motivations and properties of
parameterized forward processes from the variational opti-
mization perspective. Furthermore, by introducing the flexi-
ble diffusion model, all sorts of regularizers for smoothing
the diffusion paths (e.g., methods from continuous normal-
izing flows: (Finlay et al., 2020; Onken et al., 2021)) can
be implemented for designing better diffusion models. We
empirically test some of them in the experiment section.

Our major contributions are as follows:

• We introduce a theoretically complete framework for
parameterizing the forward process with the help of
symplectic structures and the anisotropic Riemannian
structure. Convergence properties as t → ∞ are
proved along the same route.

• To motivate the parameterization of the forward pro-
cess, we analyze the implications of parameterizing
the forward (noising) process from the variational op-
timization point of view and demonstrate how our
method unifies previous diffusion models. Since this
extension allows merging regularization terms into the
training loss, we also provide experimental results in
simulated scenarios and demonstrate how the diffusion
path behaves under regularization.

• Except considering the general diffusion parameteri-
zation framework, we also develop a corresponding
simplified version of our method with explicit formu-
las for efficient Monte-Carlo training. It enables us to

perform comparative studies on relatively large-scale
datasets, e.g., CIFAR10.

2. Preliminaries and Related Works
Given a data distribution p(x), we associate it with a Gaus-
sian diffusion process (forward) that increasingly adds noise
to the data, then the high-level idea of diffusion generative
models is to approximate the real data distribution by fitting
a multi-step denoising (backward) process. In a discrete
setting, the forward process is formulated as an N-steps
Markov chain from real data x to each noised xt:

p(xt|xt−1) = N (αtx, βtI), t ∈ {1, . . . , N}.

For DDPM model (Ho et al., 2020), αt is set to be
αt :=

√
1− βt. Taking the continuous limit of βt (when√

1− βt ≈ 1 − 1
2βt), we find that Xt satisfies the time-

changed Ornstein–Uhlenbeck stochastic differential equa-
tion (SDE):

dXt = −1

2
β(t)Xtdt+

√
β(t)dWt, (1)

which is exactly the so-called variance-preserving diffusion
process (VP) in (Song et al., 2020a). Therefore, DDPM
can be treated as a discretization of the Ornstein–Uhlenbeck
process. Following this line, (Song et al., 2020a) proposed
to characterize different types of diffusion models by formu-
lating the underlying SDE of each model:

dXt = f(Xt, t)dt+ g(t)dWt, 0 ≤ t ≤ T (2)

where {Wt}∞t=0 denotes the standard Brownian motion, and
the dimension is set to be the same as the data. Usually
we choose a different time parameterization (time-change)
for t. Let β(t) be a continuous function of time t such that
β(t) > β(s) > 0 for 0 < s < t, then β(t) is called a
specific time schedule (time-change) of t. It can be further
shown that when t → ∞, the stationary distribution of
Eq. 1 is the standard multivariate Gaussian: N (0, I) (Hsu,
2002). On the other hand, SMLD diffusion models (Song
and Ermon, 2019) can be seen as a discretization of the
variance-exploring (VE) process ((9) of (Song et al., 2020a))
{Xt}t=T

t=0 , which satisfies a different SDE:

dXt =
√

2σ(t)σ′(t)dWt. (3)

A remarkable property of all the above SDE solution classes
is the existence of a reverse process Yt with respect to each
forward SDE Xt, in the sense that the marginal distributions
at each time and its corresponding ‘reverse’ time match:

pt(Xt) ≡ qT−t(YT−t), 0 ≤ t ≤ T.

We name Yt as the backward (denoising) stochastic process
of the diffusion model. In other words, real data is generated
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A Flexible Diffusion Model

Figure 1. Evolution trajectories of fixed and flexible forward SDEs

by sampling from the Gaussian distribution and tracking
the denoising process from time T to 0. Surprisingly, the
underlying equation of the reverse-time process Yt is derived
analytically in (Anderson, 1982; Song et al., 2020a):

dYt = [f(Yt, t)−g2(Yt, t)∇ log pt(Yt)]dt+g(t)dWt, (4)

where Wt is a Brownian motion running backwards in time
from T to 0. Then, it’s obvious that the unknown score
function st(x) := ∇ log pt(x) depends on both the data
distribution p0 and the forward process Xt. To estimate the
score function and Yt, continuous diffusion models utilize
various types of (weighted) score-matching procedures, we
will briefly review some typical examples in section 3.2.

Now we summarize more related works:

Diffusion Probabilistic Models (DPM) as a generative
model (Kingma and Welling, 2013; Goodfellow et al., 2014;
Yang et al., 2021; Ren et al., 2021) was first introduced in
(Sohl-Dickstein et al., 2015), as a probabilistic model in-
spired by non-equilibrium thermodynamics. The high-level
idea is to treat the data distribution as the Gibbs (Boltzmann)
equilibrium distribution (Friedli and Velenik, 2017), then
the generating process corresponds to transitioning from
non-equilibrium to equilibrium states (De Groot and Mazur,
2013). DDPM (Ho et al., 2020) and (Nichol and Dhariwal,
2021; Song et al., 2020b; Watson et al., 2022; Jolicoeur-
Martineau et al., 2021; Bao et al., 2022) further improve
DPMs by introducing Gaussian Markov chains and various
inference and sampling methods, through which the gen-
erative model is equivalent to a denoising diffusion model.
(Vahdat et al., 2021) then introduces a latent space diffusion
and the number of denoising steps are also increased to
improve empirical performances. On the other hand, as we
will show in this article, there are infinite processes (thermo-
dynamical systems) that can connect non-equilibrium states
to a equilibrium.

Score Matching: Score-based energy models (Hyvärinen,

2005; Vincent, 2011) are based on minimizing the differ-
ence between the derivatives of the data and the model’s
log-density functions, which avoids calculating the normal-
ization constant of an intractable distribution. (Song and
Ermon, 2019; Song et al., 2020c) then introduced sliced
score matching that enabled scalable generative training by
leveraging different levels of Gaussian noise and several em-
pirical tricks. (Song et al., 2020a; 2021) further studied how
to perturb the data by a continuous stochastic process.Under
this framework, (Kingma et al., 2021) proposed to reparame-
terize and optimize the time variable of the forward process
(the spatial components remain fixed) by the signal-to-noise
ratio (SNR). From this point of view, our model can be seen
as a novel spatial parameterization of the forward process,
which takes into account the spatial inhomogeneity of the
data distribution.

