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Abstract

Graph neural networks (GNNs) are widely used for modelling graph-structured
data in numerous applications. However, with their inherently finite aggregation
layers, existing GNN models may not be able to effectively capture long-range
dependencies in the underlying graphs. Motivated by this limitation, we propose
a GNN model with infinite depth, which we call Efficient Infinite-Depth Graph
Neural Networks (EIGNN), to efficiently capture very long-range dependencies.
We theoretically derive a closed-form solution of EIGNN which makes training
an infinite-depth GNN model tractable. We then further show that we can achieve
more efficient computation for training EIGNN by using eigendecomposition.
The empirical results of comprehensive experiments on synthetic and real-world
datasets show that EIGNN has a better ability to capture long-range dependen-
cies than recent baselines, and consistently achieves state-of-the-art performance.
Furthermore, we show that our model is also more robust against both noise and
adversarial perturbations on node features.

1 Introduction

Graph-structured data are ubiquitous in the real world. To model and learn from such data, graph rep-
resentation learning aims to produce meaningful node representations by simultaneously considering
the graph topology and node attributes. It has attracted growing interest in recent years, as well as
numerous real-world applications [32].

In particular, graph neural networks (GNNs) are a widely used approach for node, edge, and graph
prediction tasks. Recently, many GNN models have been proposed (e.g., graph convolutional network
[14], graph attention network [26], simple graph convolution [30]). Most modern GNN models
follow a “message passing” scheme: they iteratively aggregate the hidden representations of every
node with those of the adjacent nodes to generate new hidden representations, where each iteration is
parameterized as a neural network layer with learnable weights.

Despite the success existing GNN models achieve on many different scenarios, they lack the ability
to capture long-range dependencies. Specifically, for a predefined number of layers T , these models
cannot capture dependencies with a range longer than T -hops away from any given node. A
straightforward strategy to capture long-range dependencies is to stack a large number of GNN layers
for receiving “messages” from distant nodes. However, existing work has observed poor empirical
performance when stacking more than a few layers [16], which has been referred to as oversmoothing.
This has been attributed to various reasons, including node representations becoming indistinguishable
as depth increases. Besides oversmoothing, GNN models with numerous layers require excessive
computational cost in practice since they need to repeatedly propagate representations across many
layers. For these two reasons, simply stacking many layers for GNNs is not a suitable way to capture
long-range dependencies.
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Recently, instead of stacking many layers, several works have been proposed to capture long-range
dependencies in graphs. Pei et al. [21] propose a global graph method Geom-GCN which builds
structural neighborhoods based on the graph and the embedding space, and uses a bi-level aggregation
to capture long-range dependencies. However, as Geom-GCN still only has finite layers, it still fails
to capture very long range dependencies.

To model longer range dependencies, Gu et al. [10] propose the implicit graph neural network (IGNN),
which can be considered as a GNN model with infinite layers. Thus, IGNN does not suffer from
any a priori limitation on the range of information it can capture. To achieve this, IGNN generates
predictions as the solution to a fixed-point equilibrium equation. Specifically, the solution is obtained
by an iterative solver. Moreover, they require additional conditions to ensure well-posedness of
the model and use projected gradient descent method to train the model. However, the practical
limitations of iterative solvers are widely recognized: they can lack robustness; the generated solution
is approximated; and the number of iterations cannot be known in advance [23]. In our experiments,
we found that IGNN sometimes experiences non-convergence in its iterative solver. Besides the
non-convergence issue, the iterative solver of IGNN can be inefficient as IGNN needs to run it once
per forward or backward pass.

Motivated by these limitations, we propose our Efficient Infinite-Depth Graph Neural Network
(EIGNN) approach, which can effectively capture very long range dependencies in graphs. Instead
of relying on iterative solvers to generate the solution like in IGNN [10], we derive a closed-form
solution for EIGNN without additional conditions, avoiding the need for projected gradient descent
to train the model. Furthermore, we propose to use eigendecomposition to improve the efficiency of
EIGNN, without affecting its accuracy.

The contributions of this work are summarized as follows:

• To capture long-range dependencies, we propose our infinite-depth EIGNN model. To do this, we
first define our model as the limit of an infinite sequence of graph convolutions, and theoretically
prove its convergence. Then, we derive tractable forward and backward computations for EIGNN.

• We then further derive an eigendecomposition-based approach to improve the computa-
tional/memory complexity of our approach, without affecting its accuracy.

