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Abstract
This paper is concerned with the problem of non-
linear filtering, i.e., computing the conditional
distribution of the state of a stochastic dynamical
system given a history of noisy partial observa-
tions. Conventional sequential importance resam-
pling (SIR) particle filters suffer from fundamen-
tal limitations, in scenarios involving degenerate
likelihoods or high-dimensional states, due to the
weight degeneracy issue. In this paper, we explore
an alternative method, which is based on estimat-
ing the Brenier optimal transport (OT) map from
the current prior distribution of the state to the
posterior distribution at the next time step. Un-
like SIR particle filters, the OT formulation does
not require the analytical form of the likelihood.
Moreover, it allows us to harness the approxima-
tion power of neural networks to model complex
and multi-modal distributions and employ stochas-
tic optimization algorithms to enhance scalability.
Extensive numerical experiments are presented
that compare the OT method to the SIR particle
filter and the ensemble Kalman filter, evaluating
the performance in terms of sample efficiency,
high-dimensional scalability, and the ability to
capture complex and multi-modal distributions.

1. Introduction
This paper is concerned with numerical methods for the so-
lution of nonlinear filtering problems in discrete-time with
a particular focus towards the settings where the distribu-
tion of interest is highly non-Gaussian and multi-modal. To
formulate the filtering problem consider two stochastic pro-
cesses: (i) a hidden Markov process, denoted by {Xt}∞t=0,
that represents the state of a dynamical system; (ii) an ob-
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served random process, denoted by {Yt}∞t=1, that represents
sensory data. We assume the state and observation processes
follow the probabilistic relationship

Xt ∼ a(· | Xt−1), X0 ∼ π0, (1a)
Yt ∼ h(· | Xt), (1b)

where a(· | ·) and h(· | ·) denote the conditional probabil-
ity kernels of Xt+1 and Yt, given Xt, respectively, and π0
denotes the probability distribution of the initial state X0.
The filtering problem is to compute the conditional proba-
bility distribution of the hidden state Xt, given the history
of observations Yt = {Y1, Y2, . . . , Yt}, denoted by

πt(·) := P(Xt ∈ · | Yt), for t = 1, 2, . . . (1c)

The conditional distribution πt is also referred to as the
posterior or the belief.

In a general nonlinear and non-Gaussian setup, the posterior
does not admit an explicit analytical solution. Therefore, it
is necessary to design numerical methods to approximate it.
Standard sequential importance re-sampling (SIR) particle
filters (PF) approximate the posterior πt with a weighted em-
pirical distribution of particles

∑N
i=1 w

i
tδXi

t
(Gordon et al.,

1993; Doucet & Johansen, 2009) with the particle locations
and weights updated according to

(propagation) Xi
t

i.i.d∼
N∑
j=1

wj
t−1a(· | X

j
t−1), (2a)

(conditioning) wi
t =

h(Yt | Xi
t)∑N

j=1 h(Yt | X
j
t )
. (2b)

The propagation step involves simulation according to the
dynamic model (1a), followed by a resampling procedure1.
The conditioning step implements the Bayes’s rule accord-
ing to the observation model (1b).

SIR PF provides an exact solution to the filtering problem in
the limitN → ∞ (Del Moral & Guionnet, 2001). However,
it suffers from the curse of dimensionality (COD). Specifi-
cally, as the dimension of the state and observation grows,
the likelihood becomes degenerate and concentrated on a
small support, causing the majority of weights to become

1In practice, resampling is usually done only when the variance
of weights becomes large.
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zero. This issue is known as particle degeneracy and can
only be avoided when the number of particles grows expo-
nentially with the dimension (Bickel et al., 2008; Bengtsson
et al., 2008; Rebeschini & Van Handel, 2015); This is an
active research area; see (Van Leeuwen et al., 2019) and
references therein.

This curse of dimensionality has motivated the develop-
ment of alternative algorithms that replace the conditioning
step of SIR with a coupling or transport step; see (Daum
et al., 2010; Crisan & Xiong, 2010; Reich, 2011; Yang et al.,
2011; El Moselhy & Marzouk, 2012; Reich, 2013; De Melo
et al., 2015; Yang et al., 2016; Marzouk et al., 2016; Mesa
et al., 2019; Reich, 2019; Pathiraja et al., 2021; Taghvaei
& Mehta, 2021; Calvello et al., 2022) as well as (Spantini
et al., 2022) and (Taghvaei & Mehta, 2023) for a recent
survey of these topics. A more detailed comparison is pro-
vided in Sec. 4. Here the posterior is approximated with a
uniformly weighted distribution of particles 1

N

∑N
i=1 δXi

t
,

with a general particle update law of the form

(propagation) Xi
t|t−1 ∼ a(· | Xi

t−1), (3a)

(conditioning) Xi
t = Tt(X

i
t|t−1, Yt). (3b)

Here, Tt(·, Yt) represents a (possibly stochastic) transport
map from the (prior) distribution P(Xt ∈ · | Yt−1) to the
posterior distribution P(Xt ∈ · | Yt).

This paper is concerned with the development of algorithms
for approximating the above transport map. In particu-
lar, we utilize the recently introduced optimal transport
(OT) approach in (Taghvaei & Hosseini, 2022; Al-Jarrah
et al., 2023) to formulate the problem of finding the map
Tt as a max-min stochastic optimization problem (see equa-
tions (11) and (10)) that only involves the particles Xi

t|t−1

and the associated observation Y i
t|t−1 ∼ h(· | Xi

t|t−1),
for i = 1, . . . , N . The map T is represented by residual
neural networks, as in Fig. 2, and trained with stochas-
tic optimization algorithms (see Algorithm 3 for details).
The OT approach is based on the combination of block-
triangular transport, in the context of conditional simula-
tion (Kovachki et al., 2023; Ray et al., 2022; Shi et al., 2022;
Siahkoohi et al., 2021), with min-max formulations used to
estimate OT maps as in (Makkuva et al., 2020; Fan et al.,
2021; Rout et al., 2022). The OT methodology has two
distinct features: (i) it can be implemented in a completely
likelihood-free/simulation-based setting, because it only re-
quires samples from the likelihood model, not its analytical
form; (ii) and it allows for the application of neural net-
works to represent transport maps, that enables the capture
of non-Gaussian and multi-modal distributions, as well as
stochastic optimization algorithms that are scalable with the
number of the particles. An illustrative example comparing
the OT method with SIR particle filter is presented in Fig. 1.
The contributions of the paper are twofold: (1) We present

SI
R

Prior

−2 0 2
X

OT

−2 −1 0 1 2
X

−2 0 2
X

OT map

PosteriorLikelihood

Figure 1: A comparison between the OT method and SIR
for the static model of Sec. 3.1. The OT approach captures
the bimodal posterior by pushing the prior through an OT
map computed by solving equation (11). On the other hand,
SIR only captures one mode due to the degeneracy of the
likelihood leading to only a few weights that are order 1.

a theoretical analysis of the OT method focusing on consis-
tency and stability results; these are outlined in Prop 2.3 and
2.4. We also provide a preliminary error analysis in Prop. 2.7
that compares the OT approach to SIR for a single condi-
tioning step of the filter; (2) We present an extensive suite of
numerical experiments in Sec. 3, containing toy examples,
benchmark Lorenz models, and a high-dimensional filtering
problem where image in-painting is performed in a dynamic
manner. We evaluate the OT method, in comparison to
the SIR and ensemble Kalman filter (EnKF) algorithms, in
terms of sample efficiency and high-dimensional scalabil-
ity in conjunction with the ability to capture complex and
multi-modal distributions.

2. OT methodology
2.1. Exact filter

Let us begin by recalling the exact filter before moving on
to transport maps and the OT formulation. Henceforth we
assume Xt ∈ Rn and Yt ∈ Rm. The posterior distribu-
tion (1c) admits a recursive update law that is essential for
the design of filtering algorithms. To present this recursive
update, we introduce the following operators:

(prop.) π 7→ Aπ :=

∫
Rn

a(· | x)π(x)dx (4a)

(cond.) π 7→ By(π) :=
h(y | ·)π(·)∫

Rn h(y | x)π(x)dx
(4b)

The first operator represents the update for the distribution
of the state according to the dynamic model (1a). The
second operator represents Bayes’ rule that carries out the
conditioning according to the observation model (1b). The
exact posterior distribution πt := P(Xt ∈ · | Yt) then
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follows the sequential update law (Cappé et al., 2009)

πt|t−1 = Aπt−1, πt = BYt
(πt|t−1), (4c)

where the notation πt|t−1(·) := P(Xt ∈ · | Yt−1) is used
for the distribution of Xt before applying the conditioning
with respect to the current observation Yt.

2.2. Conditioning with transport maps

Transport or coupling-based approaches approximate the
posterior πt with an empirical distribution of a set of parti-
cles {Xi

t}Ni=1, where the particles are simulated according
to the equations (3a) and (3b). Although not explicitly
stated, the transport map Tt, that is used in the conditioning
step (3b), depends on the empirical distribution of the parti-
cles. As a result, the equation (3) represents an interacting
particle system.