3. Methods
3.1. A general framework for parameterizing diffusion

models

From the preliminary section, we realize that the stationary
distribution of the forward process will also be the initial
distribution of the denoising (generative) process. Therefore,
it must be a simple distribution we know how to sample
from, mainly set to be standard Gaussian. In this article, we
parameterize the spatial components of the forward process
by considering the following SDE:

dXt = f(Xt)dt+
√
2R(Xt)dWt, (5)

under the hard constraint that the stationary distribution
of Xt is standard Gaussian (the scaled Gaussian case is
included in Appendix). Introducing the time change β(t),
then by Ito’s formula, Xβ(t) satisfies a variant of Eq. 5:

dXβ(t) = f(Xt)β
′(t)dt+

√
2β′(t)R(Xt)dWt. (6)
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A Flexible Diffusion Model

Comparing with black-box parameterizations (e.g. (Zhang
and Chen, 2021)), it’s obvious that the function class of
f(x) and R(x) should be properly restricted to satisfy the
diffusion model’s theoretical assumptions. To solve this
issue, we propose a flexible framework for parameterizing
the forward processes, and the completeness of our parame-
terization will be proved in Appendix A.1. It turns out that
the whole construction can be decomposed into two parts:
the Riemannian metric and the symplectic form in Rn, in-
spired by ideas from the Riemannian Manifold Hamiltonian
Monte-Carlo algorithm (Girolami and Calderhead, 2011;
Betancourt, 2013; 2017; Seiler et al., 2014) and anisotropic
diffusion technique of image processing, graph deep learn-
ing (Weickert, 1998; Perona and Malik, 1990; Alvarez et al.,
1992).

Intuitively, an anisotropic Riemannian metric implies
that the space was curved, and the corresponding ‘in-
homogeneous’ Brownian motion will inject non-uniform
noise along different directions. On the other hand, the sym-
plectic form is crucial for defining the dynamics of a given
Hamiltonian. Both of them set the stage for performing
diffusion on the data manifold, from real data distribution to
the standard multivariate normal distribution, whose density
under the canonical volume form dx1 . . . dxn is

1√
(2π)n

exp(−1

2
∥x∥2)dx1 . . . dxn. (7)

Now we introduce these two geometric concepts in detail.
In a coordinate system, a Riemannian metric can be iden-
tified as a symmetric positive-definite matrix : R(x) :=
{Rij(x)}1≤i,j≤n ( the Euclidean metric corresponds to the
identity matrix). Given a smooth function H(x), recall that
the Riemannian Langevin process satisfies the following
SDE:

dXt = −∇̃H(Xt)dt+
√
2dBt, (8)

where ∇̃H(x) := R−1(x)∇H(x) is the gradient vector
field of H , and Bt denotes the Riemannian Brownian mo-
tion (Hsu, 2002). In local coordinates, Bt equals (see (13)
of (Girolami and Calderhead, 2011)):

dBi
t = |R(Xt)|−1/2

n∑
j=1

∂

∂xj
(R−1

ij (Xt)|R(Xt)|1/2)dt

+
√
R−1(Xt)dW

i
t , (9)

for i ∈ {1, 2, . . . , n}. One crucial property of the Rieman-
nian Langevin process (Wang, 2014) is that its stationary
distribution p(x) has the following form:

p(x) ∝ e−H(x)dV (x),

where dV (x) :=
√
|R(x)|dx1 . . . dxn is the Riemannian

volume form. Transforming back to the canonical volume
form and take H(x) = 1

4 ∥x∥
2·log(|R(x)|), we have proved

the following lemma:

Lemma 3.1. The stationary distribution of the SDE (Eq.
10) below is the standard Gaussian of Rn:

dXt =
1

2
[−

∑
j

R−1
ij (Xt) · (Xt)j +

∑
j

∂

∂xj
R−1

ij (Xt)]dt

+
√
R−1(Xt)dWt,

(10)

Remark 3.2. It’s worth mentioning that the infinitesimal
generator of (10) is the Riemannian Laplacian: ∆R. When
acting on a smooth function f ,

∆Rf :=
1√

|R(x)|
∂i(

√
|R(x)|(R−1)ij∂jf).

Indeed, it has the same form as the anisotropic diffusion
defined by (1.27) of (Weickert, 1998). The effectiveness of
anisotropic noise is explored in section 4.1.

On the other hand, introducing a symplectic form ω al-
lows us to do Hamiltonian dynamics in an even-dimensional
space R2d. Since a symplectic form is a non-degenerate
closed 2-form, it automatically becomes zero in odd-
dimensional spaces. In this article, we will restrict our-
selves to a special type of symplectic form, which consists
of constant anti-symmetric matrices {ωij}1≤i,j≤2d. Then
the corresponding Hamiltonian dynamics of H(x) is:

dXt = ω∇H(Xt)dt. (11)

We mainly focus on two remarkable properties of Hamilto-
nian dynamics: 1. It preserves the canonical volume form
(the determinant of the corresponding Jacobi matrix always
equals one); 2. The Hamiltonian function H(x) takes a
constant value along the integral curves (see the remark in
Appendix A). Using the change of variables formula, we
conclude that the probabilistic density of Xt preserves the
equilibrium Gibbs distribution:

p(x) ∝ e−H(x)dx1 . . . dxn,

where X0 is sampled from the Gibbs distribution.

Let H(x) = 1
2x

2, the potential energy of the Harmonic
oscillator. Then by merging the Riemannian part (Eq. 10)
and the symplectic part (Eq. 11) we obtain the following
theorem:

Theorem 3.3. Suppose ω is an anti-symmetric matrix, and
R−1(x) is a symmetric positive-definite matrix-valued func-
tion of x ∈ Rn. Then the (unique) stationary distribution of
(Eq. 12) below is the standard Gaussian (Eq. 7) of Rn:

dXt =
1

2
[−

∑
j

R−1
ij (Xt) · (Xt)j − 2

∑
j

ωij · (Xt)j

+
∑
j

∂

∂xj
R−1

ij (Xt)]dt+
√
R−1(Xt)dWt, (12)
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A Flexible Diffusion Model

We name Eq. 12 as our FP-Diffusion model, and previous
diffusion models (e.g., Eq. 1) are included by setting ω ≡ 0,
R−1(x) ≡ I . In Appendix A.1, theorem 3.3 is extended to
scaled Gaussian distributions by direct computation. For a
graphical presentation, Figure 1 plots the VP stochastic tra-
jectories (the green curves) connected with our FP-Diffusion
forward trajectories (the white curves) under random ini-
tialization. We also provide an informal argument on how
the anisotropic FP-Diffusions mix with the low-dimensional
data distribution in Appendix A.1.

