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Abstract

While theoretically appealing, the application of the Wasserstein distance to1

large-scale machine learning problems has been hampered by its prohibitive2

computational cost. The sliced Wasserstein distance and its variants improve the3

computational efficiency through the random projection, yet they suffer from low4

accuracy if the number of projections is not sufficiently large, because the majority5

of projections result in trivially small values. In this work, we propose a new family6

of distance metrics, called augmented sliced Wasserstein distances (ASWDs),7

constructed by first mapping samples to higher-dimensional hypersurfaces parame-8

terized by neural networks. It is derived from a key observation that (random) linear9

projections of samples residing on these hypersurfaces would translate to much10

more flexible nonlinear projections in the original sample space, so they can capture11

complex structures of the data distribution. We show that the hypersurfaces can12

be optimized by gradient ascent efficiently. We provide the condition under which13

the ASWD is a valid metric and show that this can be obtained by an injective neural14

network architecture. Numerical results demonstrate that the ASWD significantly15

outperforms other Wasserstein variants for both synthetic and real-world problems.16

1 Introduction17

Comparing samples from two probability distributions is a fundamental problem in statistics and18

machine learning. The optimal transport (OT) theory [Villani, 2008] provides a powerful and flexible19

theoretical tool to compare degenerative distributions by accounting for the metric in the underlying20

spaces. The Wasserstein distance, which arises from the optimal transport theory, has become an21

increasingly popular choice in various machine learning domains ranging from generative models22

to transfer learning [Gulrajani et al., 2017; Arjovsky et al., 2017; Kolouri et al., 2019b; Cuturi and23

Doucet, 2014; Courty et al., 2016].24

Despite its favorable properties, such as robustness to disjoint supports and numerical stability [Arjovsky25

et al., 2017], the Wasserstein distance suffers from high computational complexity especially when the26

sample size is large. Besides, the Wasserstein distance itself is the result of an optimization problem27

— it is non-trivial to be integrated into an end-to-end training pipeline of deep neural networks, unless28

one can make the solver for the optimization problem differentiable. Recent advances in computational29

optimal transport methods focus on alternative OT-based metrics that are computationally efficient and30

solvable via a differentiable optimizer [Peyré and Cuturi, 2019]. Entropy regularization is introduced31

in the Sinkhorn distance [Cuturi, 2013] and its variants [Altschuler et al., 2017; Dessein et al., 2018]32

to smooth the optimal transport problem; as a result, iterative matrix scaling algorithms can be applied33

to provide significantly faster solutions with improved sample complexity [Genevay et al., 2019].34

An alternative approach is to approximate the Wasserstein distance through slicing, i.e. linearly35

projecting, the distributions to be compared. The sliced Wasserstein distance (SWD) [Bonneel et al.,36

2015] is defined as the expected value of Wasserstein distances between one-dimensional random37

projections of high-dimensional distributions. The SWD shares similar theoretical properties with the38
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Figure 1: (a) and (b) are visualizations of projections for the ASWD and the SWD between two
2-dimensional Gaussians. (c) and (d) are distance histograms for the ASWD and the SWD between
two 100-dimensional Gaussians. Figure 1(a) shows that the injective neural network embedded in the
ASWD learns data patterns (in theX-Y plane) and produces well-separate projected values (Z-axis)
between distributions in a random projection direction. The high projection efficiency of the ASWD
is evident in Figure 1(c), as almost all random projection directions in a 100-dimensional space lead
to significant distances between 1-dimensional projections. In contrast, random linear mappings in
the SWD often produce closer 1-d projections (Z-axis) (Figure 1(b)); as a result, a large percentage of
random projection directions in the 100-d space result in trivially small distances (Figure 1(d)), leading
to a low projection efficiency in high-dimensional spaces.

