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ABSTRACT

Reward engineering is one of the key challenges in Reinforcement Learning (RL).
Preference-based RL effectively addresses this issue by learning from human
feedback. However, it is both time-consuming and expensive to collect human
preference labels. In this paper, we propose a novel Vision-Language Preference
learning framework, named VLP, which learns a vision-language preference model
to provide preference feedback for embodied manipulation tasks. To achieve
this, we define three types of language-conditioned preferences and construct
a vision-language preference dataset, which contains versatile implicit prefer-
ence orders without human annotations. The preference model learns to extract
language-related features, and then serves as a preference annotator in various
downstream tasks. The policy can be learned according to the annotated pref-
erences via reward learning or direct policy optimization. Extensive empirical
results on simulated embodied manipulation tasks demonstrate that our method
provides accurate preferences and generalizes to unseen tasks and unseen language
instructions, outperforming the baselines by a large margin. The code and videos
of our method are available on the website: https://VLPref.github.io.

1 INTRODUCTION

Reinforcement Learning (RL) has made great achievements recent years, including board games (Sil-
ver et al., 2017; 2018), autonomous driving (Kiran et al., 2021; Zhou et al., 2021), and robotic
manipulation (Kober et al., 2013; Andrychowicz et al., 2020; Chen et al., 2022). However, one of the
key challenges to apply RL algorithms is reward engineering. First, designing an accurate reward
function requires large amount of expert knowledge. Second, the agent might hack the designed
reward function (Hadfield-Menell et al., 2017), obtaining high returns without completing the task.
Also, it is difficult to obtain reward functions for subjective human objectives.

To address the above issues, a variety of works leverage expert demonstrations for imitation learning
(IL) (Ho & Ermon, 2016; Torabi et al., 2018). Nevertheless, expert demonstrations are often expensive
and the performance of IL is limited by the quality of the demonstrations. Another line of work
leverages Vision-Language Models (VLMs) to provide multi-modal rewards for downstream policy
learning (Nair et al., 2023; Ma et al., 2023a; Rocamonde et al., 2024). However, the reward labels
produced in these works are often of high variance and noisy (Ma et al., 2023a). Preference-based
RL is more promising way that learns from human preferences over trajectory pairs (Christiano et al.,
2017; Lee et al., 2021). On the one hand, we can learn a reward model from preferences and then
optimize the policy according to the reward model (Christiano et al., 2017; Kim et al., 2023). On the
other hand, the policy can be directly optimized according to the preferences (Hejna & Sadigh, 2023;
Hejna et al., 2024).

However, preference-based RL requires either querying a large number of expert preference labels
online (Lee et al., 2021; Park et al., 2022) or a labeled offline preference dataset (Kim et al., 2023;
Hejna et al., 2024), which is quite time-consuming and expensive. Previous methods propose to use
the reasoning abilities of Large Language Models (LLMs) to provide preference labels (Wang et al.,
2024), but the generated labels are not guaranteed to be accurate and it is assumed to have access to
the environment information.

In this paper, we propose a novel Vision-Language Preference alignment framework, named VLP, to
provide preference feedback for video pairs given language instructions. Specifically, we collect a
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Figure 1: Comparison of VLP (right) with previous methods (left) of providing preference labels.

video dataset from various policies under augmented language instructions, which contains implicit
preference relations based on the trajectory optimality and the vision-language correspondence.
Then, we define language-conditioned preferences and propose a novel vision-language alignment
architecture to learn a trajectory-wise preference model for preference labeling, which consists
of a video encoder, a language encoder, and a cross-modal encoder to facilitate vision-language
alignment. The preference model is optimized by intra-task and inter-task preferences that are
implicitly contained in the dataset. In inference, VLP provides preference labels for target tasks and
can even generalize to unseen tasks and unseen language instructions. We provide an analysis to show
the learned preference model resembles the negative regret of the segment under mild conditions.
The preference labels given by VLP are employed for various downstream preference optimization
algorithms to facilitate policy learning.

In summary, our contributions are as follows: (i) We propose a novel vision-language preference
alignment framework, which learns a vision-language preference model to provide preference
feedback for embodied manipulation tasks. (ii) We propose language-conditioned preferences and
construct a vision-language preference dataset, which contains 4800 videos with language instructions
and implicit language-conditioned relations. (iii) Extensive empirical results on simulated embodied
manipulation tasks demonstrate that our method provides accurate preferences and generalizes to
unseen tasks and unseen language instructions, outperforming the baselines by a large margin.

2 BACKGROUND

Problem Setting. We formulate the RL problem as a Markov Decision Process (MDP) (Sutton
& Barto, 2018) represented as a tuple M = (S,A,P,R, γ, p0), where S is the state space, A
is the action space, P : S × A → S is the transition function, R : S × A → R is the reward
function, γ ∈ [0, 1) is the discount factor, and p0 : S → [0, 1] is the initial state distribution. At
timestep t, the agent observes a state st and selects an action at based on a policy π(at|st). Then,
the agent receives a reward rt from the environment, and the agent transits to st+1 according to
the transition function. The agent’s goal is to find a policy that maximizes the expected cumulative
reward E [

∑∞
t=0 γ

trt]. In multi-task setting, for a task T ∼ p(T ), a task-specific MDP is represented
as MT = (ST ,A,PT ,RT , γ, pT0 ).

Preference-based RL. Preference-based RL differs from RL in that it is assumed to have no access
to the ground-truth rewards (Christiano et al., 2017; Lee et al., 2021). In preference-based RL, human
teachers provide preference labels over trajectory pairs, and a reward model is learned from these
preferences. Formally, a trajectory segment σ of length H is represented as {s1, a1, . . . , sH , aH} and
a segment pair is (σ1, σ2). The preference label y ∈ {0, 1, 0.5} denotes which segment is preferred,
where 0 indicates σ1 is preferred (i.e., σ1 ≻ σ2), 1 indicates σ2 is preferred (i.e., σ2 ≻ σ1), and 0.5
represents two segments are equally preferred. Previous preference-based RL approaches construct a
preference predictor with the reward model r̂ψ via Bradley-Terry model (Bradley & Terry, 1952):

Pψ[σ
1 ≻ σ2] =

exp
(∑H

t=1 r̂ψ(s
1
t , a

1
t )
)∑2

k=1 exp
(∑H

t=1 r̂ψ(s
k
t , a

k
t )
) , (1)
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Figure 2: (a) Trajectory videos and language instruction are fed into the preference model to obtain a
trajectory-wise preference score. (b) The cross-modal transformer obtains language-related video
features and video-related language features by cross-attention mechanism.

where Pψ[σ
1 ≻ σ2] denotes the probability that σ1 is preferred over σ2 predicted by current reward

model r̂ψ . Assume we have a dataset with preference labels D = {(σ1, σ2, y)}, the reward learning
process can be formulated as a classification problem using cross-entropy loss (Christiano et al.,
2017):

Lce = − E
(σ1,σ2,y)∼D

[
(1− y) logPψ[σ

1 ≻ σ2] + y logPψ[σ
2 ≻ σ1]

]
. (2)

By optimizing Eq. (2), the reward model is aligned with human preferences, providing reward signals
for policy learning.