Furthermore, to unify the critical damped Langevin diffu-
sion model (Dockhorn et al., 2022), our FP-Diffusion is
straightforward to generalize to the case when the inverse
Riemannian matrix R−1(x) degenerates (contains zero
eigenvalues). Intuitively, the diffusion part

√
R−1(x)dWt

is the source of randomness (noise). Suppose R−1(x) de-
generates along the i-th direction (i.e., corresponding to zero
eigenvalue), then no randomness is imposed on this direc-
tion, and the i-th component Xi

t will be frozen at Xi
0. In

this case, Xt may not converge to this Gaussian stationary
distribution from a deterministic starting point. To remedy
this issue, we impose additional restrictions, which lead us
to the following corollary:

Corollary 3.4. Under two additional conditions: (1) the
symplectic form ω ∈ R2d×2d has the block form: ω =(

0 A
−A 0

)
with a positive-definite matrix A ∈ Rd×d;

(2) the inverse (semi-) Riemannian matrix R−1(x) has the

block form: R−1(x) =

(
0 0
0 B

)
with a constant positive-

definite symmetric matrix B ∈ Rd×d, we induce that the
forward diffusion Xs converges to the standard Gaussian
distribution:

ps(Xs)
s→∞−−−→ N (0, I).

We will demonstrate how the corollary derives the damped
diffusion model in Appendix A.

3.2. Parameterizing diffusion models from the
optimization perspective

In this section, we illustrate the benefits of parameterized
diffusion models from the variational optimization perspec-
tive. Recall that the ground-truth reverse-time SDE of the
forward process Xt is denoted by Yt, and we parameterize
Yt by Y θ

t :

dY θ
t = [f(Yt, t)−g2(Yt, t)∇sθ(Yt, t)]dt+g(t)dWt, (13)

where sθ is the score neural network parameterized by θ.
Then the (explicit) score-matching loss function for opti-

mization is

LESM :=

∫ T

0

EXs
[
1

2
∥sθ(Xs, s)−∇ log ps(Xs)∥2Λ(s)]ds,

(14)
where Λ(s) is a weighting positive definite matrix for the
loss. Since Yt and Xt shares the same marginal distributions,
then under the condition that the parameterized generative
process Y θ

t matches Yt perfectly:

sθ(x, t) ≡ ∇ log pt(x) (15)

for all t ∈ [0, T ], we know the marginal distribution of Y θ
t

at t = 0 is exactly the data distribution.

The major obstacle of optimizing Eq. 14 directly is that
we don’t have access to the ground truth score function
∇ log ps(x, s). Fortunately, LESM can be transformed to
a loss based on the accessible conditional score function
∇ log pXs|X0

(Xs) plus a constant (Song et al., 2020c;a)
(for a fixed forward process Xs). More precisely, given
two time slices 0 < s < t < T ,

EXt ∥sθ(Xt, t)−∇ log pt(Xt)∥2

≡ EXs,Xt ∥sθ(Xt, t)−∇ log pt(Xt|Xs)∥2

+ EXt ∥∇ log pt(Xt)∥2 − EXs,Xt ∥∇ log pt(Xt|Xs)∥2︸ ︷︷ ︸
gap terms

.

(16)

Since the gap terms between the original and conditional
score function loss only depend on the forward noising pro-
cess, one theoretical advantage of FP-Diffusion is that the
gap terms are also parameterized. This formula is adapted
from (Song et al., 2020c; Huang et al., 2021) by modifying
the initial time, and full derivations are given in Appendix
A for completeness.

On the other hand, compared with log-likelihood generative
models like normalizing flows and VAE, the connection
between score matching and the log-likelihood of data dis-
tribution log p0(x) (also the initial distribution of (12)) is
also not straightforward due to the additional forward pro-
cess Xt. Hence, we turn to the variational view established
in (Huang et al., 2021), where the ELBO (evidence lower
bound) of data’s log-likelihood log p0(x) is directly related
with the score matching scheme. More precisely, we have

log p0(x) ≥ E∞(x),

and the ELBO E∞(x) of the infinite-dimensional path space
is defined by

E∞(x) := EXT
[log pT (XT )|X0 = x]

−
∫ T

0

EXs [
1

2
∥sθ∥2g2 +∇ · (g2sθ − f)|X0 = x]ds.

(17)
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A Flexible Diffusion Model

The above implies that learning a diffusion (score) model
is equivalent to maximizing the ELBO in the variational
path space defined by the generative process Y θ

t . Thus,
treating f(x, t) and g(x, t) as learnable functions results in
enlarging the variational path space from pre-fixed f and
g to flexible variational function classes, such that a lower
value of ELBO is achieved in the extended space.

By Eq. 12, in FP-Diffusion model, we set

f(x, t) :=
β′(t)

2
[−

∑
j

R−1
ij (x)xj − 2

∑
j

ωijxj

+
∑
j

∂

∂xj
R−1

ij (x)], g(x, t) :=
√
β′(t)R−1(x).

(18)

Since our variational function class of the forward process
defined in Eq. 12 is theoretically guaranteed to approach
Gaussian when T is large, the first term of E∞(x) is close to
a small constant under Eq. 18. Therefore, we only need to
investigate the second term (equivalent to the implicit score
matching (Hyvärinen and Dayan, 2005)), which depends on
both the parameterized f , g and the score function. Finally,
learning f and g opens the opportunity of adding additional
regularization penalties to filter out irregular forward paths
in the extended variational path space. Similar techniques
have been applied in continuous normalizing flows (Finlay
et al., 2020). Preliminary exploration on applying regulariza-
tion to FP-Diffusion models is clarified in the experimental
section.