Wasserstein distance [Bonnotte, 2013] and is computationally efficient since the Wasserstein distance39

in one-dimensional space has a closed-form solution based on sorting. [Deshpande et al., 2019] extends40

the sliced Wasserstein distance to the max-sliced Wasserstein distance (Max-SWD), by finding a41

single projection direction with the maximal distance between projected samples. The subspace robust42

Wasserstein distance extends the idea of slicing to projecting distributions on linear subspaces [Paty and43

Cuturi, 2019]. However, the linear nature of these projections usually leads to low projection efficiency44

of the resulted metrics in high-dimensional spaces [Deshpande et al., 2019; Kolouri et al., 2019a].45

Different variants of the SWD have been proposed to improve the projection efficiency of the SWD,46

either by introducing nonlinear projections or by optimizing the distribution of random projections.47

Specifically, [Kolouri et al., 2019a] extends the connection between the sliced Wasserstein distance and48

the Radon transform [Radon, 1917] to introduce generalized sliced Wasserstein distances (GSWDs)49

by utilizing generalized Radon transforms (GRTs), which are defined by nonlinear defining functions50

and lead to nonlinear projections. A variant named the GSWD-NN was proposed in [Kolouri et al.,51

2019a] to generate nonlinear projections directly with neural network outputs, but it does not fit into the52

theoretical framework of the GSWD and does not guarantee a valid metric. In contrast, the distributional53

sliced Wasserstein distance (DSWD) and its nonlinear version, the distributional generalized sliced54

Wasserstein distance (DGSWD), improve their projection efficiency by finding a distribution of55

projections that maximizes the expected distances over these projections. The GSWD and the DGSWD56

exhibit higher projection efficiency than the SWD in the experiment evaluation, yet they require the57

specification of the particular form of defining functions from a limited class of candidates. However,58

the selection of defining functions is usually a task-dependent problem and requires domain knowledge,59

and the impact on performance from different defining functions is still unclear.60

In this paper, we present the augmented sliced Wasserstein distance (ASWD), a distance metric61

constructed by first mapping samples to hypersurfaces in an augmented space, which enables flexible62

nonlinear slicing of data distributions for improved projection efficiency (See Figure 1). Our main63

contributions include: (i) We exploit the capacity of nonlinear projections employed in the ASWD64

by constructing injective mapping with arbitrary neural networks; (ii) We prove that the ASWD is a65

valid distance metric; (iii) We provide a mechanism in which the hypersurface where high-dimensional66

distributions are projected onto can be optimized and show that the optimization of hypersurfaces67

can help improve the projection efficiency of slice-based Wasserstein distances. Hence, the ASWD68

is data-adaptive, i.e. the hypersurfaces can be learned from data. This implies one does not need69

to manually design a function from the limited class of candidates; (iv) We demonstrate superior70

performance of the ASWD in numerical experiments for both synthetic and real-world datasets.71
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The remainder of the paper is organized as follows. Section 2 reviews the necessary background.72

We present the proposed method and its numerical implementation in Section 3. Related work are73

discussed in Section 4. Numerical experiment results are presented and discussed in Section 5. We74

conclude the paper in Section 6.75

2 Background76

In this section, we provide a brief review of concepts related to the proposed work, including the77

Wasserstein distance, (generalized) Radon transform and (generalized) sliced Wasserstein distances.78

Wasserstein distance: Let Pk(Ω) be a set of Borel probability measures with finite k-th moment on79

a Polish metric space (Ω,d) [Villani, 2008]. Given two probability measures µ, ν ∈Pk(Ω), whose80

probability density functions (PDFs) are pµ and pν , the Wasserstein distance of order k ∈ [1,+∞)81

between µ and ν is defined as:82

Wk(µ,ν)=

(
inf

γ∈Γ(µ,ν)

∫
Ω

d(x,y)kdγ(x,y)

) 1
k

, (1)

where d(·,·)k is the cost function, Γ(µ,ν) represents the set of all transportation plans γ, i.e. joint83

distributions whose marginals are pµ and pν , respectively. With a slight abuse of notation, we84

interchangeably useWk(µ,ν) andWk(pµ,pν).85

While the Wasserstein distance is generally intractable for high-dimensional distributions, there are86

several favorable cases where the optimal transport problem can be efficiently solved. If µ and ν87

are continuous one-dimensional measures defined on a linear space equipped with theLk norm, the88