3 METHOD

In this section, we first present the overall framework of VLP, including model architecture and the
vision-language preference dataset. Then, we introduce language-conditioned preferences and the
detailed algorithm for vision-language preference learning, which learns a trajectory-wise preference
model via vision-language preference alignment. Last, we provide a theoretical analysis of our
method.

3.1 FRAMEWORK

The goal of VLP is to learn a generalized preference model capable of providing preferences for novel
embodied tasks. To achieve this, the preference model receives videos and language as inputs, where
videos serve as universal representations of agent trajectories and language act as universal and flexible
instructions. To obtain high-quality representations of these two modalities, we utilize CLIP (Radford
et al., 2021), which is pre-trained on extensive image-text data, as our video and language encoders.
The extracted video and language features are fed into to a cross-modal transformer for cross-modal
attention interaction to capture video features associated with the language and language features
related to the video. These features are subsequently utilized for predicting preference scores in
vision-language preference learning. The overall framework is illustrated in Figure 2.

Model Architecture. A video v is represented as a sequence of video frames, i.e., v =
{v1, v2, . . . , v|v|}, where vi ∈ RH×W×3, H and W are the height and width of each video frame,
and |v| denotes the number of video frames. The video encoder is employed to obtain the video
tokens z = {z1, z2, . . . , z|v|}, where zi ∈ RM×Dv , M = H/p×W/p is the number of visual tokens,
p is the patch size of CLIP ViT, and Dv is the dimension of the visual tokens. Given language input l,
the language tokens u ∈ RN×Dl are obtained via the language encoder, where N is the number of
language tokens, and Dl is the dimension of the language tokens.

With video tokens z and language tokens u, a cross-modal encoder is employed to facilitate multi-
modal feature learning, making tokens of different modalities fully fuse with each other. Video
tokens and language tokens are separately inputted into the self-attention layers. Then, utilizing the
output video tokens as queries and the output language tokens as keys and values, the cross-attention
layer, as shown in Figure 2(b), generates language features that are closely related to the input video.
Similarly, the cross-attention layer produces language-related video features. The multi-modal tokens
are averaged along the first dimension and then concatenated as w ∈ RDw , where Dw = Dv +Dl.
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These new tokens are fed into the final Multi-layer Perceptron (MLP) for vision-language preference
prediction, outputting a trajectory-level preference score.

Vision-Language Preference Dataset. While there are open-sourced embodied datasets with
language instructions (Mu et al., 2023), there lacks a multi-modal preference dataset for generalized
preference learning. To this end, we construct MTVLP, a multi-task vision-language preference
dataset built upon Meta-World (Yu et al., 2020). To that end, we consider the following aspects:
(i) trajectories of various optimality levels should be collected to define clear preference relations
within each task; (ii) each trajectory pair should be accompanied with a corresponding language
instruction for learning language-conditioned preferences.

It is easy to describe the optimality of expert trajectories and random trajectories because it is easy to
understand the agent’s behavior in these trajectories. However, it is challenging to define a medium-
level policy without explicit rewards. Fortunately, we find most robot tasks can be divided into
multiple stages, where each stage completes a part of the overall task. Thus, we define a medium-
level policy as successfully completing half of the stages of the task. For example, we divided the
task of opening the drawer into two subtasks: (i) moving and grasping the drawer handle and (ii)
pulling the drawer handle. A medium-level policy only completes the first subtask.

We leverage a scripted policy for each task to roll out trajectories of three optimality levels: expert,
medium, and random. For expert-level trajectories, we employ the scripted policy with Gaussian
noise to interact. The medium-level trajectories are also collected with the scripted policy but are
terminated when the half of subtasks are completed. As for random-level trajectories, actions are
randomly sampled from a uniform distribution during rollout. For the corresponding language, we
obtain diverse language instructions to improve the generalization abilities of our model by aligning
one video with multiple similar language instructions. Following (Adeniji et al., 2023), we query
GPT-4V (OpenAI, 2023) to generate language instructions with various verb structure examples and
synonym nouns of each task. Details of collecting trajectories and language instructions for each task
are shown in Appendix B.

3.2 VISION-LANGUAGE PREFERENCE ALIGNMENT

Language-conditioned Preferences. Previous RLHF methods define trajectory preferences ac-
cording to a single task goal. However, this uni-modal approach struggles to generalize to new tasks
due to its rigid preference definition. In contrast, by integrating language as a condition, we can
establish more flexible preference definitions. Consider two videos, v11 and v12 , along with a language
instruction l1 from task T 1, and another video v2 paired with a language instruction l2 from task
T 2. We categorize three forms of language-conditioned preferences: Intra-Task Preference (ITP),
Inter-Language Preference (ILP), and Inter-Video Preference (IVP), as shown in Table 1.

Table 1: Three types of language-conditioned preferences.

Preference Type Videos Language Criterion

Intra-Task Preference v11 , v
1
2 ∼ T 1 l1 ∼ T 1 optimality

Inter-Language Preference v11 , v
1
2 ∼ T 1 l2 ∼ T 2 equally preferred

Inter-Video Preference v11 ∼ T 1, v21 ∼ T 2 l1 ∼ T 1 v11 ≻ v12 |l1

ITP corresponds to the conventional case of preference relation within the same task (Christiano et al.,
2017), where the videos and language instructions are from the same task, and the preference relies
on the optimality of videos w.r.t. the task objective. ILP considers a scenario where the language
instruction differs from the task of the videos. Thus, both videos are equally preferred under this
language condition. IVP deals with preferences of two videos from different tasks, with the language
instruction from either task. It is straightforward to define the preference that the vision-language
come from the same task is preferred to the other pair.

This framework allows for the establishment of universal and adaptable preference relations, wherein
videos from the same task can yield varying preference labels depending on the language condition.
Notably, even random trajectories paired with language instructions from a specific task is preferred
to expert trajectories from other tasks.

4
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Vision-Language Preference Learning. With language-conditioned preferences defined above,
we further introduce our vision-language preference learning algorithm. We aim to develop a vision-
language preference model that predicts the preferred video under specific language conditions.
However, directly inputting two videos and a language instruction into the model would affect compu-
tational efficiency. So, we consider the conventional way to learn from preference labels (Christiano
et al., 2017), i.e., first constructing preference predictors via Bradley-Terry model (Bradley & Terry,
1952). Previous work has revealed the advantages of learning a preference model over a reward
model (Zhang et al., 2024). Based on these insights, our proposed preference model fψ(v|l) takes a
video and a language instruction as inputs and outputs a scalar preference score. Then the preference
label can be obtained by comparing preference scores of two videos with a given language instruction,
i.e., v1 ≻ v2|l if fψ(v1|l) > fψ(v2|l).
Given videos v1 representing σ1 and v2 representing σ2, the language-conditioned preference distri-
bution Pψ[v1 ≻ v2|l] is the probability that σ1 is preferred over σ2 under the condition l:

Pψ[v1 ≻ v2|l] =
exp

(
fψ(v1|l)

)
exp

(
fψ(v1|l)

)
+ exp

(
fψ(v2|l)

) . (3)

Given tasks T 1 and T 2, we consider the following objectives aligned with language-conditioned
preference relations: (a) Learning Intra-Task Preference: Within the same task, the video that better
follows l should be preferred, analogous to previous RLHF objective (Christiano et al., 2017); (b)
Learning Inter-Language Preference: Under the language condition of task T 2, videos from task T 1

are equally preferred; (c) Learning Inter-Video Preference: Under the language condition of task T 1,
the video from T 1 is preferred over the video from T 2.

