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Abstract

Machine learning models have demonstrated promising performances in many
areas. However, the concerns that they can be biased against specific groups
hinder their adoption in high-stake applications. Thus, it is essential to ensure
fairness in machine learning models. Most of the previous efforts require access to
sensitive attributes for mitigating bias. Nevertheless, it is often infeasible to obtain
a large scale of data with sensitive attributes due to people’s increasing awareness
of privacy and the legal compliance. Therefore, an important research question
is how to make fair predictions under privacy. In this paper, we study a novel
problem of fair classification in a semi-private setting, where most of the sensitive
attributes are private and only a small amount of clean ones are available. To this
end, we propose a novel framework FAIRSP that can first learn to correct the noisy
sensitive attributes under the privacy guarantee by exploiting the limited clean
ones. Then, it jointly models the corrected and clean data in an adversarial way for
debiasing and prediction. Theoretical analysis shows that the proposed model can
ensure fairness when most sensitive attributes are private. Extensive experimental
results in real-world datasets demonstrate the effectiveness of the proposed model
for making fair predictions under privacy and maintaining high accuracy.

1 Introduction

Machine learning has shown promising performances in various high-stake applications such as
disease identification [40], crime prediction [39], and loan application filtering [21]. However, in
these applications, an emerging concern is that the prediction derived from machine learning models
can often be biased and unfair to specific (and often marginalized) groups. For example, racial bias
in medical analysis can lead to disparate treatments [40]. In addition, a recent Forbes report shows
that machine learning bias has caused 80% of the black mortgage applicants to be denied1. Such
discrimination can have detrimental societal effects that weaken the public trust among individuals,
groups and the society. Therefore, it is critical to ensure fairness in machine learning for social good.

The recent advancements of fair machine learning–aiming to develop effective algorithms to achieve
fairness and maintain good prediction performance–have attracted increasing attention [36, 27]. The
majority of existing fair machine learning models require direct access to sensitive attributes (e.g.,
race, gender, age) to preprocess the training data, regularize the model training or post-process the
prediction results to derive fair predictions [33, 17, 27]. However, sensitive attributes are often hard to
collect or properly protected due to people’s increasing awareness of privacy and the legal compliance
such as Electronic Communications Privacy Act (ECPA)2 and General Data Protection Regulation
(GDPR)3 that restrict the direct access to sensitive attributes. Thus, analysts may only get access to

1www.forbes.com/sites/korihale/2021/09/02/ai-bias-caused-80-of-black-mortgage-applicants-to-be-denied
2www.bja.ojp.gov/program/it/privacy-civil-liberties/authorities/statutes/1285
3www.consumerfinance.gov/rules-policy/regulations/1002/5

2022 Trustworthy and Socially Responsible Machine Learning (TSRML 2022) co-located with NeurIPS 2022.
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Figure 1: An illustration of the semi-private setting.

mostly private sensitive attributes processed by privacy mechanisms like Local Differential Privacy
(LDP) [12], which is widely deployed by data analysts and can provide a strong privacy guarantee on
the data by injecting noise [34, 19].

In practice, it is often possible to collect a small amount of sensitive attributes due to people’s different
privacy preferences (e.g., male users may be less sensitive about their age than female users) [24],
organizations’ desire to build effective models [7] or other certain incentives [38, 30]. Therefore, as
shown in Figure 1, we propose to study a novel problem of fair classification in a semi-private setting,
where most of the sensitive attributes (e.g., gender) are protected under certain privacy mechanisms
and only very limited clean ones are available.

However, it is nontrivial to build fair machine learning models with mostly private sensitive attributes.
First, private sensitive attributes are noisy, and directly applying conventional debiasing techniques
on them can lead to sub-optimal performances. Some initial efforts have verified that noise-protected
sensitive attributes may hurt the performance of conventional debiasing models [32, 42]. Second,
it is unknown whether or not it is helpful to incorporate the limited clean sensitive attributes. Such
limited instances with clean sensitive attributes are inadequate for training a fair classification model
directly because the model can easily overfit the small amount of data [14]. It is under exploration
to study the impact of combining the very limited data with clean sensitive attributes and the most
private data. Third, the conventional model design cannot effectively leverage both the most private
sensitive attributes and limited clean ones. Conventional debiasing models under the semi-private
setting would treat each instance the same way. Since the clean sensitive attributes are limited, it is
important to explore how to effectively exploit them.

Therefore, to address these challenges, we first conduct a preliminary study on the impact of privacy on
fairness performance of debiasing and non-debiasing models. We found that the fairness performance
of debiasing models is enhanced with a smaller noise rate on the sensitive attributes, which is
determined by a constant privacy budget. This finding validates that the semi-private setting is
beneficial for mitigating fairness bias. Based on the pilot study, we propose a novel framework
FAIRSP for fair classification with semi-private sensitive attributes. It first learns to correct the noisy
sensitive attributes under privacy guarantee by exploiting the limited clean ones. Specifically, our
model learns a correction matrix for the noisy sensitive attributes by leveraging both the noisy ones
and very limited clean ones. Then, it jointly models the corrected and clean data in an adversarial
way for debiasing and prediction.

In summary, our main contributions are as follows:

• We empirically study the impact of privacy on fairness performance of debiasing and non-debiasing
models.