Wasserstein distance between µ and ν has a closed-form solution [Peyré and Cuturi, 2019]:89

Wk(µ,ν)=

(∫ 1

0

|F−1
µ (z)−F−1

ν (z)|kdz
) 1
k

, (2)

where F−1
µ and F−1

ν are inverse cumulative distribution functions (CDFs) of µ and ν, respectively.90

Radon transform and generalized Radon transform: The Radon transform [Radon, 1917] maps91

a function f(·) ∈ L1(Rd) to the space of functions defined over spaces of lines in Rd. The Radon92

transform of f(·) is defined by line integrals of f(·) along all possible hyperplanes in Rd:93

Rf(t,θ)=

∫
Rd
f(x)δ(t−〈x,θ〉)dx, (3)

where t∈R and θ ∈ Sd−1 represent the parameters of hyperplanes {x∈Rd | 〈x,θ〉= t}, δ(·) is the94

Dirac delta function, and 〈·,·〉 refers to the Euclidean inner product.95

By replacing the inner product 〈x,θ〉 in Equation (3) with β(x,θ), a specific family of functions named96

as defining function in [Kolouri et al., 2019a], the generalized Radon transform (GRT) [Beylkin, 1984]97

is defined as integrals of f(·) along hypersurfaces defined by {x∈Rd | β(x,θ)= t}:98

Gf(t,θ)=

∫
Rd
f(x)δ(t−β(x,θ))dx, (4)

where t ∈ R, θ ∈ Ωθ while Ωθ is a compact set of all feasible θ, e.g. Ωθ = Sd−1 for99

β(x,θ)=〈x,θ〉 [Kolouri et al., 2019a].100

In practice, we can empirically approximate the Radon transform and the GRT of a probability density101

function pµ via:102

Rpµ(t,θ)≈ 1

N

N∑
n=1

δ(t−〈xn,θ〉), (5)

Gpµ(t,θ)≈ 1

N

N∑
n=1

δ(t−β(xn,θ)), (6)

where xn∼ pµ and N is the number of samples. Notably, the Radon transform is a linear bijection103

[Helgason, 1980], and the GRT is a bijection if the defining function β satisfies certain conditions104

[Beylkin, 1984].105
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Sliced Wasserstein distance and generalized sliced Wasserstein distance: By applying the Radon106

transform to pµ and pν to obtain multiple projections, the sliced Wasserstein distance (SWD) decom-107

poses the high-dimensional Wasserstein distance into multiple one-dimensional Wasserstein distances108

which can be efficiently evaluated [Bonneel et al., 2015]. The k-SWD between µ and ν is defined by:109

SWDk(µ,ν)=

(∫
Sd−1

W k
k

(
Rpµ(·,θ),Rpν(·,θ)

)
dθ

) 1
k

, (7)

where the Radon transformR defined by Equation (3) is adopted as the measure push-forward operator.110

The GSWD generalizes the idea of SWD by slicing distributions with hypersurfaces rather than111

hyperplanes [Kolouri et al., 2019a]. The GSWD is defined as:112

GSWDk(µ,ν)=

(∫
Ωθ

W k
k

(
Gpµ(·,θ),Gpν(·,θ)

)
dθ

) 1
k

, (8)

where the GRT G is used as the measure push-forward operator. The Wasserstein distances between113

one-dimensional distributions can be obtained by sorting projected samples and calculating the114

distance between sorted samples [Kolouri et al., 2019b]: with L random projections, the SWD and115

GSWD between µ and ν can be approximated by:116

SWDk(µ,ν)≈
(

1

NL

L∑
l=1

N∑
n=1

|〈xIlx[n],θl〉−〈yIly [n],θl〉|k
) 1
k

, (9)

GSWDk(µ,ν)≈
(

1

NL

L∑
l=1

N∑
n=1

|β(xIlx[n],θl)−β(yIly [n],θl)|k
) 1
k

, (10)

where I lx and I ly are sequences consisting of the indices of sorted samples which satisfy 〈xIlx[n],θl〉≤117