• We empirically compare our model to recent baseline GNN models on synthetic and real-world
graph datasets. The results show that EIGNN has a better ability to capture very long range
dependencies and provides better performance compared with other baselines. Moreover, the
empirical results of noise sensitivity experiments demonstrate that EIGNN is more robust against
both noise and adversarial perturbations.

Paper outline In Section 2, we provide an overview of GNNs, implicit models, and the oversmooth-
ing problem. Section 3 introduces the background and major mathematics symbols used in this paper.
In Section 4, we first present the EIGNN model and discuss how to train this infinitely deep model
in practice. In addition, we show that with eigendecomposition we can reduce the complexity and
achieve more efficient computation for EIGNN. In Section 5, we empirically compare EIGNN with
other representative GNN methods.

2 Related work

Graph neural network models GNN models have been successfully used on various graph related
tasks [32, 34, 27, 28]. Pioneered by Graph Convolutional Networks (GCNs) [14], many convolutional
GNN models [33, 30, 26, 4, 15, 11, 29] use different aggregation schemes and components (e.g.,
attention[26], skip connection[33, 4]). They only have a finite number of aggregation layers, which
makes them unable to capture long-range dependencies. Recurrent GNN models [24, 9, 17, 6]
generally share the same parameters in each aggregation step and potentially allow infinite steps
until convergence. However, as pointed out in Gu et al. [10], their sophisticated training process and
conservative convergence conditions limit the use of these previous methods in practice. Recently,
Gu et al. [10] proposes an implicit graph neural network (IGNN) with infinite depth. IGNN uses an
iterative solver for forward and backward computations, and requires additional conditions to ensure
the convergence of the iterative method. With infinite depth, they aim to capture very long range
dependencies on graphs. Another global method Geom-GCN [21] is also proposed for capturing
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long-range dependencies using structural neighborhoods based on the graph and the embedding space.
However, as Geom-GCN only has finite layers, it fails to capture very long range dependencies.

Implicit models Implicit networks use implicit hidden layers which are defined through an equilib-
rium point of an infinite sequence of computation. This makes an implicit network equivalent to a
feedforward network with infinite depth. Several works [1, 2, 5, 7] show the potential advantages of
implicit models on many applications, e.g., language modeling, image classification, and semantic
segmentation. Besides practical applications, Kawaguchi [13] provides a theoretical analysis on the
global convergence of deep implicit linear models.

Oversmoothing For capturing long-range dependencies, a straightforward method is to stack
more GCN layers. However, Li et al. [16] found that stacking many layers make the learned node
representations indistinguishable, which is named the oversmoothing phenomenon. To mitigate
oversmoothing and allow for deeper GNN models, several empirical and theoretical works [16, 15,
4, 35, 19] have been proposed. However, these models still cannot effectively capture long-range
dependencies, as shown in our empirical experiments (see Section 5).

3 Preliminaries

Let G = (V, E) be an undirected graph with node set V and edge set E , where the number of nodes
n = |V|. In practice, a graph G can be represented as its adjacency matrix A 2 Rn⇥n and its node
feature matrix X 2 Rm⇥n where the feature vector of node i is xi 2 Rm. In node classification task,
given graph data (G, X), graph models are required to produce the prediction ŷi for node i to match
the true label yi.

Simple graph convolution The Simple Graph Convolution (SGC) was recently proposed by Wu
et al. [30]. The pre-softmax output of SGC of depth H can be written as:

fSGC(X,W ) = WXSH 2 Rmy⇥n, (1)

where X 2 Rm⇥n is the node feature matrix, SH =
Q

H

i=1 S 2 Rn⇥n is the product of H normalized
adjacency matrix with added self-loops S 2 Rn⇥n, and W 2 Rmy⇥m is the matrix of the trainable
weight parameters. After the graph convolution, the softmax operation is applied to obtain the
prediction ŷ.

Notation We use ⌦ to represent Kronecker product. � is used to represent element-wise product
between two matrices with the same shape. For a matrix V 2 Rx⇥y , by stacking all columns, we can
get vec[V ] 2 Rxy as the vectorized form of V . The Frobenius norm of V is denoted as kV kF. kV k2
denotes the 2-norm. We use In to represent the identity matrix with size n⇥ n.