• We study a novel and practical problem of fair classification with semi-private sensitive attributes.
• We provide a new end-to-end framework FAIRSP which simultaneously derives corrected sensitive

attributes from private ones and learns a fair classifier with adversarial learning on both clean and
corrected data.

• We conduct a theoretic analysis demonstrating that fairness can be achieved with mostly private
sensitive attributes.

• We perform extensive experiments on real-world datasets to validate the effectiveness of the
proposed learning to correct method for fair classification in the semi-private setting.

2 Assessing the Intersection of Privacy and Fairness

In this section, we first introduce the definition of local differential privacy. Then we conduct a
preliminary study to assess the impact of privacy on fairness performances.
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Figure 2: Assessing the impact of privacy on fairness performances.

2.1 Local Differential Privacy Guarantee

The Local differential privacy (LDP) mechanism provides guarantees by directly injecting noises into
data before aggregation. The formal Local differential privacy definition is as follows:
Definition 1. Given ϵ > 0, a randomized mechanism M satisfies ϵ-local differential privacy, if for all
possible pairs of users’ private data si and sj , the following equation holds:

∀a ∈ Range(M) : P (M(si)=a)
P (M(sj)=a) ≤ eϵ where Range(M) denotes every possible output of M.

The parameter ϵ denotes the privacy budget to balance the utility and privacy guarantee of the model.
A smaller ϵ represents stronger privacy guarantee and weaker utility. In order to ensure the privacy of
sensitive attributes, we obtain the following lemma:
Lemma 1. To achieve ϵ-local differential privacy on the binary sensitive attribute, we can randomly
flip the sensitive attributes with a probability of p = 1

exp(ϵ)+1 .

The detailed proof of the lemma refers to the lemma 3 in [32]. Based on the lemma, we can obtain
differentially private sensitive attributes by flipping at a certain probability. If the flipping probability
satisfies the condition that p = 1

exp(ϵ)+1 , then the sensitive attributes have the ϵ-local differential
privacy guarantee.

2.2 The Impact of Privacy on Fairness

In this subsection, we investigate the impact of privacy on fairness. Here we adopt the notion of
Local Differential Privacy (LDP) for the privacy guarantee. The original LDP mechanism focuses on
the trade-off between privacy and utility. As for the impact of local differential privacy on fairness,
we conduct two groups of preliminary experiments. For the first group of experiments, we study the
impact of LDP on models like vanilla multi-layer per- ceptron (MLP) network without debiasing.
For the second group of experiments, we study the impact of LDP on debiasing models such as
adversarial debiasing. We conduct each group of experiments on two datasets ADULT and COMPAS,
which are two typical fairness datasets. We set six privacy budgets for each group of experiments as
0.5, 1, 1.5, 2, 2.5, 3. We follow Lemma 1 to implement the LDP mechanism. From Figure 2, we have
the following observations:

• For vanilla models without debiasing, stronger privacy guarantee improves the fairness
performance. We can observe that with lower privacy budget, the vanilla models have better
fairness performance on ∆EO and ∆DP . With stronger privacy guarantee, the privacy budget
decreases and the flipping rate increases, which means there is more noise injected into the sensitive
attributes of the dataset. With more noise injected, the vanilla models cannot learn the explicit bias
contained in the sensitive attributes.

• For debiasing models, stronger privacy guarantee leads to worse fairness performance. From
Figure 2, we can see that with lower privacy budget, the debiasing models have a worse fairness
performance on ∆EO and ∆DP on the two datasets. This is because the debiasing models need to
explicitly leverage sensitive attributes for mitigating bias. With stronger privacy guarantee, there is
a lower privacy budget and more noisy sensitive attributes, which causes that the debiasing models
ineffective in mitigating the implicit bias contained in non-sensitive attributes.

Based on the preliminary experiments, if we want to improve the fairness performance of debiasing
models under privacy, one method is to reduce the noise in sensitive attributes, which illustrates
the benefit of the semi-private setting.
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3 Fair Classification with Semi-Private Sensitive Attributes

In this section, we mainly introduce our method. More details on the setting and motivation of
semi-private sensitive attributes are in the Appendix A.

4 Proposed Model - FAIRSP

Having defined the problem setting for fair classification in the presence of a small set of samples
with the clean sensitive attribute and a large set of private ones, we now propose our approach to
leverage them jointly to learn an end-to-end model. Next, we present the details of the proposed
framework for fair classification with semi-private sensitive attributes.

4.1 Semi-Private Adversarial Debiasing

In our semi-private scenario, we have two distinct types of sensitive attributes: clean and private. Our
objective is to build a framework that leverages the information from both clean and private samples
and learn an underlying common representation that can induce the fair classification. Recently,
adversarial debiasing has been proven to be effective in alleviating the bias of representations. In
adversarial debiasing, an adversary is used to predict sensitive attributes from the representations
of the classifier; the classifier is trained to learn representations that make the adversary unable to
predict the sensitive attributes while keeping high accuracy in the classification. Directly applying
adversarial debiasing is not feasible in our scenario since only limited clean sensitive attributes are
available and most of the sensitive attributes are private (noisy). To this end, we propose to utilize a
shared encoder layer to learn the embedding vector, which is fed into separate layers for debiasing.