〈xIlx[n+1], θl〉, 〈yIly [n], θl〉 ≤ 〈yIly [n+1], θl〉 in the SWD, and β(xIlx[n], θl) ≤ β(xIlx[n+1], θl),118

β(yIly [n],θl)≤β(yIly [n+1],θl) in the GSWD. It is proved in [Bonnotte, 2013] that the SWD is a valid119

distance metric. The GSWD is a valid metric except for its neural network variant [Kolouri et al., 2019a].120

3 Augmented sliced Wasserstein distances121

In this section, we propose a new distance metric called the augmented sliced Wasserstein distance122

(ASWD), which embeds flexible nonlinear projections in its construction. We also provide an123

implementation recipe for the ASWD.124

3.1 Spatial Radon transform and augmented sliced Wasserstein distance125

In the definitions of the SWD and GSWD, the Radon transform [Radon, 1917] and the generalized126

Radon transform (GRT) [Beylkin, 1984] are used as the push-forward operator for projecting127

distributions to a one-dimensional space. However, it is not straightforward to design defining functions128

β(x,θ) [Kolouri et al., 2019a] for the GRT due to certain non-trivial requirements for the function129

[Beylkin, 1984]. In practice, the assumption of the transform can be relaxed, as Theorem 1 shows130

that as long as the transform is injective, the corresponding ASWD metric is a valid distance metric.131

To help us define the augmented sliced Wasserstein distance, we first introduce the spatial Radon132

transform which includes the vanilla Radon transform and the polynomial GRT as special cases (See133

Remark 2).134

Definition 1. Given an injective mapping g(·) : Rd → Rdθ and a probability measure µ ∈ P (Rd)135

whose probability density function (PDF) is pµ, the spatial Radon transform of pµ is defined as136

Hpµ(t,θ;g)=

∫
Rd
pµ(x)δ(t−〈g(x),θ〉)dx, (11)

where t∈R and θ∈Sdθ−1 are the parameters of hypersurfaces {x∈Rd | 〈g(x),θ〉= t}.137

Remark 1. Note that the spatial Radon transform can be interpreted as applying the vanilla Radon138

transform to the PDF of x̂= g(x), where x∼ pµ. Denote the PDF of x̂ by pµ̂g , the spatial Radon139
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transform defined by Equation (11) can be rewritten as:140

Hpµ(t,θ;g)=Ex∼pµ [δ(t−〈g(x),θ〉)],
=Ex̂∼pµ̂g [δ(t−〈x̂,θ〉)]

=

∫
pµ̂g (x̂)δ(t−〈x̂,θ〉)dx̂

=Rpµ̂g (t,θ). (12)
Hence the spatial Radon transform inherits the theoretical properties of the Radon transform subject141

to certain conditions of g(·) and incorporates nonlinear projections through g(·).142

In what follows, we use f1 ≡ f2 to denote functions f1(·) :X → R and f2(·) :X → R that satisfy143

f1(x)=f2(x) for ∀x∈X .144

Lemma 1. Given an injective mapping g(·) :Rd→Rdθ and two probability measures µ,ν ∈P (Rd)145

whose probability density functions are pµ and pν , respectively, for all t ∈ R and θ ∈ Sdθ−1,146

Hpµ(t,θ;g)≡Hpν(t,θ;g) if and only if pµ≡pν , i.e. the spatial Radon transform is injective. Moreover,147

the spatial Radon transform is injective if and only if the mapping g(·) is an injection.148

See Appendix A for the proof of Lemma 1.149

Remark 2. The spatial Radon transform degenerates to the vanilla Radon transform when the150

mapping g(·) is an identity mapping. When g(·) is a homogeneous polynomial function with odd151

degrees, the spatial Radon transform is equivalent to the polynomial GRT [Ehrenpreis, 2003].152

Appendix B provides the proof of Remark 2.153

We now introduce the augmented sliced Wasserstein distance, by utilizing the spatial Radon transform154

as the measure push-forward operator:155

Definition 2. Given two probability measures µ,ν∈Pk(Rd), whose probability density functions are156

pµ and pν , respectively, and an injective mapping g(·) :Rd→Rdθ , the augmented sliced Wasserstein157

distance (ASWD) of order k∈ [1,+∞) is defined as:158

ASWDk(µ,ν;g)=

(∫
Sdθ−1

W k
k

(
Hpµ(·,θ;g),Hpν(·,θ;g)