4 Efficient Infinite-Depth Graph Neural Networks

To capture long-range dependencies, we propose Efficient Infinite-Depth Graph Neural Networks
(EIGNN). The pre-softmax output of EIGNN is defined as:

f(X,F,B) = B
⇣

lim
H!1

Z(H)
X,F

⌘
, (2)

where F 2 Rm⇥m and B 2 Rmy⇥m represent the trainable weight parameters, and Z(H) = Z(H)
X,F

is
the output of the H-th hidden layer:

Z(l+1) = �g(F )Z(l)S +X (3)

where we are given an arbitrary � 2 (0, 1] and

g(F ) =
1

kF>FkF + ✏F
F>F (4)

with an arbitrary small ✏F > 0.
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Note that g(F ) is constrained by Equation (4) to lie within a Frobenius norm ball of radius < 1,
which prevents divergence of the infinite sequence. EIGNN extends SGC to an infinite depth model
with learnable propagation while additionally adding skip connections. By the designs, EIGNN have
several helpful properties: 1) residual connection, which is also used in finite-depth GNN models
(e.g., APPNP [15] and GCNII [4]) and has shown its importance in graph learning; 2) learnable
weights for propagation on graphs (i.e., g(F)). In contrast, APPNP [15] only directly propagates
information without learnable weights.

As EIGNN is a model with infinite depth, how to conduct forward and backward computation for
training is not obvious. In the rest of this section, we first show how to perform forward and backward
computation for EIGNN. Then we propose to use eigendecomposition to improve the efficiency of
this computation.

4.1 Forward and backward computation

At first glance, it may seem that we cannot compute the infinite sequence of (Z(l))l without iterative
solvers in practice. However, in Proposition 1, we show that the infinite sequence of (Z(l))l is
guaranteed to converge and is computable without iterative solvers.
Proposition 1. Given any matrix X, F and normalized symmetric adjacency matrix S, the infinite
sequence of (Z(l))l is convergent and the limit of the sequence can be written as follows:

lim
H!1

vec[Z(H)] = (I � �[S ⌦ g(F )])�1 vec[X]. (5)

This can be proved by using the triangle inequality of a norm and some properties of the Kronecker
product. The complete proof can be found in Appendix B.1.

Computing f(X,F,B) After getting the limit of the sequence, we can conduct forward compu-
tation without iterative solvers as shown in Proposition 2. In contrast, IGNN [10] heavily relies on
iterative solvers for both forward and backward computation. The motivation to avoid iterative solvers
is that iterative solvers suffer from some commonly known issues, e.g., approximated solutions and
sensitive convergence criteria [23].
Proposition 2. Given any matrices X, F and normalized symmetric adjacency matrix S, with an
arbitrary � 2 (0, 1] and an arbitrary small ✏F > 0, f(X,F,B) of Equation (2) can be obtained
without iterative solvers:

vec[f(X,F,B)] = vec
h
B
⇣

lim
H!1

Z(H)
⌘i

= [In ⌦B] (I � �[S ⌦ g(F )])�1 vec[X]. (6)

Proof. Combining Equation (5) with the property of the vectorization (i.e., vec[AB] = (Im ⌦
A) vec[B]), Equation (6) can be obtained.

Computing @(limH!1 vec[Z(H)
X,F

])

@ vec[F ] In Proposition 3, we show that backward computation can be done
without iterative solvers as well. Without iterative solvers in both forward and backward computation,
we can avoid the issue that the solution of iterative methods is not exact. Specifically, as in IGNN
[10], the forward computation can yield an error through the iterative solver and the backward pass
with the iterative solver can amplify the error from the forward computation. The approximation
errors can lead to degradation performance, which we can avoid in our method.
Proposition 3. Given any matrices X, F and normalized symmetric adjacency matrix S, assuming

an arbitrary � 2 (0, 1] and an arbitrary small ✏F > 0, the gradient
@(limH!1 vec[Z(H)

X,F
])

@ vec[F ] can be
computed without iterative solver:

@(limH!1 vec[Z(H)
X,F

])

@ vec[F ]
= �U�1


S
⇣

lim
H!1

Z(H)
X,F

⌘>
⌦ Im

�
@ vec[g(F )]

@ vec[F ]
, (7)

where U = I � �[S ⌦ g(F )] and the limit can be computed by

lim
H!1

vec[Z(H)
X,F

] = U�1 vec[X].