3.3. A simplified formula of FP-Diffusion

Although we can always numerically simulate the SDE to
a given time t, the empirical success of the Monte-Carlo
training of (14) in (Ho et al., 2020) (see also (7) of (Song
et al., 2020a)) indicates the importance of obtaining explicit
solutions for direct sampling. In this section, we derive the
solution formula for a simplified version of Xt defined in
Eq. 12 and implement it on the image generation task.

To obtain the closed-form expression of the transition prob-
abilistic density function for the forward process Xt, we
assume that R−1(x) of Eq. 12 is a constant symmetric
positive-definite matrix independent of the spatial variable x.
Then within the linear SDE region (Särkkä and Solin, 2019),
we have the following characterization of the marginal dis-
tributions (see Appendix A for a full derivation):

Theorem 3.5. Suppose the forward diffusion process Xt

starting at X0 satisfies the following linear stochastic dif-
ferential equation:

dXt =
1

2
β′(t)[−R−1Xt − 2ωXt]dt+

√
β′(t)R−1dWt,

(19)

for symmetric positive-definite R and anti-symmetric ω.
Then the marginal distribution of Xt at arbitrary time t > 0
follows the Gaussian distribution:

Xt ∼ N (e(−
1
2R

−1−ω)β(t)X0, I− e−β(t)R−1

).

In practice, we set ω in Eq. 11 to be an anti-symmetric
matrix, and name it by the FP-Drift parameterization. On
the other hand, R−1 in Eq. 10 is set to be a symmetric
positive-definite matrix, and we name it by the FP-Noise
parameterization. Both the anti-symmetric and symmetric
matrices are realized through the matrix exponential map.
We leave the implementation details in Appendix A.

4. Experiment
We first use a synthetic 3D dataset to illustrate the signif-
icance of parameterizing the forward process adapting to
the data distribution, then validate the effectiveness of our
FP-Diffusion model on standard image generation tasks.

4.1. Flexible SDEs learned from Synthetic 3D examples

According to the low-dimensional manifold hypothesis (Fef-
ferman et al., 2016), the real data distribution concentrates
on a low-dimensional sub-manifold. However, during the
generation phase, the dimension of the ambient space we
sample from is usually much higher. To fill in the gap,
FP-Diffusion plays a nontrivial role. More precisely, note
that only the diffusion part of Eq. 12 can blur the data
sub-manifold to fill in the high-dimensional ambient space,
which causes a distinction between the directions tangent
to the data and the remaining normal directions during the
(anisotropic) diffusion process. Since it is impossible to
directly detect the complex data manifold, we design a sim-
plified scenario to demonstrate how the parameterized diffu-
sion process enhances generation.

Table 2. Results on CIFAR10. * denotes the results we reproduce
locally.

Model FID ↓ NLL↓
DDPM++ cont. (deep, VP) (Song et al., 2020a) 2.95* 3.13*
NCSN++ cont. (deep, VE) (Song et al., 2020a) 2.72* -

DDPM (Zhang and Chen, 2021) 3.17 ≤ 3.75
Improved-DDPM (Nichol and Dhariwal, 2021) 2.90 3.37

LSGM (Vahdat et al., 2021) 2.10 ≤ 3.43
LSGM-100M (Dockhorn et al., 2022) 4.60 ≤ 2.96
CLD-SGM (Dockhorn et al., 2022) 2.25 ≤ 3.31
DiffFlow (Zhang and Chen, 2021) 14.14 3.04

FP-Drift (Joint) 4.17 3.30
FP-Noise (Joint) 3.30 3.25
FP-Drift (Mix) 2.99 3.28
FP-Noise (Mix) 2.87 3.20

Assume the data lies in R3, and its distribution follows
a 2-dimensional Gaussian concentrated at a given hyper-
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Figure 2. VP

Figure 3. Non-reg. FP

Figure 4. Reg. FP

Figure 5. Vector fields projected into 2D-section of three SDEs

plane. Obviously, the simplest way to generate the 2-
dimensional Gaussian is to directly project random points
sampled from 3-dimensional Gaussian to this plane. To
make it rigorous, we consider the optimal transport prob-
lem from the 3-dimensional Gaussian distribution to the
2-dimensional Gaussian. Define the cost function as
c(x, y) := ∥x− y∥2, then the Wasserstein distance between
N (0, I) and N (µ,Σ) (Mallasto and Feragen, 2017) equals
W2(N (0, I,N (µ,Σ)) = ∥µ∥2 +Tr(I+Σ− 2Σ1/2). It im-
plies that the corresponding optimal transport map ∇ϕ is
exactly the vertical projection.

For our FP-Diffusion model, the probabilistic flow of the
generating process depends on the parameterized forward
process. Then, to optimize the forward paths, we add regu-
larization terms into the original score-matching loss. From
(13) of (Song et al., 2020a), the vector field of the probability
flow ODE is

vpc(x, t) :=f(x, t)− 1

2
∇ · [g2(x, t)]

− 1

2
g2(x, t)∇ log pt(x), x ∈ R3. (20)

To control variables, We perform the experiment under
three circumstances: 1. a fixed VP forward process (Eq.
1); 2. our parameterized forward process with no reg-

Table 1. NLLs on MNIST
Model NLL ↓

RealNVP (Dinh et al., 2016) 1.06
Glow (Kingma and Dhariwal, 2018) 1.05

FFJORD (Grathwohl et al., 2018) 0.99
ResFlow (Chen et al., 2019) 0.97

DiffFlow (Zhang and Chen, 2021) 0.93

FP-Drift (Mix) 1.01

Figure 6. MNIST and CIFAR10 samples

ularization; 3. our parameterized forward process with
regularization terms. The regularization penalties are im-
posed on the vector field (Eq. 20), which are adapted
from section 4 of (Finlay et al., 2020): Lreg(f, g) =

λ1

∫
∥vpc(s)∥2 ds + λ2Eϵ∼N(0,1)

∥∥ϵT vpc(s)∥∥2 ds. Notice
that this term only regularizes parameters from f and g in
the forward process.