)
dθ

) 1
k

, (13)

where θ∈Sdθ−1,Wk is the k-Wasserstein distance defined by Equation (1), andH refers to the spatial159

Radon transform defined by Equation (11).160

Remark 3. Following the connection between the spatial Radon transform and the vanilla Radon161

transform as shown in Equation (12), the ASWD can be rewritten as:162

ASWDk(µ,ν;g)=

(∫
Sdθ−1

W k
k

(
Rpµ̂g (·,θ),Rpν̂g (·,θ)

)
dθ

) 1
k

=SWDk(µ̂g,ν̂g), (14)

where µ̂g and ν̂g are probability measures on Rdθ which satisfy g(x)∼ µ̂g for x∼µ and g(y)∼ ν̂g163

for y∼ν.164

Theorem 1. The augmented sliced Wasserstein distance (ASWD) of order k ∈ [1,+∞) defined by165

Equation (13) with a mapping g(·) :Rd→Rdθ is a metric on Pk(Rd) if and only if g(·) is injective.166

The proof of Theorem 1 is provided in Appendix C. Theorem 1 shows that the ASWD is a metric given167

a fixed injective mapping g(·). In practical applications, the mapping g(·) needs to be optimized. We168

show in Corollary 1.1 that the ASWD between µ and ν with the optimized g(·) is also a metric under169

mild conditions.170

Corollary 1.1. The augmented sliced Wasserstein distance (ASWD) of order k ∈ [1, +∞)171

between two probability µ, ν ∈ Pk(Rd) defined by Equation (13) with the optimal mapping172

g∗(·)=argmax
g

(ASWDk(µ,ν;g)) is a metric on Pk(Rd) when the optimization is confined to the set173

of bounded and injective functions {g(x) :Rd→Rdθ |∃M ∈R,∀x∈Rd,||g(x)||2≤M}.174

The proof of Corollary 1.1 is provided in Appendix D.175

Remark 4. Corollary 1.1 shows that given measures µ1,µ2,µ3 ∈ Pk(Rd), the triangle inequality176

holds for the ASWD when g(·) is optimized for each pair of measures, as shown in Appendix D.177
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3.2 Numerical implementation178

We discuss in this section how to realize injective mapping g(·) with neural networks due to their179

expressiveness and optimize it with gradient based methods.180

Injective neural networks: As stated in Lemma 1 and Theorem 1, the injectivity of g(·) is the sufficient181

and necessary condition for the ASWD being a valid metric. Thus we need specific architecture designs182

on implementing g(·) by neural networks. One option is the family of invertible neural networks183

[Behrmann et al., 2019; Karami et al., 2019], which are both injective and surjective. However, the184

running cost of those models is usually much higher than that of vanilla neural networks. We propose185

an alternative approach by concatenating the input x of an arbitrary neural network to its output φω(x):186

gω(x)=[x,φω(x)]. (15)

It is trivial to show that gω(x) is injective, since different inputs will lead to different outputs. Although187

embarrassingly simple, this idea of concatenating the input and output of neural networks has found188

success in preserving information with dense blocks in the DenseNet [Huang et al., 2017], where the189

input of each layer is injective to the output of all preceding layers.190

Optimization objective: We aim to slice distributions with maximally discriminating hypersurfaces191

between two distributions, so that the projected samples between distributions are most dissimilar192

subject to certain constraints on the hypersurface, as shown in Figure 1. Similar ideas have been193

employed to identify important projection directions [Deshpande et al., 2019; Kolouri et al., 2019a;194

Paty and Cuturi, 2019] or a discriminative ground metric [Salimans et al., 2018] in optimal transport195

metrics. For the ASWD, the parameterized injective neural network gω(·) is optimized by maximizing196

the following objective:197

L(µ,ν;gω,λ)=

(∫
Sdθ−1

W k
k

(
Hpµ(·,θ;gω),Hpν(·,θ;gω)