The problem of designing the transport map Tt is studied in
the mean-field limit (N = ∞), which assumes that all parti-
cles are independent and identically distributed according
to a single mean-field distribution, denoted by πt. Under
this assumption, the update law for πt may be expressed as

πt|t−1 = Aπt−1, πt = Tt(·, Yt)#πt|t−1, (5)

where # denotes the push-forward operator. The transport
map Tt should be designed such that πt = πt for all t ≥ 0.
Comparing equation (5) with (4c) concludes the following
general design problem:

Problem: For all probability distributions π, find a map T
such that

T (·, y)#π = By(π), ∀y. (6)

We call this procedure conditioning with transport maps.
The following examples are illustrative.
Example 2.1 (Noiseless observation). Assume X ∼ π and
Y = h(X) where h is an invertible map. Then, the con-
ditional distribution By(π) = δh−1(y) can simply be repre-
sented via a transport map T (x, y) = h−1(y).
Example 2.2 (Gaussian). Assume X ∼ π is Gaussian and
the observation Y ∼ h(· | X) corresponds to a linear obser-
vation model with additive Gaussian noise, meaning X and
Y are jointly Gaussian. Then, the conditional distribution
By(π) is Gaussian N(µ,Σ)

µ = E[X] +K(y − E[Y ]),

Σ = Cov(X)− Cov(X,Y )Cov(Y )−1Cov(Y,X),

and K = Cov(X,Y )Cov(Y )−1. The stochastic map

X 7→ X +K(y − Y ), (7)

transports π to By(π) for any value of the observation y.
This can be checked by noting that X + K(y − Y ) is a

Gaussian random variable with the same mean and covari-
ance as N(µ,Σ). The map in equation (7) is the basis for
the ensemble Kalman filter (EnKF) algorithm; see (Evensen,
2009; Bergemann & Reich, 2012; Calvello et al., 2022).

The consistency condition (6) does not specify a unique map
T . In the following subsection, we formulate the problem
of finding a valid map T as an OT problem alongside an
stochastic optimization approach on which our numerical
procedure is based on.

2.3. OT formulation

In order to present the OT formulation, consider X ∼ π,
Y ∼ h(· | X), and let X ∼ π be an independent copy of X .
Also, let PX,Y denote the joint distribution of (X,Y ), with
marginals PX and PY . First observe that the condition (6),
which may be expressed as T (·, y)#PX = PX|Y (·|y) a.e.,
is equivalent to

(T (X,Y ), Y ) ∼ PX,Y . (8a)

A justification for this result appears in Appendix B.1
and (Kovachki et al., 2023, Thm. 2.4). In order to select a
unique map that satisfies the condition (8a), we formulate
the (conditional) Monge problem:

min
T∈M(PX⊗PY )

E
[
c(T (X,Y ), X)

]
, s.t. (8a) holds.

(8b)
where c(x, x′) = 1

2∥x−x
′∥2 and M(PX⊗PY ) is the set of

maps Rn × Rm 7→ Rn that are PX ⊗ PY -measurable. The
optimization (8b) is viewed as the Monge problem between
the independent coupling (X,Y ) ∼ PX ⊗ PY and the joint
distribution (X,Y ) ∼ PX,Y with transport maps that are
constrained to be block-triangular (x, y) 7→ (T (x, y), y).
Upon using the Kantorovich duality and the definition of
c-concave functions2 the Monge problem (8b) becomes

max
f∈c-Concavex

min
T∈M(PX⊗PY )

J(f, T ), (8c)

where the objective function J(f, T ) is equal to

E
[
f(X,Y )− f(T (X,Y ), Y ) + c(T (X,Y ), X)

]
,

and the set c-Concavex denotes the set of functions on
Rn × Rm 7→ R that are c-concave in their first variable
everywhere. A rigorous justification of the max-min formu-
lation, in the standard OT setting, appears in Appendix A.3
and (Makkuva et al., 2020; Rout et al., 2022). The following
result is the extension to the conditional setting.

Proposition 2.3. Assume π is absolutely continuous with
respect to the Lebesgue measure with a convex support
set X , By(π) admits a density with respect to the Lebesgue
measure ∀y, and E[∥X∥2] <∞. Then, there exists a unique

2with a squared loss c, f is c-concave iff 1
2
∥ · ∥2 − f is convex.
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pair (f, T ), modulo an additive constant for f , that solves
the optimization problem (8c) and the map T (·, y) is the OT
map from π to By(π) for a.e. y.

Proof sketch. The proof is a direct consequence of applying
Theorem 2.3 (iii) in (Carlier et al., 2016) and Porp. A.3 for
the max-min formulation in the standard OT setting; see
Appendix B.2 for details.

The next proposition is concerned with the case that the
max-min optimization problem (8c) is not solved exactly
and provides an error bound for the computed OT maps in
terms of the pertinent optimality gap. More precisely, for a
pair (f, T ), let

ϵ(f, T ) :=J(f, T )−min
S
J(f, S)

+max
g

min
S
J(g, S)−min

S
J(f, S)

(9)

be the total optimality gap for the max-min problem. We
then have the following result which can be viewed as an
extension of (Rout et al., 2022, Thm. 4.3) and (Makkuva
et al., 2020, Thm. 3.6) by adding the observation variable
Y . The proof appears in Appendix B.3.

Proposition 2.4. Consider the setting of Prop. 2.3 with the
optimal pair (f, T ). Let (f, T ) be a possibly non-optimal
pair with an optimality gap ϵ(f, T ). Assume x 7→ 1

2∥x∥
2 −

f(x, y) is α-strongly convex in x for all y. Then,

E [∥T (X,Y )− T (X,Y )∥2] ≤ 4

α
ϵ(f, T ).

2.4. Empirical approximation

In order to numerically solve the optimization problem (8c),
the objective function J(f, T ) is approximated empirically
in terms of samples according to

J (N)(f, T ) :=
1

N

N∑
i=1

[
f(Xi, Y i) +

1

2
∥T (Xi

, Y i)−Xi∥2 − f(T (X
i
, Y i), Y i)

] (10)

where Xi, X
i i.i.d∼ π and Y i ∼ h(·|Xi). In the context of

filtering problem, {Xi}Ni=1 is constructed from the particles
{Xi

t|t−1}
N
i=1 and {Xi}Ni=1 may be constructed by an inde-

pendent random shuffling of the same set, resulting in the
filtering algorithm presented in Algorithm 3 in Appendix C.
The function f and the map T are represented with a para-
metric class of functions, denoted by F and T respectively.
This concludes the optimization problem

max
f∈F

min
T∈T

J (N)(f, T ). (11)

X
,
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Figure 2: Neural net architectures for the function classes
F and T within our proposed algorithm.

Here we propose to take both of these spaces to be neural
network classes with architectures that are summarized in
Fig. 2; further details about these architectures can be found
in the Appendix C.
Remark 2.5. Note that our choice of F does not impose
the constraint that f(x, y) is c-Concavex. We make this
choice due to practical limitations of imposing convexity
constraints on neural nets using, for example, input-convex
networks (Amos et al., 2017; Bunne et al., 2022). How-
ever, note that if the computed f happens to be c-Concavex
(which one can check a posteriori) then Prop. 2.4 remains
applicable. We provide qualitative and quantitative results,
in Sec. 3.1, that measure the convexity of 1

2∥x∥
2 − f(x, y)

and monotonicity of the map T for a particular example.
Remark 2.6. The proposed computational procedure may
be extended to the Riemannian manifold setting by using
the square of the geodesic distance as the cost function c
and modelling the map T as exponential of a parameterized
vector-field; see (Grange et al., 2023).

2.5. Comparison with SIR

In order to compare the OT and the SIR approaches,
we use the dual bounded-Lipschitz metric d(µ, ν) :=

supg∈G

√
E
∣∣∫ gdµ−

∫
gdν

∣∣2 on (possibly random) prob-
ability measures µ, ν, where G is the space of functions that
are bounded by one and Lipschitz with a constant smaller
than one.

For any probability distribution π, the SIR and OT ap-
proaches approximate the conditional distribution By(π)
in two different ways. The SIR approach approximates the
posterior with

π(SIR) :=

∑N
i=1 h(y|Xi)δXi∑N

i=1 h(y|Xi)
= By(S

(N)(π)) (12a)

where Xi i.i.d.∼ π and π 7→ S(N)π := 1
N

∑N
i=1 δXi is the

sampling operator. On the other hand, the OT approach
approximates the posterior by numerically solving the op-
timization problem (11). Assuming the pair (f̂ , T̂ ) is a
solution of this problem, the approximated posterior is

π(OT ) := T̂ (·, y)#π. (12b)
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Figure 3: Numerical results for the static example in Sec. 3.1. (a) top-left: Samples {Xi}Ni=1 from the prior PX ; bottom-left:
samples {(Xi, Y i)}Ni=1 from the joint distribution PXY in comparison with the transported samples {(T (Xσi , Y i), Y i)}Ni=1;
rest of the panels: transported samples for Y = 1 for different values of N and three different algorithms. (b) Similar results
to panel (a) but for a smaller λw.

The following proposition provides an analysis of the ap-
proximation errors.

Proposition 2.7. Consider X ∼ π, Y ∼ h(·|X), and
the SIR and OT approaches explained above in order to
approximate the posterior BY (π). Then,

lim inf
N→∞

√
Nd(π(SIR),BY (π)) ≥ sup

g∈G

√
Vh(g), (13a)

d(π(OT ),BY (π)) ≤
√

4

α
ϵ(f̂ , T̂ ), (13b)

where Vh(g) := E[h(Y |X)2(g(X) − E[g(X)|Y ])2],
h(x|y) := h(x|y)/

∫
h(x′|y)dπ(x′), X is an indepen-

dent copy of X , α is the strong convexity constant for
x 7→ 1

2∥x∥
2 − f̂(x, y), and ϵ(f̂ , T̂ ) is the optimality gap (9)

for the pair (f̂ , T̂ ).

Proof sketch. The lower-bound (13a) follows from an ap-
plication of the central limit results available for importance
sampling in (Cappé et al., 2009, Thm. 9.1.8). The upper-
bound (13a) follows from Prop. 2.4 and the definition of the
metric d; see Appendix B.4 for details.

The COD in SIR PF is demonstrated by considering the
special case where X = [X(1), . . . , X(n)] and Y =
[Y (1), . . . , Y (n)] are n-dimensional with independent and
identically distributed components. Then, for N large
enough, the SIR error satisfies the bound

d(π(SIR),BY (π)) ≥
Cγn√
N

where C is a constant and γ := E[h(Y (1)|X(1))2] > 1.
The COD is usually avoided by exploiting problem specific
properties, such as spatial correlations or decay; see (Rebes-
chini & Van Handel, 2015; Van Leeuwen et al., 2019).