After training, we check whether the direction of the learned
vpc is aligned with the ground-truth projection vector field.
For the projection map ∇ϕ from the 3-dimensional Gaussian
to 2-dimensional Gaussian supported at the plane :z = 2, the
corresponding vector field at a spatial point x = (x, y, z) ∈
R3 equals:

vproj(x, t) :=(0, 0,−1) if z > 2,

and vproj(x, t) :=(0, 0, 1) if z < 2. (21)

The 2D visualization results of our comparative experiments
are summarized in Fig. 5. Since the ‘ground-truth’ vector
field (Eq. 21) is strictly vertical, it’s enough to plot the
x − z projection of the trained three vector fields for the
three scenarios. From Fig. 5, although our flexible diffusion
method (b) is already more vertical than the forward-fixed
VP (ddpm) model (a), the flexible model trained with regu-
larization (c) is closer to vertical lines. In Appendix B, we
also sample the integration trajectories of the trained vector
fields for comparison (see Fig. 5).

4.2. Image Generation

In this section, we demonstrate the generative capacity of
our FP-Diffusion models on two common image datasets:
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MNIST (LeCun, 1998) and CIFAR10 (Krizhevsky et al.,
2009).

Training strategy. The flexible FP-Diffusion framework
is designed to simultaneously learn a suitable forward dif-
fusion process dependent on the data distribution as well
as the corresponding reverse-time process. However, for
some complex scenarios like image generation, it is chal-
lenging to balance the optimization of the forward and the
backward processes. To compromise these two parts, we
propose a two-stage training strategy. Particularly, in the
first stage, we jointly optimize the parameters from both
the FP-Diffusion forward process and the backward score
neural network; in the second stage, we freeze all parame-
ters from the FP-Diffusion and only tune the score neural
network in the same way as prevailing score-based training
approaches (Ho et al., 2020; Song and Ermon, 2019; Song
et al., 2020a). Note that the two-stage strategy also makes
the flexible diffusion salable, in the sense that after the first
stage, the parameters contained in the forward process are
fixed and won’t be counted in the gradient computational
graph. Moreover, during the sampling process, only the
score neural network is implemented.

Implementation Details. For the forward diffusion pro-
cess, we choose a linearly increasing time scheduler β(t)
(same as the VP-SDE setting in (Song et al., 2020a)), where
t ∈ [0, T ] is a continuous time variable. To estimate the
gradient vector field in the reverse-time process, we train
a time-dependent score network sθ(x(t), t) as described
in Eq. 16. We adopt the same U-net style architecture
used in (Ho et al., 2020) and (Song et al., 2020a) as our
backbone neural network. Both the FP-Drift model and the
FP-Noise model are implemented in two training paradigms:
1) Joint Training: the parameterized FP-Diffusion model
and the score network are jointly optimized for 1.2M itera-
tions; 2) Mix Training: following the proposed two-stage
training strategy, we separately train the model for 600k
iterations in both stages, and the batch size is set to be 96
on all datasets. Following (Song et al., 2020a), we apply
the Euler-Maruyama method in our reverse-time SDEs for
sampling images, where the discretization steps equal 1000.
All the experiments are conducted on 4 Nvidia Tesla V100
16G GPUs. We provide further implementation details in
Appendix B.

Results. We show the sampled images generated by our FP-
Noise (Mix training) model in Fig. 6. According to Eq. 20,
the negative log-likelihood (NLL) are explicitly caculated
in bits per dimension for our models by the instantaneous
change of variables formula (Grathwohl et al., 2018). Then
we list the NLL metrics of our models in Tab. 1 and Tab.
2. On MNIST, our FP-Drift model achieves comparable
performance in terms of NLL, compared to five standard
flow-based models (including DiffFlow (Zhang and Chen,

2021)). On CIFAR10, both the FP-Drift (Mix training) and
the FP-Noise (Mix training) models achieve a competitive
performance compared to the state-of-the-art (SOTA) diffu-
sion models. These results illustrate the strong capacity of
FP-Diffusion in density estimation tasks.

To quantitatively evaluate the quality of the sampled im-
ages, we also report the Fenchel Inception Distance (FID)
(Heusel et al., 2017) on CIFAR10. As shown in Tab. 2, the
two variants of our FP-Diffusion model, FP-Drift (Mix) and
FP-Noise (Mix), outperform DDPM (Ho et al., 2020) and
Improved-DDPM (Nichol and Dhariwal, 2021) in FID and
have a comparable performance with DDPM++ cont. (deep,
VP) and NCSN++ cont. (deep, VE) (Song et al., 2020a).
We notice that only LSGM and CLD-SGM have obviously
better FID values than other models (including us). How-
ever, LSGM (Vahdat et al., 2021) adopts a more complicated
framework and a large model with ≈ 475M parameters to
achieve its high performance. With a comparable parameter
size (≈ 100M ), our models could achieve a significantly
better FID score than LSGM (“LSGM-100M”). CLD-SGM
builds its diffusion model upon a larger phase space with
a special training objective (given the data point x ∈ Rn,
its phase space corresponding point (x, v) belongs to R2n),
which leads to a more expressive optimization space but
brings extra computational cost as well. We leave testing
our FP-Diffusion model on phase space (defined in Corol-
lary 3.4) in future works. It should also be noted that we
use a smaller batch size (96) compared to other baseline
diffusion models (128) to train our models due to limited
computational resources, which may influence our empirical
performance. We also report the performance of our two
model variants in two training paradigms in Tab. 2. The
model variants with the joint training paradigm consistently
achieve a better performance, demonstrating the necessity
of the two-stage training strategy. A possible reason of this
phenomenon is that it may be difficult for score models to
match the reverse process of a dynamical forward process,
so we need to tune the score model with extra training steps
after fixing a suitable forward process.

5. Conclusion
We propose FP-Diffusion model, a novel method that pa-
rameterizes the spatial components of the diffusion (score)
model with theoretical guarantees. This approach com-
bines insights from Riemannian geometry and Hamiltonian
Monte-Carlo methods to obtain a complete forward diffu-
sion parameterization that plays a nontrivial role from the
variational optimization perspective. Empirical results on
specially-designed datasets and standard benchmarks con-
firm the effectiveness of our method. However, how to effi-
ciently optimize FP-Diffusion remains a critical challenge,
which opens the door for promising future research.
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A. Theory
A.1. Discussion of Section 3.1

A.1.1. REMARK ON THE THEORETICAL PROPERTIES OF
HAMILTONIAN DYNAMICS

Suppose Xt follows the Hamiltonian dynamics (11), then

dH(Xt) = ∇H(Xt)ω∇H(Xt)dt ≡ 0,

by the anti-symmetry of ω. Therefore, the Hamiltonian
dynamics without random perturbations is a deterministic
motion that can explore within a constant Hamiltonian (en-
ergy) surface. It means that, only by adding a diffusion
term, the Hamiltonian dynamical system is able to traverse
different energy levels.