)
dθ

) 1
k

−Lλ, (16)

where λ>0 and the regularization termLλ=λEx,y∼µ,ν
[
(||gω(x)||2+||gω(y)||2)

]
is used to control198

the norm of the output of gω(·), otherwise the projections may be arbitrarily large.199

Remark 5. The regularization coefficient λ adjusts the introduced non-linearity in the evaluation of200

the ASWD by controlling the norm of φω(·) in Equation (15). In particular, when λ→∞, the nonlinear201

term φω(·) shrinks to 0. The rank of the augmented space is hence explicitly controlled by the flexible202

choice of φω(·) and implicitly regularized byLλ.203

By plugging the optimized g∗ω,λ(·) = argmax
gω

(L(µ, ν; gω, λ)) into Equation (13), we obtain the204

empirical version of the ASWD. Pseudocode is provided in Appendix E.205

4 Related work206

Recent work on slice-based Wasserstein distances mainly focused on improving their projection207

efficiency, leading to a reduced number of projections needed to capture the structure of data208

distributions [Kolouri et al., 2019a; Nguyen et al., 2021]. The GSWD proposes using nonlinear209

projections to achieve this goal, and it has been proved to be a valid distance metric if and only if210

they adopt injective GRTs, which only include the circular functions and a finite number of harmonic211

polynomial functions with odd degrees as their feasible defining functions [Ehrenpreis, 2003]. While212

the GSWD has shown impressive performance in various applications [Kolouri et al., 2019a], its213

defining function is restricted to the aforementioned limited class of candidates. In addition, the214

selection of defining function is usually task-dependent and needs domain knowledge, and the impact215

on performance from different defining functions is still unclear.216

To tackle those limitations, [Kolouri et al., 2019a] proposed the GSWD-NN, which directly takes217

the outputs of a neural network as its projection results without using the standard Radon transform218

or GRTs. However, this brings three side effects: 1) The number of projections, which equals the219

number of nodes in the neural network’s output layer, is fixed, thus new neural networks are needed220

if one wants to change the number of projections. 2) There is no random projections involved in the221

GSWD-NN, as the projection results are determined by the inputs and weights of the neural network. 3)222

The GSWD-NN is a pseudo-metric since it uses a vanilla neural network, rather than Radon transform223
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or GRTs, as its push-forward operator. Therefore, the GSWD-NN does not fit into the theoretical224

framework of GSWD and does not inherit its geometric properties.225

Another notable variant of the SWD is the distributional sliced Wasserstein distance (DSWD) [Nguyen226

et al., 2021]. By finding a distribution of projections that maximizes the expected distances over these227

projections, the DSWD can slice distributions from multiple directions while having high projection228

efficiency. Injective GRTs are also used to extend the DSWD to the distributional generalized sliced229

Wasserstein distance (DGSWD) [Nguyen et al., 2021]. Experiment results show that the DSWD and230

the DGSWD have superior performance in generative modelling tasks Nguyen et al. [2021]. However,231

neither the DSWD nor the DGSWD have solved the problem with the GSWD, i.e. they are still not232

able to produce nonlinear projections adaptively.233

Our contribution differs from previous work in three ways: 1) The ASWD is data-adaptive, i.e. the hyper-234

surfaces where high-dimensional distributions are projected onto can be learned from data. This implies235

one does not need to specify a defining function from limited choices. 2) Unlike GSWD-NN, the ASWD236

takes a novel direction to incorporate neural networks into the framework of sliced-based Wasserstein237

distances while maintaining the properties of sliced Wasserstein distances. 3) Previous work on introduc-238

ing nonlinear projections into Radon transform either is restricted to only a few candidates of defining239

functions (GRTs) or breaks the framework of Radon transforms (neural networks in GSWD-NN), in240

contrast, the spatial Radon transform provides a novel way of defining nonlinear Radon-type transforms.241

5 Experiments242

In this section, we describe the experiments that we have conducted to evaluate performance of the243

proposed distance metric. The GSWD leads to the best performance in a sliced Wasserstein flow244

problem reported in [Kolouri et al., 2019a] and the DSWD outperforms the compared methods in245

the generative modeling task examined in [Nguyen et al., 2021] on CIFAR 10 [Krizhevsky, 2009],246