During vision-language preference learning, a task T is sampled from all training tasks, followed by
sampling a minibatch {vb1, vb2, v ̸=b, lb, l ̸=b, yITP, yILP, yIVP}1:B . Here, the superscript b indicates data
sampled from task T in the minibatch, while ̸=b denotes data from other tasks. yITP, yILP, yIVP are the
ground-truth labels of ITP, ILP, and IVP, respectively. The total loss of vision-language preference
learning is as follows:

Lce = −
∑
b∈B

[
CE

(
Pψ[v

b
1 ≻ vb2|lb], yITP)︸ ︷︷ ︸

(a)

+λ1 CE
(
Pψ[v

b
1 ≻ vb2|l ̸=b], yILP)︸ ︷︷ ︸

(b)

+ λ2 CE
(
Pψ[v

b
1 ≻ v ̸=b|lb], yIVP)︸ ︷︷ ︸

(c)

+λ2 CE
(
Pψ[v

b
2 ≻ v ̸=b|lb], yIVP)︸ ︷︷ ︸

(c)

]
,

(4)

where CE(·, ·) is the cross-entropy loss, and λ1 and λ2 are balance weights of learning ILP and
IVP. By optimizing Eq. (4), the vision-language preference model outputs trajectory-level preference
scores aligned with the language-conditioned preference relations.

3.3 THEORETICAL ANALYSIS

Considering an MDP with a reward function r, we define Q∗
r and V ∗

r as the state-action value function
and state value function for an optimal policy π∗ under r. Then if a segment σ is optimal with respect
to the reward function r, we have Q∗

r(s
σ
t , a

σ
t ) = V ∗

r (s
σ
t ). In this case, we have A∗

r(s
σ
t , a

σ
t ) = 0, and

the regret is 0. Formally, we define the regret for a full segment as

regret(σ|r) =
∑H

t=1
regret(σt|r) =

∑H

t=1

[
V ∗
r (s

σ
t )−Q∗

r(s
σ
t , a

σ
t )
]
=

∑H

t=1
−A∗

r(s
σ
t , a

σ
t ). (5)

The regret regret(σ|r) > 0 holds for all sub-optimal segments. The following proposition shows that
the proposed video-based preference model in Eq. (3) recovers the regret preference model.

Proposition 3.1. Under mild conditions, the learned preference distribution Pψ approximates the
regret preference distribution as:

P ∗
regret[σ

1 ≻ σ2|r] =
exp

(
− regret(σ1|r)

)
exp

(
− regret(σ1|r)

)
+ exp

(
− regret(σ2|r)

) , (6)

and the preference model fψ(σ|l) is learned to approximate −regret(σ|r) + c, where c is a constant.
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We give a detailed analysis in Appendix A. In practice, we cannot obtain the true reward function
but acquire the given task’s language instruction l. We hypothesize the reward-related information is
implicitly included in the language instruction l and propose several pseudo-labels {yITP, yILP, yIVP}
according to the optimality of segment and segment-language correspondence. The use of language
in preference model provides generalization ability of preferences among language instructions.
Meanwhile, we adopt video v to represent segment σ and propose a novel architecture for vision-
language alignment.

4 RELATED WORK

Vision-Language Models for Reinforcement Learning. Our work is related to the literature on
VLM rewards and preferences for embodied manipulation tasks (Radford et al., 2021; Nair et al.,
2023; Ma et al., 2023a; Rocamonde et al., 2024; Wang et al., 2024; Liu et al., 2024a). These methods
can be divided into three categories: (i) representation-based pre-training, (ii) zero-shot inference,
and (iii) downstream fine-tuning. For representation-based approaches, R3M (Nair et al., 2023) is pre-
trained on the Ego4D dataset (Grauman et al., 2022) to learn useful representations for downstream
tasks. LIV (Ma et al., 2023b), which extends VIP (Ma et al., 2023b) to multi-modal representations, is
pre-trained on EpicKitchen dataset (Damen et al., 2018), and can also be fine-tuned on target domain.
For zero-shot inference methods, VLM-RM (Rocamonde et al., 2024) utilizes CLIP (Radford et al.,
2021) as zero-shot vision-language rewards. RoboCLIP (Sontakke et al., 2023) uses S3D (Xie et al.,
2018), which is pre-trained on HowTo100M dataset (Miech et al., 2019), as video-language model to
compute vision-language reward with a single demonstration (a video or a text). RL-VLM-F (Wang
et al., 2024) leverages Gemini-Pro (Team et al., 2023) and GPT-4V (OpenAI, 2023) for zero-shot
preference feedback. CriticGPT (Liu et al., 2024a) is the representative method of (iii), which
fine-tunes multimodal LLMs on a instruction-following dataset, and utilizes the tuned model to
provide preference feedback for downstream policy learning. VLP differs from these approaches that
we do not suffer from burdensome training of (i) and (iii), showing great computing efficiency. And
VLP learns more embodied manipulation knowledge compared with VLMs pre-trained on natural
image-text data.

Preference-based Reinforcement Learning. Preference-based RL is a promising framework
for aligning the agent with human values. However, feedback efficiency is a crucial challenge in
preference-based RL, with multiple recent studies striving to tackle. PEBBLE (Lee et al., 2021)
improves the efficiency by unsupervised pre-training. SURF (Park et al., 2022) proposes to obtain
pseudo labels using reward confidence. RUNE (Liang et al., 2022) employs reward uncertainty to
guide exploration. Meta-Reward-Net (Liu et al., 2022) takes advantage of the performance of the Q-
function as an additional signal to refine the accuracy of the reward model. Hejna III & Sadigh (2023)
leverages meta-learning to pre-train the reward model, enabling fast adaptation to new tasks with few
preference labels. Recently, a growing number of studies focus on offline preference-based RL with
the population of offline RL (Levine et al., 2020; Kostrikov et al., 2022; Lyu et al., 2024). PT (Kim
et al., 2023) introduces a Transformer-based architecture for reward modeling. OPPO (Kang et al.,
2023) proposes to learn policies without a reward function. IPL (Hejna & Sadigh, 2023) learns the
Q-function from preferences, also eliminating the need of reward learning. CPL (Hejna et al., 2024)
further views preference-based RL as a supervised learning problem, directly learning policies from
preferences. FTB (Zhang et al., 2024) introduces a diffusion model for better trajectory generation.
PEARL (Liu et al., 2024b) proposes cross-task preference alignment to transfer preference labels
between tasks and learn reward models robustly via reward distributional modeling. VLP addresses
the labeling cost by learning a vision-language preference model via vision-language alignment,
thereby providing generalized preferences to novel tasks.

5 EXPERIMENTS

In this section, we evaluate VLP on Meta-World (Yu et al., 2020) benchmark and aim to answer the
following questions:

• Q1: How do VLP labels compare with scripted labels in offline RLHF? (Section 5.2)

• Q2: How does VLP compare with other vision-language rewards approaches? (Section 5.3)
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Table 2: Success rate of RLHF methods with scripted labels and VLP labels. The results are reported
with mean and standard deviation across five random seeds. The result of VLP is shaded and is
bolded if it exceeds or is comparable with that of RLHF approaches with scripted labels. VLP Acc.
denotes the accuracy of preference labels inferred by VLP compared with scripted labels.