A.1.2. VERIFICATION OF THEOREM 3.3

We will verify the theorem under the more general case,
when H(x) = m

2 x
2. The corresponding stationary distribu-

tion is the scaled Gaussian N (0,mI), where m > 0 is the
scale constant. In this case, Eq. 12 is modified to:

dXt =
m

2
[−

∑
j

R−1
ij (Xt) · (Xt)j − 2

∑
j

ωij · (Xt)j

+
∑
j

∂

∂xj
R−1

ij (Xt)]dt+
√
R−1(Xt)dWt. (22)

Note that only the drift term is scaled by m.

Proof. Since the covariance matrix of the diffusion part is
positive-definite, the forward process Eq. 22 satisfies the
Feller property and the existence and uniqueness of the
stationary distribution are guaranteed (see (Wang, 2014)).
By the Fokker-Plank-Kolmogorov equation, the stationary
distribution ps(x) of Eq. 22 should satisfy

0 = −
∑
i

∂

∂xi
[fi(x, t)ps(x)] +

1

2

∂2

∂xi∂xj
[(ggT )ijps(x)],

(23)
where we set f(x, t) := m

2 [−
∑

j R
−1
ij (x) · xj − 2

∑
j ωij ·

xj +
∑

j
∂

∂xj
R−1

ij (x)] and g(x, t) :=
√
R−1(x). To check

whether e−
m
2 x2

satisfies condition (23), notice that by the
anti-symmetry of ωij , we automatically have

∑
i

∑
j

∂

∂xi
(ωijxje

−m
2 x2

) = −
∑
i

∑
j

ωijxixje
−m

2 x2

= 0.

On the other hand,

∑
i

∑
j

∂2

∂xi∂xj
[R−1

ij (x)e−
m
2 x2

]

= −mTr(R−1
ij (x))e−

m
2 x2

+m2
∑
i

∑
j

R−1
ij (x)xixje

−m
2 x2

−
∑
i

∑
j

∂

∂xj
(R−1

ij (x))(
∂

∂xi
e−

m
2 x2

)

+
∑
i

∑
j

∂2

∂xi∂xj
(R−1

ij (x))e−
m
2 x2

−m
∑
i

∑
j

∂

∂xj
(R−1

ij (x))xie
−m

2 x2

=−mTr(R−1
ij (x))e−

m
2 x2

+m2
∑
i

∑
j

R−1
ij (x)xixje

−m
2 x2

+
∑
i

∂

∂xi
[
∑
j

∂

∂xj
R−1

ij (x)e−
m
2 x2

]

−m
∑
i

∑
j

∂

∂xj
R−1

ij (x)xie
−m

2 x2

.

Therefore, the last thing to check is that

∑
i

∂

∂xi
[
∑
j

R−1
ij (x)xje

−m
2 x2

] = Tr(R−1
ij (x))e−

m
2 x2

−

∑
i

∑
j

[mR−1
ij (x)xixj +

∂

∂xj
R−1

ij (x)xi]e
−m

2 x2

,

which is obviously true, since the diffusion matrix R−1
ij is

symmetric. Combining the above, we have proved that Eq.
23 holds if ps(x) ∝ e−

m
2 x2

.

A.1.3. COMPLETENESS OF FP-DIFFUSION
PARAMETERIZATION

From the last section’s derivation, we can deduce the fol-
lowing corollary:

Corollary A.1. Consider the following SDE:

dXt =A(Xt)dt−
1

2
R−1(Xt) ·Xtdt

+ (∇ ·R−1(Xt)) ·Xtdt+
√

R−1(Xt)dWt,
(24)

and let the spatial function A(x) be a linear function. Sup-
pose we know its stationary distribution is standard Gaus-
sian, then

A(x) = −
∑
j

ωij · xj ,

for some anti-symmetric matrix ω.
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Proof. In fact, every linear operator A can be decomposed
into a symmetric part plus an anti-symmetric part:

A =
A+AT

2︸ ︷︷ ︸
symmetric

+
A−AT

2︸ ︷︷ ︸
anti-symmetric

.

Let ω = A−AT

2 . Then we only need to prove that A+AT

equals zero, if Xt converges to Gaussian.

From the proof of theorem 3.3, we extract the fact that if
ps(x) ∝ e−

1
2x

2

,∑
i

∂

∂xi
[(A+AT )ij · xje

− 1
2x

2

] = 0,

then ∑
i,j

[(A+AT )ij ·
∂

∂xi

∂

∂xj
(e−

1
2x

2

)] = 0,

for all x = (x1, . . . , xn). Note that

∂

∂xi

∂

∂xj
(e−

1
2x

2

) = (xixj − δij)e
− 1

2x
2

.

Since A + AT is symmetric (doesn’t hold for arbitrary
linear operator), it implies that A+AT ≡ 0.

A.1.4. ANISOTROPIC DIFFUSION ON LOW DIMENSIONAL
DATA MANIFOLD

In this section, we give an informal discussion on how an
anisotropic diffusion starting at a low-dimensional data man-
ifold mixes with its own stationary distribution (supported
in the high dimension ambient space).

Assume the marginal distribution of the diffusion process
Xt concentrates on a low dimensional manifold M ↪→ Rn

at a given time. Moreover, suppose Xt already achieves the
Gaussian stationary distribution on M (defined with respect
to the Laplacian operator of M ). Now we want to informally
investigate the most efficient way for Xt to diffuse out of
the low dimensional sub-manifold to the ambient space. By
localizing in the Riemannian normal coordinates and by
arranging the coordinates indexes, we can further assume
that M is isometric to the hyperplane of Rn defined by

M = {x ∈ Rn|x = (x1, . . . , xp, 0, . . . , 0)}.

Then the coordinate components of each point x ∈ Rn can
be decomposed into the tangential directions and the normal
directions with respect to M :

x ∈ (x1, . . . , xp︸ ︷︷ ︸
tangent to M

, xp+1, . . . , xn︸ ︷︷ ︸
normal to M

).