The proof of Proposition 3 is strongly related to the implicit function theorem. See Appendix B.2 for
the complete proof.
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Computing the gradients of objective functions With the gradients of the infinite sequence, the
gradients of objective functions can be obtained. Define the objective function to be minimized by:

L(B,F ) = `Y (f(X,F,B)).

Here, `Y is an arbitrary differentiable function; for example, it can be set to the cross-entropy
loss or square loss with the label matrix Y 2 Rmy⇥n. Let fX,F,B = f(X,F,B) and ZX,F =

limH!1 Z(H)
X,F

. Then using the chain rule with Equation (7), we have

@L(B,F )

@ vec[F ]
= �

@`Y (fX,F,B)

@ vec[fX,F,B ]
[In ⌦B]U�1

⇥
SZ>

X,F
⌦ Im

⇤ @ vec[g(F )]

@ vec[F ]
(8)

and
@L(B,F )

@ vec[B]
=

@`Y (fX,F,B)

@ vec[fX,F,B ]
[Z>

X,F
⌦ Imy

], (9)

where ZX,F = (I � �[S ⌦ g(F )]) vec[X]. The full derivation of Equation (8) and (9) can be found
in Appendix B.3.

4.2 More efficient computation via eigendecomposition

In the previous subsection, we show that even with the infinite depth of EIGNN, forward and
backward computations can be conducted without iterative solvers. However, this requires us to
calculate and store the matrix U = I � �[S ⌦ g(F )] 2 Rmn⇥mn, which can be expensive in terms
of memory consumption. For example, when m = 100, n = 1000, the memory requirement of U
becomes around 40 GB which usually cannot be handled by a commodity GPU. In this subsection,
we show that we can achieve more efficient computation via eigendecomposition. We avoid the
matrix U by using eigendecomposition of much smaller matrices g(F ) = QF⇤FQ>

F
2 Rm⇥m

and S = QS⇤SQ>
S

2 Rn⇥n separately. Therefore, we reduce the memory complexity from an
mn⇥mn matrix to two matrices with sizes m⇥m and n⇥n respectively. We first define G 2 Rm⇥n

where Gij = 1/(1� �(⇤̄F ⇤̄>
S
)ij). The output of EIGNN and the gradient with respect to F can be

computed as follows:
f(X,F,B) = BQF (G � (Q>

F
XQS))Q

>
S
, (10)

rvec[F ]L(B,F ) = �

✓
@ vec[g(F )]

@ vec[F ]

◆>
vec


QF

✓
G �

✓
Q>

F
B> @`Y (fX,F,B)

@fX,F,B

QS

◆◆
Q>

S
SZ>

X,F

�
,

(11)
where ZX,F = QF (G � (Q>

F
XQS))Q>

S
2 Rm⇥n. The complete derivations of Equation (10) and

(11) are presented in Appendix B.4.

Further improvements via avoiding @ vec[g(F )]
@ vec[F ] As shown in Equation (10) and (11), we can avoid

the mn ⇥ mn matrix, but this still requires us to deal with the mm ⇥ mm matrix @ vec[g(F )]
@ vec[F ] in

Equation (11). We show that we can further avoid this as well. Therefore, the memory complexity
for the computation of the gradient with respect to F reduces from O(m4) to O(n2) if n > m, or
O(m2) otherwise.

rFL(B,F ) =
�

kF>FkF + ✏F
F

 
(R+R>)�

2
⌦
F>F,R

↵
F

kF>Fk2F + ✏F kF>FkF
F>F

!
2 Rm⇥m,

(12)
where

R = QF

✓
G �

✓
Q>

F
B> @`Y (fX,F,B)

@fX,F,B

QS

◆◆
Q>

S
SZ>

X,F
2 Rm⇥m.

Appendix B.5 shows the full derivation of Equation (12). Note that @`Y (fX,F,B)
@fX,F,B

can be easily
calculated by modern autograd frameworks (e.g., PyTorch [20]). For the gradient rBL(B,F ), it
can be directly obtained by applying chain rule with @`Y (fX,F,B)

@fX,F,B

since B is not within the infinite
sequence. Thus, we omit the formula here.
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4.3 Comparison with other GNNs with infinite depth