Task P-IQL IPL CPL VLP Acc.

Human Scripted VLP Human Scripted VLP Human Scripted VLP Human Scripted

Button Press 93.1 ± 5.2 72.6 ± 7.1 90.1 ± 3.9 65.2 ± 7.2 50.6 ± 7.9 56.0 ± 1.4 85.0 ± 7.2 74.5 ± 8.2 83.9 ± 11.8 99.0 93.0
Door Close 79.2 ± 6.3 79.2 ± 6.3 79.2 ± 6.3 61.5 ± 9.4 61.5 ± 9.4 61.5 ± 9.4 98.5 ± 1.0 98.5 ± 1.0 98.5 ± 1.0 100.0 100.0
Drawer Close 63.7 ± 6.4 49.3 ± 4.2 64.9 ± 2.9 63.2 ± 4.6 64.3 ± 9.6 63.2 ± 4.7 54.1 ± 8.7 45.6 ± 3.5 57.5 ± 14.3 96.0 96.0
Faucet Close 51.1 ± 7.5 51.1 ± 7.5 51.1 ± 7.5 45.4 ± 8.6 45.4 ± 8.6 45.4 ± 8.6 80.0 ± 2.9 80.0 ± 2.9 80.0 ± 2.9 100.0 100.0
Window Open 69.7 ± 6.8 62.4 ± 6.4 69.7 ± 6.8 61.4 ± 8.6 54.1 ± 6.7 61.4 ± 8.6 99.1 ± 1.1 91.6 ± 1.7 99.1 ± 1.1 100.0 98.0

Average 71.4 62.9 71.0 59.3 55.2 57.5 83.3 78.0 83.8 99.0 97.4

• Q3: How does VLP generalize to unseen tasks and language instructions? (Section 5.4)

• Q4: How do hyperparameters influence VLP? (Section 5.5)

5.1 SETUP

Implementation Details. We evaluate VLP on the 5 test tasks of MTVLP, including Button Press,
Door Close, Drawer Close, Faucet Close, and Window Open, while the other 45 tasks of Meta-
World (Yu et al., 2020) are used as training tasks. For implementing VLP, we use the pre-trained
ViT-B/16 CLIP model (Radford et al., 2021) as our video encoder and language encoder. The weights
of learning ILP and IVP in Eq. (4) are λ1 = 0.1, λ2 = 0.5, respectively. Additional hyperparameters
of VLP are detailed in Table 10 in Appendix C. All experiments are conducted on a single NVIDIA
RTX 4090 GPU.

5.2 HOW DO VLP LABELS COMPARE WITH SCRIPTED LABELS IN OFFLINE RLHF?

Baselines. We evaluate VLP by combining it with recent offline RLHF algorithms: (i) P-IQL
(Preference IQL), which first learns a reward model from preferences and then learns a policy via
IQL (Kostrikov et al., 2022); (ii) IPL (Hejna & Sadigh, 2023), which learns a policy without reward
learning by aligning the Q-function with preferences; (iii) CPL (Hejna et al., 2024), which directly
learns a policy using a contrastive objective with maximum entropy principle, eliminating the need
for reward learning and RL.

Evaluation. For each evaluation task, we train each RLHF method with scripted labels (Christiano
et al., 2017; Lee et al., 2021) and VLP labels (denoted as +VLP), respectively. Scripted preference
labels mean the preference labels computed based on the ground-truth rewards (Christiano et al.,
2017; Lee et al., 2021). The number of preference labels is set to 100 for all tasks. The evaluation is
conducted over 25 episodes every 5000 steps. Following (Hejna et al., 2024), we average the results
of 8 neighboring evaluations and take the maximum value among all averaged values as the result.
Detailed hyperparameters of RLHF algorithms can be found in Appendix C.

Results. Experimental results in Table 2 demonstrate that the performance of P-IQL+VLP and
CPL+VLP is comparable with, and in some cases, outperforms that with scripted labels on all
evaluation tasks. We hypothesize that the ground-truth reward of Button Press, Drawer Close and
Window Open may not accurately represent the task goal (Ma et al., 2024; Xie et al., 2024). However,
by aligning video and language modalities through preference relations with language as conditions,
the predicted VLP labels directly represent how the video reflects the language instruction. Therefore,
our method provides more accurate and preference labels and can generalize to unseen tasks.

5.3 HOW DOES VLP COMPARE WITH OTHER VISION-LANGUAGE REWARDS APPROACHES?

Baselines. We compare VLP with the following VLM rewards baselines: (i) R3M (Nair et al.,
2023), which pre-trains visual representation by time-contrastive learning and vision-language
alignment; (ii) VIP (Ma et al., 2023b), which provides generalized visual reward and representation
for downstream tasks via value-implicit pre-training; (iii) LIV (Ma et al., 2023a), which learns
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Table 3: Success rate of VLP (i.e., P-IQL trained with VLP labels) against IQL with VLM rewards.
The results are reported with mean and standard deviation across five random seeds. The result of
VLP is shaded and the best score of all methods is bolded.

Task R3M VIP LIV CLIP VLM-RM (0.0) VLM-RM (1.0) VLP

Button Press 10.1 ± 2.3 68.4 ± 6.4 56.3 ± 1.9 59.5 ± 6.1 60.3 ± 6.1 64.3 ± 8.4 90.1 ± 3.9

Door Close 70.9 ± 5.3 74.8 ± 9.5 43.3 ± 3.2 43.6 ± 3.9 45.8 ± 8.5 41.1 ± 3.4 79.2 ± 6.3

Drawer Close 46.6 ± 2.6 70.4 ± 4.5 61.8 ± 5.7 69.4 ± 4.1 69.4 ± 4.5 73.5 ± 5.4 64.9 ± 2.9

Faucet Close 25.7 ± 23.6 40.9 ± 8.0 42.2 ± 6.3 59.6 ± 7.5 60.1 ± 5.1 33.7 ± 15.3 51.1 ± 7.5

Window Open 39.0 ± 6.6 42.7 ± 11.3 33.8 ± 6.4 26.4 ± 2.0 23.9 ± 1.9 23.7 ± 4.9 69.7 ± 6.8

Average 38.5 59.4 47.5 51.7 51.9 47.3 71.0

Table 4: Success rate of VLP (i.e., P-IQL trained with VLP labels) against P-IQL with VLM
preferences (denoted with prefix P-). The results are reported with mean and standard deviation
across five random seeds. The result of VLP is shaded and the best score of all methods is bolded.

