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Abstract

Generative molecular design for drug discovery has very recently achieved a wave1

of experimental validation, with language-based backbones being the most com-2

mon architectures employed. The most important factor for downstream success is3

whether an in silico oracle is well correlated with the desired end-point. To this4

end, current methods use cheaper proxy oracles with higher throughput before5

evaluating the most promising subset with high-fidelity oracles. The ability to6

directly optimize high-fidelity oracles would greatly enhance generative design7

and be expected to improve hit rates. However, current models are not efficient8

enough to consider such a prospect, exemplifying the sample efficiency problem.9

In this work, we introduce Saturn, which leverages the Augmented Memory10

algorithm and demonstrates the first application of the Mamba architecture for11

generative molecular design. We elucidate how experience replay with data aug-12

mentation improves sample efficiency and how Mamba synergistically exploits this13

mechanism. Saturn outperforms 22 models on multi-parameter optimization tasks14

relevant to drug discovery and may possess sufficient sample efficiency to consider15

the prospect of directly optimizing high-fidelity oracles. The code is available at16

https://figshare.com/s/6040d65bfbfc29d6fedf.17

1 Introduction18

Within the last year, there has been a surge of works reporting experimental validation of generative19

molecular design for drug discovery1–7. The fundamental task of generative molecular design is to20

simulate (from a distribution) molecules with tailored property profiles. All generative models achieve21

this in one of two ways: distribution learning, where a base model is subjected to transfer learning22

on a set of known positives, and goal-directed generation, which encompasses both conditional23

generation and using an optimization algorithm to shift the distribution. Experimental validation24

has been demonstrated for all methods, but with a notable over-representation from optimization25

algorithms (as of the last 6 months), and particularly reinforcement learning (RL)2–7. Algorithmic26

molecular optimization always proceeds via the following workflow: generate molecules, assess27

desirability (using an in silico oracle), update the model, and repeat. When assessing the suitability of28

molecules absent experimental validation, the crucial indicator to success is correlation of an in silico29

oracle to the actual end-point. All protocols that directly optimize for an oracle (without the use of a30

surrogate predictor) follow a funnel workflow where less resource-intensive oracles are initially used31

to prioritize the most promising subset for evaluation with computationally expensive high-fidelity32

oracles. A concrete and ubiquitous example is designing molecules with high binding affinity to33

a protein target. By far the most common oracle used to estimate binding affinity is molecular34

docking, and many works8–14 have demonstrated the ability to generate molecules with improved35

docking scores. However, docking scores are often poorly correlated with binding affinity, especially36

when applied out-of-the-box8,15. Correspondingly, the most promising candidates from docking are37
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subjected to higher-fidelity oracles, particularly molecular dynamics (MD) simulations, which offer38

a much more accurate estimation of binding affinity15–18. Directly optimizing high-fidelity oracles39

offers the prospect of learning the distribution and can greatly improve the quality of the generated40

set19. However, doing so is infeasible due to computational cost, exemplifying the sample efficiency41

problem. Either simulation protocols become much faster without sacrificing accuracy, or generative42

models become sufficiently efficient to optimize under an acceptable oracle budget.43

Recently, the proposed Practical Molecular Optimization (PMO)20 benchmark assessed 25 models44

across 23 optimization tasks under a 10,000 oracle budget. Since then, other works have explicitly45

constrained the oracle budget on various drug discovery optimization tasks10–14,21,22. Results from the46

PMO benchmark show that language-based models are, on average, the most sample-efficient models.47

More recently, Guo et al.21 proposed Augmented Memory which is built on REINVENT23,24. It48

combines experience replay with SMILES augmentation25 and achieves the new state-of-the-art on49

the PMO benchmark. In this work, we push towards the prospect of direct optimization of high-fidelity50

oracles and release Saturn. First, we elucidate the mechanism of Augmented Memory21, which51

uses an LSTM26 recurrent neural network (RNN) as the language model backbone, and characterize52

how data augmentation and experience replay improve sample efficiency. Next, we systematically53

assess more advanced generative architectures from just RNNs26 to decoder transformers27,28, and54

the recent Mamba29 state space model (SSM). Our results show that the Mamba architecture, in55

conjunction with data augmentation and experience replay, displays synergistic behavior to improve56

sample efficiency. Our contribution is as follows:57

1. We show the first application of Mamba29 for molecular generative design and specifically58

for goal-directed generation with reinforcement learning.59

2. We elucidate the mechanism into how Augmented Memory21 improves sample efficiency,60

as the original work only showed its empirical benefits.61

3. We comprehensively evaluate language model backbones (> 5,000 experiments) including62

RNN, decoder transformer27,28, and Mamba29, which enables us to characterize model-63

intrinsic and scaling properties that lead to improved sample efficiency.64

4. We propose Saturn, which leverages Mamba29 and outperforms 22 models on multi-65

parameter optimization drug discovery tasks with fixed oracle budgets.66

2 Related Work67

Sample Efficiency in Goal-directed Molecular Design. The goal of inverse design is to achieve68

tailored molecular generation. Existing works have tackled this problem using a variety of architec-69

tures, including SMILES30-based RNNs9,23,24,31–35, transformers9,27,36–42, variational autoencoders70

(VAEs)43–46, adversarial approaches47–53, graph-based models11,54–59, GFlowNets10,60,61, genetic71

algorithms (GAs)13,14,62,63, and diffusion models12,64,65. However, many works do not explicitly72

consider an oracle budget (or use a very lenient budget) and focus mostly on showing that goal-73

directed generation is possible. The release of the PMO benchmark20 highlighted that improvements74

in sample efficiency are vital to even consider the prospect of directly optimizing high-fidelity ora-75

cles. Since then, more recent works10–14,21,22 have enforced fixed oracle budgets when comparing76

performance with other methods. In this work, we consider fixed oracle budgets in all experiments77

and, importantly, investigate optimization under small batch sizes, which becomes pertinent when78

considering high-fidelity oracles that require at least one GPU per molecule, which quickly imposes79

a practical constraint.80

Language-based Molecular Generative Models. Text is one of the most widely used molecular81

representations, with common ones being simplified molecular-input line-entry systems (SMILES)3082

and self-referencing embedded strings (SELFIES)66,67. Recent work has shown that the former is83

generally more performant, despite not enforcing 100% validity20,68. Leveraging advances in natural84

language processing (NLP), language-based molecular generative models are amongst the first and85

still widely used models, encompassing RNNs9,23,24,31–35, transformers9,27,28,36–42, and recently SSM86

S469. In early benchmarks (GuacaMol70 and MOSES71), language-based models have been shown to87

essentially solve the validity, uniqueness, and novelty metrics. Subsequently, the non-injective syntax88

of SMILES confers advantageous properties for generative design. Specifically, a single molecule89

can be expressed as at least N (number of heavy atoms) SMILES, in a process known as SMILES90

augmentation, enumeration, or randomization25. This mechanism can be exploited to pre-train91
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Figure 1: Saturn generative workflow. All generated SMILES and their rewards are stored in the
Oracle Cache after canonicalization. A genetic algorithm can be optionally applied using the replay
buffer as the parent population. Augmented Memory is used to update the agent numerous times.

models under low data regimes to generalize in chemical space72–74, improve sample efficiency21,35,92

and perform transfer learning with a single positive example75. Despite the recent trend towards93

3D molecular generation64,65, language-based models have demonstrated the ability to generate94

molecules that satisfy 3D-dependent objectives, such as docking8 in a sample-efficient manner21,22.95

This suggests that language-based models are not entirely 3D-naive and can effectively explore96

relevant regions of the 3D chemical space. Finally, language models are amongst the most sample-97

efficient models in the PMO benchmark20,21 and most works achieving experimental validation of a98

generated molecule incorporate SMILES-based models2–7.99

3 Method100

In this section, each component of Saturn (Fig. 1) is described: the language model backbone for101

molecular generation, the Augmented Memory21 RL algorithm, the GA, and specific details into key102

components responsible for sample efficiency and mitigating mode collapse.103

Autoregressive Language Model Backbone for Molecular Generation. Molecules are represented104

as SMILES30 and the task of goal-directed generation is cast as an RL problem. Let St denote105

the state space representing all intermediate token sequences during molecular generation. The106

action space, At(st), is defined as the conditional token distribution induced by the policy, πθ, and107

parameterized by a language model backbone. Generation follows a Markov process, and thus,108

sampling a SMILES, x, is given by the product of conditional token probabilities (Eq. 1):109

P (x) =

T∏
t=1

πθAgent
(at | st) (1)

The general objective in RL is to maximize the expected reward (Eq. 2):110

J(θ) = Eat∼πθAgent

[
T∑

t=1

R(at, st)

]
(2)

R is the reward function and can represent any arbitrary multiparameter optimization (MPO) objective111

and σ is a scalar factor modulating its effect. Next, the Augmented Likelihood23 (Eq. 3) is defined,112

where the prior is the pre-trained model with frozen weights:113
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log πAugmented(x) = log πprior(x) + σR(x) (3)

The reward is defined as log πAugmented - log πθagent
. Following previous works21,23,76, maximizing114

Eq. 2 is equivalent (up to a factor) to minimizing the squared difference between the Augmented115

Likelihood and the Agent Likelihood (Eq. 4):116

L(θ) =
1

|B|

[ ∑
a∈A∗

(log πAugmented − log πθagent
)

]2

(4)

A∗ is defined as the actions taken across all time-steps in a given batch. During optimization, the117

expected reward (Eq. 2) is approximated by sampling a batch, B, of SMILES. The batch size controls118

for variance as approximating the expectation with fewer samples is necessarily more noisy. See119

Appendix A.4 for full details on the algorithm and pseudo-code.120

Augmented Memory. In Saturn, Augmented Memory maintains a replay buffer of the top 100121

SMILES ranked by their rewards. At each generation epoch, the SMILES in the buffer are augmented122

(randomized)25 and the agent is updated N augmentation rounds following Eq. 4. Following Blaschke123

et al.77, a Diversity Filter (DF) stores the Bemis-Murcko78 scaffolds of every SMILES generated. If124

a scaffold is generated more than a permitted threshold (M = 10 in this work), its reward is truncated125

to 0. Before executing Augmented Memory, scaffolds associated with penalized rewards are purged126

from the buffer, preventing mode collapse.127

Genetic Algorithm. Saturn adapts the GraphGA63 algorithm where the replay buffer is treated as the128

parent population. The motivation is to generate more high reward SMILES to replace the buffer129

SMILES, under the hypothesis that on average, these too, will be high reward (Appendix B.5).130

Oracle Caching. In this work, we make the assumption that oracle evaluations are near deterministic131

and store every SMILES generated and its associated reward in a cache. If the same SMILES is132

generated at a later epoch, the reward is retrieved from the cache and does not impose an oracle call.133

4 Results and Discussion134

The results section is comprised of three parts: formulating Saturn, demonstrating sample efficiency135

in an MPO docking task, and another MPO docking task with comparison to 22 models (includ-136

ing two dataset screening baselines). Every experiment was run across 10 seeds (0-9 inclusive),137

comprising 4,840 and 200 total runs on test and molecular docking experiments, respectively.138

4.1 Part 1: Elucidating the Optimization Dynamics of Saturn139

We begin by identifying the optimal architecture and hyperparameters for Saturn. First, we experiment140

with varying the batch size and augmentation rounds of Augmented Memory algorithm21, and explic-141

itly demonstrate the trade-off between sample efficiency and diversity. Unlike the original Augmented142

Memory work, which used an RNN backbone, we investigate more advanced architectures: decoder143

transformer27,28 and Mamba29. Our analysis elucidates how SMILES augmentation, combined with144

these architectures, synergistically improves sample efficiency in Saturn.145

Experimental Details. Similar to Guo et al.22, we define a test experiment with the following MPO146

objective: molecular weight (MW) < 350 Da, number of rings ≥ 2, and maximize topological polar147

surface area (tPSA). Optimizing this objective requires generating molecules with rings saturated with148

heteroatoms, which are dissimilar from the training data. Hence, it is also testing out-of-distribution149

optimization. All experiments in this section were run across 10 seeds (0-9 inclusive) with an oracle150

budget of 1,000, and the models were pre-trained with ChEMBL 3379 (Appendix B.1).151

Metrics. The sample efficiency metrics are Yield and Oracle Burden (OB). Yield is the number of152

unique generated molecules above a reward threshold, and OB is the number of oracle calls required153

to generate N unique molecules above a reward threshold. The reward threshold in this experiment154

is 0.7 as molecules start to possess saturated heteroatom rings22. Most configurations successfully155

generate at least some molecules passing this threshold within the budget, enabling us to report156

statistics.157
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Table 1: Sample efficiency across architectures (batch size 16). 1,000 oracle budget. All metrics are
computed at the 0.7 reward threshold. IntDiv171 is the internal diversity, Scaffolds is the number of
unique Bemis-Murcko78 scaffolds, OB is Oracle Burden (oracle calls required to generate N unique
molecules). The number in parentheses in the OB statistics represents how many runs out of 10 were
successful. Repeats are the number of times an identical SMILES was generated during the run. The
mean and standard deviation across 10 seeds (0-9 inclusive) is reported.

Model Aug. Rounds Yield (↑) IntDiv1 (↑) Scaffolds (↑) OB 1 (↓) OB 10 (↓) OB 100 (↓) Repeats

RNN 5 107±58 0.814±0.036 101±54 480±118 (10) 721±109 (10) 916±53 (4) 7±7
6 121±80 0.791±0.040 107±68 493±214 (10) 713±15 (10)6 895±107 (5) 12±11
7 144±107 0.776±0.026 117±86 467±186 (10) 684±136 (10) 871±116 (6) 38±82
8 120±95 0.734±0.128 104±85 481±288 (10) 653±145 (8) 854±54 (5) 18±28
9 141±104 0.783±0.048 112±72 453±211 (10) 654±154 (9) 871±104 (6) 59±95

10 106±76 0.76±0.056 84±63 510±201 (10) 733±122 (9) 913±64 (5) 43±47

Decoder 5 154±93 0.748±0.052 122±70 439±151 (10) 679±128 (10) 907±92 (8) 90±90
Transformer 6 116±94 0.748±0.039 86±64 517±165 (10) 728±158 (10) 904±126 (5) 73±42

7 108±85 0.747±0.051 71±50 510±222 (10) 740±127 (9) 868±48 (4) 126±63
8 108±94 0.708±0.109 72±57 538±164 (10) 742±116 (9) 887±87 (4) 150±72
9 78±83 0.687±0.116 51±55 614±244 (10) 790±150 (8) 890±62 (3) 242±139

10 120±128 0.691±0.042 74±73 663±170 (9) 768±169 (8) 805±65 (4) 344±218

Mamba 5 69±38 0.764±0.052 54±28 542±93 (10) 807±76 (10) 988±17 (3) 178±90
6 138±46 0.759±0.039 110±42 456±89 (10) 693±75 (10) 919±36 (7) 286±137
7 174±95 0.737±0.059 127±83 427±177 (10) 643±102 (10) 858±77 (7) 395±147
8 209±95 0.751±0.030 137±60 461±151 (10) 617±135 (10) 817±71 (8) 482±214
9 202±98 0.735±0.032 137±80 389±112 (10) 631±102 (10) 841±92 (8) 518±237

10 306±57 0.714±0.035 206±34 387±148 (10) 555±66 (10) 761±58 (10) 1110±636

Understanding the Limits of Augmented Memory. Augmented Memory21 improves sample158

efficiency by repeated learning from high reward SMILES. With decreasing batch size, performance159

variance increases, as the approximation to the expected reward (Eq. 2) becomes more noisy. In160

return, fewer oracle calls are imposed, and the agent learns from an increasingly smaller set of unique161

SMILES. Our hypothesis is that as long as unique high reward SMILES are still generated, sample162

efficiency can improve with decreasing batch size, at the expense of diversity. We perform a grid163

search and vary the batch size (64, 32, 16, 8) and augmentation rounds (0-20 inclusive) using the164

default RNN architecture (Appendix 5). We make the following key observations: with increasing165

augmentation rounds and decreasing batch size, sample efficiency improves, diversity decreases, and166

generating repeated SMILES becomes increasingly prevalent but is tolerable with oracle caching.167

The optimal augmentation rounds and batch size are 5-10 and 16, respectively, as pushing further168

introduces too much variance, such that apparent improvements are not statistically significant (at169

the 95% confidence level). In Appendix B.4, we explored the addition of Beam Enumeration22 but170

improvements were not consistently statistically significant. In Appendix B.5, we explored allocating171

a portion of the oracle budget to a GA, which decreases sample efficiency, but recovers diversity, in172

agreement with previous works13,80.173

Small Molecule Goal-directed Generation: Beyond RNNs. In this section, we move beyond174

RNN (5.8M) to Decoder transformer27,28 (6.3M) and Mamba29 (5.2M), and empirically show that175

varying the architecture can improve sample efficiency. Complete grid search results are presented176

in Appendix B.3. Cross-referencing Table 1, we make the following observations: Increasing177

augmentation rounds decreases diversity and inconsistently improves Yield and OB for RNN and178

transformer. Mamba more consistently benefits from increasing augmentation rounds to generate179

more high reward molecules and also faster. Across the Yield and OB metrics, Mamba consistently180

outperforms both the RNN and transformer backbones. In particular, Mamba with 10 augmentation181

rounds successfully generates 100 molecules above the reward threshold (OB 100 metric) in 10/10182

replicates, compared to only 5/10 and 4/10 successful replicates for RNN and transformer, respectively183

(Table 1). Given Mamba’s superior sample efficiency, we focus our analysis on comparing it to the184