Specifically, we first propose a label predictor to minimize the prediction error of the labels with the
following objective function: minθh,θY LY = E(X,Y )∈Dℓ(Y, fθY (h(X))), where fθY is to predict
the labels, h(·) is an embedding layer to encode the features into the latent representation space,
and ℓ is a cross entropy loss. In addition, to learn fair representations and make fair predictions, we
incorporate two adversaries fc and fp to predict the clean and private sensitive attributes, respectively.
h(·) tries to learn the representation that can fool the adversaries. fθc and fθp are jointly optimized
with the following objective function: minθh maxθc,θp La = Lc+αLp, where α is a hyper-parameter
that controls the relative importance of the loss functions computed over the data of clean and private
sensitive attributes, and Lc and Lp are defined as follows:

min
θh

max
θc

Lc = EX∼p(X|Ac=1)[log(fθc(h(X)))] + EX∼p(X|Ac=0)[log(1− fθc(h(X)))] (1)

min
θh

max
θp

Lp = EX∼p(X|Ap=1)[log(fθp(h(X)))] + EX∼p(X|Ap=0)[log(1− fθp(h(X)))] (2)

where θc and θp are the parameters for the adversaries predicting the clean and private sensi-
tive attributes. Finally, the overall objective function of adversarial debiasing for fair classifica-
tion is a minmax function, where β controls the importance of the sensitive attribute predictors:
minθh,θY maxθc,θp Ladv = LY − β(Lc + αLp).

4.2 Private Sensitive Attribute Correction

Since private sensitive attributes are noisy, directly applying adversarial debiasing on them may lead
to sub-optimal results. An intuitive approach is to consider learning to correct these noisy sensitive
attributes before feeding them into the above model (i.e., Ladv). Inspired by the idea of learning
a Corruption Matrix under the scenario with severe label noise and trusted data [23], we propose
to leverage the limited clean sensitive attributes to learn a Correction Matrix to estimate the true
sensitive attributes from the private ones without assuming the underlying noise distribution among
the private sensitive attributes.

Specifically, given the dataset Dc = {X ,Ac,Y} with instances containing clean sensitive attributes
of l categories, and Dp = {X ,Ap,Y} with instances’ sensitive attributes being private, we aim to
estimate a sensitive attribute correction matrix C ∈ Rl×l to model the sensitive attribute correction
process. We first train a sensitive attribute predictor g on the private data Dp as follows: g(X) =
p̂(Ap|X). Let Xm be the subset of X with sensitive attribute Ac = m. Based on the Lemma 1, the
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Figure 3: An illustration of the proposed framework FAIRSP. It consists of two major modules: (1) an
semi-private adversarial debiasing module for learning fair classification; and (2) a private sensitive
attribute correction module for correcting noisy sensitive attributes.

flipping probability in LDP is a constant determined by ϵ. Thus, the noise distribution is independent
from the sensitive attribute value. Then we can infer that Ap is conditional independent from Ac

given X , i.e., p(Ap|Ac, X) = p(Ap|X). Thus, we can estimate the correction matrix C, where each
element Cmr (the transition probability from Ac = m to Ap = r) is calculated as follows:

Cmr =
1

|Xm|
∑

X∈Xm

p̂(Ap = r|X) =
1

|Xm|
∑

X∈Xm

p̂(Ap = r|Ac = m,X) ≈ p(Ap = r|Ac = m)

(3)

With the estimated C, then we can train a new prediction model g′(X) = p̃(Ac|X) solving the
following optimization problem:

min
θg,θg′

Lc = E(X,Ac)∈Dc
ℓ(Ac, g

′(x)) + E(X,Ap)∈Dp
ℓ(Ap, CTg′(X)) (4)

where ℓ is a differentiable loss function to measure the prediction error, such as cross-entropy loss.

4.3 FAIRSP: Integrating Corrected Sensitive Attributes into Adversarial Debiasing

We aim to leverage the corrected sensitive attributes and integrate them to the adversarial debiasing
algorithm for fair classification. Specifically, using the sensitive attribute correction network in Eqn. 4,
we learn a sensitive attribute correction function g′(X) that rectifies the private sensitive attributes
for each instance X ∈ Dp. We now obtain a set of instances with corrected sensitive attributes
D′

p = {X,A
′

p, Y },∀X ∈ Dp and A
′

p = g′(X). Note that the sensitive attribute correction network
reduces the noise but the rectified sensitive attributes could still be erroneous. Essentially, we first
feed the instances with private sensitive attributes Dp into the sensitive attributes correction network
to obtain the rectified instances D′

p. These rectified instances are used as the input for the adversarial
debiasing of private sensitive attributes (i.e., Eqn. 2). Formally, the objective function of the adversary
fθp is as defined as follows:

min
θh

max
θp

L
′

p = EX∼p(X|A′
p=1)[log(fθp(h(X)))] + EX∼p(X|A′

p=0)[log(1− fθp(h(X)))] (5)

The overall objective function of our final model FAIRSP is:

min
θh,θY

max
θc,θp

L = LY − β(Lc + αL
′

p) (6)

5 Experiments

In this section, we conduct experiments to evaluate the performance of our method. More details on
the experiment analysis are in the Appendix C.
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Table 1: The performance comparison for fair classification under semi-private setting.