CelebA [Liu et al., 2015], and MNIST [LeCun et al., 1998] datasets (Appendix H.2). Hence, we247

compare performance of the ASWD with the state-of-the-art distance metrics in the same examples248

and report results as below1. We provide additional experiment results in the appendices, including a249

sliced Wasserstein autoencoder (SWAE) [Kolouri et al., 2019b] using the ASWD (Appendix I), image250

color transferring (Appendix J) and sliced Wasserstein barycenters (Appendix K).251

To examine the robustness of the ASWD, throughout the experiments, we adopt the injective network252

architecture given in Equation (15) and set φω to be a single fully-connected layer neural network253

whose output dimension equals its input dimension, with a ReLU layer as its activation function.254

5.1 Sliced Wasserstein flows255

We first consider the problem of evolving a source distributionµ to a target distribution ν by minimizing256

Wasserstein distances between µ and ν in the sliced Wasserstein flow task reported in [Kolouri et al.,257

2019a].258

∂tµt=−∇SWD(µt,ν), (17)
where µt refers to the updated source distribution at each iteration t. The SWD in Equation (17) can259

be replaced by other sliced-Wasserstein distances to be evaluated. As in [Kolouri et al., 2019a], the260

2-Wasserstein distance was used as the metric for evaluating performance of different distance metrics261

in this task. The set of hyperparameter values used in this experiment can be found in Appendix F.1.262

Without loss of generality, we initialize µ0 to be the standard normal distributionN (0,I). We repeat263

each experiment 50 times and record the 2-Wasserstein distance between µ and ν at every iteration. In264

Figure 2, we plot the 2-Wasserstein distances between the source and target distributions as a function265

of the training epochs and the 8-Gaussian, the Knot, the Moon, and the Swiss roll distributions are266

respective target distributions. For clarity, Figure 2 displays the experiment results from the 6 best267

performing distance metrics, including the ASWD, the DSWD, the SWD, the GSWD-NN 1, which268

directly generates projections through a one layer MLP, as well as the GSWD with the polynomial269

of degree 3, circular defining functions, out of the 12 distance metrics we compared.270

We observe from Figure 2 that the ASWD not only leads to smaller 2-Wasserstein distances, but also271

converges faster by achieving better results with fewer iterations than the other methods in these four272

1Code to reproduce experiment results is available at : https://bit.ly/2Y23wOz.
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Figure 2: The first and third columns are target distributions. The second and fourth columns are log
2-Wasserstein distances between the target distribution and the source distribution. The horizontal
axis show the number of training iterations. Solid lines and shaded areas represent the average values
and 95% confidence intervals of log 2-Wasserstein distances over 50 runs. A more extensive set of
experimental results can be found in Appendix G.1.
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Figure 3: FID scores of generative models trained with different metrics on CIFAR10 (left) and CelebA
(right) datasets withL=1000 projections. The error bar represents the standard deviation of the FID
scores at the specified training epoch among 10 simulation runs.

target distributions. A complete set of experimental results with 12 compared distance metrics and273

8 target distributions are included in Appendix G.1. The ASWD outperforms the compared state-of-274

the-art sliced-based Wasserstein distance metrics with 7 out of the 8 target distributions except for the275

25-Gaussian. This is achieved through the simple injective network architecture given in Equation (15)276

and a one layer fully-connected neural network with equal input and output dimensions throughout the277

experiments. In addition, ablation study is conducted to study the effect of injective neural networks,278

the optimization of hypersurfaces in the ASWD. Details can be found in Appendix G.2.279

5.2 Generative modeling280

In this experiment, we use the sliced-based Wasserstein distances for a generative modeling task281

described in [Nguyen et al., 2021]. The task is to generate images using generative adversarial282

networks (GANs) [Goodfellow et al., 2014] trained on either the CIFAR10 dataset (64×64 resolution)283