Comparing with IGNN [10], our model EIGNN can directly obtain a closed-form solution rather
than relying on an iterative solver. Thus, we avoid some common issues of iterative solvers [23], e.g.,
approximated solutions and sensitivity to hyper-parameters. IGNN requires additional conditions to
ensure convergence, whereas EIGNN is also an infinite-depth GNN model but avoids such conditions.
Without restrictions on the weight matrix, even as a linear model, EIGNN achieves better performance
than IGNN as shown in the empirical experiments. Previous work also shows that a linear GNN
can achieve comparable performance compared with GCNs [30]. APPNP and PPNP [15] separate
predictions from the propagation scheme where PPNP can be treated as considering infinitely many
aggregation layers as well via the personalized pagerank matrix. However, the propagation of APPNP
and PPNP is not learnable. This is completely different from IGNN and EIGNN, and limits the
model’s representation power. Besides that, PPNP requires performing a costly matrix inverse
operation for a dense n⇥ n matrix during training.

Time complexity analysis Besides the aforementioned advantages of EIGNN over IGNN, using
eigendecomposition also has an efficiency advantage over using iterative solvers (like in IGNN).
If we were to use iterative methods in EIGNN, we could iterate Equation (3) until convergence.
Each computation of gradients has a theoretical computational complexity of O(K(m2n+mn2))
where K is the number of iterations of an iterative method. With eigendecomposition, the time
complexity of computing the limit of the infinite sequence is O(m3 +m2n). During training, the
eigendecomposition of g(F ) requires the cost of O(m3). Thus, the complexity is O(m3 +m2n) in
total. In practice, for large real-world graph settings, the number of nodes n is generally larger than
the number of feature dimensions m, which makes m3 < mn2. Therefore, using eigendecomposition
for training is more efficient than using iterative methods for infinite-depth GNNs.

In the above analysis, we omit the time complexity of the eigendecomposition of S since it is a
one-time preprocessing operation for each graph. Specifically, after obtaining the result of eigende-
composition of S, it can always be reused for training and inference. The time complexity of a plain
full eigendecomposition of S is O(n3). In some cases where the complexity of the preprocessing
is of importance, we can consider using truncated eigendecomposition or graph coarsening [12] to
mitigate the cost. Regarding this, we provide more discussions in Appendix D.

5 Experiments

In this section, we demonstrate that EIGNN can effectively learn representations which have the
ability to capture long-range dependencies in graphs. Therefore, EIGNN achieves state-of-the-art
performance for node classification task on both synthetic and real-world datasets. Specifically, we
conduct experiments1 to compare EIGNN with representative baselines on seven graph datasets
(Chains, Chameleon, Squirrel, Cornell, Texas, Wisconsin, and PPI), where Chains is a synthetic
dataset used in Gu et al. [10]. Chameleon, Squirrel, Cornell, Texas, and Wisconsin are real-world
datasets with a single graph each [21] while PPI is a real-world dataset with multiple graphs [11].
Detailed descriptions of datasets and settings about experiments can be found in Appendix C.

5.1 Evaluation on synthetic graphs

Synthetic experiments & setup In order to directly test existing GNN models’ abilities for
capturing long-range dependencies of graphs, like in Gu et al. [10], we use the Chains dataset, in
which the model is supposed to classify nodes on the graph constructed by several chains. The label
information is only encoded in the starting end node of each chain. Suppose we have c classes, nc

chains for each class, and l nodes in each chain, then the graph has c ⇥ nc ⇥ l nodes in total. For
training/validation/testing split, we consider 5%/10%/85% which is similar with the semi-supervised
node classification setting [14]. We select several representative baselines to compare (i.e., IGNN
[10], GCN [14], SGC [30], GAT [26], JKNet [33], APPNP [15], GCNII [4], and H2GCN [36]). The
hyper-parameter setting and details about baselines’ implementation can be found in Appendix C.2.

1The implementation can be found at https://github.com/liu-jc/EIGNN
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(a) Results of binary classification (b) Results of multiclass classification

Figure 1: Averaged accuracies with respect to the length of chains.