Task P-R3M P-VIP P-LIV P-CLIP P-VLM-RM (0.0) P-VLM-RM (1.0) RoboCLIP VLP

Button Press 84.7 ± 5.8 41.2 ± 3.9 61.7 ± 5.1 62.9 ± 6.2 72.8 ± 5.0 44.2 ± 4.2 56.4 ± 7.3 90.1 ± 3.9

Door Close 72.4 ± 11.5 54.2 ± 13.8 67.9 ± 6.3 53.3 ± 10.3 57.6 ± 2.9 45.7 ± 7.6 47.6 ± 6.7 79.2 ± 6.3

Drawer Close 59.6 ± 6.5 63.0 ± 3.7 45.5 ± 10.4 63.4 ± 3.2 62.7 ± 3.0 49.2 ± 6.9 73.0 ± 6.2 64.9 ± 2.9

Faucet Close 58.0 ± 4.5 51.1 ± 7.5 62.3 ± 7.2 60.2 ± 10.4 57.3 ± 7.0 51.3 ± 9.5 62.1 ± 6.3 51.1 ± 7.5

Window Open 27.3 ± 5.0 50.2 ± 1.8 22.2 ± 18.1 28.4 ± 3.2 33.2 ± 5.4 20.7 ± 2.3 28.1 ± 4.6 69.7 ± 6.8

Average 60.4 51.9 51.9 53.6 56.7 42.2 53.4 71.0

vision-language rewards and representation via multi-modal value pre-training; (iv) CLIP (Radford
et al., 2021), which pre-trains by aligning vision-language representation on a large-scale image-text
pairs dataset; (v) VLM-RM (Rocamonde et al., 2024), which provides zero-shot VLM rewards
based on CLIP (Radford et al., 2021). VLM-RM includes a hyperparameter α, which controls
the goal-baseline regularization strength. In the evaluation, we denote the variant of α = 0.0 as
VLM-RM (0.0) and the variant of α = 1.0 as VLM-RM (1.0). (vi) RoboCLIP (Sontakke et al.,
2023), which provides zero-shot VLM rewards using pre-trained video-language models and a single
demonstration (a video demonstration or a language description) of the task.

Evaluation. We first evaluate our method with the VLM baselines by directly training IQL with
VLM rewards. VLP is tested by training P-IQL with VLP labels, and the experimental setting of
our method is the same as that of Section 5.2. We further compare VLP with VLM preferences, i.e.,
using predicted VLM rewards to compute preference labels for a fair comparison with our method.
However, RoboCLIP obtains scalar trajectory-level rewards and we utilize them as trajectory return
for preference labels calculation. Implementation details of IQL and VLM baselines can be found in
Appendix C.

Results. Results in Table 3 show that our method exceeds the VLM baselines that train IQL from
VLM rewards by a large margin with an average success rate of 71.0. As shown in Table 4, when the
VLM baselines are trained with preferences computed by VLM rewards, our method still surpasses
the baselines. We further compute the preference label accuracy of each method, detailed in Table 15.
The results show that VLP exceeds VLM baselines, which do not learn relative relations of reward
values.

Reward / Preference Correlation. To further investigate the advantages of VLP model compared
with VLM reward models, we compare the correlation between VLM rewards with ground-truth
rewards and VLP labels with scripted preference labels. Results in Table 5 indicate that VLP labels
exhibit a stronger correlation with scripted labels compared with VLM rewards.

5.4 HOW DOES VLP GENERALIZE TO UNSEEN TASKS AND LANGUAGE INSTRUCTIONS?

Evaluation. We first evaluate how accurate 3 kinds of VLP labels are on the test tasks. We test the
preference model with phrases, descriptions, and correct and incorrect object colors. Since the label
of ILP is 0.5 (i.e., two segments are equally preferred), we compute ILP loss with the (b) term in
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Table 5: The correlation coefficient of VLM rewards with ground-truth rewards and VLP labels with
scripted preference labels. Larger correlation means the predicted values are more correlated with the
ground-truth.

Task R3M VIP LIV CLIP VLM-RM (0.0) VLM-RM (1.0) VLP

Button Press 0.313 0.204 -0.281 0.127 0.153 -0.082 0.581
Door Close 0.735 0.125 0.600 -0.309 -0.152 -0.492 1.000
Drawer Close -0.106 0.043 0.052 -0.151 -0.137 -0.031 0.438
Faucet Close 0.676 0.851 0.563 -0.301 -0.291 0.084 1.000
Window Open 0.411 0.725 -0.568 0.336 0.405 -0.333 0.571

Average 0.406 0.390 0.073 -0.060 -0.005 -0.171 0.718

Eq. (4), i.e., −
∑
b∈B CE

(
Pψ[v

b
1 ≻ vb2|l ̸=b], yILP

)
. Performance of ITP and IVP are measured with

accuracy. Experimental details can be found in Appendix C.

Results. Table 6 shows that VLP generalizes to unseen language instructions on unseen tasks with
high ITP and IVP accuracy and low ILP loss. However, using unseen phrases as language conditions
leads to a performance drop, while unseen descriptions have a slight negative impact on ITP but a
positive impact on IVP and ILP. We think the reason is that phrases contain insufficient information
about completing the task, while descriptions contain enough task information. VLP generalizes well
with suitable language information of tasks. Also, VLP exhibits strong generalization abilities on
color.

Table 6: The generalization abilities of our method on 5 unseen tasks with different types of language
instructions. Acc. denotes the accuracy of preference labels inferred by VLP compared with ground-
truth labels.

Metric Seen Phrase Description Correct Color Incorrect Color

ITP Acc. (↑) 97.4 95.8 97.0 97.0 97.0
IVP Acc. (↑) 91.7 90.5 91.9 91.9 91.8
ILP Loss (↓) 0.705 0.704 0.704 0.705 0.705
Average Loss (↓) 0.555 0.554 0.558 0.556 0.557

5.5 ABLATION STUDIES

Attention Map Visualization. We further analyze VLP by visualizing the attention maps of the
cross-attention. Results in Figure 3 show that regions of the objects related to language instructions
exhibit high attention weights. For example, in the Drawer Close task, our vision-language preference
model specifically focuses on whether the drawer is closed, with the attention map highlighting the
edges of the drawer to monitor its position and similarly for Door Close task. These observations
demonstrate that our vision-language preference model effectively learns to guide language tokens
to attend to relevant regions in the videos and illustrate the effectiveness of our cross-attention
mechanism in bridging vision and language modalities for precise task understanding.

(a) Drawer Close (Shift closer and secure the
drawer shut)

(b) Door Close (Direct the gripper to the door
handle and press to seal it)

Figure 3: Attention maps visualization of Drawer Close and Door Close. The language instruction is
shown at the bottom of each subfigure.
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Effects of λ1 and λ2. λ1 and λ2 in Eq. (4) control the strength of ILP and IVP learning, respec-
tively. To investigate how λ1 and λ2 influence VLP, we conduct experiments by vary λ1 across
{0.0, 0.1, 0.5} and λ2 across {0.0, 0.5, 1.0}. Results in Table 7 show that the performance of VLP
drops with too small or too large λ1. Meanwhile, without IVP learning (i.e., λ2 = 0), the performance
of IVP and ILP significantly decreases. We speculate that IVP is crucial for language-conditioned pref-
erence learning. Without IVP learning, the learned VLP model degenerates into a vanilla preference
model without language as conditions.

Table 7: Accuracy of VLP labels with different loss. Acc. denotes the accuracy of preference labels
inferred by VLP compared with ground-truth labels.

λ1 λ2 ITP Acc. (↑) IVP Acc. (↑) ILP Loss (↓) Average Loss (↓)

0.0 0.5 95.4 74.1 0.728 0.618
0.5 0.5 85.8 74.7 0.702 0.578

0.1 0.0 96.2 63.0 0.775 0.646
0.1 1.0 95.8 96.5 0.699 0.554

0.1 0.5 97.4 91.7 0.705 0.555

Effects of Preference Dataset Size. We investigate how the preference dataset size influences our
method. We conduct additional experiments by varying the dataset size across {50%, 75%, 100%}.
Results in Table 8 indicate that the performance of VLP downgrades as the dataset size decreases.