The OT upper-bound (13b) depends on the optimality gap
ϵ(f̂ , T̂ ) which, in principle, decomposes to a bias and vari-
ance term. The bias term corresponds to the representation
power of the function classes F and T , in comparison with
the complexity of the problem. The variance term corre-
sponds to the statistical generalization errors due to the
empirical approximation of the objective function. The vari-
ance term is expected to grow as O( 1√

N
) with a proportion-

ality constant that depends on the complexity of the function
classes, but independent of the dimension. In principle, the
OT approach may also suffer from the COD under no addi-
tional assumptions on the problem. However, in comparison
to SIR, it provides a more flexible design methodology that
can exploit problem specific structure and regularity.

3. Numerical results
We perform several numerical experiments to study the per-
formance of the OT approach in comparison with the EnKF
and SIR algorithms. The OT algorithm 3 consists of solving
(3) and (11) with f, T taken to be neural nets whose archi-
tectures were outlined in Fig. 2. The network weights are
learned with a gradient ascent-descent procedure using the
Adam optimization algorithm. To reduce the computational
cost, the optimization iteration number decreases as the time
grows because the OT map is not expected to change signif-
icantly from a time step to the next one. The computational
cost and details of all three algorithms and additional nu-
merical results appear in the Appendix C. The Python code
for reproducing the numerical results is available online3.

3https://github.com/Mohd9485/
Filtering-with-Optimal-Transport

v
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Figure 4: Numerical results for the dynamic example 15. The left panel shows the trajectory of the particles {X1
t , . . . , X

N
t }

along with the trajectory of the true state Xt for EnKF, OT, and SIR algorithms, respectively. The second panel shows the
MMD distance with respect to the exact conditional distribution. The last two panels show MMD variation with dimension
and the number of particles.

3.1. A bimodal static example

Our first numerical experiment serves as a proof of concept
and demonstrates the sample efficiency of the OT approach
when the likelihood becomes degenerate. Specifically, we
consider the task of computing the conditional distribution
of a Gaussian hidden random variable X ∼ N(0, In) given
the observation

Y =
1

2
X ⊙X + λwW, W ∼ N(0, In) (14)

where ⊙ denotes the element-wise (i.e., Hadamard) product.
This model is specifically selected to produce a bimodal pos-
terior. We only present the n = 2 case since the difference
between OT and SIR was not significant when n = 1.

The first numerical results for this model are presented with
a noise standard deviation of λw = 0.4 in Fig. 3a. The top
left panel shows the initial particles as samples from the
Gaussian prior distribution. The bottom left panel shows
the pushforward of samples from PX ⊗ PY via the block
triangular map S(x, y) = (T (x, y), y), in comparison to
samples from PXY , verifying the consistency condition (8a)
for the map. Then, we pick a particular value for the obser-
vation Y = 1 (as shown by the dashed line) and present the
histogram of (transported) particles in comparison with the
exact conditional density. It is observed that both OT and
SIR capture the bimodal posterior, while EnKF falls short
since it always approximates the posterior with a Gaussian.

We repeat the procedure in Fig. 3b but for a smaller noise
standard deviation λw = 0.04 which leads to a more degen-
erate posterior. Our results clearly demonstrate the weight
degeneracy of SIR even in this low-dimensional setting,
as all particles collapse into a single mode, while the OT
approach still captures the bimodal posterior. Additional nu-
merical results for this model are available in Appendix C.2.

Additionally, we present the learned function 1
2∥x∥

2
2 −

f̂(x, y) and the learned map T̂ (x, y), as a function of x
and for a 1D case with fixed value y = 1, in Fig. 5. It is

observed that the function 1
2∥x∥

2
2 − f̂(x, 1) is not entirely

convex, specially around the region with small posterior
probability. Meanwhile, the transport map T̂ (x, 1) appears
to be entirely monotone. In order to quantify the degree of
monotonicity of x 7→ T̂ (x, y), for all values of y, we employ
a Monte-Carlo method with 105 samples to approximate

E(X,X′,Y )∼PX⊗PX⊗PY
[1ϱ(T̂ (·,Y ),X,X′)≤0] ≈ 0.0012,

E(X,X′,Y )∼PX⊗PX⊗PY
[ϱ(T̂ (·, Y ), X,X ′)] ≈ 0.88

where ϱ(S, x, x′) := (S(x)−S(x′)⊤(x−x′)
∥x−x′∥2 for any map S :

Rn → Rn and two points x, x′ ∈ Rn. If the map S is mono-
tone, then ϱ(S, x, x′) ≥ 0 for all x, x′ ∈ Rn. If S is the gra-
dient of a α-strongly convex function, then, ρ(S, x, x′) ≥ α.
The first number shows that the map is not monotone over
a set of small probability, while the second number shows
that the “degree” of monotinicity is positive on average.
We perform a similar procedure to quantify the convexity
of the function 1

2∥x∥
2
2 − f̂(x, y) by evaluating the mono-

tonicity of its gradient: F (x, y) := x−∇xf̂(x, y)
4. With

a similar Monte-Carlo method we obtained the respective
quantities 0.033 and 1.57, indicating that 1

2∥x∥
2
2 − f̂(x, y)

is non-convex over a set of small probability measure under
the posterior. This empirical observation motivates future
direction of theoretical research concerning the relaxation
of the convexity assumption in Prop. 2.4 to convexity over
sets of large measure under the posterior.

3.2. A bimodal dynamic example

We consider a dynamic version of the previous example
according to the following model:

Xt = (1− α)Xt−1 + 2λVt, X0 ∼ N (0, In) (15a)
Yt = Xt ⊙Xt + λWt, (15b)

4Checking the positive-definiteness of the Hessian matrix is
not applicable in this case because f̂(x, y) is not differentiable
when we use ReLU activation functions.
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Figure 5: Numerical results for the bimodal static example
in sec. (3.1). The left panel shows the function 1

2x
2−f̂(x, 1)

and the conditional distribution PX|Y=1. The right panel
shows the map T̂ (x, 1) and the prior distribution PX .

where {Vt,Wt}∞t=1 are i.i.d sequences of standard Gaussian
random variables, α = 0.1 and λ =

√
0.1. The choice of Yt

will once again lead to a bimodal posterior πt at every time
step.

The numerical results are depicted in Fig. 4: Panel (a) shows
the trajectory of the particles for the three algorithms, along
with the true state Xt denoted with a dashed black line. The
OT approach produces a bimodal distribution of particles,
while the EnKF gives a Gaussian approximation and the SIR
approach exhibits the weight collapse and misses a mode
for the time duration t ∈ [1, 2] ∪ [3, 4.5]. Panel (b) presents
a quantitative error analysis comparing the maximum-mean-
discrepancy (MMD) between the particle distribution of
each algorithm and the exact posterior; details such as the
choice of the MMD kernel are presented in Appendix C.3.
Since the exact posterior is not explicitly available it is ap-
proximated by simulating the SIR algorithm with N = 105

particles. This quantitative result affirms the qualitative ob-
servations of panel (a) that the OT posterior better captures
the true posterior in time.

We also performed a numerical experiment to study the ef-
fect of the dimension n and the number of particles N on
the performance of the three algorithms. The results are
depicted in panels (c) and (d), respectively. It is observed
that both EnKF and OT scale better with dimension com-
pared to SIR. However, as the number of particles increases,
the EnKF error remains constant, due to its Gaussian bias,
while the approximation error for SIR and OT decreases.

3.3. The Lorenz 63 model

We present numerical results on the three-dimensional
Lorenz 63 model which often serves as a benchmark for
nonlinear filtering algorithms. The model is presented in
Appendix C.4. The state Xt is 3-dimensional while the
observation Yt is 2-dimensional and consists of noisy mea-
surements of the first and third components of the state.

Figure 6: Numerical results for the Lorenz 63 example. The
left panel shows the trajectory of the unobserved component
of the true state and the particles. The right panel shows the
MSE comparison.

True image

Observed part

     EnKF      OT      SIR

Figure 7: Numerical result for the static MNIST example.
The left column shows the true image, the observed part,
and the observation window (red square). The next three
columns show 16 random particles from the final time-step
of each algorithm.

The numerical results are presented in Fig. 6. The left panel
shows the trajectory of the second component of the true
state and the particles. The OT and EnKF are quicker in
converging to the true state, with EnKF admitting larger
variance. The right panel shows the mean-squared-error
(MSE) in estimating the state confirming the qualitative
observations. We present the MSE result for two variations
of the OT method: either the EnKF layer in the architecture
of Fig. 2 is implemented or not. The results show that the
addition of the EnKF layer helps with the performance of the
filter, while computationally, we observed more numerical
stability when the EnKF layer is removed.

We have also performed numerical experiments on the
Lorentz 96 model, another benchmark from the filtering
literature, that appear in Appendix C.5. The results for that
example are in line with Lorentz 63, i.e., EnKF and OT
outperform SIR but are somewhat similar to each other.

3.4. Static image in-painting on MNIST

In order to evaluate the high-dimensional scalability of the
OT approach, we consider the problem of computing condi-
tional distributions on the 100-dimensional latent space of
generative adversarial network (GAN) trained to represent
the MNIST digits (Goodfellow et al., 2014). In particular,
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(a) 16 particles from the OT method.
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(b) Digits distribution.