Datasets Metric Vanilla RemoveS RNF [15] FariRF [47] Clean Private C+P FAIRSP

ADULT

Acc.(%) 84.8±0.2 84.9±0.3 83.5±1.2 84.0±0.5 84.9±0.4 84.7±0.3 84.8±0.5 84.7±0.4
F1(%) 65.4±0.7 64.8±0.8 63.3±0.8 63.5±0.7 64.6±0.7 64.6±0.3 64.8±0.6 64.5±0.7
∆DP (%) 9.1±0.4 8.4±0.2 8.3±1.0 8.2±0.3 8.4±0.4 8.4±0.3 8.1±0.2 7.8±0.3
∆EO(%) 5.3±1.0 4.1±1.1 4.0±0.5 3.5±0.8 4.1±1.0 4.1±1.2 3.4±1.4 2.3±1.2

COMPAS

Acc.(%) 67.0±0.6 67.3±0.8 66.9±0.8 66.3±0.7 67.2±0.6 67.1±0.7 67.2±0.6 67.0±0.6
F1(%) 64.3±0.9 64.2±1.2 63.5±0.9 63.2±0.5 64.8±1.0 64.6±1.1 63.9±1.1 63.8±1.4
∆DP (%) 13.8±1.1 13.0±0.4 13.1±0.6 13.8±2.4 13.1±0.5 13.0±0.4 12.9±0.2 12.7±0.5
∆EO(%) 12.8±1.4 12.2±0.6 12.3±1.3 15.3±1.2 12.3±0.8 12.1±0.7 12.2±0.5 12.1±0.6

MEPS

Acc.(%) 86.1±0.1 86.1±0.2 85.8±0.1 85.9±0.2 86.1±0.1 86.0±0.1 86.1±0.1 86.0±0.1
F1(%) 48.5±2.0 49.9±1.6 49.5±1.5 47.0±1.9 50.6±1.6 50.8±2.3 48.8±1.8 47.3±1.7
∆DP (%) 4.5±0.5 4.7±0.5 4.8±0.3 4.9±1.0 4.8±0.6 4.8±0.7 4.4±0.4 4.1±0.8
∆EO(%) 4.5±1.0 4.6±1.1 4.8±0.9 4.7±1.3 4.4±1.2 4.5±1.1 4.3±0.7 4.0±1.2

We compare FAIRSP with various baselines on three benchmark datasets for fair classification. For
each experiment, we select five random seeds to partition the original dataset into a training set and
a test set. We randomly select 80% of the training set as the private training set and the others as
the non-private part (i.e., clean ratio =20%). For the private training set, we set the privacy budget ϵ
as 0.5, which means the flipping probability on sensitive attributes is around 38% according to the
Lemma 1. The average performance and standard deviation over five times are reported in Table 1.
We can make following observations:

• In general, we observe that FAIRSP can better improve fairness performance of ∆DP and ∆EO

without causing significant drop in prediction performance on three datasets, compared to other
baselines. For example, compared with recently proposed state-of-the-art debiasing model RNF,
FAIRSP has achieved 42.5% improvement in terms of ∆EO and 6.0% on ∆DP on ADULT.

• We observe that conventional debiasing methods that directly leverage sensitive attributes are
generally ineffective under the semi-private scenario. For example, comparing RNF with RemoveS
model, we can observe that their fairness performances are similar w.r.t. ∆DP and ∆EO on three
datasets.

• The proposed private sensitive attribute correction can help better utilize the limited clean sensitive
attributes for improving fairness. For example, FAIRSP has 32.3% and 3.7% improvement over
“Clean+Private” on ADULT by ∆DP and ∆EO respectively. The reason is that “Clean+Private”
directly utilizes the private sensitive attributes; while the corrected sensitive attributes contain less
severe noise and can better guide the debiasing process.

• We can see that it is important to leverage sensitive attributes to ensure fairness and maintain predic-
tion performance in the semi-private scenario. For example, FAIRSP has significant improvement
w.r.t. Accuracy, F1, ∆DP and ∆EO than FairRF consistently, which does not leverage the sensitive
attributes directly.

• Exploiting the limited clean sensitive attributes and private ones jointly is important for debiasing
in the semi-private setting. We can generally observe that FAIRSP > Clean+Private > Clean ≈
Private ≈ RemoveS > Vanilla for debiasing performances. First, FAIRSP and “Clean+Private”
perform better than the other three baselines shows that leveraging both clean and private sensitive
attributes is necessary. Second, the observation that “Clean”, “Private” and RemoveS perform
similar indicates that only relying on the clean data or noisy data is less effective for debiasing.

6 Conclusion and Future Work

In this paper, we study a novel problem of fair classification with semi-private sensitive attributes. We
develop an end-to-end adversarial debiasing model FAIRSP to jointly learn from a small amount of
instances with clean sensitive attributes and a large amount of instances with private ones. We provide
a theoretic analysis to demonstrate that we can learn a fair model prediction under mild assumptions
on privacy. Extensive experimental results on real-world datasets demonstrate the effectiveness
of the proposed framework to achieve better fair classification performance compared to existing
approaches. For future work, first, we can study a more general semi-private fairness setting in a
variety of data types such as text and graphs, and analyze the fairness and privacy guarantee on
these data. Second, we will investigate the fairness under privacy in distributed machine learning
algorithms such as federated learning and split learning.
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A More Details on Method

A.1 Semi-Private Sensitive Attributes

Training fair classification models with only private sensitive attributes is challenging since most
conventional debiasing methods rely on the sensitive information for mitigating fairness bias. The
preliminary experiments have demonstrated that privacy noise on sensitive attributes can severely hurt
the fairness performance. Therefore, we study a more practical problem where most of the sensitive
attributes are private and only very limited ones are clean because it is often possible to obtain a small
amount of clean sensitive attributes as discussed earlier [24, 7, 38, 30]. To better reflect the reality in
our experimental setup, we keep at most 20% of all the samples to be non-private (see Section C.1.1
for more details). Such non-private samples provide the clean sensitive attributes and will not overlap
with those private ones.