RNN baseline in the remainder of this section (transformer results are provided in Appendix B.3).185

Mamba: Enhanced Maximum Likelihood. Table 1 shows that the Mamba architecture notably186

generates repeated SMILES, which can be rationalized with the maximum likelihood objective.187

Mamba (5.2M) and RNN (5.8M) have similar parameter counts but during pre-training, the former188

converges to a lower loss during pre-training (Appendix B.1), indicating a better match to the data189

distribution. Accordingly, and during RL, Eq. 4 aims to make generating high reward SMILES190

more likely. Mamba generates repeated SMILES suggesting it overfits the data distribution. We191

demonstrate this by cross-referencing Fig. 2a, which shows that with high augmentation rounds, the192
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Figure 2: a. Average maximum token probability across agent states. Augmentation pushes the agent
action distribution towards a delta distribution. b. Augmented Memory (10 augmentation rounds)
makes the likelihood of generating SMILES in the buffer more likely. c. Top: On average, augmented
forms of the buffer SMILES become more likely. Bottom: Similar loss magnitudes impose larger
changes on improbable sequences and the agent is driven towards generating these specific sequences.
When the Augmented Likelihood is equal to the agent likelihood, the loss approaches 0 (circles).
d. 3,000 oracle budget test experiment chunked into 300 SMILES. UMAP embedding of the agent
chemical space traversal (arrows are the centroid of each chunk). Mamba exhibits a directional
traversal while RNN (baseline Augmented Memory) continues to sample globally. e. Mamba exhibits
a "hop-and-locally-explore" behavior where the intra-chunk Tanimoto similarity (top values) are
higher than RNN. The bottom value is the inter-chunk similarity.

average max conditional token probability (during generation) approaches 1, and near collapses to a193

Dirac delta function (less so for RNN). This makes it likely, but not deterministic, to generate the194

same SMILES repeatedly.195

Squeezing the Likelihood of Augmented SMILES. While the original Augmented Memory work21196

demonstrated its empirical benefits, we elucidate the underlying mechanism. To isolate its effect,197

we design a sub-experiment as follows: generate molecules until the buffer is full (100) and then198

save the agent state before and after executing Augmented Memory (10 augmentation rounds) and199

save every augmented SMILES form. After execution, the (End) agent becomes more likely to200

generate the set of augmented SMILES (Fig. 2b). The more improbable the SMILES (high NLL),201

the larger the ∆NLL shift (Fig. 2c). According to the loss function (Eq. 4), a larger difference202

between the Augmented Likelihood (Eq. 3) and Agent Likelihood results in a higher loss. When203

these terms are near equal, the loss approaches 0 (Fig. 2c circles). The purpose of the Augmented204

Likelihood is to regularize the agent, preventing it from deviating too far from the prior23. Improbable205

SMILES, which impose a large gradient update, adjust the agent towards a higher probability of206

generating such sequences. However, already probable (low NLL) SMILES can also impose large loss207

magnitudes (Fig. 2c), but the ∆NLL shift is small because the softmax function saturates, causing208

minimal changes to the softmax output when the logits are tuned. Taking these observations together,209

Augmented Memory squeezes the likelihood of augmented SMILES, making the agent more likely210

to generate any SMILES representation of the same molecular graph. We next demonstrate how the211

Mamba architecture synergistically leverages this mechanism to enhance sample efficiency.212

Mamba: Hop-and-Locally-Explore. Mamba approaches Dirac delta function collapse (Fig. 2a)213

when learning from repeated augmented SMILES and in the previous section, we have shown214

that the agent becomes increasingly likely to generate the buffer molecules. We hypothesized that215

Mamba exhibits a "hop-and-locally-explore" behavior: because it is likely to generate some SMILES216

representation of these molecules, small changes to any tokens in these set of augmented sequences217

equates to small changes to the same molecular graph, essentially performing a local exploration218

(similar molecules, on average, exhibit similar properties, provided the property landscape is not219

too rough81,82). We verify our hypothesis with the following experiment: generate molecules (3,000220

oracle budget) and separate the generated set into 10 chunks (each 300 SMILES). We trace the221

generation trajectory using UMAP83 and plot the chunk centroids, comparing Mamba and the222
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baseline (vanilla Augmented Memory21) (Fig. 2d). Mamba traverses chemical space in an increased223

directional manner and the chunks are more locally confined. Further analysis into the intra- and224

inter-chunk Tanimoto similarity reveals that within chunks, Mamba exhibits much greater similarity225

than the baseline, and similarity is always lower between chunks (Fig. 2e). Taking these observations226

together, Mamba (batch size 16) with Augmented Memory (10 augmentation rounds) and oracle227

caching synergistically improves sample efficiency via "hop-and-locally-explore" behavior (see228

Appendix C for further quantitative and qualitative analyses). From here on, this model configuration229

will be referred to as Saturn and hyperparameters are fixed such that all performance metrics in the230

following sections are out-of-the-box.231

4.2 Part 2: Transferability of Sample Efficiency to Physics-based Oracles232

In this section, we demonstrate that Saturn’s sample efficiency transfers to an MPO objective involving233

docking against targets related to neurodegeneration (DRD284 and AChE85) and inflammation (MK2234

kinase86). The optimization objective is to constrain MW < 500 Da, maximize the quantitative235

estimate of drug-likeness (QED)87, and minimize AutoDock Vina88 docking score (see Appendix236

D.1 for details on the docking protocol). All experiments were run across 10 seeds (0-9 inclusive)237

and with a 1,000 oracle budget. We compare Saturn (with and without GA) to baseline Augmented238

Memory21 using the Yield and OB metrics. Saturn generates more high reward molecules and faster,239

given the fixed oracle budget (Table 2). This holds even for the more challenging MK2 kinase target240

where the pre-training data (ChEMBL 3379) is less suited. Furthermore, in agreement with the results241

from the test experiments, adding a GA on the buffer does not improve sample efficiency but recovers242

diversity, which can be useful in certain cases.243

Table 2: Docking MPO with 1,000 oracle budget. Baseline is vanilla Augmented Memory21.
IntDiv171 is the internal diversity, Scaffolds is the number of unique Bemis-Murcko78 scaffolds, OB
is Oracle Burden (oracle calls required to generate N unique molecules). All metrics are computed
at the 0.8 reward threshold. The number in parentheses in the OB statistics represents how many
runs out of 10 were successful. The mean and standard deviation across 10 seeds (0-9 inclusive) is
reported. Best models (statistically significant at the 95% confidence level) are bolded.

Target Model Yield (↑) IntDiv1 (↑) Scaffolds (↑) OB 1 (↓) OB 10 (↓) OB 100 (↓)

Augmented Memory 22 ± 7 0.774 ± 0.019 22 ± 7 143 ± 75(10) 733 ± 120(10) Failed
DRD2 Saturn 369 ± 62 0.671 ± 0.050 310 ± 70 93 ± 53(10) 391 ± 56(10) 663 ± 55(10)

Saturn-GA 209 ± 55 0.745 ± 0.041 189 ± 57 96 ± 56(10) 403 ± 75(10) 806 ± 84(10)

Augmented Memory 173 ± 19 0.843 ± 0.009 170 ± 18 57 ± 2(10) 189 ± 52(10) 776 ± 58(10)
AChE Saturn 480 ± 79 0.757 ± 0.020 400 ± 96 32 ± 24(10) 185 ± 82(10) 508 ± 80(10)

Saturn-GA 343 ± 57 0.809 ± 0.013 287 ± 50 32 ± 25(10) 187 ± 80(10) 565 ± 80(10)

Augmented Memory 0.2 ± 0.4 — 0.2 ± 0.4 836 ± 186(2) Failed Failed
MK2 Saturn 14.9 ± 14.1 0.454 ± 0.212 14.1 ± 13.2 677 ± 186(9) 861 ± 108(6) Failed

Saturn-GA 6.1 ± 6.5 0.415 ± 0.202 5.5 ± 5.5 678 ± 140(9) 911 ± 11(2) Failed

4.3 Part 3: Benchmarking Saturn244

In this section, we compare Saturn’s performance to previous works, including the state-of-the-art245

Goal-aware fragment Extraction, Assembly, and Modification (GEAM) proposed by Lee et al.13,246

which recently reported impressive results on a docking MPO task, outperforming baselines by a247

large margin.248

Experimental Details. To facilitate an exact comparison with GEAM13, we used the code from249

https://anonymous.4open.science/r/GEAM-45EF to reproduce the GEAM results, extract250

oracle code for our experiments, pre-train on the provided ZINC 250k89 data (Appendix E,) and used251

their MPO objective function (Eq. 5),252

R(x) = D̂S(x)×QED(x)× ŜA(x) ∈ [0, 1], (5)

where D̂S is the normalized QuickVina 290 docking score and ŜA is the normalized synthetic253

accessibility score91 (see Appendix E for normalization details). Following Lee et al.13, docking was254

performed against 5 targets: parp1, fa7, 5ht1b, braf, and jak2. We ran GEAM and Saturn across255

10 seeds (0-9 inclusive) with an oracle budget of 3,000. We emphasize that we do not tune Saturn’s256

hyperparameters for this task and the results in this section are out-of-the-box.257
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Metrics. Following Lee et al.12,13, we assess the Hit Ratio (%) (molecules with a better docking258

score than the median of known actives, QED > 0.5, SA < 5) and Novel Hit Ratio (%) (with the259

additional constraint of maximum Tanimoto similarity of 0.4 to the training data). We further propose260

Strict Hit Ratio (%) and Strict Novel Hit Ratio (%) which filter for the more stringent criteria of261

QED > 0.7 (based on DrugStore dataset of marketed drugs87) and SA < 3 (based on off-the-shelf262

catalog molecules91). While drug candidates need not necessarily meet these stricter thresholds,263

this metric assesses optimization capability, which becomes pertinent when jointly optimizing all264

components is especially crucial. From an optimization perspective, the objective function (Eq. 5)265

aims to maximize QED and minimize SA and docking score simultaneously. Therefore, achieving266

high QED and low SA is part of the goal itself. We additionally measure molecular diversity using267

IntDiv171 and #Circles92 with distance threshold 0.75.268

Table 3: Novel Hit Ratio (%). Results are from Lee et al.13 except GEAM and Saturn which we
ran across 10 seeds (0-9 inclusive). The mean and standard deviation are reported. Best results
(statistically significant at the 95% confidence level) are bolded.

Method Target Protein

parp1 fa7 5ht1b braf jak2

REINVENT 23 0.480 ± 0.344 0.213 ± 0.081 2.453 ± 0.561 0.127 ± 0.088 0.613 ± 0.167

GCPN 54 0.056 ± 0.016 0.444 ± 0.333 0.444 ± 0.150 0.033 ± 0.027 0.256 ± 0.087

JT-VAE 45 0.856 ± 0.211 0.289 ± 0.016 4.656 ± 1.406 0.144 ± 0.068 0.815 ± 0.044

GraphAF 93 0.689 ± 0.166 0.011 ± 0.016 3.178 ± 0.393 0.956 ± 0.319 0.767 ± 0.098

GraphGA 63 4.811 ± 1.661 0.422 ± 0.193 7.011 ± 2.732 3.767 ± 1.498 5.311 ± 1.667

MORLD 94 0.047 ± 0.050 0.007 ± 0.013 0.880 ± 0.735 0.047 ± 0.040 0.227 ± 0.118

HierVAE 95 0.553 ± 0.214 0.007 ± 0.013 0.507 ± 0.278 0.207 ± 0.220 0.227 ± 0.127

RationaleRL 55 4.267 ± 0.450 0.900 ± 0.098 2.967 ± 0.307 0.000 ± 0.000 2.967 ± 0.196

GA+D 96 0.044 ± 0.042 0.011 ± 0.016 1.544 ± 0.273 0.800 ± 0.864 0.756 ± 0.204

MARS 97 1.178 ± 0.299 0.367 ± 0.072 6.833 ± 0.706 0.478 ± 0.083 2.178 ± 0.545

GEGL 98 0.789 ± 0.150 0.256 ± 0.083 3.167 ± 0.260 0.244 ± 0.016 0.933 ± 0.072

GraphDF 99 0.044 ± 0.031 0.000 ± 0.000 0.000 ± 0.000 0.011 ± 0.016 0.011 ± 0.016

FREED 11 4.627 ± 0.727 1.332 ± 0.113 16.767 ± 0.897 2.940 ± 0.359 5.800 ± 0.295

LIMO 100 0.455 ± 0.057 0.044 ± 0.016 1.189 ± 0.181 0.278 ± 0.134 0.689 ± 0.319

GDSS 101 1.933 ± 0.208 0.368 ± 0.103 4.667 ± 0.306 0.167 ± 0.134 1.167 ± 0.281

PS-VAE 102 1.644 ± 0.389 0.478 ± 0.140 12.622 ± 1.437 0.367 ± 0.047 4.178 ± 0.933

MOOD 12 7.017 ± 0.428 0.733 ± 0.141 18.673 ± 0.423 5.240 ± 0.285 9.200 ± 0.524

GEAM 13 39.159 ± 2.790 19.540 ± 2.347 40.123 ± 1.611 27.467 ± 1.374 41.765 ± 3.412

Saturn (ours) 3.839 ± 3.316 0.470 ± 0.272 5.731 ± 6.166 3.652 ± 3.777 6.129 ± 5.449
Saturn-Jaccard (ours) 50.552 ± 9.530 20.181 ± 5.598 54.260 ± 6.722 19.820 ± 10.120 47.785 ± 14.041

Saturn and GEAM Outperform all Baselines. We evaluate the Hit Ratio and include random269

sampling of 3,000 molecules from the ZINC 250k89 and ChEMBL 3379 datasets as baselines270

(Appendix Table 27). The results show that only GEAM13 and Saturn outperform these baselines,271

with both methods displaying similar performance. However, Saturn exhibits higher variance, likely272

due to the small batch size (16) used to approximate the expected reward (Eq. 2). For the Novel273

Hit Ratio (Table 3), Saturn performs much worse than GEAM, but we rationalize this by cross-274

referencing Fig. 2. The Mamba backbone excels at maximum likelihood estimation and fits the ZINC275

250k89 training distribution well. It is then unsurprising that generated molecules are not particularly276

dissimilar to ZINC. We highlight that enforcing molecules to have less than 0.4 Tanimoto similarity277

to all molecules in the training data is somewhat arbitrary. However, to demonstrate how to solve278

this problem, we apply curriculum learning81 to Saturn and further "pre-train" the model to generate279

molecules with high Jaccard distance (Tanimoto dissimilarity) to the training data (see Appendix280

E.4). We believe this is still a fair assessment as computing Tanimoto similarity is cheap and this281

process took minutes and also shows the flexibility of Saturn. We then use this model for the MPO282

task and show that performance immediately recovers and matches GEAM (Table 3).283

Saturn: Enhanced MPO. Based on the results so far, it may be desirable to use GEAM over Saturn284

as it has much lower variance. To investigate this further, we assess the optimization capability of285

both models by applying a strict filter for QED > 0.7 and SA < 3 (Table 4). The results show that286

GEAM’s Hit Ratios drop drastically while Saturn’s remain relatively unchanged, which demonstrates287

that Saturn optimizes the MPO objective to a much greater degree (see Appendix E for Novel Strict288

Filter results). Importantly, Saturn finds molecules passing this strict filter with much fewer oracle289

calls (OB metrics in Table 4), trading off diversity to do so. Moreover, for fa7 and braf, GEAM does290

not find 100 molecules passing the strict filter in 9/10 and 4/10 replicates, respectively, while Saturn291

is successful in 10/10 for both (Table 4). Finding desirable molecules with fewer oracle calls is of292
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Table 4: Strict Hit Ratio (%). GEAM and Saturn results are across 10 seeds (0-9 inclusive). OB is
Oracle Burden (oracle calls required to generate N unique molecules). The number in parentheses
in the OB statistics represents how many runs out of 10 were successful. The mean and standard
deviation are reported. Best results (statistically significant at the 95% confidence level) are bolded.