Figure 8: Additional numerical results for the static MNIST example. (a) The first row shows the cumulative total
observations up to each time step. The subsequent rows under the red line show 16 particles from the OT method (that
correspond to the same 16 particles in Fig. 7; (b) The histogram of the the digits generated by the particles, from the three
algorithms as a function of time, evaluated using an accurate MNIST classifier.

denoting the generator by G : R100 → R28×28, we consider
the model:

Yt = h(G(X), ct) + σWt, X ∼ N(0, I100),

where the observation function (z, c) ∈ R28×28 × R2 7→
h(z, c) ∈ Rr×r is defined as the r × r window of pixels
z[c(1) : c(1) + r, c(2) : c(2) + r]. The coordinates of
the corner ct moves from left to right and top to bottom
scanning a partial portion of the image called the observed
part. In order to make the problem more challenging, we fed
a noisy measurement of the corner location to the algorithms.
While the true image does not change, we included artificial
Gaussian noise to the particles to avoid particle collapse.
For for details, see Appendix C.6.

The numerical results are presented in Fig. 7. The left
column presents the true image, the observed part of the
image, and an instance of the 3 × 3 observation window
with a red square. The filtering algorithms are implemented
for 15 time steps, as the observation window moves, and 16
random particles from the final time-step of each algorithm
are depicted in the rest of panels in Fig. 7. The results show
that although the SIR particles are similar to the true image,
they do not capture the true uncertainty corresponding to
the observation, in contrast to the OT approach (the lower
part of the digits 0, 3, 8 are similar to the lower part of the
digit 2).

In order to further demonstrate the performance of the OT
approach, we present the trajectory of the particles in Fig. 8a.
The top row shows the total observed part of the image
up to that time-step, and the following 16 rows show the
images generated from the particles that approximate the
conditional distribution. Moreover, we used an accurate
MNIST classifier to represent the histogram of the digits
generated from the particles of each algorithm in Fig. (8b).
According to these results, the SIR and EnKF methods are

overconfident that the true digit is 2 and 0, respectively,
while the OT method produces a more realistic and multi-
modal posterior concentrated around the digits {0, 2, 3, 8},
all of which are natural in-paintings for the data.

3.5. Dynamic image in-painting on MNIST

We extend the previous example to the dynamic setting
by introducing an update law for the latent variable of the
GAN according to Xt+1 = (1 − α)Xt + λVt, where Vt
is a standard Gaussian random variable. We consider the
same observation model but we select a larger window size
r = 12 and constrain the the vertical coordinate of the
window to be at the bottom, while the horizontal coordinate
is randomly selected.

A visual representation of the results is provided in Fig. 9.
The top two rows display the true images and their observed
portion at each time instant t = 1, 2, . . . , 20. Subsequent
rows show the images corresponding to four randomly se-
lected particles from the three algorithms; a larger figure
depicting more particles is provided in Appendix C.7. The
results show the particle collapse of the SIR algorithm at
all time steps, convergence of the EnKF algorithm to an
incorrect distribution, and the capability of the OT approach
in approximating the uncertainty associated with the obser-
vation at each time step. A figure similar to the Fig. 8b that
shows the histogram of digits as a function of time is also
provided in Appendix C.7 which further highlights these
phenomenon.

4. Comparison with coupling-based methods
In this section, we provide a comprehensive comparison
to other coupling-based methods for filtering. The particle
flow method (Daum & Huang, 2012; De Melo et al., 2015)
and feedback particle filter (FPF) (Yang et al., 2013; 2016)
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Figure 9: Numerical results for the dynamic MNIST ex-
ample. The top two rows show the true image and the
observations at each time step. The rest of the rows show
the first 4 particles for each method, representing the poste-
rior at that time step.

involve either an ordinary differential equation or stochastic
differential equation that updates the locations of the parti-
cles so that the probability density of the particles follows
a given PDE. The particles’ equation involves an unknown
vector-field that needs to be approximated by solving a cer-
tain partial differential equation (PDE). The main challenge
in this type of algorithms is to approximate the aforemen-
tioned vector-field at each time-step. The time discretization
for this type of equation often becomes unstable, especially
for multi-modal posteriors or degenerate likelihoods. Our
OT approach can be viewed as an exact time-discretization
of the FPF algorithm, as shown in Prop. 2 in (Taghvaei
& Hosseini, 2022), which resolves the time-discretization
issues discussed above.

The ensemble transform particle filter (Reich, 2011) in-
volves solving a linear program for the discrete OT problem
from a uniform prior distribution to the weighted poste-
rior distribution for the particular value of the observation.
Solving the linear program becomes challenging as the num-
ber of particles N increases. Moreover, approximating the
marginal with a weighted empirical distribution suffers from
the same fundamental issue that importance sampling parti-
cle filter suffers from.

The coupling method proposed in (Spantini et al., 2022) is
the closest method to our approach. It is also likelihood
free and amenable to the neural net parameterizations. The
main difference is in the form of the transport map. While
in this paper we aim at finding the OT map from prior to
the posterior, the approach in (Spantini et al., 2022) aims
at finding the Knothe–Rosenblatt rearrangement. Thus our
approach is more closely related to the semi-dual solutions
to the OT problem and can utilize the existing theoretical
results and computational methodologies.

Our work is based on the variational formulation of the

Bayes’ law presented in (Taghvaei & Hosseini, 2022) (TH).
TH proposes minf maxg E[f(X,Y )−f(∇xg(X̄, Y ), Y )+
X̄⊤∇xg(X̄, Y )] where f and g are ICNNs. Our initial
numerical study using this method did not provide com-
pelling results due to the limitations of the ICNN architec-
ture (please see Remark 2.5). To resolve this issue, we made
two changes: we represent f(x, y) as 1

2∥x∥
2 − f̃(x, y) and

∇xg(x, y) as T (x, y), where T and f̃ are ResNets. We also
include an EnKF block in the architecture for T so that
our method performs as well as EnKF if no training is per-
formed. With these improvements, we were able to produce
numerical results on toy, benchmark, and high-dimensional
problems that are consistent and perform better than con-
ventional baselines. The clear computational improvement
can be observed by comparing Fig. 1 in the TH paper with
Fig. 3 and Fig. 11 in this paper.

5. Concluding remarks and limitations
We presented theoretical and numerical results demonstrat-
ing the performance of an OT-based nonlinear filtering al-
gorithm. A complete characterization of the bias-variance
terms in the optimality gap of (11) is subject of ongoing
work using the existing tools for convergence of empirical
measures in Wasserstein metric (Fournier & Guillin, 2015),
OT map estimation (Hütter & Rigollet, 2021), and Bayesian
posterior perturbation analysis (Garbuno-Inigo et al., 2023).

Numerical experiments show the better performance of the
OT approach for examples designed to have multi-modal
distributions, while it is noted that the raw computational
time of the OT approach is higher, and for nonlinear filtering
examples that admit unimodal posterior, such as Lorentz-96,
the EnKF provides a fast and reasonable approximation. A
computational feature of the OT method is that it provides
the user with the flexibility to set the computational bud-
get: without any training, OT algorithm implements EnKF;
with additional budget (increasing training iterations and
complexity of the neural net), the accuracy is increased, see
Appendix C.1. The computational efficiency of the OT ap-
proach can be improved by fine-tuning the neural network
architectures, optimizing the hyper-parameters, and includ-
ing an offline training stage for the first time step, which will
be used as a warm-start for training at future time steps in
the online implementation. This line of research is pursued
in our recent work (Al-Jarrah et al., 2024), where a new data-
driven nonlinear filtering algorithm was introduced aimed
at ergodic state and observation dynamics. The algorithm
consists of offline and online stages: The offline stage is
expensive to train and learns a static conditioning transport
map; The online stage is computationally cheap and uses
the learned conditioning map without any further training,
providing a competitive computational time compared with
traditional methods during online inference.
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Bulletin of the Mathematical Society of France, 93:273–
299, 1965.

Pathiraja, S., Reich, S., and Stannat, W. Mckean–Vlasov
SDEs in nonlinear filtering. SIAM Journal on Control
and Optimization, 59(6):4188–4215, 2021.

Ray, D., Ramaswamy, H., Patel, D. V., and Oberai, A. A.
The efficacy and generalizability of conditional GANs
for posterior inference in physics-based inverse problems.
Numerical Algebra, Control and Optimization, 2022.

Rebeschini, P. and Van Handel, R. Can local particle filters
beat the curse of dimensionality? The Annals of Applied
Probability, 25(5):2809–2866, 2015.

Reich, S. A dynamical systems framework for intermittent
data assimilation. BIT Numerical Analysis, 51:235–249,
2011. doi: 10.1007/s10543-010-0302-4.

Reich, S. A nonparametric ensemble transform method for
Bayesian inference. SIAM Journal on Scientific Comput-
ing, 35(4):A2013–A2024, 2013.

Reich, S. Data assimilation: The Schrödinger perspective.
Acta Numerica, 28:635–711, 2019.

Rockafellar, R. T. Convex analysis, volume 11. Princeton
university press, 1997.

Rout, L., Korotin, A., and Burnaev, E. Generative modeling
with optimal transport maps. In International Conference
on Learning Representations, 2022.

Shi, Y., De Bortoli, V., Deligiannidis, G., and Doucet,
A. Conditional simulation using diffusion Schrödinger
bridges. In Uncertainty in Artificial Intelligence, pp.
1792–1802. PMLR, 2022.

Siahkoohi, A., Rizzuti, G., Louboutin, M., Witte, P. A.,
and Herrmann, F. J. Preconditioned training of normal-
izing flows for variational inference in inverse problems.
3rd Symposium on Advances in Approximate Bayesian
Inference, 2021.

Spantini, A., Baptista, R., and Marzouk, Y. Coupling tech-
niques for nonlinear ensemble filtering. SIAM Review, 64
(4):921–953, 2022.

Taghvaei, A. and Hosseini, B. An optimal transport formu-
lation of Bayes’ law for nonlinear filtering algorithms.
In 2022 IEEE 61st Conference on Decision and Control
(CDC), pp. 6608–6613. IEEE, 2022.

Taghvaei, A. and Mehta, P. G. Optimal transportation meth-
ods in nonlinear filtering. IEEE Control Systems Maga-
zine, 41(4):34–49, 2021.