Under the above conditions, we are ready to compare the
convergence rate (to the high-dimensional stationary Gaus-
sian distribution of Rn) of different forward diffusions de-
fined in (10). For a fair comparison, we set the norm of
the noise matrix to be one:

∥∥R−1
∥∥
2
≡

√
n. Otherwise, the

convergence can always be accelerated by increasing the
noising scale (

∥∥R−1
∥∥
2
→ ∞).

Under our normal coordinates, the forward diffusion can
be decomposed into two parts :X(t) = Xtan(t) +Xnor(t).
For simplicity, suppose R−1 is a diagonal matrix, then the
tangential part and the normal part of X(t) is completely
decoupled. In other word,

Xi
tan(t) =

1

2
[−R−1

ii · (Xt)
i]dt+

√
R−1

ii dW i
t , 1 ≤ i ≤ p

is a diffusion process on M . Therefore, (Xtan(t), X(t))
is indeed a Markov coupling. Suppose Xtan(t) at t = 0
already converges to its stationary distribution (low dimen-
sional Gaussian), then by Ito’s formula,

d(Xtan(t)−X(t))2

= dX2
nor(t)

= 2Xnor(t)(
1

2
[−R−1

nor ·Xnor(t)]dt+
√
R−1

nordWt) + Tr(R−1
nor)dt.

Taking the expectation of both sides, it implies that

dEX2
nor(t)

dt
= −ER−1

nor ·X2
nor(t) + Tr(R−1

nor).

Let rmin denote the minimal eigenvalue of the normal part
of R−1, then

dEX2
nor(t)

dt
≤ −rminEX2

nor(t) + Tr(R−1
nor).

Applying Grönwall’s inequality and note that Xnor(0) = 0,
we have

EX2
nor(t) ≤ e−rmin·t · Tr(R−1

nor)t.

The above gives an upper bound on the convergence speed
of the coupling (Xtan(t), X(t)) with respect to the W2 dis-
tance (see (Wang, 2014)). Since the stationary distribution
of X(t) is exactly the high dimensional Gaussian distribu-
tion (the diffusion model’s prior distribution), we hope the
convergence rate to be as fast as possible (given a fixed
noising scale). For the VP-Diffusion,

R−1
nor ≡ diag{1, . . . , 1}.

However, in FP-Diffusion model, the diagonal elements of
R−1

nor are allowed to be inhomogeneous and greater than one
(under the condition that Tr(R−1

nor) < n). This will lead to a
smaller rmin, which will speed up the convergence rate by
our analysis.
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A.1.5. VERIFICATION OF COROLLARY 3.4

The intuition of Corollary 3.4 can be stated as follows: To
guarantee the geometric ergodicity property of FP-Diffusion
on the phase space, we need enough noise such that the
diffusion process can transverse the whole space. Suppose
R−1(x) degenerates along the i-th direction (corresponding
to a zero eigenvalue), then no randomness (noise) is imposed
on this direction.

To remedy the issue, we require the symplectic form ω to be
non-zero along the i-th direction, which makes it possible
to mix the noise originated along other directions (where
R−1(x) is strictly positive-definite) with the i-th direction.
Now we give the formal proof:

Proof. We only prove for the simplified case when A and B
are both diagonal matrices with two sets of positive eigen-
values {ai}di=1, {bi}di=1. The general situation can be han-
dled by trivial linear transformation. By proposition 8.1
of (Bellet, 2006), the proof boils down to prove that the
Hörmander’s condition (Hörmander, 1967) holds for the
forward process Xt. When R−1(x) is a constant matrix, the
infinitesimal generator L of (12) is:

L =
∑
i

∑
j

1

2
[−R−1

ij −2ωij ]xj
∂

∂xj
+
1

2

∑
ij

R−1
ij

∂2

∂xi∂xj
.

For notation simplicity, denote x := (u, v) ∈ R2d, where
u, v ∈ Rd. To put the second-order differential operator L
in Hörmander’s form, set

Yj(u, v) = −1

2

√
bj

∂

∂vj
, 1 ≤ j ≤ n,

and
Y0(u.v) =

∑
i

(−aivi
∂

∂ui
+ aiui

∂

∂vi
).

Then it suffices to show that the vector fields
{[Y0, Yj ], Yj}1≤j≤d span the whole R2d. By direct
calculation,

[Y0, Yj ] =
1

2
aj
√
bj

∂

∂uj
,

for ∀j. Therefore, we conclude that the Hörmander’s con-
dition holds for Xt. Then the ergodic proposition 8.1 of
(Bellet, 2006) implies that the forward diffusion Xs con-
verges to the standard Gaussian distribution.

Remark A.2. A recent study (Dockhorn et al., 2022) pro-
posed to improve the diffusion model by enlarging the spa-
tial space (where the generated samples lie in) to the ”phase”
space: x → (x, v). Then the corresponding joint forward
diffusion (xt, vt) satisfies the Critically-Damped Langevin
diffusion:(
dxt

dvt

)
=

(
M−1vt
−xt

)
dt+

(
0d

−ΓM−1vt

)
dt+

(
0√
2Γ

)
dWt.

(25)

If the coupling mass M = 1, the drift part of Eq. 25 can be
decomposed to a symmetric part R−1 and an non-trivial
anti-symmetric part ω of (19) by setting:

R−1 :=

(
0, 0
0, 2ΓI

)
, ω :=

(
0, −I
I, 0

)
.

It’s straightforward to check that they rigorously fit the
conditions of Corollary 3.4. Therefore, we conclude from
Corollary 3.4 that the Damped Langevin diffusion converges
to the standard Gaussian distribution of the enlarged phase
space (x, v) ∈ R2d, which coincides with the results of
Appendix B.2 in (Dockhorn et al., 2022).

A.2. Discussion of Section 3.2

In this section, following the arguments from (Huang et al.,
2021), we demonstrate how to estimate the score gradient
vector field ∇ log p(x) by the analytically tractable condi-
tional score gradient vector field (conditioned on a previous
time).

To prove (16), by adapting Eq. 31 of (Huang et al., 2021),
it’s enough to show that

EXt
[sTθ (Xt, t)·∇ log pt(Xt)] = EXs,Xt

[sTθ (Xt, t)·∇ log pt(Xt|Xs)].