Method Target Protein

parp1 fa7 5ht1b braf jak2

GEAM 13

Strict Hit Ratio (↑) 6.510 ± 1.087 2.106 ± 0.958 8.719 ± 0.903 3.685 ± 0.524 7.944 ± 1.157
OB (1) (↓) 250 ± 157(10) 433 ± 209(10) 114 ± 112(10) 355 ± 96(10) 230 ± 117(10)
OB (10) (↓) 743 ± 52(10) 1446 ± 404(10) 531 ± 38(10) 892 ± 144(10) 537 ± 70(10)
OB (100) (↓) 2106 ± 202(10) 2927 ± 0(1) 1527 ± 110(10) 2674 ± 163(6) 1606 ± 218(10)
IntDiv1 (↑) 0.766 ± 0.017 0.709 ± 0.043 0.799 ± 0.017 0.751 ± 0.023 0.763 ± 0.021
#Circles (↑) 14 ± 3 7 ± 2 25 ± 3 11 ± 2 18 ± 2

Saturn (ours)
Strict Hit Ratio 55.102 ± 18.027 13.887 ± 9.723 64.730 ± 3.717 37.250 ± 9.615 55.903 ± 13.613
OB (1) (↓) 139 ± 96(10) 352 ± 206(10) 21 ± 7(10) 291 ± 143(10) 88 ± 56(10)
OB (10) (↓) 518 ± 92(10) 924 ± 247(10) 105 ± 23(10) 581 ± 123(10) 348 ± 96(10)
OB (100) (↓) 956 ± 259(10) 1776 ± 551(10) 441 ± 44(10) 1057 ± 187(10) 785 ± 191(10)
IntDiv1 (↑) 0.596 ± 0.049 0.592 ± 0.066 0.685 ± 0.021 0.597 ± 0.042 0.638 ± 0.034
#Circles (↑) 5 ± 0 3 ± 1 17 ± 3 4 ± 0 7 ± 1

high practical relevance when moving to high-fidelity oracles so as to identify a small set of excellent293

candidates satisfying the MPO objective.294

5 Conclusion295

In this work, we present Saturn, a framework for sample-efficient de novo molecular design using296

memory manipulation. We demonstrate the first application of the Mamba29 architecture for genera-297

tive molecular design with reinforcement learning and show how it synergistically leverages SMILES298

augmentation and experience replay for enhanced sample efficiency. Through systematic study, we299

elucidate the mechanism of Augmented Memory (original work only showed its empirical benefits)300

and show it squeezes sequence generation likelihoods such that it becomes increasingly likely to301

generate some SMILES representation of the replay buffer molecular graphs. Next, we show how302

Mamba leverages this mechanism to improve sample efficiency through "hop-and-locally-explore"303

behavior. With the optimal architecture and hyperparameters identified for sample efficiency in a304

test experiment, we apply Saturn on two MPO tasks relevant to drug discovery, outperforming all305

baseline models, and matching the recent GEAM13 model which, when released, outperformed all306

baselines by a large margin. Compared to GEAM, we further show that Saturn achieves superior307

MPO, finding desirable molecules faster with fewer oracle calls, albeit with a trade-off in diversity.308

Our work opens up the prospect of directly optimizing expensive high-fidelity oracles (beyond dock-309

ing), which are more correlated with relevant drug discovery end-points. Recent work has applied310

multi-fidelity learning19 or active learning103,104 to enable on-the-fly update of a surrogate model to311

predict such oracle evaluations for generative design. These workflows can be applied directly with312

Saturn, but importantly, we may be sufficiently efficient to directly optimize these oracles, mitigating313

surrogate out-of-domain concerns. Moreover, it is straightforward to augment Saturn with known314

strategies to improve sample efficiency, such as curriculum learning81 as we have shown in Part315

3. Correspondingly, future work will stress-test Saturn on high-fidelity oracles and interrogate the316

prospect of directly optimizing QM/MM and free energy15–18 protocols with modest computational317

resources.318

Limitations. While we demonstrate Saturn’s broad applicability, it remains to be seen whether319

performance will carry over to high-fidelity oracles with rougher optimization landscapes82, where320

the "hop-and-locally-explore" behavior may be disadvantageous. However, as we have identified321

why this behavior manifests, we can tailor the sampling behavior for the optimization landscape, if322

required. For example, activating the genetic algorithm and lowering augmentation rounds loosens323

the local sampling behavior, as shown in Appendix C.2.324

Broader Impact. We present a method that enhances sample efficiency in molecular generative325

models that could impact fields such as drug discovery and functional materials design. There is326

potential misuse if the generation is steered towards a malicious objective function105. As generative327

design becomes increasingly adopted (in general), measures to ensure safe deployment will be328

paramount, while maximizing potential societal benefits.329
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Appendix676

The Appendix contains full details on Saturn, grid-search results, algorithmic details, and supplemen-677

tary results. The code is available at https://figshare.com/s/6040d65bfbfc29d6fedf.678

A What is Saturn?679

Saturn is a language-based generative molecular design framework which features minimal imple-680

mentations of Augmented Memory21 and Beam Enumeration22. These two methods were first imple-681

mented here: https://github.com/schwallergroup/augmented_memory, which in turn was682

built on REINVENT version 3.223,24: https://github.com/MolecularAI/Reinvent. REIN-683

VENT is still under active development and version 431 was recently released, supporting a wide684

range of generative tasks including small molecule design23,24, library design76, linker design106,685

proposing small modifications107, and sampling nearest neighbors108.686

Saturn (at the moment) focuses only on generative small molecule design and research development687

is on sample efficiency. It is a much smaller code-base than REINVENT 4 and with focus on688

minimal implementation. That being said, the key new additions to Saturn include: extending small689

molecule generative architecture from just RNN in REINVENT to decoder transformer27,28 and690

Mamba29. Secondly, allowing oracle caching to track repeated generations and allow pre-screening691

specified oracles (in an MPO objective, some oracle components may be computationally inexpensive692

and it would be practical to first screen a molecules through these oracles before any expensive693

components). Thirdly, implementation of a genetic algorithm which couples GraphGA63 on the694

replay buffer such that new molecules can be generated from the replay buffer parent sequences. In695

the ensuing subsections, we describe in detail these key new additions.696

A.1 Generative Architecture697

Many initial language-based molecular generative models were RNN-based23,32,34. Early benchmarks698

(GuacaMol70 and MOSES71) assessed whether generated molecules were valid (RDKit parsable),699

unique, and novel (not in the training data). RNNs satisfy these metrics and can learn distributions700

well109. More recently, with the prevalence of the transformer27,28 architecture, many works9,36–42701

have suggested a replacement of RNNs for generative design. However, many performance assess-702

ments only focus on validity, uniqueness, novelty, and optimizing for permissive oracles such as703

logP, QED87 ("drug-likeness"), and the SA score91. Some works show that transformers can learn704

longer SMILES sequences better than RNNs38 (such as natural products). However, often, one705

actually wants to limit sequence length to constrain design to small molecules. Furthermore, recent706

works have coupled transformers with reinforcement learning (RL)9,38–41 but the performance is not707

necessarily better than RNNs. Consequently, it is unclear whether the benefits of transformers are708

strictly advantageous for small molecule generation.709

In this work, we extend Augmented Memory21 to decoder transformer27,28 and Mamba29. Our710

results show that transformers display similar performance to RNNs for small molecule generation,711

in agreement with previous literature findings9. We further demonstrate the first application of712

Mamba29 for goal-directed generation, supplementing recent work investigating S4 models for713

transfer learning69.714

A.2 Oracle Caching715

In many reinforcement learning (RL) set-ups, the reward is assumed to be stationary, i.e., it does716

not change on repeat evaluation. This is an assumption that is not always true for physics-based717

oracles relevant in drug discovery. For example, docking depends on the initial conformer generated,718

and even more so for molecular dynamics simulations. However, it is reasonable to assume that the719

reward is near deterministic given a reasonably well behaved protein system (in which preliminary720

studies were made to verify the oracle stability). In effect, the reward for repeat molecules can be721

retrieved from a cache, thus not imposing additional oracle evaluations. In this work, we show that722

under this assumption, Saturn can leverage the Mamba29 architecture for enhanced sample efficiency.723

In particular, Mamba displays low uniqueness, but we show this is not detrimental.724
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As any given molecule can have numerous SMILES representations (via augmentation25), it is725

important to store the canonical SMILES in the cache, and also to canonicalize sampled batches726

when querying the cache. Canonicalization is simply a pre-defined traversal and can differ depending727

on the method used. As long as all canonicalization operations are performed with the same method,728

consistency can be guaranteed. In this work, we use RDKit.729

A.3 Genetic Algorithm730

Genetic algorithms (GAs) by themselves can be sample-efficient molecular optimizers20,63,110. Previ-731

ous work has shown that GAs can improve diversity of the generated set80. Recently, Lee et al.13732

proposed Goal-aware fragment Extraction, Assembly, and Modification (GEAM) which combines733

RL with GraphGA63 and achieves impressive results on generating diverse hits. In Saturn, we734

implement GraphGA on the replay buffer itself, treating the highest rewarding molecules generated in735

the entire run so far, as the parent population. Following GEAM13, sampling the parents is done with736

probability proportion to their corresponding rewards. New molecules from crossover and mutation737

operations are deposited into the Buffer if they are also high rewarding, essentially refreshing the738

buffer, such that Augmented Memory21 can learn from these new SMILES. The motivation was739

to leverage the GA to counteract decreases in diversity and potentially improve sample efficiency.740

In the results in the main text and in the following sections, we show that applying the GA does741

not lead to improved sample efficiency but does indeed recover diversity. We believe that this can742

be a useful modification to the optimization algorithm in cases where relatively expensive oracles743

are used and diversity is important due to prevalence of false positives. Concretely, higher-fidelity744

oracles should in principle model physical behavior more accurately, such that true positives are745

more common. This can be shown in previous works where using free energy simulations provide746

better correlations with binding affinity15,19. In such a case, sample efficiency becomes increasingly747

important, as the goal is to simply generate molecules satisfying this simulation and lower diversity748

is not detrimental. However, when using lower-fidelity oracles, more false positives means it is749

beneficial to have more diverse ideas for downstream triaging. Finally, we note that applying the750

GA and generating new molecules strictly means they were generated off-policy (in the RL context).751

Therefore, more meaningful updates to the agent may be achieved with importance sampling111,752

which we did not explore in the current work.753

A.4 Full Algorithm Details and Pseudo-code754

In this section, we derive Saturn’s loss function with particular focus on showing its equivalency755

to maximizing the expected reward. The derivation follows previous works21,23,76 but with added756

discussion around implications of the loss function. Specifically, Saturn adapts the Augmented Mem-757

ory21 algorithm which is in turn based on REINVENT23,24,31. The algorithm itself is reinforcement758

learning based and can be seen as a modified REINFORCE112 algorithm. However, while Saturn759

(using Mamba with batch size 16 and 10 augmentation rounds) adapts Augmented Memory,760

the optimization trajectory is quite different from the original Augmented Memory work due to the761

"hop-and-locally-explore" sampling behavior. We will focus on highlighting specific points related to762

this.763

Saturn’s Loss Function. We begin by presenting how Saturn generates SMILES30, which is the764

data representation used. SMILES are sequences of alphanumeric characters that can be parsed and765

mapped to a molecular graph, i.e., a molecule. As SMILES are text-based, it is straightforward to766

tokenize them, and pre-training Saturn follows next-token prediction. Saturn generates SMILES767

in an autoregressive manner and thus, SMILES are generated token-by-token from time-step, t to768

T . This can be viewed from a reinforcement learning perspective by defining St as the state space769

representing all intermediate token sequences during molecular generation. At(st) is the action space770

which involves sampling a token from a conditional probability distribution, given a token sequence771

so far, i.e., the current state. Mathematically, the probability of sampling a SMILES, x is given by:772

P (x) =

T∏
t=1

πθAgent
(at | st) (6)

Just generating SMILES is often not useful because they should satisfy the target objective. Thus, the773

base pre-trained model needs to be tuned somehow to achieve this. The end goal is to find a Policy774
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(in the reinforcement learning perspective) which dictates with what probability SMILES should be775

generated to optimize an objective function. To this end, we define the Prior and the Agent which776

share the same architecture (Mamba) and whose weights are exactly the same at the beginning of a777

generative experiment. The Prior and Agent are general terms to describe the model states but they778

both are policies as they both induce a probability of sampling SMILES. However, what is different779

is that the Prior’s weights are frozen so it is never updated. By contrast, the Agent is updated and is780

the model that is learning how to generate "good" SMILES. We now discuss how this is achieved.781

We define the Augmented Likelihood23 of a SMILES, x, which is a linear combination between the782

Prior and a reward term:783

log πAugmented(x) = log πPrior(x) + σR(x) (7)

log πPrior(x) is the log-probability of generating a given SMILES, x, under the Prior. Since the784

Prior’s weights are fixed, the probability of sampling a given SMILES never changes. Models are785

typically parameterized by its weights, θ. We take care here and omit θ because the Prior, as stated786

previously, is not updated. Next, R is the reward function which defines the target objective, e.g.,787

minimize docking score. Note that the reward function can contain multiple objectives, in which case,788

constituting a multi-parameter optimization objective. For example, in Experiment 3 of the main789

text, R is comprised of minimizing docking score, maximizing QED score87, and minimizing SA790

score91. R takes as input a SMILES, x, and returns a scalar reward ∈ [0, 1]. σ is a hyperparameter791

that scales the contribution of the reward function. Importantly, given a SMILES, x, a low σ means792

the Augmented Likelihood converges to the Prior likelihood while a high σ means the Augmented793

Likelihood is dominated by the reward. In this work, σ is never changed and is 128 as this was found794

to work well in the original REINVENT work23.795

The loss function is defined as the squared difference between the Augmented Likelihood and the796

Agent Likelihood:797

L(θ) = (log πAugmented(x)− log πθAgent
(x))2 (8)

log πAgent(x) is the log-probability of generating a given SMILES, x, under the Agent. Importantly,798

we explicitly include θ here because the Agent is updated. We stop here for a moment to discuss799

the implications of the loss function. The loss function tries to minimize the distance between the800

Augmented Likelihood and the Agent likelihood. Since the Augmented Likelihood (Eq. 7 is a linear801

combination of the Prior likelihood and the reward function, if the Agent generates "bad" SMILES,802

then the reward goes to 0 and the Augmented Likelihood converges to the Prior Likelihood. In803

this event, the Agent’s weights actually regress back towards the Prior. This is because the Prior804

is pre-trained on a general dataset containing bio-active molecules (such as ChEMBL79 and ZINC805

250k89. The implicit assumption during pre-training is that these general datasets might actually806

already contain "good" molecules. Therefore, in the event that "bad" molecules are generated, the807

Prior acts as a "fall-back". On the other hand, when the reward is not 0, the Prior still "anchors" the808

Agent and does not let its weights deviate too far from the Prior (this is controlled by σ). The reason809

for this is also because the Prior is assumed to potentially already contain "good" molecules. In810

practice, the Agent can deviate quite far from the Prior31. We now discuss an important implication of811

this loss function in Saturn. Saturn heavily leverages SMILES augmentation25 as a data augmentation812

method to learn from the same molecular graph multiple times. Alternative SMILES sequences,813

while mapping to the same molecular graph, can have drastically different likelihoods. This is814

shown in Figure 2 in the main text where Saturn is trained to make it likely to generate all of these815

alternative SMILES forms. However, this does not always work. Because alternative SMILES forms816

have different likelihoods, there is the possibility that with the right combination of terms in the817

Augmented Likelihood, that it equals the Agent likelihood. In this case, the loss contribution is 0 so818

the Agent actually is not tuned to generate that particular SMILES form with higher likelihood. This819

is a contributing factor to Saturn’s "hop-and-locally-explore" behavior. Given a set of augmented820

SMILES, if some of these SMILES cancel out in the loss function, then there is a smaller set of821

augmented SMILES that contribute to the loss function. With a smaller set, overfitting becomes more822

prone but we show that this mechanism actually benefits sample efficiency.823

Finally, Saturn does not generate individual SMILES but rather, batches of SMILES. Therefore, the824

loss function is a batched loss:825
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L(θ) =
1

|B|

[ ∑
a∈A∗

(log πAugmented − log πθAgent
)

]2

(9)

The loss magnitude is the mean loss for a given batch, B, of sampled SMILES constructed following826

the actions, a ∈ A∗.827

Minimizing the loss function is equivalent to maximizing the expected reward. In reinforcement828

learning, the general objective is to maximize the expected reward. In this section, we show how829

maximizing the expected reward is equivalent to minimizing the loss function. We first further830

define some preliminaries: sampling trajectories means sampling SMILES in our context. While831

there are often intermediate rewards during trajectory sampling, e.g., a drone tasked to fly to a832

target location might receive various rewards for how balanced it is during the flight, we set all833

intermediate rewards to 0. This is because rewards are only meaningful if the SMILES is a valid834

molecule. Technically, since the reward is directly the reward from the full trajectory, it is actually835

the Return in reinforcement learning terminology, but we use the term reward to match existing836

literature. Mathematically, the cost function (in reinforcement learning, J is used and we follow this837

convention) describes the expected reward when taking actions from a policy that is parameterized by838

a neural network (Mamba in our case):839

J(θ) = Eat∼πθAgent

[
T∑

t=1

R(at, st)

]
(10)

Since the expectation is in discrete space (sampling tokens is a discrete action), the cost function can840

be rewritten by transforming the expectation to a sum:841

J(θ) =

T∑
t=1

∑
a∈At

R(at, st)πθAgent
(at|st) (11)

The double summation is over all time-steps and actions (which token sampled) following the policy,842

πθ. Since we want to maximize the cost function, we take the derivative:843

∇θJ(θ) =

T∑
t=1

∑
a∈At

R(at, st)∇θπθAgent
(at|st) (12)

Next, the log-derivative trick:844

∇θJ(θ) =

T∑
t=1

∑
a∈At

R(at, st)πθAgent
(at|st)∇θ log πθ(at|st) (13)

Using the definition of expectation for discrete space again, the cost function is rewritten:845

∇θJ(θ) = Eat∼πθAgent

[
T∑

t=1

R(at, st)∇θ log πθAgent
(at|st)

]
(14)

Computing the expectation exactly is intractable. This would involve sampling every single SMILES846

and computing their rewards. Therefore, the expectation is approximated by sampling a batch, B, of847

SMILES. Next, the set of actions taken in a batch at every time-step, is denoted A∗, which yield the848

specific SMILES generated:849

∇θJ(θ) =
1

|B|

[ ∑
a∈A∗

R(at, st)∇θ log πθAgent
(at|st)

]
(15)
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The reward, R is defined according to previous works21,23,76:850

R(at, st) = log πAugmented − log πθAgent
(16)

Substituting the reward function:851

∇θJ(θ) =
1

|B|

[ ∑
a∈A∗

log πAugmented − log πθAgent

] ∑
a∈A∗

∇θ log πθAgent
(at|st) (17)

Recalling the loss function:852

L(θ) =
1

|B|

[ ∑
a∈A∗

(log πAugmented − log πθAgent
)

]2

(18)

Minimizing the loss function requires taking the derivative with respect to θ:853