Taghvaei, A. and Mehta, P. G. A survey of feedback particle
filter and related controlled interacting particle systems
(CIPS). Annual Reviews in Control, 2023.

xi



Nonlinear Filtering with Brenier Optimal Transport Maps
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A. Preliminaries
We start by reviewing preliminaries on convex analysis and OT theory.

A.1. Preliminaries on convex analysis

We recall definitions from convex analysis that will be useful in the subsequent sections. These definitions appear in most
expositions on convex analysis, e.g. see (Rockafellar, 1997).

• Convex conjugate: For a function ϕ : Rn 7→ ∪{±∞}, its convex conjugate, denoted as ϕ∗, is defined according to

ϕ∗(y) = sup
x∈Rn

(xT y − ϕ(x)). (16)

Moreover, ϕ is convex iff there exists a function ψ such that ϕ = ψ∗.

• Strong convexity: A function ϕ : Rn 7→ R ∪ {±∞} is α-strongly convex if for all x, y, z ∈ Rn and t ∈ [0, 1]:

ϕ(tx+ (1− t)y) ≤ tϕ(x) + (1− t)ϕ(y)− α

2
t(1− t)∥x− y∥2.

• Smoothness: A function ϕ : Rn 7→ R ∪ {±∞} is β-smooth if it is differentiable and for all x, y ∈ Rn:

ϕ(y) ≤ ϕ(x) +∇ϕ(x)⊤(y − x) +
β

2
∥x− y∥2.

For a lower semi-continuous cost function c : Rn × Rn → R, we recall the following definition.

• inf-c convolution: For a function f : Rn → R ∪ {±∞}, its inf-c convolution, denoted by f c, is defined according to

f c(y) = inf
x∈Rn

[c(x, y)− f(x)] . (17)

Moreover, f is said to be c-concave if there exists a function g such that f = gc.

Remark A.1. With a squared cost function c(x, y) = 1
2∥x− y∥

2
2, the c-concave property is related to convexity. In particular,

f is c-concave if and only if ϕ = 1
2∥ · ∥

2 − f is convex.

Moreover, the inf-c convolution and convex conjugate are related according to:
1

2
∥ · ∥2 − f c = (

1

2
∥ · ∥2 − f)∗.

We also recall the definition of sub-differential and gradient of a convex function.

• Sub-differential and gradient: The sub-differential of a convex function ϕ : Rn → R ∪ {±∞} at x ∈ Rn, denoted
by ∂ϕ(x), is a set containing all vectors y ∈ Rn such that

ϕ(z) ≥ ϕ(x) + y⊤(z − x), ∀z ∈ Rn.

Moreover, ϕ is differentiable at x, with derivative ∇ϕ(x), iff ∂ϕ(x) = {∇ϕ(x)}.

The definition of the convex conjugate and sub-differential imply the relationship (Rockafellar, 1997, Thm. 23.5)

ϕ(x) + ϕ∗(y) = x⊤y ⇔ x ∈ ∂ϕ∗(y) ⇔ y ∈ ∂ϕ(x).

In particular, when ϕ∗ is differentiable at y ∈ Rn, we have the identity

ϕ∗(y) = ∇ϕ∗(y)⊤y − ϕ(∇ϕ∗(y)).

The relationship between convexity and c-concave, when c is the squared cost, implies the similar identity when f c is
differentiable at y ∈ Rn:

f c(y) = c(y, y −∇f c(y))− f(y −∇f c(y)).

Finally, we recall the duality relationship between strong convexity and smoothness (e.g. see (Kakade et al., 2009, Thm. 6)):

ϕ is α-strongly convex iff ϕ∗ is 1
α -smooth.
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A.2. Preliminary on OT theory

In this subsection, we review the problem formulation and key results from OT theory. For a complete treatment of the
subject, see (Villani, 2009).

Given two probability distributions P and Q on Rn, the Monge optimal transportation problem aims to find a map
T : Rn → Rn that solves the optimization problem

inf
T∈T (P,Q)

EZ∼P [c(Z, T (Z))], (18)

where T (P,Q) := {T : Rn → Rn; T#P = Q} is the set of all transport maps pushing forward P to Q, and c : Rn×Rn →
R is a lower semi-continuous cost function that is bounded from below. The Monge problem is relaxed by replacing
deterministic transport maps with stochastic couplings according to

inf
π∈Π(Q,P )

E(Z′,Z)∼π[c(Z
′, Z)], (19)

where Π(Q,P ) denotes the set of all joint distributions on Rn × Rn with marginals Q and P . This relaxation, due to
Kantorovich, turns the Monge problem into a linear program, whose dual becomes

sup
(f,g)∈Lipc

{Jdual(f, g) := EZ′∼Q[f(Z
′)] + EZ∼P [g(Z)]} (20)

where Lipc is the set of pairs of functions (f, g), from Rn → R, that satisfy the constraint

f(z) + g(z′) ≤ c(z, z′), ∀z, z′ ∈ Rn.

The well-known Brenier’s result (Brenier, 1991) establishes the existence and uniqueness of the solution to the Monge
problem by making a direct connection to the solution of the dual Kantorovich problem.

Theorem A.2 ((Brenier, 1991)). Consider the Monge problem (18) with cost c(z, z′) = ∥z − z′∥2/2. Assume P and Q
have finite second-order moments and P is absolutely continuous with respect to the Lebesgue measure. Then, the Monge
problem admits a unique minimizer T̄ (z) = z −∇f̄ c(z) where f̄ is c-concave and the pair (f̄ , f̄ c) are the unique (up to an
additive constant) maximizer of the dual Kantorovich problem (20).

A.3. Max-min formulation

In this subsection, we present the max-min formulation of the dual Kantorovich problem (20), which is useful for numerical
approximation of OT maps (Makkuva et al., 2020; Rout et al., 2022). The presentation starts with a formal derivation
followed by a proposition supported by rigorous arguments.

The first step is to use the result of Theorem A.2 to replace g with f c, in the dual problem (20), resulting the following
optimization problem

sup
f∈c-Concave

Jdual(f, f
c),

where c-Concave is the set of functions on Rn that are c-concave. Next, we use the definition of f c in (17) to conclude

EZ∼P [f
c(Z)] = EZ∼P [ inf

z∈Rn
c(z, Z)− f(z)] = inf

T∈M(P )
EZ∼P [c(T (Z), Z)− f(T (Z))]

where we assumed that
T (Z) = argmin

z∈Rn

c(Z, z)− f(z), a.e.

for a measurable map T : Rn → Rn. This assumption is valid for T = Id −∇f c whenever f c is differentiable. Combining
these two steps, the Kantorovich dual problem is expressed as the following max-min problem

sup
f∈c-concave

inf
T∈M(P )

{Jmax-min(f, T ) := EZ′∼Q[f(Z
′)] + EZ∼P [c(T (Z), Z)− f(T (Z))]} (21)

The following proposition, which is an extension of the existing result in (Makkuva et al., 2020, Thm. 3.3), connects the
max-min problem to the original Kantorovich problem.
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Proposition A.3. Consider the max-min problem (21) under the assumptions of Thm. A.2. Let (f̄ , f̄ c) be the optimal pair
for the dual Kantorovich problem (20), and T̄ = Id −∇f c the OT map from P to Q. Then, (f̄ , T̄ ) is the unique pair, up to
an additive constant for f̄ , that solves the problem (21), i.e.

sup
f∈c-concave

inf
T∈M(P )

Jmax-min(f, T ) = Jmax-min(f̄ , T̄ ). (22)

and if Jmax-min(f̄ , T̄ ) = Jmax-min(g, S), then g = f̄ + constant and S = T̄ .

Proof. We present the proof in four steps.

Step 1: According to the definition of inf-c convolution (17)

f c(Z) ≤ c(T (Z), Z)− f(T (Z)), a.e.

for all maps T ∈ M(P ). Upon taking the expectation with respect to Z ∼ P , adding EZ′∼Q[f(Z
′)] , and taking the inf

over T ∈ M(P ),

Jdual(f, f
c) ≤ inf

T∈M(P )
Jmax-min(f, T ).

Step 2: For any c-concave function f , introduce fϵ := f − ϵ
2∥ · ∥

2. This transformation ensures that its inf-c convolution
f cϵ is differentiable a.e. (f cϵ = 1

2∥ · ∥2 − ϕ∗ϵ , with ϕϵ := 1
2∥ · ∥2 − fϵ, is 1

ϵ -smooth because ϕϵ is ϵ-strongly convex.
This regularization process is known as Moreau-Yosida approximation (Moreau, 1965)). Because f cϵ is differentiable, the
minimum in the definition of f cϵ (z) is achieved at a unique point z −∇f cϵ (z), concluding the identity

f cϵ (Z) = c(Z −∇f cϵ (Z), Z)− fϵ(Z −∇f cϵ (Z)), a.e.

Using the fact that fϵ(z) ≤ f(z) on the right-hand-side of this identity, we arrive at the inequality

f cϵ (Z) ≥ c(Z −∇f cϵ (Z), Z)− f(Z −∇f cϵ (Z)), a.e.

Taking the expectation over Z ∼ P and adding EZ′∼Q[f(Z
′)] yields

Jdual(f, f
c
ϵ ) ≥ Jmax-min(f, Id −∇f cϵ ) ≥ inf

T∈M(P )
Jmax-min(f, T ),

where the last inequality follows because Id−∇f cϵ ∈ M(P ). Finally, using EZ′∼Q[f(Z
′)] = EZ′∼Q[fϵ(Z

′)]+ ϵM , where
M := EZ′∼Q[

1
2∥Z

′∥2] <∞, concludes

Jdual(fϵ, f
c
ϵ ) + ϵM ≥ inf

T∈M(P )
Jmax-min(f, T ).