A.2 Problem Statement

We first introduce the notations of this paper and then give the formal problem definition. Let
D = {X ,A,Y} denote the data, where X , A, and Y represent the set of data samples, sensitive
attributes, and corresponding labels. For the sensitive attributes A, it consists of a small number
of clean ones Ac, and a large number of private ones Ap, i.e., A = Ac ∪ Ap. Usually, the size
of clean sensitive attributes is much smaller than the size of private sensitive attributes due to the
increasing awareness of privacy of users and service providers. The private sensitive attributes Ap

can be collected from user-obfuscated input or a third-party privacy-preserving algorithm. In this
paper we adopt LDP mechanism [12].

Following the existing works of fair classification [5, 35], we evaluate the performance of fairness
using metrics such as Equal Opportunity and Demographic Parity. Without loss of generality, we
consider the binary classification. Equal Opportunity requires that the probability of positive instances
with arbitrary sensitive attributes A being assigned to a positive outcome are equal: E(Ŷ | A =

a, Y = 1) = E(Ŷ | A = b, Y = 1), where Ŷ is predicted label. Demographic Parity requires the
behavior of prediction model to be fair on different demographic groups. Concretely, it requires that
the positive rate across sensitive attributes are equal: E(Ŷ | A = a) = E(Ŷ | A = b),∀a, b. The
problem of fair classification with semi-private sensitive attributes is formally defined as follows:

Problem Statement: Given the training data D with a limited number of clean sensitive
attributes and a large amount of private sensitive attributes, learn an effective classifier that
generalizes well to unseen instances, while satisfying the fairness criteria such as demographic
parity.

A.3 The Optimization of FAIRSP

Algorithm 1 Training process of FAIRSP

Require: Clean data Dc = {X,Ac, Y }, private data Dp = {X,Ap, Y }, α, β
Ensure: Learn a fair classifier fθY

1: // Correcting private sensitive attributes
2: Learn a classifier g on Dp

3: Initialize correction matrix C ∈ Rl×l

4: Estimate the correction matrix as in Eqn.3
5: Initialize a new classifier g′

6: Train ℓ(Ac, g
′(X)) on Dc, ℓ(Ap, CTg′(X)) on D̃ as in Eqn. 4

7: Generate data with corrected sensitive attributes D′

P = {X, g′(X), Y }
8: // Incorporate corrected sensitive attributes for FairSP training
9: Conduct adversarial training with loss function as Eqn. 6 on D′

P and Dc.
10: Return classifier fθY for fair prediction

We adopt the mini-batch gradient descent with Adadelta [45] optimizer to learn the parameters. As
shown in Algorithm 1, we first train the sensitive attribute correction network to obtain the data with
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corrected sensitive attributes D′

p. To this end, we train a predictor g on the data with private sensitive
attributes Dp and estimate the sensitive attribute correction matrix C as in Eqn. 3. Thereafter, we
train a new predictor g′ with the correction matrix C on the private data, and obtain the data with
corrected sensitive attributes D′

p. Finally, we train the adversarial debiasing model for classification
in both D′

P and Dc.

B A Theoretic Analysis on Fairness Guarantee

In this section, we perform a theoretic analysis of the fairness guarantee under the proposed FAIRSP.
The model essentially integrates two major modules: (1) the private sensitive attribute correction
(Lc in Eqn. 4); and (2) the semi-private adversarial debiasing with the corrected sensitive attributes
(Lc + αL′

p in Eqn. 6).

First, to understand the theoretic guarantee for the semi-private adversarial debiasing, we need to
consider the induced noise in the large amount of private sensitive attributes as they are non-negligible.
We can obtain the condition of the global optimum of the adversaries by Theorem 1.
Theorem 1. The global optimum of the adversaries in L (fθc and fθp ) can be achieved if and only if
p(X|Ac = 1) = p(X|Ac = 0) and p(X|A′

p = 1) = p(X|A′

p = 0).

Proof. This is because according to the Proposition 1. in [20], the adversaries can reach to the optimal

f∗
θc

= p(X|Ac=1)
p(X|Ac=1)+p(X|Ac=0) and f∗

θp
=

p(X|A
′
p=1)

p(X|Ac=1)+p(X|A′
p=0)

. Then the optimal of the min-max

game can be written as follows:

R = EX∼p(X|Ac=1)[log
p(X|Ac = 1)

p(X|Ac = 1) + p(X|Ac = 0)
] (7)

+ EX∼p(X|Ac=0)[log
p(X|Ac = 0)

p(X|Ac = 1) + p(X|Ac = 0)
]

+ αEX∼p(X|A′
p=1)[log

p(X|A′

p = 1)

p(X|A′
p = 1) + p(X|A′

p = 0)
]

+ αEX∼p(X|A′
p=0)[log

p(X|A′

p = 0)

p(X|A′
p = 1) + p(X|A′

p = 0)
]

= −(1 + α) log(4) + 2 · JSD(p(X|Ac = 1)||X|Ac = 0)

+ 2α · JSD(p(X|A
′

p = 1)||X|A
′

p = 0) (8)

Since α is a non-negative hyper-parameter and the Jensen–Shannon divergence (JSD) between
two distributions is always non-negative and zero only when they are equal, so if and only if
p(X|A′

p = 1) = p(X|A′

p = 0) and p(X|Ac = 1) = p(X|Ac = 0), the above equation will reach to
the minimum.