∇θL(θ) = −2
1

|B|

[ ∑
a∈A∗

log πAugmented − log πθAgent

] ∑
a∈A∗

∇θ log πθAgent
(19)

The cost function (Eq. 17) is equivalent to the loss function (Eq. 19) up to a factor.854

Saturn Pseudo-code. The pseudo-code for Saturn is presented here and the code is available at855

https://figshare.com/s/6040d65bfbfc29d6fedf.856
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Algorithm 1: Saturn Goal-directed Generation
Input: Oracle Budget Budget, Prior πPrior , Augmentation Rounds A, Reward Function R,

Sigma σ, Replay Buffer Size K, Genetic Algorithm GA

Output: Fine-tuned Agent Policy πθAgent
, Generated Set G

Initialization:
1. Generative Agent πθAgent

= πPrior

2. Diversity Filter DF

3. Replay Buffer RB = {}
4. Oracle Calls Calls = 0

5. Oracle Cache Cache = {}
6. Generated Set G = {}

while C < Budget do
Sample batch of SMILES X = {x1, . . . , xb} with xi ∼ πθAgent

;

(Optionally) Generate SMILES using the Genetic Algorithm XGA = GA(RB);

X = X ∪XGA ;

if X in Cache then
Retrieve rewards RCached

Compute reward for new SMILES R(XNew);

Update Generated Set tracking G = G ∪ (XNew , R(XNew));

Update Oracle Cache Cache = ((XNew , RNew) ∪ Cache);

Update Oracle Calls C = C + |XNew |;

R(X) = RCached ∪R(XNew);

Modify rewards based on the Diversity Filter R(X) = DF (X,R(X));

Update Replay Buffer RB = TopK(X ∪RB);

Compute Augmented Likelihood log πAugmented(X) = log πPrior(X) + σR(X);

Compute loss J(θ) = (log πAugmented − log πθAgent
(X))2;

Update the Agent πθAgent
;

Purge Replay Buffer;

for i← 1 to A do
Augment sampled and Replay Buffer SMILES XAugmented ;

Compute Augmented Likelihood of augmented SMILES (reward is unchanged)
log πAugmented = log πPrior(XAugmented) + σR(XAugmented);

Compute loss J(θ)Augmented = (log πAugmented − log πθAgent
(XAugmented))

2;

Update the Agent πθAgent
;

return πθAgent
, G
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B Saturn: Identifying Optimal Hyperparameters and Architecture857

In this section, we present results from all hyperparameter investigations for Saturn. In particular, we858

formulated four questions (each devoted to one subsection) which we answer with empirical results859

and discussion on the test experiment which has the following multi-parameter optimization (MPO)860

objective: molecular weight (MW) < 350 Da, number of rings ≥ 2, and maximize topological polar861

surface area (tPSA).862

Metrics. Following Guo et al.22, the sample efficiency metrics are Yield and Oracle Burden (OB).863

Yield (Eq. 20) is the number of unique generated molecules above a reward threshold, T .864

Y ield =

G∑
g=1

I[R(g) > T ] (20)

Oracle Burden (Eq. 21) is the number of oracle calls (c) required to generate N unique molecules865

above a reward threshold, T .866

Oracle Burden = c |
G∑

g=1

I[R(g) > T ] = N (21)

The Yield and OB metrics are used to assess sample efficiency at the 0.7 reward threshold. In867

all tables, the number after OB parentheses is the number of successful replicates out of 10. All868

metrics other than IntDiv171 are rounded to the nearest integer. All individual experiments869

were run across 10 seeds (0-9 inclusive) and with a 1,000 oracle budget. All experiments were870

run sequentially on a workstation equipped with an NVIDIA RTX 3090 GPU and AMD Ryzen871

9 5900X 12-Core CPU.872

B.1 Data Pre-processing and Pre-training873

Before presenting grid-search results, we first describe the full data pre-processing pipeline and874

design decisions made. The pre-training data for all experiments except Part 3: Benchmarking875

Physics-based MPO Objective in the main text (ZINC 250k89 instead), was ChEMBL 3379. We first876

downloaded the raw ChEMBL 33 from: https://ftp.ebi.ac.uk/pub/databases/chembl/877

ChEMBLdb/releases/chembl_33/. There was no particular reason version 33 was chosen, other878

than it was the latest version at the time of experiments. We note that very recently (March 2024),879

version 34 was released.880

The exact pre-processing steps along with the SMILES remaining after each step are:881

1. Raw ChEMBL 33 - 2,372,674882

2. Standardization (charge and isotope handling) based on https://github.com/883

MolecularAI/ReinventCommunity/blob/master/notebooks/Data_Preparation.884

ipynb. All SMILES that could not be parsed by RDKit were removed - 2,312,459885

3. Kept only the unique SMILES - 2,203,884886

4. Tokenize all SMILES based on REINVENT’s tokenizer: https://github.com/887

MolecularAI/reinvent-models/blob/main/reinvent_models/reinvent_core/888

models/vocabulary.py889

5. Keep SMILES ≤ 80 tokens - 2,065,099890

6. 150 ≤ molecular weight ≤ 600 - 2,016,970891

7. Number of heavy atoms ≤ 40 - 1,975,282892

8. Number of rings ≤ 8 - 1,974,522893

9. Size of largest ring ≤ 8 - 1,961,690894

10. Longest aliphatic carbon chain ≤ 5 - 1,950,213895
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11. Removed SMILES containing the following tokens (due to undesired chemistry and low896

token frequency): [S+], [C-], [s+], [O], [S@+], [S@@+], [S-], [o+], [NH+], [n-], [N@],897

[N@@], [N@+], [N@@+], [S@@], [C+], [S@], [c+], [NH2+], [SH], [NH-], [cH-], [O+],898

[c-], [CH], [SH+], [CH2-], [OH+], [nH+], [SH2] - 1,942,081899

The final vocabulary contained 37 tokens (2 extra tokens were added, indicating <START> and900

<END>). We note that stereochemistry tokens were kept (this is not the case for REINVENT24).901

In this work, we investigated LSTM26 RNN, decoder transformer27,28, and Mamba29. Given a902

vocabulary of 37, the model parameters were as follows:903

1. RNN: 5,807,909 (based on REINVENT24)904

2. Decoder Transformer 6,337,061 (based on recent work40 that applied this model size and905

used a similar loss function to REINVENT)906

3. Mamba: 5,265,920 (based on similar size to RNN)907

The exact hyperparameters of each architecture are the default arguments in the codebase. Each908

training step consisted of a full pass through the dataset. The key pre-training parameters were:909

1. Max training steps = 20910

2. Seed = 0911

3. Batch size = 512912

4. Learning rate = 0.0001913

5. Randomize25 every batch of SMILES914

The following model checkpoints were used:915

1. RNN: Epoch 18, NLL = 34.61, Validity (10k) = 94.48%916

2. Decoder Transformer Epoch 20, NLL = 33.38, Validity (10k) = 96.04%917

3. Mamba: Epoch 18, NLL = 32.21, Validity (10k) = 95.60%918

B.2 Understanding the Limits of Augmented Memory919

Augmented Memory21 improves sample efficiency by repeated learning on the high reward SMILES920

stored in the replay buffer (referred to as Buffer from here on). In the original work, ablation921

experiments showed that updating the agent with only the Buffer resulted in minimal difference. This922

suggests that a viable way to exploiting the gains from Augmented Memory is to simply have new923

examples of high reward SMILES being added to the Buffer. In the original work, the number of924

augmentation rounds was capped at two to mitigate mode collapse. In this work, we assume near925

deterministic rewards and use caching to handle repeated generations. Under this assumption, our926

hypothesis in this subsection is: as long as unique high reward SMILES are generated, increasing927

augmentation rounds can further improve sample efficiency. Correspondingly, we perform a grid928

search using Augmented Memory’s default generator architecture (LSTM26 RNN) and vary the batch929

size (64, 32, 16, 8) and augmentation rounds (0-20 inclusive except 1) where 0 augmentation rounds930

is equivalent to REINVENT23,24. The results are shown in Tables 5, 6, 7, and 8.931

Increasing augmentation rounds:932

1. Decreases diversity, as expected.933

2. Increases the number of repeated SMILES.934

Decreasing batch size:935

1. Monotonically improves sample efficiency (though not always significant at the 95% confi-936

dence level).937

2. Benefits Augmented memory more than REINVENT (0 augmentation rounds).938

3. Increases the number of repeated SMILES.939
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Table 5: RNN batch size 64.
Model Aug. Rounds Yield IntDiv1 Scaffolds OB 1 OB 10 OB 100 Repeats

RNN 0 0±0 — 0±0 584±251 (5) Failed (0) Failed (0) 1±1
RNN 2 15±9 0.775±0.073 15±9 644±173 (10) 941±58 (8) Failed (0) 0±0
RNN 3 33±42 0.788±0.043 32±40 613±96 (10) 927±128 (9) 993±0 (1) 0±0
RNN 4 32±16 0.813±0.024 31±16 527±198 (10) 880±90 (10) Failed (0) 0±0
RNN 5 40±14 0.812±0.023 39±13 459±177 (10) 862±68 (10) Failed (0) 0±0
RNN 6 41±32 0.805±0.032 39±28 492±184 (10) 852±99 (9) 1041±0 (1) 0±0
RNN 7 47±25 0.814±0.019 46±24 543±188 (10) 842±93 (10) 1055±0 (1) 0±0
RNN 8 28±16 0.801±0.032 27±16 557±173 (10) 912±82 (9) Failed (0) 0±0
RNN 9 21±13 0.742±0.124 21±13 596±215 (10) 918±61 (8) Failed (0) 1±2
RNN 10 27±18 0.796±0.046 27±18 511±266 (10) 859±65 (8) Failed (0) 0±0
RNN 11 20±14 0.749±0.115 20±14 611±235 (10) 938±85 (8) Failed (0) 1±2
RNN 12 48±18 0.813±0.022 46±18 468±206 (10) 851±55 (10) Failed (0) 1±1
RNN 13 57±43 0.808±0.027 54±39 446±213 (10) 822±144 (10) 952±0 (1) 1±2
RNN 14 33±13 0.801±0.024 32±13 587±175 (10) 884±79 (10) Failed (0) 1±1
RNN 15 47±32 0.797±0.037 46±32 532±196 (10) 836±122 (10) 1052±0 (1) 2±2
RNN 16 34±32 0.783±0.026 33±30 647±208 (10) 918±97 (10) 1034±0 (1) 3±4
RNN 17 31±29 0.769±0.06 30±29 645±176 (10) 870±99 (7) Failed (0) 3±4
RNN 18 35±28 0.774±0.035 32±24 673±125 (10) 898±88 (8) 1053±0 (1) 7±5
RNN 19 43±41 0.781±0.034 40±36 659±183 (10) 875±111 (8) 949±0 (1) 7±9
RNN 20 51±29 0.792±0.03 48±28 583±187 (10) 837±133 (10) 1056±0 (1) 3±2

Table 6: RNN batch size 32.
Model Aug. Rounds Yield IntDiv1 Scaffolds OB 1 OB 10 OB 100 Repeats

RNN 0 0±0 — 0±0 798±101 (5) Failed (0) Failed (0) 1±1
RNN 2 43±25 0.825±0.029 42±24 608±151 (10) 844±90 (9) Failed (0) 0±0
RNN 3 52±34 0.810±0.059 51±32 522±141 (10) 789±100 (9) 1018±0 (2) 0±1
RNN 4 87±33 0.820±0.018 83±31 466±120 (10) 740±77 (10) 987±30 (4) 1±3
RNN 5 98±57 0.817±0.027 89±50 408±184 (10) 714±136 (10) 915±20 (4) 1±2
RNN 6 76±50 0.808±0.028 71±43 476±159 (10) 783±99 (10) 927±30 (2) 1±3
RNN 7 78±40 0.805±0.027 72±40 478±90 (10) 760±70 (10) 942±26 (2) 3±7
RNN 8 89±72 0.798±0.036 78±58 529±165 (10) 767±146 (10) 899±48 (3) 9±13
RNN 9 57±52 0.781±0.046 50±42 608±186 (10) 811±143 (9) 977±36 (3) 5±4
RNN 10 90±65 0.788±0.031 82±55 549±158 (10) 769±142 (10) 977±66 (5) 9±14
RNN 11 60±43 0.755±0.105 57±43 593±207 (10) 781±83 (8) 969±52 (2) 2±2
RNN 12 103±83 0.790±0.021 90±72 534±168 (10) 763±158 (10) 930±105 (4) 10±23
RNN 13 72±57 0.749±0.065 62±52 578±155 (10) 765±134 (8) 958±54 (3) 12±9
RNN 14 95±55 0.779±0.027 83±47 463±173 (10) 758±110 (10) 964±28 (5) 16±15
RNN 15 74±60 0.784±0.036 66±52 554±92 (10) 820±124 (10) 963±54 (4) 22±20
RNN 16 84±60 0.758±0.07 70±44 544±209 (10) 768±105 (9) 957±42 (5) 17±19
RNN 17 112±74 0.765±0.067 96±56 474±131 (10) 729±105 (10) 908±96 (4) 21±21
RNN 18 77±49 0.774±0.039 67±43 533±100 (10) 779±102 (10) 927±12 (2) 35±32
RNN 19 84±56 0.749±0.037 68±50 535±181 (10) 788±127 (10) 951±61 (3) 33±44
RNN 20 76±77 0.717±0.094 64±61 653±200 (10) 810±121 (9) 919±76 (3) 56±64

4. Increases variance, as expected (since the expected reward is being approximated with a940

smaller batch size so it is more noisy).941

5. Decreases diversity.942

Taking these observations together, increasing augmentation rounds and decreasing batch size943

can trade-off diversity for sample efficiency (inconsistently and with higher variance).944

B.3 Do Architectures Differ in Behavior?945

RNNs essentially solve the validity, uniqueness, and novelty metrics70,71 and can learn molecular946

distributions well109 for small molecule design. In this subsection, we extend Augmented Memory to947

decoder transformer27,28 and Mamba29 to investigate the RL dynamics and empirically investigate948

potential benefits. Our hypothesis is that since self-attention27 and selective scanning29 can capture949

different structural elements69 (via focusing on different aspects of the sequence), benefits may950

arise from capturing and focusing on favorable moieties. Our analysis is focused solely on sample951

efficiency metrics and not validity, uniqueness, and novelty.952

Similar to the previous subsection, we perform a grid-search over batch size (64, 32, 16, 8) and953

augmentation rounds (0-20 inclusive except 1). As the results for RNN were presented in the previous954

subsection, this subsection only shows Decoder and Mamba results (Tables 9, 10, 11, 12, 13, 14, 15,955

and 16).956
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Table 7: RNN batch size 16.
Model Aug. Rounds Yield IntDiv1 Scaffolds OB 1 OB 10 OB 100 Repeats

RNN 0 8±9 0.700±0.126 8±9 546±263 (8) 837±144 (3) Failed (0) 1±1
RNN 2 86±40 0.819±0.026 82±38 409±158 (10) 709±86 (10) 907±14 (2) 2±4
RNN 3 103±47 0.831±0.027 100±44 406±157 (10) 706±98 (10) 942±45 (5) 2±3
RNN 4 90±62 0.828±0.017 83±53 440±152 (10) 741±102 (10) 916±76 (3) 1±1
RNN 5 107±58 0.814±0.036 101±54 480±118 (10) 721±109 (10) 916±53 (4) 7±7
RNN 6 121±80 0.791±0.040 107±68 493±214 (10) 713±156 (10) 895±107 (5) 12±11
RNN 7 144±107 0.776±0.026 117±86 467±186 (10) 684±136 (10) 871±116 (6) 38±82
RNN 8 120±95 0.734±0.128 104±85 481±288 (10) 653±145 (8) 854±54 (5) 18±28
RNN 9 141±104 0.783±0.048 112±72 453±211 (10) 654±154 (9) 871±104 (6) 59±95
RNN 10 106±76 0.760±0.0560 84±63 510±201 (10) 733±122 (9) 913±64 (5) 43±47
RNN 11 120±105 0.764±0.032 95±81 500±220 (10) 741±199 (10) 829±99 (4) 42±37
RNN 12 171±140 0.769±0.028 124±109 389±209 (10) 662±186 (10) 774±128 (5) 39±30
RNN 13 133±106 0.767±0.038 106±93 510±186 (10) 690±162 (10) 826±131 (4) 83±88
RNN 14 166±130 0.769±0.045 129±93 413±237 (10) 659±195 (10) 777±94 (5) 93±69
RNN 15 154±89 0.732±0.064 127±78 504±162 (10) 647±124 (9) 861±59 (7) 94±75
RNN 16 156±155 0.716±0.094 109±109 517±196 (10) 682±202 (9) 838±182 (6) 143±120
RNN 17 141±82 0.737±0.059 98±49 444±181 (10) 696±128 (10) 894±71 (7) 198±163
RNN 18 189±136 0.727±0.044 152±119 469±212 (10) 657±174 (10) 832±141 (7) 247±210
RNN 19 162±121 0.654±0.165 119±98 507±257 (10) 625±137 (8) 836±109 (7) 210±128
RNN 20 139±110 0.732±0.045 91±67 492±188 (10) 720±157 (10) 847±110 (5) 262±179

Table 8: RNN batch size 8.
Model Aug. Rounds Yield IntDiv1 Scaffolds OB 1 OB 10 OB 100 Repeats