Results and analysis We first consider binary classification (c = 2) with 20 chains of each class
as in Gu et al. [10]. We conduct experiments on graphs with chains of different lengths (10 to 200
with the interval 10). The averaged accuracies with respect to the length of chains are illustrated in
Figure 1a. In general, EIGNN and IGNN always outperform the other baselines. GCN, SGC and
GAT provide similarly poor performances, which indicates that these three classic GNN models
cannot effectively capture long-range dependencies. H2GCN has an even worse performance than
GAT, SGC, GCN, which is caused by its ego- and neighbor-embedding separation focusing more
on ego-embedding rather than distant information. APPNP, JKNet, GCNII are either designed
to consider different range of neighbors or to mitigate oversmoothing [16, 33]. Despite that they
outperform GCN, SGC and GAT, they still perform worse than implicit models with infinitely
deep layers (i.e., EIGNN and IGNN) since finite layers for aggregations cannot effectively capture
underlying dependencies along extremely long chains (e.g., with length > 30). Intuitively, increasing
the number of layers should improve the model’s ability to capture long-range dependencies. However,
stacking layers requires excessive computational cost and causes oversmoothing which degrades the
performance. Appendix C.5 shows the results of APPNP, JKNet and GCNII with a increased number
of layers, which illustrates that simply stacking layers cannot effectively help to capture long-range
dependencies. Comparing EIGNN and IGNN, they both perfectly capture the long-range dependency
when the length is less than 30, while the performance of IGNN generally decreases when the length
increases.

In addition to binary classification used in Gu et al. [10], we also conduct experiments on multi-class
classification (c = 5) to evaluate the ability of capturing long-range dependencies on a generalized
setting. Figure 1b shows that EIGNN still easily maintains 100% test accuracy on multi-class
classification. In contrast, all other baselines experience performance drops compared to binary
classification. On multi-class classification, EIGNN and IGNN consistently outperform the other
baselines, verifying that models with infinitely deep layers have advantages for capturing long-range
dependencies.

Figure 2: Mean accuracies compar-
ison between the finite-depth and
infinite-depth IGNN.

On both classification and multiclass classification settings, as
shown in Figure 1, IGNN cannot always achieve 100% test ac-
curacy, especially when the length is longer than 30. However,
IGNN is supposed to capture dependencies on infinite-length
chains as it is an implicit model with infinite depth. We con-
jecture that the reason for the inferior performance is that the
iterative solver in IGNN cannot easily capture all dependencies
on extremely long chains.

Finite-depth IGNN v.s. Infinite-depth IGNN To verify
the hypothesis mentioned above, we conduct an additional
experiment considering two kinds of IGNN, i.e., finite-depth
IGNN and infinite-depth IGNN (the version proposed in Gu
et al. [10]). On a dataset with chain length l, for finite-depth
IGNN, we use l hidden layers which makes it able to capture
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Table 2: Results on real-world datasets: mean accuracy (%) ± stdev over different data splits. “*"
denotes that the results are obtained from [21].

Cornell Texas Wisconsin Chameleon Squirrel
#Nodes 183 183 251 2,277 5,201
#Edges 280 295 466 31,421 198,493
#Classes 5 5 5 5 5

EIGNN 85.13±5.57 84.60±5.41 86.86±5.54 62.92±1.59 46.37±1.39
IGNN [10] 61.35±4.84 58.37±5.82 53.53±6.49 41.38±2.53 24.99±2.11
Geom-GCN* [21] 60.81 67.57 64.12 60.90 38.14
SGC [30] 58.91±3.15 58.92±4.32 59.41±6.39 40.63±2.35 28.4±1.43
GCN [14] 59.19±3.51 64.05±5.28 61.17±4.71 42.34±2.77 29.0±1.10
GAT [26] 59.46±6.94 61.62±5.77 60.78±8.27 46.03±2.51 30.51±1.28
APPNP [15] 63.78±5.43 64.32±7.03 61.57±3.31 43.85±2.43 30.67±1.06
JKNet [33] 58.18±3.87 63.78±6.30 60.98±2.97 44.45±3.17 30.83±1.65
GCNII [4] 76.75±5.95 73.51±9.95 78.82±5.74 48.59±1.88 32.20±1.06
H2GCN [36] 82.22±5.67 84.76±5.57 85.88±4.58 60.30±2.31 40.75±1.44

dependencies with up to l-hops. As shown in Figure 2, IGNN-finite always outperforms IGNN
when the length of chains becomes longer. This confirms that the iterative solver used in infinite-
depth IGNN is unable to capture all dependencies in longer chains. Note that we use the official
implementation2 of IGNN and follow the exact same setting (e.g., hyperparameters) as in Gu et al.
[10]. This can be caused by the approximated solutions generated by iterative solvers and the
sensitivity to hyper-parameters of iterative solvers (e.g., convergence criteria). To further support this
hypothesis, we illustrate train/test loss trajectories of IGNN-finite and IGNN in Appendix C.3.