Table 8: Accuracy of VLP labels with different data size. Acc. denotes the accuracy of preference
labels inferred by VLP compared with ground-truth labels.

Data Size ITP Acc. (↑) IVP Acc. (↑) ILP Loss (↓) Average Loss (↓)

50% 94.2 89.6 0.699 0.557
75% 95.2 89.7 0.707 0.555
100% 97.4 91.7 0.705 0.555

6 CONCLUSION

In this paper, we propose VLP, a novel vision-language preference learning framework providing
generalized preference feedback for embodied manipulation tasks. In our framework, we learn a
vision-language preference model via proposed language-conditioned preference relations from the
collected vision-language preference dataset. Experimental results on multiple simulated robotic
manipulation tasks demonstrate that our method exceeds previous VLM rewards approaches and
predicts accurate preferences compared with scripted labels. The results also show our method
generalizes well to unseen tasks and unseen language instructions.

Limitations In this paper, we focus on providing preferences for robotic manipulation tasks. First,
VLP is limited to the tasks that can be specified via videos and language instructions. While this
covers a wide range of robotic tasks, certain tasks cannot be fully expressed via videos and language,
such as complex assembly tasks requiring intricate spatial reasoning. Consequently, the risk of
predicting incorrect preferences grows for complex tasks that are difficult to express. Second, if the
language instruction lacks sufficient information of the task goal, the risk of giving incorrect labels
still grows, as shown in Table 6. Last, the theoretical analysis assumes access to all possible segments,
which introduces a gap between the theoretical guarantees and empirical applications.
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A THEORETICAL ANALYSIS

In this section, we give a theoretical analysis of the preference model fψ(σ|l). The segment σ
contains H states and actions as (sσ1 , a

σ
1 , . . . , s

σ
H , aσH) without reward information. Meanwhile, we

denote step-wise transition as σt = (sσt , a
σ
t , s

σ
t+1). For any reward function r, we define Q∗

r and V ∗
r

as the state-action value function and state value function for an optimal policy π∗ under r. Then, the
optimal advantage function is defined as A∗

r(s, a) ≜ Q∗
r(s, a)− V ∗

r (s).

Given above definitions, if a segment σ is optimal with respect to the reward function r, we have
Q∗
r(s

σ
t , a

σ
t ) = V ∗

r (s
σ
t ). In this case, we have A∗

r(s
σ
t , a

σ
t ) = 0, and the regret is 0. In other cases, the

regret will be greater than 0. For a segment σ, we define the single-step regret as

regret(σt|r) = V ∗
r (s

σ
t )−Q∗

r(s
σ
t , a

σ
t ) = −A∗

r(s
σ
t , a

σ
t ), (7)

Then, the regret for a full segment is

regret(σ|r) =
H∑
t=1

regret(σt|r) =
H∑
t=1

[
V ∗
r (s

σ
t )−Q∗

r(s
σ
t , a

σ
t )
]
=

H∑
t=1

−A∗
r(s

σ
t , a

σ
t ). (8)

According to Eq. (8), the regret value regret(σ|r) > 0 holds for all sub-optimal segments, and
regret(σ|r) = 0 for the optimal segments with respect to the reward function r. Then, the regret
preference distribution is defined as:

P ∗
regret[σ

1 ≻ σ2|r] =
exp

(∑
σ1 A∗

r(s
σ1

t , aσ
1

t )
)

exp
(∑

σ1 A∗
r(s

σ1

t , aσ
1

t )
)
+ exp

(∑
σ2 A∗

r(s
σ2

t , aσ
2

t )
) (9)

=
exp

(
− regret(σ1|r)

)
exp

(
− regret(σ1|r)

)
+ exp

(
− regret(σ2|r)

) . (10)

We remark that such a regret preference distribution has been adopted in CPL (Hejna et al., 2024).
However, CPL considers single-step regret (i.e., −A∗

r(s
σ
t , a

σ
t )) and adopts a maximum entropy RL

framework to map the advantage function to the policy via A∗
r(s, a) = α log π∗(a|s). In contrast,

our method considers the regret of a segment as a whole and tries to model the regret of a segment
directly. Recall the preference distribution in our method is defined in Eq. (3), as

Pψ[v1 ≻ v2|l] =
exp

(
fψ(v1|l)

)
exp

(
fψ(v1|l)

)
+ exp

(
fψ(v2|l)

) . (11)

According to Eq. (10) and Eq. (11), the proposed preference model fψ can be considered as pa-
rameterized negative regret that approximates the true negative regret of the whole segment. In
the following, we analyze the two main difficulties in approximating P ∗

regret(σ
1 ≻ σ2|r) through

Pψ[v1 ≻ v2|l].

(i) P ∗
regret is calculated based on the preference data {(σ1, σ2, y)} based on the regret value in Eq. (8),

which is calculated based on the ground truth reward function r(s, a). However, we cannot empirically
obtain the true reward function but acquire the given task’s language instruction l. We hypothesize the
reward-related information is implicitly included in the language l and propose several pseudo-labels
ỹ ∈ {yITP, yILP, yIVP} according to the optimality of segment and segment-language correspondence.
The use of pseudo-preference labels reduces the reliance on the ground-truth reward function and the
preference distribution Pψ can be learned from implicit preference data {(σ1, σ2, ỹ)}.

(ii) Modeling the regrets of segments rather than step-wise rewards as in previous RLHF methods
(Lambert et al., 2024) is more difficult. To this end, we propose a novel architecture that adopts a
video encoder to obtain the video tokens and mean pooling to obtain a video representation. Then, a
cross-modal encoder is employed to facilitate vision-language feature learning. In the architecture
design, a particular detail is we don’t use actions in the segment for regret learning. The reason is, as
shown in previous works (Du et al., 2023; Ajay et al., 2023), the actions can be easily reconstructed
by training an inverse-dynamic model from state sequence. As a result, the representation of videos
implicitly contains the information of actions.
Lemma A.1. Given a preference dataset D≻ that contains all possible H-length segments of MDP
Mr, let Σ∗

r be the set of maximum segments in D≻, then the optimal policy π∗(a|s) is recovered by
segments σ∗ ∈ Σ∗

r that contain the corresponding state-action pairs.
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Proof. For the definition of reward function r in given MDP in Mr, let σ∗ be an optimal segment
and σ¬∗ be any sub-optimal segment, then we have

regret(σ∗) < regret(σ¬∗), (12)
which leads to P ∗

regret(σ
∗ ≻ σ¬∗|r) > 0.5. Generally, for any two segments with regret(σ1) <

regret(σ2), we have P ∗
regret(σ

1 ≻ σ2|r) > 0.5; as for regret(σ1) = regret(σ2), we have
P ∗
regret(σ

1 ≻ σ2|r) = 0.5. As a result, the regret-based preference distribution induces a total
ordering over segments in D≻. Because the regret value has a minimum value min regret(σ) = 0,
there exists a set of segments that are ranked highest under this ordering, denoted as Σ∗

r . As we
assume D≻ contains all possible segments of MDP Mr, these segments are those that achieve the
minimum regret and are optimal segments.