RNN 0 21±21 0.645±0.133 17±18 481±291 (10) 826±95 (6) Failed (0) 16±15
RNN 2 136±100 0.807±0.028 113±73 428±169 (10) 665±159 (10) 849±113 (5) 8±9
RNN 3 143±97 0.793±0.037 131±85 395±169 (10) 667±126 (10) 863±109 (6) 27±33
RNN 4 152±115 0.785±0.022 129±96 379±212 (10) 680±179 (10) 865±124 (7) 44±47
RNN 5 164±84 0.786±0.038 123±56 350±158 (10) 643±121 (10) 876±81 (8) 40±41
RNN 6 224±104 0.790±0.041 181±79 352±176 (10) 584±159 (10) 782±56 (8) 49±40
RNN 7 185±111 0.751±0.070 151±96 435±224 (10) 608±127 (9) 814±86 (7) 116±119
RNN 8 159±128 0.775±0.050 128±114 460±195 (10) 646±145 (9) 858±140 (7) 105±77
RNN 9 198±164 0.732±0.072 151±121 451±227 (10) 641±158 (9) 782±168 (6) 285±396
RNN 10 139±127 0.728±0.078 100±73 512±212 (8) 702±124 (7) 867±145 (4) 112±61
RNN 11 205±173 0.753±0.062 151±120 444±267 (10) 652±234 (10) 737±167 (6) 254±320
RNN 12 261±165 0.762±0.057 211±135 320±246 (10) 579±210 (10) 775±168 (9) 518±760
RNN 13 231±198 0.753±0.061 155±101 444±184 (9) 601±235 (9) 790±214 (8) 351±289
RNN 14 158±103 0.718±0.091 108±60 526±208 (10) 681±127 (9) 845±80 (6) 374±308
RNN 15 221±128 0.731±0.043 150±129 439±196 (10) 618±168 (10) 826±153 (9) 461±292
RNN 16 196±145 0.725±0.043 136±101 470±228 (10) 683±198 (10) 813±141 (7) 694±495
RNN 17 258±130 0.689±0.119 193±94 467±210 (10) 576±139 (9) 787±115 (9) 796±600
RNN 18 253±114 0.727±0.047 195±98 394±175 (10) 605±124 (10) 764±82 (8) 1112±974
RNN 19 268±159 0.714±0.052 204±132 418±161 (10) 579±167 (10) 745±153 (8) 817±811
RNN 20 292±153 0.713±0.039 220±121 397±205 (10) 574±188 (10) 776±173 (10) 1406±1391

The following observations are similar to RNN. Increasing augmentation rounds:957

1. Decreases diversity, as expected.958

2. Increases the number of repeated SMILES.959

Decreasing batch size:960

1. Monotonically improves sample efficiency (though not always significant at the 95% confi-961

dence level).962

2. Benefits Augmented memory more than REINVENT (0 augmentation rounds).963

3. Increases the number of repeated SMILES.964

4. Increases variance, as expected (since the expected reward is being approximated with a965

smaller batch size so it is more noisy).966

5. Decreases diversity.967

The following observations contrast RNN with Decoder and Mamba:968

1. Mamba > Decoder > RNN in terms of NLL convergence (end of Appendix B.1).969

2. Propensity to generate repeated SMILES follows the same trend and is further supported970

with the IntDiv1 generally being lower than RNN for the same number of augmentation971

rounds across all batch sizes.972
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Table 9: Decoder batch size 64.
Model Aug. Rounds Yield IntDiv1 Scaffolds OB 1 OB 10 OB 100 Repeats

Decoder 0 1±1 0.548±0.129 1±1 691±266 (6) Failed (0) Failed (0) 2±1
Decoder 2 26±19 0.800±0.061 26±18 524±128 (10) 868±76 (8) Failed (0) 0±0
Decoder 3 37±24 0.801±0.031 36±23 629±154 (10) 849±85 (9) Failed (0) 0±0
Decoder 4 49±38 0.797±0.055 48±37 590±142 (10) 851±89 (9) 984±0 (1) 0±0
Decoder 5 63±35 0.821±0.014 62±35 545±136 (10) 814±84 (10) 997±21 (2) 1±1
Decoder 6 43±34 0.794±0.033 40±32 649±155 (10) 881±127 (10) 1045±0 (1) 2±4
Decoder 7 42±29 0.800±0.039 41±29 585±175 (10) 859±116 (9) 1042±0 (1) 4±3
Decoder 8 22±28 0.719±0.119 21±28 717±157 (10) 939±104 (7) 1051±0 (1) 6±6
Decoder 9 23±22 0.704±0.156 19±16 618±233 (10) 889±92 (7) Failed (0) 10±5
Decoder 10 43±48 0.768±0.056 41±47 643±110 (10) 788±104 (6) 980±0 (1) 10±7
Decoder 11 36±45 0.756±0.068 34±44 698±116 (10) 881±108 (8) 891±0 (1) 9±7
Decoder 12 47±28 0.795±0.02 43±27 609±101 (9) 862±74 (9) 1046±0 (1) 16±9
Decoder 13 66±66 0.727±0.109 56±54 641±216 (10) 788±148 (8) 975±75 (2) 37±25
Decoder 14 38±37 0.696±0.139 33±34 679±169 (10) 868±104 (7) 1004±0 (1) 46±28
Decoder 15 38±56 0.671±0.100 25±32 668±241 (9) 809±159 (5) 977±9 (2) 56±28
Decoder 16 33±41 0.716±0.084 25±29 572±221 (10) 900±122 (8) 984±0 (1) 78±38
Decoder 17 50±48 0.707±0.091 37±30 595±250 (10) 797±86 (7) 1007±34 (2) 91±42
Decoder 18 30±36 0.732±0.049 26±32 701±135 (8) 886±101 (6) 1025±0 (1) 124±41
Decoder 19 35±31 0.715±0.056 28±21 640±240 (10) 852±155 (8) 1031±0 (1) 159±64
Decoder 20 51±51 0.733±0.047 39±38 585±277 (9) 862±136 (8) 984±49 (2) 172±69

3. Mamba notably generates many repeated SMILES but sample efficiency improves, thus973

it is not detrimental under the assumption that the reward is near deterministic and oracle974

evaluations are cached.975

4. In general, Decoder does not outperform RNN976

Taking these observations together and exactly like RNN results, increasing augmentation977

rounds and decreasing batch size can trade-off diversity for sample efficiency (inconsistently and978

with higher variance). However, of difference, is that Mamba at lower batch sizes (particularly979

16) and relatively high augmentation rounds (10) improves sample efficiency in a statistically980

significant way (at the 95% confidence level).981

We further note that we have observed that with low batch size and high augmentation rounds, Mamba982

can temporarily lose generative ability. Specifically, the validity of the generated batch can be 0.983

Sampling a new batch can recover this validity but we have observed in extremely rare cases, that984

validity can be 0 for over 10 successive epochs. We observed this scenario twice in over 5,000985

experiments, occurring with a batch size of 8 and augmentation rounds 19 and 20. We speculate the986

reason is extreme mode collapse to a chemical space where syntax is sensitive. Consequently, once987

the Selective Memory Purge starts penalizing the reward and the agent is brought back towards the988

prior, large gradient updates coupled with sensitive syntax may cause invalid SMILES. This process989

often recovers but in practice, with high-fidelity oracles, one would checkpoint models frequently990

(even every epoch), as each batch of oracle evaluation would be costly. Alternatively, as all high991

reward SMILES (so far) generated can be pre-emptively saved. It would be feasible to even start a992

new run with these SMILES seeded in the replay buffer, akin to inception in REINVENT24 (transfer993

learning would work too). This would kick-start the optimization and already guide the agent to this994

chemical space, preventing optimization progress from completely "lost". Moreover, we also do995

not recommend a batch size of 8 and augmentation rounds above 10 as the performance variance996

becomes high. This behavior is likely also highly dependent on the objective function which affects997

the optimization landscape. Finally, in the rare cases this occurs, and when validity recovers, the998

effect is minimal as sampling is cheap compared to oracle evaluations. We write this note for full999

transparency into all the behavior we have observed in our grid-search.1000

B.4 Are Increased Augmentation Rounds still Synergistic with Beam Enumeration?1001

Beam Enumeration22 extracts the most probable substructures for self-conditioned generation and1002

has been shown to be synergistic with Augmented Memory21 such that the Yield and OB improve. In1003

the original work, the oracle budget in the experiments was 5,000. In this work, we are interested1004

in minimizing the oracle budget and all experiments thus far use a 1,000 oracle budget. Beam1005

Enumeration has a Patience criterion which controls when substructures are extracted: only when1006

the average reward improves for Patience number of successive epochs. Since we are operating at1007

a much lower oracle budget, it is especially unclear whether Beam Enumeration can still benefit1008
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Table 10: Decoder batch size 32.
Model Aug. Rounds Yield IntDiv1 Scaffolds OB 1 OB 10 OB 100 Repeats

Decoder 0 4±4 0.710±0.023 4±4 647±232 (6) 982±39 (2) Failed (0) 10±13
Decoder 2 45±23 0.813±0.021 43±22 557±174 (10) 844±91 (10) Failed (0) 1±1
Decoder 3 66±44 0.801±0.033 63±43 515±146 (10) 779±70 (9) 918±0 (1) 1±1
Decoder 4 111±88 0.791±0.017 100±80 476±131 (10) 726±133 (10) 908±81 (5) 3±3
Decoder 5 94±70 0.791±0.043 81±53 489±155 (10) 753±112 (9) 897±63 (3) 3±2
Decoder 6 94±66 0.770±0.075 82±60 476±204 (10) 696±126 (9) 921±52 (4) 11±6
Decoder 7 117±87 0.730±0.084 105±84 473±270 (10) 659±99 (8) 936±93 (6) 54±84
Decoder 8 78±69 0.776±0.032 67±52 519±204 (10) 797±147 (10) 926±94 (3) 35±13
Decoder 9 59±35 0.767±0.032 51±32 575±76 (10) 856±83 (10) 968±0 (1) 44±33
Decoder 10 91±75 0.742±0.065 68±52 492±176 (9) 769±121 (9) 879±66 (2) 77±56
Decoder 11 70±46 0.739±0.059 57±36 559±128 (10) 811±96 (10) 974±6 (3) 84±45
Decoder 12 114±58 0.730±0.041 82±45 559±177 (10) 715±59 (9) 942±48 (6) 124±81
Decoder 13 93±83 0.741±0.064 77±68 598±114 (10) 788±129 (9) 874±34 (3) 146±76
Decoder 14 147±112 0.752±0.064 109±84 486±147 (9) 694±152 (9) 791±37 (4) 257±269
Decoder 15 140±100 0.718±0.085 111±78 516±256 (10) 676±143 (9) 916±106 (7) 222±128
Decoder 16 130±142 0.709±0.045 82±66 552±177 (10) 772±164 (10) 851±173 (4) 405±272
Decoder 17 130±125 0.720±0.075 95±89 624±209 (10) 771±186 (10) 841±137 (4) 444±265
Decoder 18 153±165 0.718±0.055 110±130 565±191 (10) 718±197 (9) 668±81 (3) 544±503
Decoder 19 149±94 0.686±0.055 104±69 547±215 (10) 731±113 (9) 897±83 (7) 594±172
Decoder 20 137±135 0.693±0.046 78±56 555±200 (9) 740±181 (9) 855±145 (5) 514±399

Table 11: Decoder batch size 16.
Model Aug. Rounds Yield IntDiv1 Scaffolds OB 1 OB 10 OB 100 Repeats

Decoder 0 2±3 0.55±0.1 2±2 810±93 (7) 983±0 (1) Failed (0) 78±25
Decoder 2 66±50 0.796±0.037 59±41 602±158 (10) 799±106 (9) 921±3 (2) 8±7
Decoder 3 84±66 0.77±0.037 64±44 536±170 (10) 769±122 (9) 919±44 (4) 28±24
Decoder 4 71±44 0.74±0.102 62±41 632±118 (10) 780±82 (9) 977±36 (3) 22±12
Decoder 5 154±93 0.748±0.052 122±70 439±151 (10) 679±128 (10) 907±92 (8) 90±90
Decoder 6 116±94 0.748±0.039 86±64 517±165 (10) 728±158 (10) 904±126 (5) 73±42
Decoder 7 108±85 0.747±0.051 71±50 510±222 (10) 740±127 (9) 868±48 (4) 126±63
Decoder 8 108±94 0.708±0.109 72±57 538±164 (10) 742±116 (9) 887±87 (4) 150±72
Decoder 9 78±83 0.687±0.116 51±55 614±244 (10) 790±150 (8) 890±62 (3) 242±139
Decoder 10 120±128 0.691±0.042 74±73 663±170 (9) 768±169 (8) 805±65 (4) 344±218
Decoder 11 146±134 0.727±0.038 110±100 609±169 (9) 725±166 (9) 829±132 (5) 389±199
Decoder 12 119±127 0.704±0.047 76±68 624±185 (9) 779±176 (9) 828±110 (4) 363±256
Decoder 13 183±177 0.696±0.031 97±80 484±227 (9) 671±216 (9) 753±144 (5) 498±412
Decoder 14 146±111 0.673±0.055 88±60 572±240 (10) 737±162 (9) 850±87 (6) 702±387
Decoder 15 146±100 0.64±0.123 108±79 623±141 (10) 772±150 (10) 867±70 (6) 774±414
Decoder 16 209±173 0.688±0.043 155±130 530±124 (9) 654±161 (9) 813±170 (7) 1369±777
Decoder 17 190±168 0.662±0.109 154±149 571±207 (10) 674±179 (9) 746±162 (5) 1096±883
Decoder 18 226±138 0.668±0.052 174±115 550±156 (10) 646±131 (9) 802±118 (8) 1540±986
Decoder 19 232±154 0.648±0.07 168±96 564±152 (10) 681±161 (10) 781±147 (7) 1693±1165
Decoder 20 258±200 0.636±0.077 166±103 448±223 (9) 589±179 (8) 763±177 (8) 1741±1020

Table 12: Decoder batch size 8.
Model Aug. Rounds Yield IntDiv1 Scaffolds OB 1 OB 10 OB 100 Repeats

Decoder 0 57±64 0.621±0.222 37±36 554±137 (9) 766±178 (7) 912±52 (3) 368±164
Decoder 2 120±76 0.745±0.055 97±59 497±207 (10) 667±110 (8) 913±62 (7) 39±22
Decoder 3 93±60 0.73±0.06 74±45 530±166 (10) 759±87 (9) 918±22 (4) 128±82
Decoder 4 111±49 0.741±0.036 79±34 467±170 (10) 737±101 (10) 950±32 (7) 173±81
Decoder 5 79±82 0.724±0.044 59±54 609±123 (8) 805±101 (8) 901±72 (3) 283±179
Decoder 6 138±112 0.72±0.062 96±78 608±162 (10) 737±138 (9) 843±81 (5) 400±222
Decoder 7 197±165 0.688±0.064 149±131 502±287 (10) 684±237 (10) 758±112 (6) 820±1051
Decoder 8 219±179 0.68±0.063 132±120 475±201 (8) 581±127 (7) 763±136 (7) 840±900
Decoder 9 194±144 0.651±0.049 153±118 496±157 (8) 627±149 (8) 791±109 (7) 1059±864
Decoder 10 183±200 0.684±0.055 130±130 571±201 (9) 654±217 (8) 789±205 (6) 944±597
Decoder 11 141±123 0.581±0.166 96±84 617±198 (9) 662±142 (7) 801±97 (5) 1715±1380
Decoder 12 133±196 0.574±0.149 92±135 665±291 (9) 699±268 (7) 664±209 (3) 1604±1130
Decoder 13 331±151 0.664±0.095 271±143 418±230 (10) 503±88 (9) 711±107 (9) 2030±1408
Decoder 14 164±152 0.602±0.06 125±109 620±257 (9) 714±194 (8) 825±133 (6) 2628±1665
Decoder 15 281±242 0.661±0.054 230±185 496±243 (9) 589±251 (9) 663±201 (7) 2482±1515
Decoder 16 213±191 0.58±0.143 180±176 512±245 (9) 596±223 (8) 730±186 (6) 3113±2436
Decoder 17 252±186 0.622±0.072 203±167 614±231 (10) 615±169 (8) 735±139 (7) 3278±1894
Decoder 18 81±113 0.595±0.064 69±97 630±232 (7) 759±209 (7) 862±102 (3) 2811±2415
Decoder 19 136±171 0.611±0.062 119±154 645±195 (7) 708±180 (6) 771±142 (4) 2886±2066
Decoder 20 98±139 0.54±0.075 91±136 736±195 (7) 785±160 (6) 813±140 (3) 3190±2113
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Table 13: Mamba batch size 64.
Model Aug. Rounds Yield IntDiv1 Scaffolds OB 1 OB 10 OB 100 Repeats