Step 3: Combining the results of step 1 and 2 gives

Jdual(f, f
c) ≤ inf

T∈M(P )
Jmax-min(f, T ) ≤ Jdual(fϵ, f

c
ϵ ) + ϵM

Taking the sup over f ∈ c-Concave and the fact that (f̄ , f̄ c) are the maximizer of the dual problem, concludes

Jdual(f̄ , f̄
c) ≤ sup

f∈c-concave
inf

T∈M(P )
Jmax-min(f, T ) ≤ Jdual(f̄ , f̄

c) + ϵM

Taking the limit as ϵ→ 0 concludes the identity

sup
f∈c-concave

inf
T∈M(P )

Jmax-min(f, T ) = Jdual(f̄ , f̄
c)

The proof of (22) is concluded by noting that Jdual(f̄ , f̄
c) = Jmax-min(f̄ , T̄ ) for T̄ = Id −∇f̄ c because f̄ c is differentiable

a.e..
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Step 4: To prove uniqueness, let (g, S) be another optimal pair for Jmax-min. Therefore,

Jmax-min(g, S) = sup
f∈c-concave

inf
T∈M(P )

Jmax-min(f, T ) = Jdual(f̄ , f̄
c). (23)

On the other hand, from the inequalities obtained in the previous steps

Jdual(g, g
c) ≤ Jmax-min(g, S) ≤ Jdual(g, g

c
ϵ)

Taking the limit as ϵ → 0 and the application of monotone convergence theorem implies Jdual(g, g
c) = Jmax-min(g, S),

which with the optimality condition (23), concludes Jdual(g, g
c) = Jdual(f̄ , f̄

c). The uniqueness of the solution (f̄ , f̄ c) to
the dual problem (20) and the differentiability of f̄ c concludes that g = f̄ + const. and S = Id −∇f̄ c = T̄ .

B. Proofs of the theoretical results
B.1. Justification for the consistency condition (8a)

The consistency condition (8a) implies that

E[F (T (X,Y ), Y )] = E[F (X,Y )]

for all measurable and bounded functions F : Rn × Rm → R. In particular, with F (x, y) = f(x)g(y), we have

E[f(T (X,Y ))g(Y )] = E[f(X)g(Y )]

for all measurable and bounded functions f : Rn → R and g : Rm → R. The definition of the conditional expectation
implies

E[f(T (X,Y ))|Y ] = E[f(X)|Y ].

Finally, the independence of X̄ and Y yields

E[f(T (X, y)] = E[f(X)|Y = y], a.e. y

for all measurable and bounded functions f , concluding T (·, y)#PX = PX|Y (·|y) a.e. y.

B.2. Proof of Proposition 2.3

Express the objective function in (8c) as

J(f, T ) = E[J Y
max-min(f(·, Y ), T (·, Y ))]

where
J y

max-min(g, S) = EX∼PX|Y =y
[g(X)] + EX∼PX

[c(S(X), X)− g(S(X)]

is the max-min objective function in (21) with the marginal distributions Q = PX|Y=y and P = PX . Then, according to the
Prop. A.3,

sup
g∈c-Concave

inf
S∈M(PX)

J y
max-min(g, S) = J y

max-min(gy, Sy)

for a unique pair (gy, Sy) where Sy = Id −∇gcy is the OT map from PX to PX|Y=y . Theorem 2.3 of (Carlier et al., 2016)5

verifies that there is a measurable concatenations of the functions gy to construct the pair (f, T ) according to

f(x, y) = gy(x), T (x, y) = x−∇gcy(x).

The concatenated functions solve the optimization problem (8c) and T (·, y) serves the OT map from PX to PX|Y=y, i.e.
By(π) = T (·, y)#π.

5The dual function f is related to the dual function ϕ in (Carlier et al., 2016) with the transformation ϕ(x, y) = 1
2
∥x∥2 − f(x, y).
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B.3. Proof of Proposition 2.4

We present the proof under the change of variable ϕ(x, y) = 1
2∥x∥

2 − f(x, y). Under this change of variable, the condition
f ∈ c-Concavex translates to ϕ ∈ CVXx, i.e. ϕ is convex in the first variable x, and the objective function in (8c) becomes

J(f, T ) = EX∼PX
[∥X∥2]− L(ϕ, T ) (24)

where

L(ϕ, T ) := E(X,Y )∼PXY
[ϕ(X,Y )] + E(X,Y )∼PX⊗PY

[X
⊤
T (X,Y )− ϕ(T (X,Y ), Y )].

Next, we decompose the optimization gap ϵ(f, T ) = ϵ̃(ϕ) + δ̃(ϕ, T ) where,

J(f, T )−min
S
J(f, S) = max

S
L(ϕ, S)− L(ϕ, T ) =: ϵ̃(ϕ)

J(f, T )−min
S
J(f, S) = max

S
L(ϕ, S)− L(ϕ, T ) =: δ̃(ϕ, T )

and ϕ(x, y) = 1
2∥x∥

2 − f(x, y) and similarly ϕ(x, y) = 1
2∥x∥

2 − f(x, y) and we used (24).

The proposition assumption states that ϕ(x, y) = 1
2∥x∥

2 − f(x, y) is α-strongly convex in x. The duality between strong
convexity and smoothness implies that ϕ∗(x, y) is 1

α -smooth in x, where ϕ∗(·, y) is the convex conjugate of ϕ(·, y) for all y.
As a result,

ϕ∗(w, y) ≤ ϕ∗(x, y) +∇xϕ
∗(x, y)⊤(w − x) +

1

2α
∥w − x∥2 := h(w, y).

The inequality ϕ∗(w, y) ≤ h(w, y) implies ϕ(w, y) ≥ h∗(w, y). Consequently, we have the inequality:

ϕ(w, y) ≥ −ϕ∗(x, y) + w⊤x+
α

2
∥w −∇xϕ

∗(x, y)∥2. (25)

This inequality plays a crucial role in deriving lower bounds for the quantities δ̃(ϕ, T ) and ϵ̃(ϕ). We first establish a bound
for δ̃(ϕ, T ) using (25):

δ̃(ϕ, T ) = max
S

L(ϕ, S)− L(ϕ, T )

= L(ϕ,∇xϕ
∗)− L(ϕ, T )

= E(X,Y )∼PX⊗PY
[ϕ∗(X,Y )−X

T
T (X,Y ) + ϕ(T (X,Y ), Y )]

≥ α

2
E(X,Y )∼PX⊗PY

[∥T (X,Y )−∇xϕ
∗(X,Y )∥2]

where the second and third equality follows from the fact that

sup
z∈Rn

{z⊤x− ϕ(z, y)} = ∇ϕ∗x(x, y)⊤x− ϕ(∇xϕ
∗(x, y), y) = ϕ∗(x, y). (26)

Next, we obtain the bound for ϵ̃(ϕ) as follows:

ϵ̃(ϕ)
(1)
= max

S
L(ϕ, S)− L(ϕ, T )

(2)
= L(ϕ,∇ϕ∗x)− L(ϕ, T )

(3)
= E(X,Y )∼PXY

[ϕ(X,Y )− ϕ(X,Y )] + E(X,Y )∼PX⊗PY
[ϕ∗(X,Y )−X

⊤
T (X,Y ) + ϕ(T (X,Y ), Y )]

(4)
= E(X,Y )∼PX⊗PY

[ϕ(T (X,Y ), Y ) + ϕ∗(X,Y )−X
⊤
T (X,Y )]

(5)

≥ α

2
E(X,Y )∼PX⊗PY

[∥T (X,Y )−∇xϕ
∗(X,Y )∥2]

where we used (26) in the second and third steps, (T (X,Y ), Y ) ∼ PXY in the fourth step, and (25) in the fifth step. Finally,
we use the inequality (a+ b)2 ≤ 2a2 + 2b2 to obtain:

E(X,Y )∼PX⊗PY
[∥T (X,Y )− T (X,Y )∥2] ≤ 2E(X,Y )∼PX⊗PY

[∥T (X,Y )−∇xϕ
∗(X,Y )∥2]

+ ∥∇xϕ
∗(X,Y )− T (X,Y )∥2] ≤ 4

α
(δ̃(ϕ, T ) + ϵ̃(ϕ)) =

4

α
ϵ(f, T )
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B.4. Proof of the Prop. 2.7

B.4.1. PROOF OF THE LOWER-BOUND (13A)

The bound is based on the application of the central limit theorem to
∫
gdπ(SIR)−

∫
gd(BY (π)) for any uniformly bounded

function g (e.g. see (Cappé et al., 2009, Thm. 9.1.8)). In particular, the definition of π(SIR) and By(π) imply∫
gdπ(SIR) =

1
N

∑N
i=1 h(Y |Xi)g(Xi)

1
N

∑N
i=1 h(Y |Xi)

=
1
N

∑N
i=1 h̄(Y |Xi)g(Xi)

1
N

∑N
i=1 h̄(Y |Xi)∫

gdBY (π) = E[g(X)|Y ]

where h̄(y|x) = h(y|x)/
∫
h(y|x′)dπ(x′) is the normalized likelihood. Then, subtracting the two expressions and multipli-

cation by
√
N yields

√
N

(∫
gdπ(SIR) −

∫
gdBY (π)

)
=

1√
N

∑N
i=1 h̄(Y |Xi)

(
g(Xi)− E[g(X)|Y ]

)
1
N

∑N
i=1 h̄(Y |Xi)

.

Application of the central limit theorem to the numerator, and law of the large numbers to the denominator, concludes the
convergence

√
N

(∫
gdπ(SIR) −

∫
gdBY (π)

)
−→ Z ∼ N(0, Vh(g)))

where
Vh(g) = E

[
h̄(Y |X̄)2

(
g(X̄)− E[g(X)|Y ]

)2]
and X̄ ∼ π is an independent copy of X . As a result,

lim
N→∞

√
N E

[(∫
gdπ(SIR) −

∫
gdBY (π)

)2
] 1

2

=
√
Vh(g).