Since Σ∗
r contains all optimal segments, then for a state-action pair (s, a) ∈ Σ∗

r , we have Q∗
r(s, a) =

V ∗
r (s). We define the Π∗

r the set of optimal policies in Mr, then Σ∗
r determines the set of state-action

pairs such that Q∗
r(s, a) = V ∗

r (s), which determines Π∗
r . As a result, Σ∗

r determines Π∗
r , and the

optimal policy can be recovered through a regression on Σ∗
r .

In practice, acquiring Σ∗
r with the minimum regret value is difficult as it requires a total ordering

over segments. As a result, we adopt P ∗
regret as a preference distribution to provide (possibly) infinite

preference data Dr and adopt an off-the-shelf preference-based RL algorithm for policy optimization.
Theoretically, RL-based reward optimization and contrastive-based preference optimization both
aim to minimize regret with respect to the optimal policy (Wang et al., 2023; Cai et al., 2020). Our
method that approximates P ∗

regret can generate preference data for off-the-shelf preference-based RL
by leveraging the generalization ability of vision-language models.

Comparing P ∗
regret and Pψ , we also remark that the negative regret −regret(σ|r) ≤ 0 always holds,

while fψ that calculates the preference score via a neural network can be either positive or negative.
Such an issue can be solved by subtracting the score that the optimal segment (i.e., denoted by v∗ for
video) obtains in the preference distribution, as

P̃ψ[v1 ≻ v2|l] =
exp

(
fψ(v1|l)− fψ(v

∗|l)
)

exp
(
fψ(v1|l)− fψ(v∗|l)

)
+ exp

(
fψ(v2|l)− fψ(v∗|l)

)
= logistic

(
[fψ(v1|l)− fψ(v

∗|l)]− [fψ(v2|l)− fψ(v
∗|l)]

)
= logistic

(
[fψ(v1|l)− fψ(v2|l)]

)
= Pψ[v1 ≻ v2|l],

(13)

where P̃ψ[v1 ≻ v2|l] recover the regret preference distribution, which induces the same preference
label as Pψ[v1 ≻ v2|l] for the same paired videos. logistic(x) = 1/(1 + exp(−x)) in Eq. (13).

The difference between previous preference-based RL methods and VLP from theoretical
perspective. The main theoretical difference between previous preference-based RL methods
and VLP is, previous methods adopt a reward-based Bradley-Terry (BT) model by maximiz-
ing log logistic(

∑
t r(s

σ1

t , aσ
1

t ) −
∑
t r(s

σ1

t , aσ
2

t )), while our method adopts a regret-based BT
model by maximizing log logistic(

∑
tA(sσ

1

t , aσ
1

t )−
∑
tA(sσ

1

t , aσ
2

t )), where we have regret(σ) =
−
∑
tA(sσt , a

σ
t ). In our method, since we construct a dataset with video-level preference, it is

more natural to adopt a regret-based BT model that learns fψ(σ) to approximate the video regret
−regret(σ) compared to the optimal trajectory (Proposition 3.1). As a result, we do not explicitly
estimate step-wise reward/advantage but directly estimate the overall regret of the whole video. In
our theoretical analysis, we prove that such regret-based and video-level preferences also leads to an
optimal policy under mild conditions (Lemma A.1). To ensure the rigor of the theory, we assume that
the accessibility of reward function since both regret and advantage are mathematically defined by the
true reward function. In practice, such an assumption is relaxed by incorporating some pseudo-labels
that leverage the implicit preference contained in video and vision-language correspondence.

B DETAILS OF MTVLP COLLECTION

For the 50 robotic manipulation tasks in Meta-World (Yu et al., 2020), we divide Button Press, Door
Close, Drawer Close, Faucet Close, and Window Open as test tasks and the other 45 tasks as train tasks.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

For each task, we leverage scripted policies of Meta-World (Yu et al., 2020) to collect trajectories.
For expert trajectories, we add Gaussian noise sampled from N (0, 0.1). For medium trajectories,
we utilize the near_object flag returned by each task to determine whether the first subtask is
completed and add Gaussian noise sampled from N (0, 0.5). For random trajectories, the actions are
sampled from uniform distribution U [0, 1]. We collect 32 trajectories of each type of trajectory for
each task, resulting in a total of 4800 trajectories for all tasks. We query GPT-4V (OpenAI, 2023) to
generate language instructions by the prompt containing an example of generating diverse language
instructions, an example of generating synonym nouns, task name, task instruction, and an image
rendering the task. The detailed prompt we used is shown in Table 9.

Table 9: Prompt for generating diverse language instructions. The verb structures list and synonym
nouns example are from Table 2 and Table 4 in LAMP (Adeniji et al., 2023), respectively.

System Message: Suppose you are an advanced visual assistant. Your task is to generate more
instructions with the same meaning but different expressions based on the task instruction I provide,
generating 40 new instructions for each task. The instructions you generate need to be as simple and
clear as possible. Below is an example of an answer for picking up an object. The answer should be
formatted as a Python list.
– Begin of instruction example –
Task instruction: "Pick up the [NOUN]"
Answer:
Verb Structures List
– End of instruction example –
Moreover, you need to be mindful to replace the nouns in the instructions with synonyms, such as
replacing "bag" with the following words in the Python list:
– Begin of synonym example –
Synonym Nouns
– End of synonym example –
The tasks are from Meta-World benchmark and the image of the task is rendered in a 3D simulation
environment. In the environment, there is a wooden table and a robotic arm. The robotic arm is placed
above the table. The robotic arm needs to manipulate the object(s) on the table to complete tasks.
My instruction for Task Name task: Task Instruction
Answer:

C EXPERIMENTAL DETAILS

C.1 TASKS

Meta-World. The tasks used in the experiments are from the test tasks of MTVLP. Figure 4 shows
these tasks and the task descriptions are as follows:

(a) Button Press (b) Door Close (c) Drawer Close (d) Faucet Close (e) Window Open

Figure 4: Five simulated robotic manipulation tasks used for experimental evaluation.

• Button Press: The goal of the robotic arm is to press the button. The initial position of the arm is
randomly sampled.

• Door Close: The goal of the robotic arm is to close the door. The initial position of the arm is
randomly sampled.

• Drawer Close: The goal of the robotic arm is to close the drawer. The initial position of the arm
is randomly sampled.
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• Faucet Close: The goal of the robotic arm is to close the faucet. The initial position of the arm is
randomly sampled.

• Window Open: The goal of the robotic arm is to open the window. The initial position of the
arm is randomly sampled.

C.2 IMPLEMENTATION DETAILS

We implement our method based on the publicly released repository of LAPP (Xie et al., 2023).1
Following LAPP (Xie et al., 2023), we use a pre-trained ViT-B/16 CLIP (Radford et al., 2021) model
as our video encoder and language encoder. To achieve efficient learning, we uniformly sample 8
frames to represent each video. The detailed hyperparameters of our method are shown in Table 10.
Training a VLP model takes about 6 hours on a single NVIDIA RTX 4090 GPU with 12 CPU cores
and 120 GB memory, without costly pre-training process like VLM reward or VLM preference
methods (Nair et al., 2023; Ma et al., 2023b;a).

Table 10: Hyperparameters of VLP.