Mamba 0 0±0 — 0±0 946±41 (2) Failed (0) Failed (0) 0±1
Mamba 2 2±1 0.580±0.086 2±1 817±244 (10) Failed (0) Failed (0) 0±0
Mamba 3 9±6 0.734±0.068 9±6 659±234 (9) 942±34 (4) Failed (0) 1±1
Mamba 4 6±3 0.672±0.114 6±3 652±297 (10) 1040±7 (2) Failed (0) 2±2
Mamba 5 9±5 0.697±0.113 9±5 640±210 (10) 995±30 (5) Failed (0) 3±3
Mamba 6 17±11 0.770±0.041 17±11 656±119 (10) 960±90 (9) Failed (0) 6±4
Mamba 7 19±6 0.769±0.027 18±6 623±152 (10) 957±65 (9) Failed (0) 7±3
Mamba 8 29±15 0.786±0.035 27±15 545±176 (10) 917±82 (10) Failed (0) 12±8
Mamba 9 21±10 0.755±0.075 20±10 585±192 (10) 938±57 (9) Failed (0) 26±23
Mamba 10 34±22 0.785±0.028 28±15 486±176 (10) 884±91 (10) Failed (0) 30±21
Mamba 11 18±8 0.757±0.044 17±7 550±203 (10) 937±31 (8) Failed (0) 37±21
Mamba 12 22±17 0.727±0.051 20±15 629±234 (10) 876±53 (6) Failed (0) 72±68
Mamba 13 33±33 0.739±0.090 29±28 561±222 (10) 915±120 (10) 1020±0 (1) 62±28
Mamba 14 47±39 0.701±0.138 30±15 540±242 (10) 839±94 (8) 980±0 (1) 127±56
Mamba 15 60±88 0.725±0.117 31±17 585±225 (10) 866±143 (10) 726±0 (1) 136±112
Mamba 16 46±40 0.661±0.170 29±22 614±193 (10) 865±104 (9) 978±33 (2) 199±89
Mamba 17 43±24 0.727±0.054 30±13 538±185 (10) 866±101 (10) Failed (0) 174±77
Mamba 18 51±42 0.732±0.056 40±32 621±219 (10) 838±111 (9) 995±34 (2) 262±99
Mamba 19 49±40 0.723±0.048 36±25 633±218 (10) 829±123 (8) 975±0 (1) 241±73
Mamba 20 77±68 0.695±0.088 46±32 549±241 (9) 771±146 (8) 940±76 (3) 385±180

Table 14: Mamba batch size 32.
Model Aug. Rounds Yield IntDiv1 Scaffolds OB 1 OB 10 OB 100 Repeats

Mamba 0 0±0 — 0±0 773±189 (4) Failed (0) Failed (0) 4±2
Mamba 2 12±7 0.744±0.060 12±7 644±199 (10) 933±29 (5) Failed (0) 3±2
Mamba 3 16±9 0.759±0.050 15±9 640±158 (10) 912±45 (6) Failed (0) 8±7
Mamba 4 30±15 0.797±0.029 29±15 579±140 (10) 879±86 (10) Failed (0) 11±5
Mamba 5 38±23 0.718±0.151 35±21 695±159 (10) 833±83 (8) Failed (0) 24±9
Mamba 6 44±37 0.770±0.044 41±34 564±145 (10) 861±110 (9) 1000±3 (2) 42±17
Mamba 7 52±43 0.750±0.047 46±37 539±174 (10) 848±123 (10) 996±11 (2) 68±28
Mamba 8 76±51 0.775±0.025 67±45 515±108 (10) 794±85 (10) 923±30 (2) 90±49
Mamba 9 64±47 0.755±0.083 53±38 546±143 (10) 808±116 (10) 959±45 (2) 140±106
Mamba 10 96±76 0.768±0.028 75±54 553±186 (10) 782±161 (10) 949±84 (5) 165±63
Mamba 11 87±60 0.732±0.045 62±40 592±218 (10) 741±105 (8) 936±31 (3) 303±152
Mamba 12 118±60 0.680±0.130 67±21 500±159 (10) 730±132 (10) 932±61 (6) 280±151
Mamba 13 92±60 0.742±0.082 74±43 578±226 (10) 771±98 (9) 940±39 (4) 353±104
Mamba 14 166±75 0.748±0.041 121±54 458±97 (10) 659±64 (10) 901±78 (8) 483±202
Mamba 15 139±94 0.755±0.033 106±72 456±141 (10) 740±127 (10) 847±54 (5) 488±167
Mamba 16 136±75 0.740±0.039 97±54 571±131 (10) 742±119 (10) 899±50 (6) 769±354
Mamba 17 186±88 0.696±0.058 138±83 510±103 (10) 683±88 (10) 871±76 (8) 937±677
Mamba 18 214±87 0.723±0.059 169±81 540±113 (10) 672±88 (10) 862±84 (9) 1027±554
Mamba 19 242±109 0.686±0.041 184±104 493±133 (10) 661±116 (10) 819±109 (9) 1376±596
Mamba 20 187±78 0.706±0.038 152±67 557±101 (10) 714±80 (10) 892±79 (9) 1183±413

Table 15: Mamba batch size 16.
Model Aug. Rounds Yield IntDiv1 Scaffolds OB 1 OB 10 OB 100 Repeats

Mamba 0 3±4 0.417±0.161 2±2 545±232 (7) 982±0 (1) Failed (0) 91±32
Mamba 2 39±29 0.761±0.047 34±23 609±165 (10) 829±117 (9) Failed (0) 46±31
Mamba 3 61±51 0.771±0.051 50±39 498±193 (10) 797±118 (9) 953±15 (3) 71±28
Mamba 4 52±33 0.779±0.031 42±23 581±102 (10) 817±112 (10) 970±0 (1) 139±59
Mamba 5 69±38 0.764±0.052 54±28 542±93 (10) 807±76 (10) 988±17 (3) 178±90
Mamba 6 138±46 0.759±0.039 110±42 456±89 (10) 693±75 (10) 919±36 (7) 286±137
Mamba 7 174±95 0.737±0.059 127±83 427±177 (10) 643±102 (10) 858±77 (7) 395±147
Mamba 8 209±95 0.751±0.030 137±60 461±151 (10) 617±135 (10) 817±71 (8) 482±214
Mamba 9 202±98 0.735±0.032 137±80 389±112 (10) 631±102 (10) 841±92 (8) 518±237
Mamba 10 306±57 0.714±0.035 206±34 387±148 (10) 555±66 (10) 761±58 (10) 1110±636
Mamba 11 306±92 0.716±0.039 237±85 403±136 (10) 554±93 (10) 761±100 (10) 1341±596
Mamba 12 266±100 0.723±0.041 199±83 392±126 (10) 590±100 (10) 806±111 (10) 1312±666
Mamba 13 327±108 0.722±0.043 258±101 428±111 (10) 549±111 (10) 741±116 (10) 1508±780
Mamba 14 318±109 0.695±0.061 246±117 416±164 (10) 535±148 (10) 736±123 (10) 1776±912
Mamba 15 284±74 0.691±0.052 219±42 442±67 (10) 584±87 (10) 785±82 (10) 2629±939
Mamba 16 293±112 0.672±0.053 209±77 483±145 (10) 570±136 (10) 767±130 (10) 2284±1011
Mamba 17 344±115 0.656±0.047 278±92 462±113 (10) 563±98 (10) 725±121 (10) 3512±1227
Mamba 18 281±155 0.640±0.082 216±125 464±174 (9) 595±155 (9) 730±93 (8) 2885±1344
Mamba 19 307±115 0.624±0.084 238±102 491±146 (10) 579±133 (10) 750±119 (10) 3318±1347
Mamba 20 352±69 0.673±0.046 294±61 403±102 (10) 525±81 (10) 714±79 (10) 3331±1454
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Table 16: Mamba batch size 8.
Model Aug. Rounds Yield IntDiv1 Scaffolds OB 1 OB 10 OB 100 Repeats

Mamba 0 3±2 0.43±0.133 2±1 498±322 (8) Failed (0) Failed (0) 940±234
Mamba 2 69±32 0.755±0.059 56±28 453±176 (10) 780±78 (10) 992±8 (2) 214±72
Mamba 3 156±113 0.745±0.035 109±70 452±221 (10) 659±143 (9) 792±83 (5) 282±120
Mamba 4 200±117 0.748±0.046 125±64 402±208 (10) 602±150 (10) 859±145 (9) 425±160
Mamba 5 240±102 0.719±0.062 195±102 429±191 (10) 596±136 (10) 805±108 (9) 1195±687
Mamba 6 298±167 0.706±0.052 212±122 405±190 (10) 557±197 (10) 736±170 (9) 1420±632
Mamba 7 328±116 0.662±0.107 246±112 332±142 (10) 489±131 (10) 727±124 (10) 1657±947
Mamba 8 356±142 0.671±0.029 304±119 380±158 (10) 514±144 (10) 699±167 (10) 2340±806
Mamba 9 359±135 0.682±0.054 298±115 439±140 (10) 536±161 (10) 663±102 (9) 2974±1394
Mamba 10 368±164 0.692±0.032 305±154 391±234 (10) 485±99 (9) 658±125 (9) 2829±1290
Mamba 11 321±148 0.636±0.048 280±137 415±154 (10) 561±153 (10) 720±145 (9) 3515±1592
Mamba 12 335±148 0.637±0.055 285±148 425±162 (10) 564±178 (10) 687±135 (9) 4060±1694
Mamba 13 260±158 0.579±0.121 213±139 505±168 (10) 602±141 (9) 744±130 (8) 3691±1790
Mamba 14 290±120 0.608±0.047 235±89 463±213 (10) 583±150 (10) 765±127 (10) 4505±1968
Mamba 15 343±157 0.621±0.069 317±149 367±140 (10) 534±159 (10) 706±166 (10) 4196±1064
Mamba 16 320±214 0.61±0.095 293±199 450±210 (10) 560±241 (9) 602±141 (7) 5035±1995
Mamba 17 233±131 0.611±0.059 219±131 552±165 (10) 665±147 (10) 806±130 (9) 3728±1946
Mamba 18 270±205 0.617±0.061 256±200 516±155 (10) 628±191 (10) 705±201 (7) 5378±2020
Mamba 19 168±164 0.632±0.070 139±121 468±221 (8) 604±233 (8) 805±193 (6) 4740±2181
Mamba 20 256±196 0.539±0.190 245±192 462±225 (9) 531±233 (8) 642±156 (7) 4476±2383

sample efficiency (we note that the explainability aspect is still applicable). In the original work,1009

a batch size of 64 was used and a Patience of 5. Under these parameters, the earliest that Beam1010

Enumeration can execute is 320/1000 oracle calls, which is almost 1/3 the budget already. Moreover,1011

Beam Enumeration decreases diversity and decreasing batch size and increasing augmentation rounds1012

also decreases diversity. Too much decrease in diversity may be detrimental even with oracle caching.1013

In this subsection, we systematically study the effect of Beam Enumeration when used in conjunction1014

with decreasing batch size and augmentation rounds in a series of hypotheses.1015

Based on observations from batch size and augmentation rounds grid-searches, the following1016

design decisions were made in this subsection:1017

1. Augmentation rounds capped at 5 as diversity generally decreases more substantially past1018

this point. Beam Enumeration itself will decrease diversity, so this is a preemptive measure1019

against detrimental diversity-induced mode collapse.1020

2. Investigate batch sizes of 64 and 32. Since Beam Enumeration executes on improved reward1021

over successive epochs, lower batch sizes would likely increase performance variance too1022

much.1023

3. Focus only on RNN model as experiments will be the fastest (less repeated SMILES). If1024

benefits are observed, move to Decoder and Mamba models. For clarity, repeated SMILES1025

are not detrimental, as we have shown in the previous subsections but they add some wall1026

time (this is insignificant when compared to expensive oracles).1027

4. Beam Enumeration can pool improbable substructures. There is a Patience Limit denoting1028

the number epochs permitted where the entire generated batch is filtered. This limit was1029

100,000 in this work. This does not add that much wall time and surpassing the limit is not1030

indicative of the experiment failing. However, we enforce this upper bound in case it occurs1031

(seldom) to manage wall times since we are performing grid searches.1032

5. Use Minimum Structure Size = 15, unless otherwise stated. Enforcing larger substructure1033

extraction was found to improve sample efficiency in the original work221034

B.4.1 Hypothesis 11035

Beam Enumeration’s Patience parameter is dependent on the mean reward of the sampled batch. With1036

lower batch sizes, variance increases, such that executing Beam Enumeration may be too variable.1037

Proposed solution. Increase Beam Enumeration’s default Patience (5) to mitigate lower batch size1038

variance. We note that increasing Patience means that more of the oracle budget needs to be consumed1039

before Beam Enumeration executes for the first time. First explore Batch sizes = [64, 32].1040

Observations. Across batch sizes = [64, 32] and all Patience = [5, 6, 7, 8, 9, 10], sample efficiency1041

does not improve in a statistically significant manner (Tables 17 and 18). Using Beam Enumeration1042

also leads to notably higher variance and decreased diversity.1043
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Table 17: Beam Enumeration batch size 64 with Structure and Minimum Size 15. Filter Limit is
the number of times that no SMILES contained the pool substructure in 100,000 generation epochs.
Patience N/A indicates just Augmented Memory and no Beam Enumeration.

Patience Aug. Rounds Yield IntDiv1 Scaffolds OB 1 OB 10 OB 100 Repeats Filter Limit

N/A 0 0±0 — 0±0 584±251 (5) Failed Failed 1±1 N/A
N/A 2 15±9 0.775±0.073 15±9 644±173 (10) 941±58 (8) Failed 0±0 N/A
N/A 3 33±42 0.788±0.043 32±40 613±96 (10) 927±128 (9) 993±0 (1) 0±0 N/A
N/A 4 32±16 0.813±0.024 31±16 527±198 (10) 880±90 (10) Failed 0±0 N/A
N/A 5 40±14 0.812±0.023 39±13 459±177 (10) 862±68 (10) Failed 0±0 N/A

5 0 2±2 — 2±2 687±232 (7) Failed Failed 17±21 0
5 2 29±68 0.688±0.044 22±48 555±185 (8) 887±182 (4) 866±0 (1) 15±27 1
5 3 110±75 0.754±0.024 81±52 488±79 (10) 711±99 (10) 902±79 (4) 20±21 0
5 4 86±82 0.702±0.045 58±53 504±205 (10) 739±193 (9) 912±76 (3) 14±15 0
5 5 94±41 0.745±0.027 68±30 436±167 (10) 739±88 (10) 970±30 (4) 15±17 0

6 0 2±3 — 2±2 581±205 (7) 958±0 (1) Failed 25±29 0
6 2 20±20 0.619±0.168 16±15 659±226 (10) 809±27 (4) Failed 9±10 0
6 3 82±84 0.73±0.039 52±44 520±84 (10) 777±134 (10) 863±131 19±26 0
6 4 83±91 0.723±0.074 62±62 508±233 (9) 737±130 (8) 874±93 19±21 0
6 5 84±52 0.693±0.049 54±30 449±169 (10) 771±131 (10) 973±44 38±56 0

7 0 2±2 — 2±2 599±238 (6) Failed Failed 15±17 0
7 2 40±43 0.661±0.161 32±34 579±137 (10) 836±112 (8) 1000±28 (2) 9±10 0
7 3 121±120 0.719±0.038 80±69 546±66 (10) 735±131 (10) 803±75 (3) 27±30 0
7 4 69±64 0.701±0.098 45±39 560±249 (10) 726±84 (7) 941±55 (2) 12±18 0
7 5 61±34 0.735±0.055 43±21 467±188 (10) 796±77 (10) 1026±4 (2) 11±15 0

8 0 1±2 — 1±1 556±225 (5) 1010±0 (1) Failed 24±32 0
8 2 80±90 0.697±0.074 51±60 604±153 (10) 775±119 (8) 882±94 (3) 8±11 0
8 3 79±86 0.714±0.028 58±67 579±88 (10) 769±131 (9) 920±139 (3) 7±6 0
8 4 68±85 0.671±0.044 45±55 537±202 (10) 786±115 (6) 902±49 (3) 20±23 0
8 5 88±61 0.711±0.098 64±45 459±184 (10) 757±118 (9) 960±33 (4) 15±27 0

9 0 1±1 — 1±1 564±226 (5) Failed Failed 11±11 0
9 2 49±53 0.7±0.119 36±34 620±171 (10) 826±115 (8) 953±12 (2) 2±4 0
9 3 87±81 0.739±0.034 53±38 599±92 (10) 787±100 (10) 935±122 (3) 9±11 0
9 4 65±49 0.688±0.08 48±41 518±187 (10) 798±88 (10) 910±0 (1) 11±17 0
9 5 99±84 0.694±0.098 60±51 459±180 (10) 774±80 (10) 907±93 (3) 19±27 0

10 0 1±1 — 1±1 564±226 (5) Failed Failed 11±11 0
10 2 49±53 0.7±0.119 36±34 620±171 (10) 826±115 (8) 953±12 (2) 2±4 0
10 3 87±81 0.739±0.034 53±38 599±92 (10) 787±100 (10) 935±122 (3) 9±11 0
10 4 65±49 0.688±0.08 48±41 518±187 (10) 798±88 (10) 910±0 (1) 11±17 0
10 5 99±84 0.694±0.098 60±51 459±180 (10) 774±80 (10) 907±93 (3) 19±27 0

B.4.2 Hypothesis 21044

The use of “Structure” substructure is too biased when operating in an already biased environment:1045

increasing augmentation rounds and under a low oracle budget.1046

Proposed solution. Investigate “Scaffold” substructure which is less biased.1047

Observations. Across batch sizes = [64, 32] and all Patience = [5, 6, 7, 8, 9, 10], sample efficiency1048

does not improve in a statistically significant manner (Tables 19 and 20). Variance decreases relative1049

to "Structure" which is in agreement with the hypothesis that "Structure" is more biased.1050

B.4.3 Hypothesis 31051

In the original Beam Enumeration22 work, enforcing a Structure Minimum Size for extracted1052

substructures improves sample efficiency across all hyperparameter combinations (and is statistically1053

significant). The results so far suggest that this observation does not hold when optimizing under a1054

particularly low oracle budget (1000 calls). Thus far, experiments were aimed at mitigating the Beam1055

Enumeration bias either by tuning the Patience parameter or by changing the Substructure Type.1056

Another method to mitigate bias is by not enforcing a Structure Minimum Size. In this scenario,1057

Scaffold substructure should be used as Structure substructure tends to extract small functional groups1058

(as observed in the original work).1059

Proposed solution. Investigate “Scaffold” substructure without enforcing Structure Minimum Size.1060

Observations. Across batch sizes = [64, 32] and all Patience = [5, 6, 7, 8, 9, 10], sample efficiency1061

sometimes improves (Tables 21 and 22). Variance is also manageable but the performance improve-1062
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Table 18: Beam Enumeration batch size 32 with Structure and Minimum Size 15. Filter Limit is
the number of times that no SMILES contained the pool substructure in 100,000 generation epochs.
Patience N/A indicates just Augmented Memory and no Beam Enumeration.