Table 1: Training time per epoch with respect
to different l and nc

(l, nc) EIGNN IGNN IGNN-finite

(100, 20) 4.05ms 27.36ms 74.61ms
(200, 20) 8.03ms 29.88ms 145.78ms
(100, 30) 6.03ms 64.94ms 76.31ms
(200, 30) 16.0ms 60.31ms 146.60ms

Efficiency comparison Besides the performance
comparison, on Table 1, we also report the train-
ing time per epoch of different models (i.e., EIGNN,
IGNN, and IGNN-finite) on datasets with varying
length l and the number of chains nc. On datasets
with different chain length l, we set the number of
hidden layers to l for IGNN-finite as mentioned in
the last paragraph. EIGNN requires less training time
than IGNN and IGNN-finite. IGNN-finite with many
hidden layers (i.e., >100) spends much more training
time than implicit models (i.e., IGNN and EIGNN),
which shows the efficiency advantage of implicit models when capturing long-range dependencies
is desired. Note that EIGNN requires precomputation for eigendecomposition on adjacency matrix.
After that, the results can be saved to the disk for further use. Thus, this operation is only conducted
once for each dataset, which is tractable and generally requires less than 30 seconds in the experiment.

5.2 Evaluation on real-world datasets

Real-world datasets & setup Besides the experiments on synthetic graphs, following Pei et al.
[21], we also conduct experiments on several real-world heterophilic graphs to evaluate the model’s
ability to capture long-range dependencies. As nodes with the same class are far away from each other
in heterophilic graphs, this requires models to aggregate information from distant nodes. Cornell,
Texas, and Wisconsin are web-page graphs of the corresponding universities while Chameleon and
Squirrel are web-page graphs of Wikipedia of the corresponding topic.

In addition, to show that EIGNN is applicable to multi-label multi-graph inductive learning, we
also evaluate EIGNN on a commonly used dataset Protein-Protein Interation (PPI). PPI contains
multiple graphs where nodes are proteins and edges are interactions between proteins. We follow the
train/validation/test split used in GraphSAGE [11].

2https://github.com/SwiftieH/IGNN
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Results and analysis As shown in Table 2, in general, EIGNN outperforms other baselines on
most datasets. On Texas, EIGNN provides a similar mean accuracy compared with H2GCN which
generally provides the second best performance on other real-world datasets. H2GCN focuses
more on different designs about aggregations [36]. In contrast, EIGNN performs well through
a different approach (i.e., capturing long-range dependencies). In terms of capturing long-range
dependencies, H2GCN lacks this ability as demonstrated in our synthetic experiments (see Figure
1). Geom-GCN outperforms several baselines (i.e., SGC, GCN, GAT, APPNP and JKNet), which
is attributed to its ability to capture long-range dependencies. However, GCNII provides better
mean accuracies than Geom-GCN. GCNII with many aggregation layers stacked is designed for
mitigating the oversmoothing issue. Thus, this result suggests that alleviating the oversmooth-
ing issue can also improve the model’s ability to capture long-range dependencies. Note that
Geom-GCN and IGNN are both significantly outperformed by EIGNN. Therefore, it indicates that
they are still not effective enough in capturing long-range dependencies on heterophilic graphs.

Table 3: Multi-label node classifi-
cation on PPI: Micro-F1 (%).

Method Micro-F1

Multi-Layer Perceptron 46.2
GCN [14] 59.2
GraphSAGE [11] 78.6
SSE [6] 83.6
GAT [26] 97.3
IGNN [10] 97.6

EIGNN 98.0

Table 3 reports the micro-averaged F1 scores of EIGNN and
other popular baseline methods on PPI dataset. As we fol-
low the exactly same setting used in Gu et al. [10], the results
of baselines are obtained from Gu et al. [10]. From Table 3,
EIGNN achieves better performance compared with other base-
lines, which can be attributed to the ability of EIGNN to capture
long-range dependencies between proteins on PPI dataset. Ad-
ditionally, we also conduct the efficiency comparison between
EIGNN and IGNN. On average, for training an epoch, EIGNN
requires 2.23 seconds, whereas IGNN spends 35.03 seconds.
As suggested in IGNN [10], the training generally requires more
than 1000 epochs. Besides the training time, EIGNN needs
a one-time preprocessing for eigendecomposition on S which
costs 40.59 seconds. Therefore, considering both preprocessing
and training, EIGNN still requires less time compared with IGNN.