Finally, upon using the definition of the metric,

lim inf
N→∞

√
Nd(π(SIR),BY (π)) = lim inf

N→∞
sup
g∈G

√
N E

[(∫
gdπ(SIR) −

∫
gdBy(π)

)2
] 1

2

≥ sup
g∈G

lim inf
N→∞

√
NE

[(∫
gdπ(SIR) −

∫
gdBy(π)

)2
] 1

2

= sup
g∈G

√
Vh(g).

B.4.2. PROOF OF THE UPPER-BOUND (13B)

According to Prop. 2.3 and the definition (12b), we have BY (π) = T (·, Y )#π and π(OT ) = T̂ (·, Y )#π, respectively. As a
result,

d(π(OT ),BY (π)) = d(T̂ (·, Y )#π, T (·, Y )#π)

= sup
g∈G

E

[(∫
gd(T̂ (·, Y )#π)−

∫
gd(T (·, Y )#π)

)2
] 1

2

By expressing ∫
gd(T̂ (·, Y )#π) = E[g(T̂ (X̄, Y )|Y ] and∫
gd(T (·, Y )#π) = E[g(T (X̄, Y )|Y ],
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where X̄ ∼ π is an independent copy of X , we arrive at the identity

d(π(OT ),BY (π)) = sup
g∈G

E
[(

E[g(T̂ (X̄, Y )|Y ]− E[g(T (X̄, Y )|Y ]
)2

] 1
2

.

Upon application of the Jensen’s inequality and the fact that g is Lipschitz with constant 1,

d(π(OT ),BY (π)) ≤ sup
g∈G

E
[(
g(T̂ (X̄, Y )− g(T (X̄, Y )

)2
] 1

2

≤ E
[
∥T̂ (X̄, Y )− T (X̄, Y )∥2

] 1
2

.

Finally, according to Prop. 2.4, the right-hand-side of this inequality is bounded by
√

4
αϵ(f̂ , T̂ ), concluding the upper-

bound (13b).

C. Numerical details and additional results
Our numerical results involve simulation of three filtering algorithms: (1) Ensemble Kalman filter (EnKF) (Evensen, 2003;
Calvello et al., 2022), presented in Algorithm 1; (2) Sequential importance resampling (SIR) (Doucet & Johansen, 2009),
presented in Algorithm 2; (3) OT particle filter (OTPF), presented in Algorithm 3.

In order to implement the OTPF, we used the ResNet neural network architecture to represent both f and T as they appear
in Fig. 2. We used the Adam optimizer with different learning rates for each example to solve the max-min problem (10)
with inner-loop iteration number always equal to 10. The number of particles, N , and the initial particles, is the same for all
three algorithms. The EnKF algorithm is simulated with the additional regularization Γ = σ2

wI where σw is the noise level
in the observation signal, and I is the identity matrix. The numerical results are produced using the following two machines:

1. MACBOOK M1 Pro with 8-core CPU, 14-core GPU, and 16GB unified memory

2. MAC STUDIO M2 Max with 12-core CPU, 30-core GPU, and 64GB unified memory

Algorithm 1 Ensemble Kalman filter (EnKF)

Input: Initial particles {Xi
0}Ni=1 ∼ π0, observation signal {Yt}

tf
t=1, Γ ≻ 0

dynamic model a(x | x′), observation model h(y | x).
for t = 1 to tf do

Propagation:
for i = 1 to N do
Xi

t|t−1 ∼ a(. | Xi
t−1)

Y i
t ∼ h(. | Xi

t|t−1)
end for
Conditioning:
X̂t =

1
N

∑N
i=1X

i
t|t−1

Ŷt =
1
N

∑N
i=1 Y

i
t

Cxy
t = 1

N

∑N
i=1(X

i
t|t−1 − X̂t)⊗ (Y i

t − Ŷt)

Cyy
t = 1

N

∑N
i=1(Y

i
t − Ŷt)⊗ (Y i

t − Ŷt)
Kt = Cxy

t (Cyy
t + Γ)−1

for i = 1 to N do
Xi

t = Xi
t|t−1 +Kt(Yt − Y i

t ).
end for

end for
Output: Particles {Xi

t}Ni=1 for t = 0, . . . , tf .
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Algorithm 2 Sequential importance resampling (SIR)

Input: Initial particles {Xi
0}Ni=1 ∼ π0, observation signal {Yt}

tf
t=1,

dynamic model a(x | x′), observation model h(y | x).
for t = 1 to tf do

Propagation:
for i = 1 to N do
Xi

t|t−1 ∼ a(. | Xi
t−1).

end for
Conditioning:
wi

t =
h(Yt|Xi

t|t−1)∑N
i=1 h(Yt|Xi

t|t−1
)

Xi
t ∼

∑N
i=1 w

i
tδ

i
Xi

t|t−1

end for
Output: Particles {Xi

t}Ni=1 for t = 0, . . . , tf .

C.1. Computational time

The raw computational time of the algorithms, across all of the main examples, is presented in Table 1. It is observed that the
computational time of the OT method is higher than the other two algorithms. These results are included for comprehensive
understanding without an intensive focus on optimizing computational time, which may be achieved by careful selection of
architectures for f and T , tuning the algorithm hyper-parameters, and including an offline training stage that provides a
warm start for training in the online implementation. This is subject of ongoing research. In our preliminary efforts in this
direction, we were able to reduce the computational time of the OT method for the Bimodal dynamic example to 2.9151s
with only 1.3% loss in accuracy. This is achieved by performing the training for the initial step offline for 104 iterations. The
resulting f and T are then used as warm start for the online implementation of the filter, with training iterations reduced to 8.

In order to further study the computational efficiency, we numerically evaluated the relationship/trade-off between computa-
tional time and filtering accuracy, for the bimodal dynamic example in section 3.2, for the OT and SIR methods. In the
implementation of the OT method, we start with the outer-loop iteration number K(out)

(1) = 212 = 4096, as it appears in

algorithm 3, and decrease it according to the rule K(out)
(t+1) = K

(out)
(t) /2 until we reach a predefined final iteration number Ks.

The result is presented in Fig. 10. The filtering accuracy is evaluated in terms of the MMD distance with respect to the exact
posterior distribution. Panel (a) shows the relationship between the MMD distance and computational time, as the problem
dimension n increases. Panel (b) shows the same relationship, but as the number of particles N change. The result for
the OT method is presented for three different values of the final iteration number Ks. The result of panel (a) shows that,
although the absolute computational time of OT is larger than SIR, it scales better with the problem dimension. The results
of panel (b) shows that the accuracy of the OT can be improved by increasing the number of particles, without significant
increase in the computational time, while the SIR method should use a much larger number of particles to reach the same
accuracy.

Table 1: Computational time in seconds for EnKF, SIR and OTPF.

EXAMPLE ENKF SIR OTPF

BIMODEL DYNAMIC EXAMPLE 0.0095 0.0108 34.4555
LORENZ 63 EXAMPLE (200 STEPS) 0.0542 0.0605 50.9799
LORENZ 96 EXAMPLE (200 STEPS) 0.3029 0.3726 79.7705
STATIC IMAGE IN-PAINTING ON MNIST 0.4577 0.3880 529.8863
DYNAMIC IMAGE IN-PAINTING ON MNIST 0.5373 0.3128 728.8051
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Algorithm 3 OT particle filter (OTPF)

Input: Initial particles {Xi
0}Ni=1 ∼ π0, observation signal {Yt}

tf
t=1,

dynamic and observation models a(x | x′), h(y | x)
batch size bs, optimizer and learning rates for f, T , inner loop iterations K (in), outer iteration sequence K (out)

t .
Initialize: initialize neural net f, T according to the architecture in Fig. 2, and their weights θf , θT .
for t = 1 to tf do

Propagation:
for i = 1 to N do
Xi

t|t−1 ∼ a(. | Xi
t−1)

Y i
t ∼ h(. | Xi

t|t−1)
end for
Conditioning:
Create a random permutation {σi}Ni=1

for k = 1 to K (out)
t do

sample bs particles from (Xi
t|t−1, X

σi

t|t−1, Y
i
t )

for j = 1 to K (in) do
Update θT to minimize 1

bs

∑bs
i=1

[
1
2∥T (X

σi

t|t−1, Y
i
t )−Xσi

t|t−1∥
2 − f(T (Xσi

t|t−1, Y
i
t ), Y

i
t )
]

end for
Update θf to minimize 1

bs

∑bs
i=1

[
− f(Xi

t|t−1, Y
i
t ) + f(T (Xσi

t|t−1, Y
i
t ), Y

i
t )
]

end for
for i = 1 to N do
Xi

t = T (Xi
t|t−1, Yt).

end for
end for
Output: Particles {Xi

t}Ni=1 for t = 0, . . . , tf .

C.2. Additional static example

Consider the following observation model:

Y = X + σwW, X ∼ 1

2
N(−1, σ2I2) +

1

2
N(+1, σ2I2) (27)

where W ∼ N(0, I2) and σw = 0.4. In this example, the prior distribution is bimodal, while the observation model is linear.
The numerical result for a varying number of particles is presented in Fig. 11, where it is observed that the OT algorithm is
also capable of pushing a bimodal to an unimodal distribution. At the same time, EnKF underperforms compared to the
other two methods due to its Gaussian approximation of the prior.

In this example, and also the examples in Sec. 3.1, we did not use the EnKF layer in modeling T . We used a ResNet with a
single-block of size 32 and ReLU-activation function. The learning rate of the Adam optimizer is set to 10−3, with the total
number of iterations 2× 104, and batch-size is 128.

C.3. Additional dynamic example

Consider the following model:

Xt = (1− α)Xt−1 + 2λVt, X0 ∼ N (0, In), (28a)
Yt = h(Xt) + λWt, (28b)

where {Vt,Wt}∞t=1 are i.i.d sequences of standard Gaussian random variables, α = 0.1 and λ =
√
0.1. This is the

generalization of the example 15 where now, instead of h(x) = x ⊙ x, the observation function is selected to be linear
h(x) = x or cubic h(x) = x⊙ x⊙ x.