Patience Aug. Rounds Yield IntDiv1 Scaffolds OB 1 OB 10 OB 100 Repeats Filter Limit

N/A 0 0±0 — 0±0 798±101 (5) Failed Failed 1±1 N/A
N/A 2 43±25 0.825±0.029 42±24 608±151 (10) 844±90 (9) Failed 0±0 N/A
N/A 3 52±34 0.81±0.059 51±32 522±141 (10) 789±100 (9) 1018±0 (2) 0±1 N/A
N/A 4 87±33 0.82±0.018 83±31 466±120 (10) 740±77 (10) 987±30 (4) 1±3 N/A
N/A 5 98±57 0.817±0.027 89±50 408±184 (10) 714±136 (10) 915±20 (4) 1±2 N/A

5 0 2±4 0.611±0.074 2±3 776±155 (4) 983±0 (1) Failed 43±30 0
5 2 18±27 0.666±0.077 15±19 705±173 (8) 857±104 (4) Failed 9±9 0
5 3 26±20 0.652±0.076 19±11 618±88 (10) 850±108 (7) Failed 16±18 0
5 4 65±64 0.695±0.092 54±53 604±214 (10) 742±124 (6) 936±55 (3) 65±90 0
5 5 99±110 0.713±0.046 66±61 452±216 (10) 741±173 (9) 870±146 (4) 64±56 0

6 0 2±5 0.655±0.051 2±4 614±213 (4) 836±0 (1) Failed 39±27 0
6 2 36±49 0.691±0.096 32±47 625±188 (9) 834±139 (7) 943±31 (2) 9±9 0
6 3 60±58 0.662±0.124 47±53 574±148 (10) 811±146 (10) 895±81 (2) 93±220 0
6 4 67±52 0.654±0.185 54±43 592±214 (10) 740±133 (8) 934±50 (3) 114±154 0
6 5 66±70 0.68±0.059 50±44 530±209 (10) 822±141 (9) 933±69 (3) 65±70 0

7 0 1±2 — 1±2 686±161 (6) Failed Failed 83±78 0
7 2 49±60 0.699±0.101 41±56 601±156 (10) 821±152 (8) 923±93 (2) 18±20 0
7 3 47±46 0.67±0.107 37±36 623±198 (9) 810±161 (8) 994±16 (3) 20±21 0
7 4 41±45 0.686±0.058 33±42 588±81 (9) 838±94 (9) 905±0 (1) 53±43 0
7 5 76±76 0.698±0.111 66±74 531±210 (10) 776±128 (8) 866±69 (2) 126±325 0

8 0 16±37 — 14±33 749±210 (8) 668±194 (2) 949±0 (1) 109±163 0
8 2 33±48 0.691±0.049 24±33 692±144 (9) 856±142 (6) 974±35 (2) 15±18 0
8 3 50±30 0.675±0.068 40±22 636±109 (10) 803±84 (8) Failed 39±49 0
8 4 104±104 0.73±0.056 84±96 406±128 (10) 696±149 (9) 879±141 (4) 30±36 0
8 5 42±30 0.7±0.051 32±18 506±186 (10) 848±95 (10) 974±0 (1) 30±45 0

9 0 7±12 — 6±10 713±201 (7) 848±1 (2) Failed 68±50 0
9 2 36±34 0.686±0.052 28±28 559±138 (10) 812±96 (7) 1015±0 (1) 29±28 0
9 3 81±89 0.668±0.102 52±52 598±186 (10) 732±159 (7) 826±49 (3) 23±19 0
9 4 158±103 0.723±0.041 104±63 432±104 (10) 639±115 (10) 868±106 (7) 60±78 0
9 5 91±66 0.707±0.036 57±35 453±194 (10) 763±131 (10) 928±65 (4) 40±29 0

10 0 2±3 — 2±3 768±107 (5) 1003±0 (1) Failed 93±97 0
10 2 55±54 0.722±0.027 44±40 559±156 (10) 807±149 (10) 836±0 (1) 26±39 0
10 3 86±46 0.705±0.063 67±36 478±143 (10) 678±114 (9) 962±33 (4) 41±50 0
10 4 99±77 0.705±0.048 63±43 474±162 (10) 693±91 (9) 944±113 (4) 58±86 0
10 5 110±100 0.715±0.039 80±78 430±164 (10) 750±142 (10) 881±107 (4) 57±55 0

ments, when observed, is much less than with lower batch size and higher augmentation rounds (for1063

instance Mamba batch size 16 and augmentation rounds 10).1064

Conclusions. Based on the grid-search results, Beam Enumeration can sometimes improve sample1065

efficiency when using "Scaffold" structure and without enforcing Structure Minimum Size. How-1066

ever, the improvements are minor, such that it would be better to use small batch sizes with high1067

augmentation rounds. Thus, we do not further experiment with Beam Enumeration in this work.1068

B.5 Hallucinated Memory: Is it beneficial to allocate a portion of the oracle budget to1069

hallucination?1070

In this section, we investigate coupling GraphGA63 to Saturn. GraphGA in itself a sample-efficient1071

generative algorithm20 and was recently used in the GEAM model proposed by Lee et al.13 which1072

achieves impressive MPO performance. Previously work80 found that coupling a GA in RL can1073

encourage diverse sampling. In the previous sections, we have identified Mamba with batch size 161074

and 10 augmentation rounds as the best hyperparameters so far. The improved sample efficiency1075

comes at a trade-off in diversity. The objective in the experiments to follow is to investigate whether1076

allocating a portion of the oracle budget to GraphGA generation (which we call "hallucinating") is1077

beneficial in recovering diversity while maintaining sample efficiency.1078

Before presenting the grid-search results, we describe the GraphGA integration further. GraphGA is1079

only activated when the replay buffer is full (100 SMILES). Once full, at every epoch thereafter, the1080

replay buffer itself is treated as the parent population to generate new SMILES. These new SMILES1081

are then concatenated with the sampled batch (16 SMILES) and used to update the agent. Importantly,1082

these hallucinated SMILES are also deposited into the replay buffer (if they possess higher reward).1083
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Table 19: Beam Enumeration batch size 64 with Scaffold and Minimum Size 15. Filter Limit is
the number of times that no SMILES contained the pool substructure in 100,000 generation epochs.
Patience N/A indicates just Augmented Memory and no Beam Enumeration.

Patience Aug. Rounds Yield IntDiv1 Scaffolds OB 1 OB 10 OB 100 Repeats Filter Limit

N/A 0 0±0 — 0±0 584±251 (5) Failed Failed 1±1 N/A
N/A 2 15±9 0.775±0.073 15±9 644±173 (10) 941±58 (8) Failed 0±0 N/A
N/A 3 33±42 0.788±0.043 32±40 613±96 (10) 927±128 (9) 993±0 (1) 0±0 N/A
N/A 4 32±16 0.813±0.024 31±16 527±198 (10) 880±90 (10) Failed 0±0 N/A
N/A 5 40±14 0.812±0.023 39±13 459±177 (10) 862±68 (10) Failed 0±0 N/A

5 0 5±17 0.726±0.0 5±15 653±275 (3) 819±0 (1) Failed 48±31 0
5 2 14±22 0.616±0.182 13±21 635±226 (7) 850±131 (3) Failed 36±29 0
5 3 21±26 0.675±0.116 18±22 647±198 (8) 852±88 (5) Failed 19±26 0
5 4 20±30 0.6±0.122 18±26 592±262 (9) 869±108 (4) 1038±0 (1) 28±19 0
5 5 33±27 0.692±0.082 29±25 506±208 (10) 875±101 (8) Failed 33±37 0
6 0 0±1 0.399±0.0 0±0 433±98 (4) Failed Failed 98±99 0
6 2 9±16 0.656±0.072 7±13 713±237 (8) 864±82 (2) Failed 30±25 0
6 3 16±19 0.645±0.072 14±18 662±152 (8) 905±103 (5) Failed 27±30 0
6 4 15±23 0.644±0.069 14±22 466±185 (8) 884±137 (4) Failed 23±16 0
6 5 24±28 0.599±0.139 21±22 583±293 (10) 849±83 (5) 1014±0 (1) 35±38 0

7 0 0±1 — 0±1 459±139 (4) Failed Failed 82±47 0
7 2 10±10 0.64±0.072 9±10 666±180 (9) 911±76 (3) Failed 37±59 0
7 3 27±31 0.659±0.119 23±23 648±153 (9) 880±122 (7) 1041±0 (1) 11±8 0
7 4 20±19 0.634±0.125 19±18 575±249 (10) 853±72 (5) Failed 46±59 0
7 5 14±13 0.676±0.096 12±10 519±267 (10) 932±75 (6) Failed 24±32 0

8 0 0±0 — 0±0 383±53 (3) Failed Failed 36±23 0
8 2 10±13 0.665±0.131 10±12 654±201 (8) 910±85 (4) Failed 15±19 0
8 3 30±48 0.693±0.031 29±46 624±164 (9) 863±129 (6) 901±0 (1) 24±21 0
8 4 29±43 0.667±0.095 23±30 571±268 (9) 745±98 (4) 981±0 (1) 20±26 0
8 5 40±47 0.665±0.093 35±45 450±168 (10) 879±95 (9) 920±0 (1) 43±74 0

9 0 0±0 — 0±0 500±207 (4) Failed Failed 31±29 0
9 2 20±36 0.683±0.055 19±36 683±226 (9) 825±84 (3) 1005±0 (1) 8±9 0
9 3 41±34 0.675±0.08 34±28 654±155 (10) 849±134 (8) Failed 25±22 0
9 4 16±14 0.647±0.093 13±11 573±240 (10) 917±39 (5) Failed 10±11 0
9 5 39±24 0.707±0.083 34±22 456±172 (10) 829±67 (9) Failed 8±9 0

10 0 3±8 — 3±7 519±171 (5) 851±0 (1) Failed 16±26 0
10 2 16±19 0.674±0.07 13±15 599±144 (9) 905±95 (5) Failed 17±20 0
10 3 32±38 0.703±0.074 26±27 621±107 (10) 861±129 (8) 961±0 (1) 5±7 0
10 4 18±15 0.682±0.087 16±15 529±202 (10) 876±81 (7) Failed 5±8 0
10 5 37±31 0.711±0.057 30±20 456±172 (10) 829±68 (8) 996±0 (1) 23±42 0

Finally, 100 SMILES are hallucinated and either 5 or 10 are selected. The selection criteria are1084

Random or Tanimoto Distance. Random selects at random while Tanimoto Distance selects via1085

maximum fingerprint dissimilarity to the replay buffer. Our rationale is that dissimilar new SMILES1086

will help encourage diversity since Augmented Memory heavily biases towards the replay buffer1087

SMILES.1088

The grid-search investigated the following hyperparameter settings:1089

1. Fix Mamba with batch size 161090

2. Augmentation Rounds = [5,20]1091

3. GA with Random and Tanimoto Distance selection criterion1092

4. Select 5 or 10 hallucinations at every epoch1093

The reason we increased the augmentation rounds back to 20 in our grid-search is because if indeed1094

the GA recovers diversity, then the "augmentation tolerability" of Saturn would probably be increased.1095

Higher augmentation rounds lead to more repeated SMILES precisely due to overfitting. If new1096

high reward SMILES refresh the replay buffer, Saturn may be more tolerable to higher augmentation1097

rounds to potentially further improve sample efficiency. The results of the grid-search are presented1098

in Tables 23 and 24.1099

Observations. The results show that coupling a GA to the replay buffer does not improve sample1100

efficiency. However, we make several interesting observations. Firstly, the number of repeated1101

SMILES notably drops and IntDiv171 recovers. This is in agreement with our hypothesis and1102

previous work80 that coupling a GA to RL can recover diversity. Secondly, hallucinating SMILES1103

does indeed lead to some replacement of the replay buffer, and hence, these SMILES are necessarily1104
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Table 20: Beam Enumeration batch size 32 with Scaffold and Minimum Size 15. Filter Limit is
the number of times that no SMILES contained the pool substructure in 100,000 generation epochs.
Patience N/A indicates just Augmented Memory and no Beam Enumeration.

Patience Aug. Rounds Yield IntDiv1 Scaffolds OB 1 OB 10 OB 100 Repeats Filter Limit

N/A 0 0±0 — 0±0 798±101 (5) Failed Failed 1±1 N/A
N/A 2 43±25 0.825±0.029 42±24 608±151 (10) 844±90 (9) Failed 0±0 N/A
N/A 3 52±34 0.81±0.059 51±32 522±141 (10) 789±100 (9) 1018±0 (2) 0±1 N/A
N/A 4 87±33 0.82±0.018 83±31 466±120 (10) 740±77 (10) 987±30 (4) 1±3 N/A
N/A 5 98±57 0.817±0.027 89±50 408±184 (10) 714±136 (10) 915±20 (4) 1±2 N/A

5 0 0±0 — 0±0 852±141 (2) Failed Failed 119±78 0
5 2 25±38 0.65±0.109 23±35 698±191 (8) 779±127 (4) 959±0 (1) 57±67 0
5 3 33±59 0.629±0.073 26±44 636±148 (8) 867±133 (6) 871±0 (1) 88±123 1
5 4 57±68 0.666±0.032 44±51 648±163 (9) 834±128 (7) 952±70 (3) 118±104 0
5 5 50±69 0.649±0.038 33±39 498±268 (9) 855±170 (8) 890±3 (2) 89±46 0

6 0 2±6 — 2±6 788±161 (3) 840±0 (1) Failed 174±112 0
6 2 25±59 0.618±0.148 16±36 672±240 (7) 694±238 (3) 706±0 (1) 53±55 1
6 3 35±47 0.667±0.119 27±35 702±189 (8) 789±93 (5) 974±0 (2) 52±43 0
6 4 46±66 0.653±0.068 39±56 656±127 (9) 831±144 (6) 945±67 (2) 135±206 0
6 5 57±76 0.584±0.157 45±59 571±274 (8) 668±83 (4) 907±7 (3) 101±113 0

7 0 14±27 0.551±0.116 10±17 663±109 (5) 814±130 (3) Failed 106±58 0
7 2 19±41 0.657±0.121 12±24 660±127 (6) 894±136 (5) 929±0 (1) 34±23 0
7 3 38±51 0.636±0.115 28±30 650±161 (10) 812±131 (6) 863±0 (1) 45±33 0
7 4 36±36 0.652±0.109 26±21 700±151 (10) 811±76 (7) 981±0 (1) 67±49 0
7 5 46±45 0.608±0.108 39±40 485±204 (9) 810±50 (6) 991±5 (2) 237±244 0

8 0 0±0 — 0±0 794±302 (4) Failed Failed 149±100 0
8 2 34±45 0.625±0.105 30±39 696±175 (9) 777±105 (5) 901±0 (1) 57±46 0
8 3 53±77 0.543±0.174 42±61 652±213 (9) 715±141 (5) 836±6 (2) 57±87 1
8 4 30±53 0.631±0.092 24±39 684±235 (9) 781±165 (3) 957±51 (2) 54±43 0
8 5 90±101 0.632±0.124 70±74 556±248 (9) 706±127 (6) 879±78 (4) 179±158 0

9 0 0±0 — 0±0 733±157 (3) Failed Failed 175±142 0
9 2 20±37 0.61±0.124 15±25 643±237 (8) 849±152 (4) 967±0 (1) 61±69 0
9 3 28±25 0.639±0.09 23±20 661±121 (10) 819±78 (6) Failed 53±60 0
9 4 67±63 0.66±0.105 55±56 605±203 (9) 783±126 (8) 906±58 (2) 92±65 0
9 5 55±73 0.618±0.13 36±41 513±225 (9) 779±149 (6) 877±74 (2) 150±206 0

10 0 2±5 — 1±3 835±154 (4) 890±0 (1) Failed 93±68 0
10 2 5±4 — 4±3 680±196 (8) 960±0 (1) Failed 58±52 0
10 3 32±48 0.636±0.143 31±47 572±171 (10) 880±130 (7) 900±0 (1) 30±36 0
10 4 44±32 0.693±0.059 34±26 503±195 (10) 811±126 (9) 965±0 (1) 107±125 0
10 5 51±55 0.581±0.206 36±37 584±317 (9) 712±88 (5) 949±34 (2) 156±239 1

are high reward. Thirdly, rarely are the hallucinated SMILES the best in the buffer. Finally, we note1105

that hallucinated SMILES are generated off-policy and agent updates may be more meaningful with1106

importance sampling111, which we did not explore this this work.1107

B.6 Saturn: Final Hyperparameters1108

The most sample-efficient hyperparameter settings, on average, are: Mamba with batch size 161109

and 10 augmentation rounds. The results in the immediate previous section shows that the GA can1110

recover diversity, which can be a useful setting that can easily be activated on and off depending on1111

the oracle setting.1112

C Mechanism of Augmented Memory and Mamba1113

In this subsection, we show additional results supporting our statement on Augmented Memory’s211114

mechanism: Augmented Memory squeezes the likelihood of generating the Buffer molecules such1115

that it becomes probable to generate some SMILES representation of them. In the main text, the1116

experiment to show likelihood squeezing was as follows: starting from the pre-trained Mamba model,1117

generate molecules until the Buffer is full and then save the agent state before and after Augmented1118

Memory. Every augmented Buffer SMILES was also saved. This experiment isolates the effect of1119

Augmented Memory on a clean pre-trained model.1120

The first set of additional results we show is the same experiment but we first allow the agent 5001121

oracle calls of optimization on the test experiment. Our intention is to show that later in the run,1122

Augmented Memory still makes generating the Buffer molecules more likely (Fig. C3). There are1123
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Table 21: Beam Enumeration batch size 64 with Scaffold and no Minimum Size enforced. Filter
Limit is the number of times that no SMILES contained the pool substructure in 100,000 generation
epochs. Patience N/A indicates just Augmented Memory and no Beam Enumeration.