Next, we theoretically show in Theorem 2 that under mild conditions, we can satisfy fairness metrics
such as demographic parity if reaching the global optimum.

Theorem 2. Let Ŷ denotes the predicted labels, if
(1) For all X ∈ D′

p, the corrected sensitive attributes A
′

p and X are independent conditioned on their
ground-truth sensitive attributes Ãp, i.e., p(A

′

p, X|Ãp) = p(A
′

p|Ãp)p(X|Ãp);
(2) The corrected sensitive attributes are not random, i.e., p(A

′

p = 1|Ãp = 1) ̸= p(A
′

p = 0|Ãp = 0))
If L reaches the global optimum, the label prediction fθY will achieve demographic parity, i.e.,
p(Ŷ |Ãp = 0) = p(Ŷ |Ãp = 1) and p(Ŷ |Ac = 0) = p(Ŷ |Ac = 1)

Proof. We first explain the two assumptions: (1) since we use the objective function in Lc to derive
the corrected sensitive attributes A

′

p, and learn the latent presentation through h(·), between which
they do not share any parameters; it generally holds that A

′

p is independent with the representation
of X , i.e., p(A

′

p = 1|Ãp = 1) ̸= p(A
′

p = 0|Ãp = 0)); (2) Since we are using adversarial learning
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to learn an effective estimator fθp for sensitive attributes, it is reasonable to assume that it does not
produce random prediction results. We then prove Theorem 2 as follows: since p(A

′

p = 1|Ãp =

1) ̸= p(A
′

p = 0|Ãp = 0)), we have p(X|A′

p, Ãp) = p(X|Ãp). When the algorithm converges,
we have p(X|A′

p = 1) = p(X|A′

p = 0), which is equivalent with
∑

Ãp
p(X, Ãp|A

′

p = 1) =∑
Ãp

p(X, Ãp|A
′

p = 0). Therefore,∑
Ãp

p(X|Ãp)p(X, Ãp|A
′

p = 1) =
∑
Ãp

p(X|Ãp)p(X, Ãp|A
′

p = 0)

Based on the above equation, we can get,

p(X|Ãp = 1)

p(X|Ãp = 0)
=

p(Ãp = 0|A′

p = 1)− p(Ãp = 0|A′

p = 0)

p(Ãp = 1|A′
p = 0)− p(Ãp = 1|A′

p = 1)
= 1 (9)

⇒p(X|Ãp = 1) = p(X|Ãp = 0)

Since we already proof that p(X|Ac = 1) = p(X|Ac = 0), and Ŷ = fθY (X), we can get
p(Ŷ |Ãp = 1) = p(Ŷ |Ãp = 0) and p(Ŷ |Ac = 1) = p(Ŷ |Ac = 0), which is the demographic
parity.

C More on Experiment Analysis

In this section, we conduct experiments to evaluate the performance of our method. In these
experiments, we try to answer the following research questions:

• RQ1: Can FAIRSP obtain fair predictions with mostly private sensitive attributes?
• RQ2: How does the private sensitive attribute correction affect the performance of prediction and

fairness?
• RQ3: What is the impact of the amount of data with clean sensitive attributes?
• RQ4: How does the degree of privacy budget impact the fair classification performance?

Note that RQ1 has been answered in Section 5.

C.1 Experimental Settings

C.1.1 Datasets

We conduct experiments on three typical datasets for fair classification: COMPAS [26], ADULT [4]
and MEPS [11].

• COMPAS4: This dataset describes the task of predicting the recidivism of individuals in the United
States.

• ADULT5: This dataset contains personal yearly records. The task is to predict whether an individ-
ual’s income exceeds 50k.

• MEPS6: This dataset contains records of The Medical Expenditure Panel Survey (MEPS), which is
a set of large-scale medical surveys across the United States. The task is to predict whether or not a
person would have a “high” utilization.

We report results on the test set and all experiments are repeated for 5 times and the average result
and standard deviation are reported in Table 1. For each run, the dataset is randomly divided into
train set and test set. The set of random seeds for five runs is {5, 7, 11, 19, 29}. We compare different
methods and techniques at different values of the clean ratio defined as:

clean ratio =
#samples w/ clean SA

#samples w/ clean SA + #samples w/ private SA
(10)

4https://github.com/propublica/compas-analysis
5https://archive.ics.uci.edu/ml/machine-learning-databases/adult/
6https://meps.ahrq.gov/mepsweb/
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Data SA # Train # Test
Clean (20%) Private (80%)

ADULT Gender 4,884 19,536 24,421
COMPAS Race 611 2,446 3,058
MEPS Race 1,573 6,292 7,866

Table 2: The statistics of the datasets. Clean refers to true sensitive attributes, whereas Private refers
to the private ones with LDP. SA refers to sensitive attributes.