Hyperparameter Value
Prediction head (512, 256)
Number of self-attention layers 2
Number of attention heads 16
Batch size 16
Optimizer Adam
Learning rate 3e-5
Learning rate decay cosine decay
Weight decay 0.1
Dropout 0.1
Number of epochs 15k
Number of negative samples 4
Number of video frames 8
Weight of ILP loss λ1 0.1
Weight of IVP loss λ1 0.5

IQL, P-IQL, IPL and CPL are implemented based on the official repository of CPL and IPL.2 3 The
hyperparameters of offline RL and RLHF algorithms are listed in Table 11, Table 12, and Table 13.
For the inference of VLP labels, we first use K-means clustering to divide the trajectories of each test
task into 2 sets, following Liu et al. (2024b). Then we sample 100 trajectory segments of length 50
from each set to construct segment pairs and predict preference labels of these pairs with trained VLP
model. Training RL and RLHF algorithms take about 10 minutes using a single NVIDIA RTX 4090
GPU with 6 CPU cores and 60 GB memory.

For VLM methods, R3M, VIP, LIV, and VLM-RM are implemented based on their official reposi-
tories.4 5 6 7 The CLIP baseline is a variant of VLM-RM and is implemented based on the code of
VLM-RM. The language inputs of the VLM baselines except are as listed in Table 14. R3M, LIV,
CLIP, and RoboCLIP only require the target column as language inputs, while VLM-RM additionally
needs a baseline as a regularization term. R3M requires an initial image and we use the first frame of
each trajectory as the initial image, while VIP requires a goal image for VLM rewards inference and
we use the last frame of expert videos.

1https://github.com/amberxie88/lapp
2https://github.com/jhejna/cpl
3https://github.com/jhejna/inverse-preference-learning
4https://github.com/facebookresearch/r3m
5https://github.com/facebookresearch/vip
6https://github.com/penn-pal-lab/LIV
7https://github.com/AlignmentResearch/vlmrm
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Table 11: Shared hyperparameters.

Hyperparameter Value
Network architecture (256, 256)
Optimizer Adam
Learning rate 1e-4 (CPL), 3e-4 (IQL, IPL and P-IQL)
Batch size 64
Discount 0.99
Dropout 0.25
Training steps 100000

Segment length 50 (RLHF)
Number of queries 100 (RLHF)
Temperature 0.3333 (IQL, IPL and P-IQL)
Expectile 0.7 (IQL, IPL and P-IQL)
Soft target update rate 0.005 (IQL, IPL and P-IQL)

Table 12: Hyperparameters of CPL.

Hyperparameter Value
Temperature 0.1
Contrastive bias 0.5
BC weight 0.0
BC steps 10000

Table 13: Hyperparameters of IPL (left) and P-IQL (right).

Hyperparameter Value
Regularization weight 0.5

Hyperparameter Value
Reward learning steps 30

Table 14: Language inputs used for evaluating VLM baselines on the test tasks.

Task Target Baseline (Only for VLM-RM)

Button Press press button button
Door Close close door door
Drawer Close close drawer drawer
Faucet Close turn faucet left faucet
Window Open move window left window
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D ADDITIONAL EXPERIMENTS

Preference Label Accuracy. To compare the relative relation of VLM rewards with VLP, we
compute the preference label accuracy of each method. The accuracy is measured by comparing
the predicted preference labels with scripted preference labels. The results in Table 15 show that
VLP exceeds the VLM baselines by a large margin, demonstrating VLM rewards do not capture the
relative reward relationship.

Table 15: Preference label accuracy of VLP against VLM baselines. The accuracy of our method is
shaded and the best score of all methods is bolded.

Task R3M VIP LIV CLIP VLM-RM (0.0) VLM-RM (1.0) RoboCLIP VLP

Button Press 91.0 40.0 62.0 53.0 62.0 41.0 46.0 93.0
Door Close 98.0 57.0 97.0 49.0 59.0 10.0 61.0 100.0
Drawer Close 66.0 49.0 39.0 66.0 65.0 58.0 43.0 96.0
Faucet Close 98.0 100.0 97.0 38.0 25.0 65.0 63.0 100.0
Window Open 72.0 88.0 16.0 81.0 88.0 16.0 49.0 98.0

Average 85.0 66.8 62.2 57.4 59.8 38.0 52.4 97.4

Different VLMs/LLMs for Language Instruction Generation. To see the influence of different
language model on our method, we we conduct additional experiments using instructions from less
capable model, such as GPT-3.5 and open-source Llama-3.1-8B-Instruct. We observe that generating
diverse language instructions does not necessarily require strong VLMs like GPT-4V, even open-
source Llama-3.1-8B-Instruct can accomplish this job since the language model is prompted with a
diverse set of examples, following LAMP (Adeniji et al., 2023). The results in Table 16 show that the
model’s performance is relatively stable across different LLMs.

Table 16: Preference label accuracy of VLP with language instructions generated by different
VLMs/LLMs.

Task GPT-4V GPT-3.5 Llama-3.1-8B-Instruct

Button Press 93.0 93.0 91.0
Door Close 100.0 100.0 98.0
Drawer Close 96.0 96.0 97.0
Faucet Close 100.0 100.0 100.0
Window Open 98.0 99.0 99.0

Average 97.4 97.6 97.0

E DISCUSSIONS

How do ILP and IVP benefit VLP? The inclusion of ILP and IVP in our training data serves
critical roles in enhancing the generalization and robustness of our model. ILP allows our model to
learn to disregard language variations when they do not impact the preference outcomes, thus training
the model to focus on task-relevant features rather than linguistic discrepancies. On the other hand,
IVP facilitates the model’s ability to generalize across different tasks by learning to associate videos
with their corresponding task-specific language instructions effectively. This capability is crucial
when the model encounters new tasks or language contexts, as it must discern relevant from irrelevant
information to make accurate preference predictions. By training with both ILP and IVP, our model
learns a more holistic understanding of the task space, which not only improves its performance on
seen tasks but also enhances its adaptability to new, unseen tasks or variations in task descriptions, as
evidenced by our experimental results where the model demonstrated generalization capabilities.

How does different train-test split influence VLP? We conduct experiments on the Meta-World
ML45 benchmark, training the vision-language preference model on its training tasks and evaluating
on its test tasks. We compute VLP label accuracy by comparing VLP label with scripted preference
labels. The results shown in Table 17 demonstrate the strong generalization capability of our method
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on unseen tasks in ML45. This reinforces the robustness and adaptability of our framework regardless
of task split.

Table 17: Preference label accuracy of VLP on ML45 test tasks.

Task VLP Acc.

Bin Picking 95.0
Box Close 90.0
Door Lock 100.0
Door Unlock 100.0
Hand Insert 100.0

Average 97.0

21


	Introduction
	Background
	Method
	Framework
	Vision-Language Preference Alignment
	Theoretical Analysis

	Related Work
	Experiments
	Setup
	How do VLP labels compare with scripted labels in offline RLHF?
	How does VLP compare with other vision-language rewards approaches?
	How does VLP generalize to unseen tasks and language orangeinstructions?
	Ablation Studies

	Conclusion
	Theoretical Analysis
	Details of MTVLP Collection
	Experimental Details
	Tasks
	Implementation Details

	Additional Experiments
	Discussions