Transforming the expectation to probabilistic integration,
we have

EXt
[sTθ (Xt, t) · ∇ log pt(Xt)] (26)

=

∫
pt(x)s

T
θ (x, t) · ∇ log pt(x)dx (27)

=

∫
sTθ (x, t)

∫
∇pt(x|xs)ps(xs)dxdxs (28)

=

∫ ∫
ps(xs)pt(x|xs)∇pt(x|xs)dxdxs (29)

= EXs,Xt
[sTθ (Xt, t) · ∇ log pt(Xt|Xs)], (30)

for 0 ≤ s < t. By quadratic expanding
EXt

∥sθ(Xt, t)−∇ log pt(Xt)∥2 and plugging in (26),
equality (16) follows directly.

To implement our discretized FP-diffusion forward diffu-
sion, we usually choose s = t− 1, the immediate time step
before t. Then from t−1 to t, the conditional score gradient
vector field of pt(xt|xt−1) is the Gaussian score function,
which is analytically tractable.

A.3. Discussion of Section 3.3

In this section, we prove Theorem 3.5 by applying Ito’s
formula and martingale representation theorem.

Recall that the time-change of Eq. 12 satisfies

dXt = β′(t)(−1

2
R−1−ω)Xtdt+

√
β′(t)R−1dWt, (31)
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where X0 is a fixed point. Let Yt := e(
1
2R

−1+ω)β(t)Xt, then
by Ito’s formula,

Yt =

∫ t

0

e(
1
2R

−1+ω)β(s)
√

β′(s)R−1dWs. (32)

From the martingale representation theorem, Yt is a Gaus-
sian random variable for each t. Therefore, to fully deter-
mine the distribution of Xt, we only need to calculate the
expectation and variance formulas of Xt. By the definition
of stochastic integration, we have

E[X(t)] = e(−
1
2R

−1−ω)β(t)X0.

Utilizing the Ito’s isometry to (32), we get

V ar[Yt] =

∫ t

0

eβ(s)(R
−1+2ω)β′(s)R−1ds.

Suppose ω = 0, then

V ar[Xt] = I− e−β(t)R−1

,

where I denotes the identity matrix of Rd. Suppose R−1 =
I, since the Lie bracket [I + 2ω, I − 2ω] = 0, we further
obtain

V ar[Xt] = I− e−β(t)I.

In conclusion, we have proved Theorem 3.5.

A.4. How to parameterize symmetric and
anti-symmetric matrix

To implement FP-Drift and FP-Noise models practically,
we need to find an efficient way to parameterize positive-
definite symmetric and anti-symmetric matrix.

Given a full-rank anti-symmetric matrix B, there always
exist an orthogonal matrix P such that

B = Pdiag
{[

0 λ1

−λ1 0

]
, · · ·

[
0 λn

−λn 0

]}
PT ,

where {λ1, . . . , λn} are nonzero numbers. Then, the inverse
of I+B (appeared in subsection A.4) is:

(B+I)−1 = Pdiag

{[
1

1+λ2
1

−λ1

1+λ2
1

λ1

1+λ2
1

1
1+λ2

1

]
, · · ·

[
1

1+λ2
n

−λn

1+λ2
n

λn

1+λ2
n

1
1+λ2

n

]}
PT .

For positive-definite symmetric matrices, there always exist
an orthogonal matrix P such that

R = Pdiag{λ1, . . . , λn}PT ,

where {λ1, . . . , λn} are positive numbers.

To apply the above method, we only need to parameterize
orthogonal matrices in an efficient and expressive way. By

treating orthogonal matrices as elements in SO(n) orthogo-
nal group, we utilize the exponential map to parameterize
orthogonal matrices P :

P = expH.

Note that H is an element that belongs to the lie algebra
so(n), which can be generated by upper triangular matrices.

B. Experiments
B.1. Learned FP SDEs from synthetic 3D examples

Figure 7 plots four 3D integration trajectories of the prob-
abilistic flows (with respect to the fixed VP and learned
FP-Diffusion models) starting at random initial positions.
It’s obvious that the trajectories of our flexible model are
more straight than the fixed VP model, which demonstrates
the power of selecting more regular generating paths of our
FP-Diffusion model.

B.2. Image Generation

Implementation Details. Following (Ho et al., 2020) and
(Song et al., 2020a), we rescale the range of the images
into [−1, 1] before inputting them into the model. In the
FP-Diffusion model, β(t) is an linearly increasing function
with respect to the time t, i.e., β(t) = β̄min + t(β̄max −
β̄min) for t ∈ [0, 1]. It’s worth mentioning that DDPM
adopts a discretization form of this time scheduler, where
βi =

β̄min

N + i−1
N(N−1) (β̄max − β̄min). These two forms are

actually equivalent when N → ∞. For all experiments, we
set β̄max as 20 and β̄min as 0.1, which are also used in (Ho
et al., 2020) and (Song et al., 2020a). As discussed in A.4,
we only need to parameterize the upper triangular matrices
H and the diagonal elements Λ = diag{λ1, · · · , λn} in the
FP-Drift and FP-Noise models. Particularly, both H and Λ
are initialized with a multivariate normal distribution, and
we adopt a exponential operation on Λ to keep it a positive
vector. As described in Section 4.2, we leverage a U-net
style neural network to fit the score function of the reverse-
time diffusion process. We keep the model architecture
and the parameters of the score networks consistent with
previous SOTA diffusion models (e.g., (Song et al., 2020a))
for a fair comparison. All models are trained with the Adam
optimizer with a learning rate 2× 10−4 and a batchsize 96.

In the MNIST experiment, we first train the whole model
for 50k iterations and train the score model for another 250k
iterations with our Mix training strategy. We report the NLL
of the model based on the last checkpoint. In the CIFAR10
experiment, the training iterations of both stage 1 and stage
2 are 600k. We also report the FIDs and NLL of the model
based on the last checkpoint.
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(a) VP (b) Reg. FP

Figure 7. Integral trajectories of two SDEs

Results. We provide more random samples from our best
FP-Drift model’s checkpoint in Fig. 8. We also provide the
learned forward process of FP-Noise model in Fig. 9.
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Figure 8. CIFAR-10 samples from FP-Drift
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Figure 9. The learned forward process of FP-Noise on CIFAR-10