C.1.2 Baselines

We compare the proposed FAIRSP with four types of baselines. The first type of baseline is a
vanilla multi-layer perceptron (MLP) network (1,2). The second type is a state-of-the-art debiasing
model that explicitly utilizes the sensitive information (3). The third type is a debiasing model
that do not need the sensitive information (4). For the fourth type of baselines, we implement a
adversarial debiasing model with three kinds of training strategies including “Clean”, “Private” and
“Clean+Private” (5,6,7), which are utilized to illustrate the effectiveness of our proposed private
sensitive attribute correction method: (1) Vanilla: A classifier like MLP without any debiasing
method.; (2) RemoveS: Directly removing the sensitive attributes in the input; (3) RNF [15]: A
recently proposed state-of-the-art debiasing method utilizing mixup for debiasing; (4) FairRF [47]:
A debiasing method that does not need any sensitive attributes, which can also be applied in our
proposed semi-private scenario; (5) Clean: An adversarial debiasing model on only the instances
with clean sensitive attributes; (6) Private: An adversarial debiasing model on only the instances with
private sensitive attributes; (7) C+P: We simply merge both the sets (essentially treating the private
sensitive attributes as the clean ones) and use them together for training an adversarial debiasing
model.

C.1.3 Evaluation Metrics

Following existing work on fair classification, we measure the classification performance with
Accuracy (Acc.) and F1, and the fairness performance based on Demographic Parity and Equal
Opportunity [35].

• Demographic Parity: it requires each demographic group has the same chance for a positive
outcome: E(Ŷ |A = 1) = E(Ŷ |A = 0). We report the difference of each group’s demographic
parity:

∆DP = |E(Ŷ |A = 1)− E(Ŷ |A = 0)| (11)

• Equal Opportunity: it requires the true positive rate of different groups is equal: E(Ŷ |A = 1, Y =

1) = E(Ŷ |A = 0, Y = 1). We report the difference of each sensitive group’s equal opportunity:

∆EO = |E(Ŷ |A = 1, Y = 1)− E(Ŷ |A = 0, Y = 1)| (12)

Note that demographic parity and equal opportunity measure the fairness performance in different
ways. The fairness performance is better with smaller values of ∆EO and ∆DP .

C.2 Assessing the Impact of Private Sensitive Attribute Correction

Now we investigate the impact of private sensitive attribute correction, to answer RQ2. We keep the
setting of the training set and test set division the same as the main results in Table 1, and show the
results on ADULT dataset as we have similar observations on COMPAS. We set the privacy budget
ϵ as 0.5 and 1 for the training set to derive private sensitive attributes, and the corresponding noisy
ratio on sensitive attributes are 38% and 27% accordingly. The average performance and standard
deviation for five rounds are reported in Table 3. We can make following observations:

• The proposed correction strategy on private sensitive attributes is effective in improving debiasing
performance consistently regardless of the privacy budget. For example, when the privacy budget ϵ
is 0.5, FAIRSP has achieved a 23.3% and 6.0% improvement in terms of ∆EO and ∆DP , comparing
to FAIRSP without private attributes correction.
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Privacy Budget Metric FAIRSP w/o Corr FAIRSP

ϵ = 0.5

Acc. (%) 84.8±0.2 84.7±0.4
F1 (%) 64.7±1.2 64.5±0.7
∆DP (%) 8.3±0.8 7.8±0.3
∆EO (%) 3.0±1.2 2.3±1.2

ϵ = 1

Acc. (%) 84.7±0.4 84.6±0.4
F1 (%) 64.4±0.5 64.1±0.7
∆DP (%) 7.9±0.4 7.5±0.1
∆EO (%) 2.1±2.0 1.3±1.4

Table 3: The impact of private sensitive attribute correction.

• The proposed private sensitive attribute correction method does not cause a significant drop in
prediction performance. For example, when privacy budget ϵ is 1, FAIRSP has achieved comparable
performance with FAIRSP without correction in terms of both Accuracy and F1 metrics.

C.3 Impact of Private Data Ratio
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Figure 4: The impact of clean data ratio on prediction and debiasing performances on ADULT.
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Figure 5: The impact of privacy budget ϵ on prediction and debiasing performances on ADULT.

In this subsection, we investigate the impact of different private data ratios, to answer RQ3. We show
the experimental results on ADULT dataset and we observe similar trends on COMPAS dataset. We
conduct four groups of experiments with different clean data ratios (defined as in Eqn. 10) as in the
range of [0.02%, 0.2%, 2%, 20%]. Each group of experiments have the same privacy budget ϵ as
0.5. For each clean data ratio, we compare our proposed model FAIRSP with “Clean+Private” and
demonstrate the prediction metric Accuracy, F1 as well as fairness metric ∆DP and ∆EO. For each
experiment, we run five times and report the average result in Figure 4. From the figure, we can make
following observations:

• In general, we can observe from Figure 4 (c) (d) that our proposed FAIRSP has a consistent
improvement in fairness performance by a large margin compared with the baseline “Clean+Private”
consistently at different clean data ratios.