We parameterize f and T as before, except that we included the EnKF layer in T and used two ResNet blocks. The learning
rate for the optimizers of f and T are 10−3 and 2× 10−3, respectively. The total number of iterations is 1024, which is
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Figure 10: Evaluation of the computational time of the OT and SIR algorithms, for the example in Sec. 3.2. The left panel
shows the relationship between the MMD distance and computational time, as the problem dimension n increases. The
computational time of the OT approach is evaluated for three different values of final number of iteration Ks, as explained
in Sec. C.1. The right panel shows the same relationship, but as the number of particles N change.

divided by 2 after each time step (of the filtering problem) until it reaches 64. The batch-size is 64 and the number of
particles N = 1000.

We quantify the performance of the algorithms by computing the maximum mean discrepancy (MMD) distance between
the exact posterior distribution and the approximated distribution formed by the particles. In order to give an accurate
approximation of the true posterior, we use the SIR method with N = 105 particles. The MMD distance between two
empirical distributions µ = 1

N1

∑N1

i=1 δUi and ν = 1
N2

∑N2

i=1 δV i is

MMDemp(µ, ν) =
1

N2
1

N1∑
i=1

N1∑
j=1

k(U i, U j) +
1

N2
2

N2∑
i=1

N2∑
j=1

k(V i, V j)− 2

N1N2

N1∑
i=1

N2∑
j=1

k(U i, V j) (29)

where k(·, ·) denotes the RBF kernel. The kernel bandwidth is selected individually for each example

The numerical results for the linear and cubic observation models are depicted in Fig. 12 and 13, respectively. EnKF
performs better than the other two algorithms in the linear Gaussian setting, while it does not perform as well with the cubic
observation model. It is noted that the OT algorithm’s performance can be enhanced through fine-tuning and additional
training iterations.

C.4. The details of the Lorenz 63 model and additional results

We consider the following Lorenz 63 model:

Ẋ(1)

Ẋ(2)

Ẋ(3)

 =

 σ(X(2)−X(1))
X(1)(ρ−X(3))−X(2)
X(1)X(2)− βX(3)

 , X0 ∼ N (µ0, σ
2
0I3),

Yt =

[
Xt(1)
Xt(3)

]
+ σobsWt,

(30)

where [X(1), X(2), X(3)]⊤ are the variables representing the hidden states of the system, and σ, ρ, and β are the model
parameters. We choose σ = 10, ρ = 28, β = 8/3, µ0 = [25, 25, 25]⊤, and σ2

0 = 10. The observed noise W is a
2-dimensional standard Gaussian random variable with σ2

obs = 10.

We simulated the Lorenz 63 model without any noise in the dynamics; however, we included an artificial noise
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Figure 11: Numerical results for the static example in equation (27). Top-left: Samples {Xi}Ni=1 from the prior
PX ; bottom-left: samples {(Xi, Y i)}Ni=1 from the joint distribution PXY in comparison with the transported samples
{(T (Xσi , Y i), Y i)}Ni=1; rest of the panels: transported samples for Y = 1 for different values of N and three different
algorithms.

N (0, σ2
addedI3), σ

2
added = 1 to the dynamic update step of the algorithms. In order to better study the difference be-

tween the three filters, we initialized the particles from a Gaussian distribution with mean [0, 0, 0], while the true state is
initialized with a Gaussian with mean [25, 25, 25].

The neural network for T is a two-block residual network of size 64 with or without EnKF layer. The learning rate for the
optimizers of f and T are 5× 10−2 and 10−2, respectively. The total number of iterations is 1024, which is divided by 2
after each time step (of the filtering problem) until it reaches 64. Each iteration involves a random selection of a batch of
samples of size 64 from the total of N = 1000 particles.

In the left panel in Fig. 14, we present the trajectories of the true states and particles for all three algorithms. In the right
panel of Fig. 14, we show the mean-squared-error (MSE) of estimating the state by taking the average over 10 independent
simulations. It is observed that both OT settings, with and without the EnKF layer, are performing better than EnKF and SIR
overall. The EnKF layer helps with the performance at the initial stage; however, it requires careful tuning for the learning
rate.

C.5. The Lorenz 96 model

Consider the following Lorenz-96 model:

Ẋ(k) = (X(k + 1)−X(k − 2))X(k − 1)−X(k) + F + σV, for k = 1, . . . , n

Yt =


1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0

Xt + σWt

(31)

for n = 9 where X0 ∼ N (µ0, σ
2
0In) and we choose the convention that X(−1) = X(n − 1), X(0) = X(n), and

X(n+ 1) = X(1), and F = 2 is a forcing constant. We choose the model parameters µ0 = 25 · 1n, and σ2
0 = 102. The

observed noise W is a n-dimensional standard Gaussian random variable with variance equal to 1.

For this experiment, we represent T as a two-block residual network of size 32 with EnKF layer. The learning rate for the
optimizers of f and T are 10−3 and 10−1, respectively. The total number of iterations is 1024, which is divided by 2 after
each time step (of the filtering problem) until it reaches 64. The batch-size is 128, and the total of particles N = 1000.
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Figure 12: Numerical results for the dynamic example (28) where h(Xt) = Xt. The left panel shows the trajectory of the
particles {X1

t , . . . , X
N
t } along with the trajectory of the true state Xt for EnKF, OT, and SIR algorithms, respectively. The

second panel shows the MMD distance with respect to the exact conditional distribution.
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Figure 13: Numerical results for the dynamic example (28) where h(Xt) = Xt ⊙ Xt ⊙ Xt. The left panel shows the
trajectory of the particles {X1

t , . . . , X
N
t } along with the trajectory of the true state Xt for EnKF, OT, and SIR algorithms,

respectively. The second panel shows the MMD distance with respect to the exact conditional distribution.

Figure 14: Numerical results for the Lorenz 63 example (30). The figure shows the trajectory of the particles {Xi} along
with the trajectory of the true state.Each column represents one state, and each row represents one algorithm.

The numerical results are shown in Fig. 15. The columns in panel (a) represent unobserved states, and the rows represent
the results for each algorithm. Panel (b) shows the MSE in estimating the state, averaged over 10 independent simulations.
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The results indicate that the OT algorithm performs as well as the EnKF algorithm, which appears to perform well for this
problem.

(a) Particles trajectory.
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(b) MSE vs time.

Figure 15: Numerical results for the Lorenz 96 example (31). (a) The trajectory of the particles {Xi} along with the
trajectory of the true state; each column represents one of the unobserved state, and each row represents one algorithm; (b)
Comparison of the MSE in estimating the state as a function of time.

C.6. Additional details and results for static image in-painting on MNIST

In this example, we consider the problem of computing conditional distributions on the 100-dimensional latent space
of generative adversarial network (GAN) trained to represent the MNIST digits (Goodfellow et al., 2014). In particular,
denoting the generator by G : R100 → R28×28, we consider the model:

Yt = h(G(X), ct) + σWt, X ∼ N(0, I100),

where the observation function (z, c) ∈ R28×28 × R2 7→ h(z, c) ∈ Rr×r is defined as the r × r window of pixels
z[c(1) : c(1) + r, c(2) : c(2) + r]. The coordinates of the corner ct move from left to right and top to bottom scanning
a partial portion of the image called the observed part. In order to make the problem more challenging, we fed a noisy
measurement of the corner location to the algorithms by adding a uniform random integer between −2 and 2 for each axis.
The observational noise set to be σ = 10−1, with every component of Wt ∼ N(0, 1). While the true image does not change,
we included artificial Gaussian noise N(0, σ2I100) to the particles to avoid particle collapse.

For this example, we used the publicly available codes for a GAN model on MNIST 6 and a classifier achieving an accuracy
exceeding 98% on the MNIST test dataset 7.

The neural network for T is a residual network with size 320 without the EnKF layer. The learning rate for both f and T is
10−3 with 212 = 4096 iterations. Batch-size is 64 and total number of particles N = 1000.

Additional numerical results for this example are presented in Fig. 16. The top row shows the total observed part of the
image up to that time step, and the following 16 rows show the images generated from the particles that approximate the
conditional distribution.

C.7. Additional details and results for dynamic image in-painting on MNIST

We extended the previous static example by adding a dynamic update for the latent variable X as follows:

Xt+1 = (1− α)Xt + σVt,

Yt+1 = h(G(Xt+1), ct+1) + σwWt+1,

6https://github.com/lyeoni/pytorch-mnist-GAN/tree/master
7https://nextjournal.com/gkoehler/pytorch-mnist
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Figure 16: Additional numerical results for the static image in-painting on MNIST. The first row shows the cumulative
total observations up to each time step. The subsequent rows under the red line show 16 particles from the EnKF and SIR
methods, respectively.

where Vt,Wt are standard Gaussian with the appropriate dimension, σ =
√
2α− α2, σw = 10−1, and α = 0.2. The

observation function ht(G(Xt), ct) = G(Xt)[28 − r : 28, ct : ct + r], ct ∼ Unifinteger(1, 28 − r), and r = 12. The OT
algorithm parameters are similar to the static case.

We present the trajectory of the particles in Fig. 17 (a),(b), and (c). The top row shows the true image, and the second row
shows the observation at each time step. The top row shows the total observed part of the image up to that timestep, and the
following 16 rows show the images generated from the particles that approximate the conditional distribution. In Fig. 17(d),
we used an accurate MNIST classifier to represent the histogram of the digits generated from the particles of each algorithm.
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(d) Particles distribution.

Figure 17: Additional numerical results for the dynamic image in-painting on MNIST. (a-b-c) The first row shows the
true image, and the second row shows the observation at each time step. The subsequent rows under the red line show 16
particles from the EnKF, SIR, and OT methods, respectively. (d) The histogram of the digits generated by the particles from
the three algorithms as a function of time, evaluated using an accurate MNIST classifier.
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