5.3 Noise sensitivity

Recent research [31, 37] shows that GNNs are vulnerable to perturbations, and El Ghaoui et al.
[7] analyze the potential robustness properties of an implicit model. Thus, in this subsection, we
empirically examine the potential benefit of EIGNN on robustness against noise. For simplicity, we
add perturbations only to node features. Experiments on synthetic datasets and real-world datasets
are both conducted.

Figure 3: Accuracy on datasets
with different feature noise.

Synthetic experiments On synthetic chain datasets, we add
random perturbations to node features as in Wu et al. [31].
Specifically, we add uniform noise ✏ ⇠ U(�↵,↵) to each
node’s features for constructing noisy datasets. Figure 3 shows
that across different noise levels, EIGNN consistently outper-
forms IGNN. This indicates that EIGNN is less vulnerable to
noisy features.

Real-world experiments On real-world datasets, we use two
classic adversarial attacks (i.e., FGSM [8] and PGD [18]) to
add perturbations on node features. See the detailed setting
in Appendix C.2. We compare three models (i.e., EIGNN,
H2GCN, IGNN) on Cornell, Texas, and Wisconsin under dif-
ferent level perturbations. As we can observe from Table 4,
EIGNN consistently achieves the best performance under different perturbation rates on all three
datasets. Specifically, EIGNN outperforms H2GCN by a larger margin when the perturbation rate is
higher. Under FGSM with a perturbation rate larger than 0.001, H2GCN is even outperformed by
IGNN which has worse performance under 0.0001 perturbation rate.

In summary, the above results show that EIGNN is generally more robust against perturbations com-
pared with H2GCN. The intuitive reason is that EIGNN is not/less sensitive to local neighborhoods,
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Table 4: Accuracy (%) under attacks with different perturbations.
Attack FGSM PGD
Perturbation 0.0001 0.001 0.01 0.0001 0.001 0.01

Corn.
EIGNN 85.13±5.57 84.05±5.59 72.70±6.56 85.13±5.57 84.05±5.59 73.24±6.45
H2GCN 79.46±5.16 26.49±8.62 2.16±2.36 82.97±5.27 65.13±9.00 25.68±8.65
IGNN 61.08±3.66 60.54±4.22 57.30±5.51 61.07±3.66 60.54±4.22 57.84±5.16

Texas
EIGNN 84.33±5.77 83.79±5.26 74.59±4.05 84.33±5.77 83.79±5.27 75.14±4.32
H2GCN 81.35±6.22 39.79±9.05 7.30±7.74 84.86±5.57 70.54±6.89 36.22±7.57
IGNN 57.84±5.16 57.28±5.64 53.51±5.10 57.84±5.16 57.30±5.64 53.51±5.10

Wisc.
EIGNN 86.67±6.19 84.90±6.45 70.00±6.73 86.67±6.19 85.10±6.34 71.96±6.76
H2GCN 83.53±4.04 47.84±6.51 4.12±3.66 84.90±3.62 77.25±4.13 38.04±6.52
IGNN 53.53±4.39 53.14±4.06 47.26±3.77 53.53±4.39 53.14±4.06 47.84±3.53

while finite-depth GNNs (e.g., H2GCN) could be very sensitive to local neighborhoods. Finite-depth
GNNs usually only have a few layers and the node representations would be changed a lot when
aggregating from perturbed node features. In contrast, EIGNN, as an infinite-depth GNN model,
can consider more about global information and become less sensitive to perturbations from local
neighborhoods.

6 Conclusion

In this paper, we address an important limitation of existing GNNs: their lack of ability to capture
long-range dependencies. We propose EIGNN, a GNN model with implicit infinite layers. Instead of
using iterative solvers like in previous work, we derive a closed-form solution of EIGNN with rigorous
proofs, which makes training tractable. We further achieve more efficient computation for training
our model by using eigendecomposition. On synthetic experiments, we demonstrate that EIGNN
has a better ability to capture long-range dependencies. In addition, it also provides state-of-the-art
performance on real-world datasets. Moreover, our model is less susceptible to perturbations on node
features compared with other models. One of the potential limitations of our work is that EIGNN
can be slow when the number of feature dimensions is very large (e.g., 1 million), which is rare in
practical GNN settings. Future work could propose a new model which allows for efficient training
even with large feature dimension.
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