[Krizhevsky, 2009] or the CelebA dataset (64×64 resolution) [Liu et al., 2015]. Denote the hidden284

layer and the output layer of the discriminator by hψ andDΨ, and the generator byGΦ, we train GAN285
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Table 1: FID scores of generative models trained with different distance metrics. Smaller scores
indicate better image qualities. L is the number of projections, we run each experiment 10 times and
report the average values and standard errors of FID scores for CIFAR10 dataset and CELEBA dataset.
The running time per training iteration for one batch containing 512 samples is computed based on a
computer with an Intel (R) Xeon (R) Gold 5218 CPU 2.3 GHz and 16GB of RAM, and a RTX 6000
graphic card with 22GB memories.

CIFAR10

L
SWD
[Bonneel et al., 2015]

GSWD
[Kolouri et al., 2019a]

DSWD
[Nguyen et al., 2021] ASWD

FID t (s/it) FID t (s/it) FID t (s/it) FID t (s/it)
10 192.6±5.7 0.32 189.5±6.0 0.35 79.0±4.2 0.48 73.2±3.1 0.55
100 155.0±2.9 0.32 155.9±3.2 0.70 72.2±8.2 0.51 66.7±3.2 0.57
1000 126.0±2.9 0.34 134.5±2.7 2.10 74.3±4.3 1.22 65.5±3.9 1.32

CELEBA
10 118.3±3.1 0.32 143.2±5.5 0.35 105.3±3.4 0.49 99.2±4.3 0.53
100 116.0±2.8 0.33 120.8±1.8 0.69 103.1±3.8 0.51 94.3±2.2 0.56
1000 104.4±2.8 0.34 101.8±1.8 2.14 97.4±2.1 1.21 90.5±3.0 1.31

models with the following objectives:286

min
Φ

SWD(hψ(pr),hψ(GΦ(pz))), (18)

max
Ψ,ψ

Ex∼pr [log(DΨ(hψ(x)))]+Ez∼pz [log(1−DΨ(hψ(GΦ(z))))], (19)

where pz is the prior of latent variable z and pr is the distribution of real data. The SWD in Equation287

(18) is replaced by the ASWD and other variants of the SWD to compare their performance. The288

GSWD with the polynomial defining function and the DGSWD is not included in this experiment due289

to its excessively high computational cost in high-dimensional space.The Fréchet Inception Distance290

(FID score) [Heusel et al., 2017] is used to assess the quality of generated images. More details on291

the network structures and the parameter setup used in this experiment are available in Appendix F.2.292

We run 200 and 100 training epochs to train the GAN models on the CIFAR10 and the CelebA dataset,293

respectively. Each experiment is repeated for 10 times. We report experimental results in Table 1.294

With the same number of projections and a similar computation cost, the ASWD leads to significantly295

improved FID scores among all evaluated distances metrics on both datasets, which implies that images296

generated with the ASWD are of higher qualities. Figure 3 plots the FID scores recorded during the297

training process. The GAN model trained with the ASWD exhibits a faster convergence as it reaches298

smaller FID scores with fewer epochs. Randomly selected samples of generated images are presented299

in Appendix H.1.300

6 Conclusion301

We proposed a novel variant of the sliced Wasserstein distance, namely the augmented sliced302

Wasserstein distance (ASWD), which is flexible, has a high projection efficiency, and generalizes well.303

The ASWD adaptively updates the hypersurfaces used to slice compared distributions by learning from304

data. We proved that the ASWD is a valid distance metric and presented its numerical implementation.305

We reported empirical performance of the ASWD over state-of-the-art sliced Wasserstein metrics306

in various numerical experiments. We showed that ASWD with a simple injective neural network307

architecture can lead to the smallest distance errors over the majority of datasets in a sliced Wasserstein308

flow task and superior performance in generative modeling tasks involving GANs and VAEs. We have309

also evaluated the applications of the ASWD in downstream tasks including color transferring and310

Wasserstein barycenters. What remains to be explored is the impact of the injective neural network311

architecture used in the ASWD, e.g. the application of different types of invertible neural networks312

in the ASWD framework. We leave this topic as a potential research direction of our future work.313
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