• It should be noted that our model FAIRSP performs stable on fairness when the clean data ratios are
smaller. The performance of the baseline “Clean+Private” on fairness slightly drops with smaller
clean data ratio, which is expected because smaller clean data ratio means the dataset contains less
useful information about sensitive attributes. However, our proposed model FAIRSP has stable
fairness performance on both ∆DP and ∆EO with a smaller clean data ratio.

• Even with extreme small clean data ratio such as 0.02%, FAIRSP maintains relatively stable
fairness performances. This indicates that the sensitive attributes correction is still effective with
very limited clean data and under strong privacy requirements.
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• From Figure 4 (a) (b), we observe that the proposed FAIRSP demonstrates comparable prediction
performance with the baseline “Clean+Private” regardless of different clean data ratios. The
prediction performance of both models drops slightly with smaller clean data ratio. This is because
with smaller clean data ratio, there is a larger portion of data with private sensitive attributes.

C.4 Impact of Privacy Budget

To answer RQ4, in this subsection, we investigate the impact of different privacy budgets on the
fair classification performances. We report the experimental results on ADULT dataset and similar
trends are observed on COMPAS. We conduct six groups of experiments with different privacy
budget ϵ as {0.5, 1.0, 1.5, 2.0, 2.5, 3.0}, which means the flipping probability on sensitive attributes
is around {38%, 27%, 18%, 12%, 7%, 4%} accordingly. The clean data ratio for each group of
experiment is 20%. For each Privacy Budget ϵ, we compare our proposed model FAIRSP and baseline
“Clean+Private” with performance metrics Accuracy, F1 and fairness metrics ∆DP and ∆EO. From
Figure 5, we have the following observations:

• In general, we can observe from Figure 5 (c) (d) that our proposed model FAIRSP performs
consistently better compared to “Clean+Private”. With a larger privacy budget ϵ, the fairness
performances of both models are improved. This is because the dataset has fewer noisy sensitive
attributes under larger ϵ.

• With a larger privacy budget ϵ, we can observe that the gap between FAIRSP and “Clean+Private”
is narrower. This may be due to the estimation accuracy of the private sensitive attributes in FAIRSP
becomes less effective when the flipping probability on sensitive attributes is small enough, which
also indicates that FAIRSP is more effective when the privacy guarantee is strong.

• From Figure 5 (a) and (b), we see that FAIRSP has comparable classification performances on
Accuracy and F1 with the baseline “Clean+Private” regardless of privacy budget ϵ. With a larger
privacy budget ϵ, the performances of the both models increase because a larger privacy budget ϵ
indicates fewer noisy sensitive attributes in the training data.

C.5 Parameter Sensitivity Analysis

We now explore the parameter sensitivity of the two important hyperparameters of our model: α
controls the impact of the adversarial private sensitive attribute predictor, while β controls the
influence of the adversary to the debiasing. We vary α in [0.6, 0.7, 0.8, 0.9, 1.0] and β from [0.6,
0.7, 0.8, 0.9, 1.0]. The results are shown in Fig. 6. From the figure, we can observe that: (1) The
performances of Accuracy and F1 are relatively consistent in the range, and the performance trend
of ∆DP and ∆EO are also similar. (2) When β is larger, the prediction performance drops and
fairness performance is improved, which illustrates the trade-off between fairness and prediction
performances. (3) Based on the experiments, we can achieve optimal fairness performance and
comparable accuracy performance when selecting both α and β as 1.0.

D Related Work

In this section, we briefly describe the related work on (1) Fairness in machine learning; and (2)
Differential privacy in machine learning.

Fairness in Machine Learning Recent research on fairness in machine learning has drawn significant
attention to develop effective algorithms to achieve fairness and maintain good prediction performance.
Existing methods generally focus on individual fairness [28, 10, 8] or group fairness [22, 46]. Other
niche notions of fairness include subgroup fairness [29] and Max-Min fairness[31]. The majority of
existing debiasing techniques have been applied at different stages of a machine learning model [36]
including pre-processing [27], in-processing [2, 6] and post-processing approaches [17]. Such
machine learning methods generally require the access to sensitive attributes, which is often infeasible
in practice. Very few recent work study fairness with limited or private sensitive attributes available.
For example, Zhao et al. explore and utilize the related features as proxies of the sensitive attributes
to improve fairness performances when sensitive attributes are unknown [47]. Dai et al. propose to
achieve fairness on graph neural networks when the sensitive attributes are limited and private [13].
However, these methods may design for a specific type of data (e.g., graphs) or not considering the
sensitive attributes being private.
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Figure 6: The parameter sensitive analysis of FAIRSP.

Differential Privacy in Machine Learning. Differential privacy (DP) [16, 18] is a widely adopted
approach to provide strong privacy guarantee regardless of the adversaries’ prior knowledge [34],
which can protect user privacy in various machine learning tasks including supervised learning and
unsupervised learning [25, 19, 1, 41]. Recently, local differential privacy (LDP) has been extensively
studied in the distributed setting such that private data can be locally perturbed without a trusted
aggregator [12, 43]. Due to the inherent connection of privacy and fairness (e.g., protecting or
debiasing on user sensitive attributes), several recent work look into trade-offs and mutual risks
between privacy and fairness [3, 9]. Other approaches aim to ensure both DP and fairness while
preserving good utility [44], or learn fair models with only private data [37, 32, 42]. However, these
initial efforts assume that only noisy sensitive attributes are available and there is a specific type of
noise model between the true sensitive attributes and noisy ones.
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