Patience Aug. Rounds Yield IntDiv1 Scaffolds OB 1 OB 10 OB 100 Repeats Filter Limit

N/A 0 0±0 — 0±0 584±251 (5) Failed Failed 1±1 0
N/A 2 15±9 0.775±0.073 15±9 644±173 (10) 941±58 (8) Failed 0±0 0
N/A 3 33±42 0.788±0.043 32±40 613±96 (10) 927±128 (9) 993±0 (1) 0±0 0
N/A 4 32±16 0.813±0.024 31±16 527±198 (10) 880±90 (10) Failed 0±0 0
N/A 5 40±14 0.812±0.023 39±13 459±177 (10) 862±68 (10) Failed 0±0 0

5 0 0±0 — 0±0 307±0 (1) Failed Failed 0±0 0
5 2 15±12 0.744±0.068 14±11 678±227 (10) 930±70 (5) Failed 0±0 0
5 3 38±14 0.791±0.026 37±14 552±70 (10) 824±44 (9) Failed 0±0 0
5 4 43±45 0.791±0.021 42±43 516±230 (10) 839±132 (9) 918±0 (1) 0±0 0
5 5 55±33 0.77±0.073 50±30 467±197 (10) 811±81 (9) 961±0 (1) 0±1 0

6 0 0±0 — 0±0 594±268 (5) Failed Failed 0±0 0
6 2 28±23 0.752±0.053 26±21 671±190 (10) 880±72 (6) Failed 0±0 0
6 3 44±28 0.782±0.032 42±24 584±120 (10) 832±64 (9) 1006±0 (1) 0±0 0
6 4 41±37 0.778±0.028 39±36 571±241 (10) 874±118 (9) 959±0 (1) 0±0 0
6 5 54±21 0.794±0.025 49±17 453±169 (10) 827±72 (10) Failed 0±0 0

7 0 0±0 — 0±0 567±234 (5) Failed Failed 0±1 0
7 2 27±13 0.778±0.072 27±13 603±148 (10) 880±80 (9) Failed 0±0 0
7 3 47±33 0.797±0.027 44±30 586±73 (10) 859±113 (10) 1035±1 (2) 0±0 0
7 4 48±23 0.799±0.017 45±20 498±176 (10) 828±87 (10) Failed 0±0 0
7 5 51±23 0.793±0.023 48±21 463±190 (10) 854±72 (10) Failed 0±0 0

8 0 0±0 — 0±0 383±53 (3) Failed Failed 0±0 0
8 2 20±12 0.755±0.072 20±12 637±153 (10) 929±62 (8) Failed 0±0 0
8 3 39±32 0.793±0.021 38±31 593±85 (10) 882±111 (10) 962±0 (1) 0±0 0
8 4 47±30 0.793±0.024 45±29 544±208 (10) 873±75 (10) 1013±0 (1) 0±0 0
8 5 69±28 0.803±0.019 64±22 446±162 (10) 789±73 (10) 991±0 (1) 0±0 0

9 0 0±0 — 0±0 656±281 (6) Failed Failed 0±0 0
9 2 16±10 0.761±0.041 16±10 640±166 (10) 946±48 (6) Failed 0±0 0
9 3 52±60 0.798±0.021 49±55 619±106 (10) 847±107 (10) 847±0 (1) 0±0 0
9 4 50±25 0.802±0.01 48±22 505±177 (10) 846±79 (10) 1004±0 (1) 0±0 0
9 5 54±26 0.792±0.024 50±24 450±165 (10) 809±55 (9) Failed 0±0 0

10 0 0±0 — 0±0 636±260 (6) Failed Failed 0±0 0
10 2 21±17 0.739±0.091 21±17 643±178 (10) 920±78 (8) Failed 0±0 0
10 3 46±48 0.791±0.024 43±43 613±99 (10) 853±115 (9) 899±0 (1) 0±0 0
10 4 44±35 0.783±0.041 42±33 541±222 (10) 858±89 (9) 990±0 (1) 0±0 0
10 5 48±18 0.792±0.024 45±15 456±173 (10) 853±50 (10) Failed 0±0 0

e

Figure C3: Mamba (batch size 16, augmentation rounds 10) after running for 500 oracle calls of the
illustrative example and isolating the effect of Augmented Memory. a. Augmented Memory makes
the likelihood of generating SMILES in the Buffer more likely. b. Augmented forms of the Buffer
SMILES become more likely, but still regularized by the prior.
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Table 22: Beam Enumeration batch size 32 with Scaffold and no Minimum Size enforced. Filter
Limit is the number of times that no SMILES contained the pool substructure in 100,000 generation
epochs. Patience N/A indicates just Augmented Memory and no Beam Enumeration.

Patience Aug. Rounds Yield IntDiv1 Scaffolds OB 1 OB 10 OB 100 Repeats Filter Limit

N/A 0 0±0 — 0±0 798±101 (5) Failed Failed 1±1 0
N/A 2 43±25 0.825±0.029 42±24 608±151 (10) 844±90 (9) Failed 0±0 0
N/A 3 52±34 0.81±0.059 51±32 522±141 (10) 789±100 (9) 1018±0 (2) 0±1 0
N/A 4 87±33 0.82±0.018 83±31 466±120 (10) 740±77 (10) 987±30 (4) 1±3 0
N/A 5 98±57 0.817±0.027 89±50 408±184 (10) 714±136 (10) 915±20 (4) 1±2 0

5 0 0±1 — 0±1 783±134 (3) Failed Failed 0±1 0
5 2 38±28 0.796±0.03 35±25 504±111 (9) 828±115 (9) Failed 1±1 0
5 3 63±44 0.762±0.073 57±38 593±170 (10) 763±82 (8) 988±29 (3) 1±2 0
5 4 87±57 0.779±0.038 72±43 540±145 (10) 764±139 (10) 958±48 (5) 2±4 0
5 5 106±61 0.784±0.031 84±41 467±187 (10) 718±109 (10) 960±41 (6) 1±2 0

6 0 1±3 — 1±3 837±135 (3) 998±0 (1) Failed 2±2 0
6 2 40±33 0.761±0.078 36±29 609±149 (9) 811±64 (7) 1014±0 (1) 1±2 0
6 3 49±23 0.796±0.03 46±21 585±104 (10) 839±101 (10) Failed 1±2 0
6 4 57±41 0.783±0.031 53±37 557±187 (10) 771±82 (8) 987±10 (3) 1±2 0
6 5 106±85 0.776±0.05 85±55 508±241 (10) 718±151 (9) 927±94 (5) 3±6 0

7 0 0±0 — 0±0 741±222 (5) Failed Failed 1±1 0
7 2 43±27 0.79±0.037 41±26 631±182 (10) 799±77 (8) Failed 0±0 0
7 3 84±67 0.79±0.021 73±56 578±188 (10) 781±117 (9) 937±42 (4) 0±1 0
7 4 74±43 0.785±0.041 69±37 574±149 (10) 789±111 (10) 948±39 (2) 1±3 0
7 5 121±52 0.786±0.033 105±39 422±155 (10) 673±90 (10) 898±52 (5) 4±9 0

8 0 3±5 — 3±5 683±213 (5) 882±0 (1) Failed 2±3 0
8 2 44±39 0.713±0.166 40±30 629±177 (10) 778±97 (7) 995±0 (1) 1±4 0
8 3 69±43 0.794±0.039 65±40 530±183 (10) 778±104 (9) 975±8 (3) 0±2 0
8 4 75±39 0.795±0.033 66±30 547±142 (10) 770±118 (10) 981±29 (3) 1±1 0
8 5 103±55 0.761±0.091 90±49 488±221 (10) 693±142 (9) 961±39 (7) 4±5 0

9 0 2±4 — 2±4 805±127 (4) 915±0 (1) Failed 1±1 0
9 2 41±23 0.79±0.022 40±22 572±132 (10) 839±95 (10) Failed 0±0 0
9 3 59±34 0.81±0.021 54±31 520±110 (9) 778±68 (9) 993±0 (1) 0±1 0
9 4 101±60 0.799±0.025 89±45 515±142 (10) 725±104 (10) 944±91 (4) 1±1 0
9 5 128±61 0.792±0.022 102±41 425±179 (10) 684±93 (10) 919±51 (6) 2±2 0

10 0 0±1 — 0±1 822±160 (4) Failed Failed 1±1 0
10 2 53±45 0.795±0.025 49±44 515±129 (9) 793±106 (9) 973±30 (2) 2±5 0
10 3 86±63 0.759±0.119 73±46 553±179 (10) 720±62 (8) 956±69 (4) 0±1 0
10 4 89±35 0.794±0.034 77±26 464±132 (10) 743±51 (10) 984±27 (4) 3±5 0
10 5 123±58 0.795±0.031 105±44 434±177 (10) 704±102 (10) 949±59 (8) 2±2 0

cases when a large loss magnitude does not make the sequence more likely to be generated. This1124

could occur for instance when the likelihood under the prior is extremely low (large NLL) where the1125

intended behavior is actually to regress the agent back towards the prior. In these cases, the large loss1126

could make the update less stable for the parameter updates.1127

Next, the main text results showed that Mamba (batch size 16, augmentation rounds 10) exhibits1128

"hop-and-locally-explore" behavior but what about RNN (batch size 16, augmentation rounds 10)?1129

We show that the RNN model also begins to exhibit this behavior but to a lesser extent (Fig. C4), in1130

agreement with the enhanced likelihood convergence observed for Mamba (Appendix B.1).1131

We now focus on Mamba (batch size 16, augmentation rounds 10) and present additional results1132

to qualitatively and quantitatively demonstrate "hop-and-locally-explore" behavior. Firstly, we1133

supplement the main text Fig. 2e. The figure shows the intra- and inter-chunk similarities across1134

chunks of generated molecules. Specifically, the test experiment was run with an oracle budget of1135

3,000 and this generated set is chunked. To provide a more granular inspection into the generative1136

behavior, we chunk this set into 30 chunks (each 100 SMILES) instead of 10 chunks (each 3001137

SMILES) in the main text. Mamba (batch size 16, augmentation rounds) exhibits notably higher1138

intra-chunk similarity and even inter-chunk similarity at this more granular chunking level (Fig. C5a).1139

We further supplement these quantitative results with a qualitative inspection. Looking at unique1140

molecules generated at adjacent epochs, common substructures are shared (Fig. C5b highlights),1141

displaying a "neighborhood-like" exploration.1142

37



Table 23: Mamba batch size 16 with GraphGA63 applied on the replay buffer. The hallucinated
SMILES were selected at Random. Hall. Yield is the yield from GraphGA. Buf. Replace is the
number of times a hallucinated SMILES replaced another SMILES in the buffer. This means that it
was better than the top-100 SMILES generated in the run so far. Buf. Best is the number of times the
hallucinated SMILES was better than the top-1 in the buffer.

GA Aug. Hall. Total Buffer Buffer IntDiv1 Scaffolds OB 1 OB 10 OB 100 Sampled Hall.
Random Rounds Yield Yield Replace Best Repeats Repeats

5 5 9±7 54±43 91±13 2±1 0.756±0.043 45±33 538±212 (10) 812±114 (9) 989±27 (3) 58±39 5±3
5 6 21±10 88±56 92±11 3±1 0.773±0.046 68±41 457±122 (10) 729±103 (10) 936±83 (3) 57±29 6±3
5 7 11±9 57±42 90±17 3±2 0.73±0.063 49±37 619±125 (10) 795±116 (9) 988±13 (3) 122±50 6±3
5 8 14±11 63±42 95±15 3±2 0.758±0.044 49±25 574±166 (10) 793±96 (10) 916±0 (1) 177±80 6±3
5 9 20±15 106±75 92±14 2±1 0.767±0.03 86±55 531±128 (10) 733±121 (10) 833±57 (3) 207±101 9±5
5 10 21±11 113±61 93±19 2±1 0.742±0.04 83±38 496±158 (10) 690±118 (10) 910±59 (5) 257±143 7±3
5 11 15±11 102±69 89±13 3±2 0.739±0.031 69±43 552±141 (10) 730±116 (10) 887±62 (4) 308±116 7±3
5 12 29±17 139±83 101±13 3±1 0.781±0.025 101±55 488±104 (10) 666±92 (10) 856±76 (5) 339±153 9±4
5 13 25±14 144±97 97±15 3±1 0.727±0.048 94±50 463±209 (10) 658±155 (10) 843±99 (6) 511±226 10±4
5 14 36±22 176±82 102±18 3±2 0.742±0.038 133±56 475±121 (10) 640±110 (10) 863±92 (8) 691±333 13±7
5 15 42±17 208±65 104±18 4±2 0.746±0.06 167±58 401±115 (10) 595±89 (10) 844±91 (10) 693±319 13±8
5 16 34±9 187±77 100±20 5±2 0.744±0.055 150±59 421±119 (10) 624±106 (10) 829±83 (8) 789±465 10±5
5 17 33±25 181±95 99±14 3±1 0.75±0.042 127±64 469±142 (10) 664±132 (10) 838±86 (8) 830±417 10±6
5 18 35±18 164±57 102±24 4±2 0.727±0.038 133±54 459±105 (10) 637±76 (10) 872±66 (8) 881±389 16±16
5 19 30±16 190±76 103±16 3±1 0.744±0.046 145±51 467±123 (10) 630±113 (10) 822±59 (8) 1072±465 12±9
5 20 44±18 247±83 96±10 3±1 0.748±0.034 185±60 380±144 (10) 566±115 (10) 761±59 (9) 1310±512 14±6

10 5 12±10 44±44 141±13 3±1 0.77±0.066 35±29 478±206 (10) 802±133 (9) 888±0 (1) 24±14 8±5
10 6 16±13 44±34 139±7 4±2 0.784±0.023 37±29 534±139 (10) 812±87 (9) 936±0 (1) 38±19 8±4
10 7 14±9 43±27 139±23 4±2 0.739±0.109 37±23 594±117 (10) 800±54 (9) Failed 61±34 9±4
10 8 20±16 55±41 148±13 4±2 0.771±0.026 46±30 520±114 (10) 805±129 (10) 924±0 (1) 71±30 9±4
10 9 22±18 70±51 143±19 4±2 0.753±0.04 57±42 520±174 (10) 788±149 (10) 952±44 (3) 113±58 11±7
10 10 17±16 65±63 148±19 4±2 0.714±0.104 48±37 539±183 (10) 758±141 (9) 773±0 (1) 138±69 11±6
10 11 18±11 57±47 140±21 5±1 0.761±0.031 42±29 605±139 (10) 789±104 (9) 931±38 (2) 192±90 10±7
10 12 37±37 88±79 165±26 4±1 0.734±0.092 70±59 591±142 (10) 716±119 (9) 882±110 (3) 222±106 17±14
10 13 29±25 84±84 150±22 3±1 0.727±0.078 61±51 502±195 (10) 737±169 (9) 842±52 (3) 260±134 13±7
10 14 29±16 97±64 149±14 5±2 0.756±0.046 72±44 456±217 (10) 733±164 (10) 908±9 (5) 271±116 9±6
10 15 37±24 102±64 161±13 4±1 0.759±0.03 85±48 480±184 (10) 688±162 (10) 913±77 (5) 336±182 19±10
10 16 40±22 110±60 157±18 5±3 0.754±0.028 91±50 432±200 (10) 691±149 (10) 913±55 (6) 361±185 15±10
10 17 34±22 103±62 156±28 5±2 0.75±0.048 80±47 529±154 (10) 704±117 (9) 916±45 (6) 467±214 15±8
10 18 25±15 91±52 148±22 5±1 0.745±0.03 64±31 562±102 (10) 750±88 (10) 927±42 (4) 572±322 17±10
10 19 25±14 88±46 145±17 6±2 0.75±0.036 71±39 563±127 (10) 751±114 (10) 948±33 (5) 603±236 16±9
10 20 38±24 136±80 148±19 6±1 0.748±0.059 95±48 444±150 (10) 626±117 (9) 867±90 (6) 781±360 13±5

Table 24: Mamba batch size 16 with GraphGA63 applied on the replay buffer. The hallucinated
SMILES were selected by highest Tanimoto Distance. Hall. Yield is the yield from GraphGA. Buf.
Replace is the number of times a hallucinated SMILES replaced another SMILES in the buffer. This
means that it was better than the top-100 SMILES generated in the run so far. Buf. Best is the number
of times the hallucinated SMILES was better than the top-1 in the buffer.

GA Aug. Hall. Total Buffer Buffer IntDiv1 Scaffolds OB 1 OB 10 OB 100 Sampled Hall.
Random Rounds Yield Yield Replace Best Repeats Repeats

5 5 12±11 68±60 84±16 2±1 0.77±0.05 57±46 532±244 (10) 752±125 (8) 913±51 (3) 50±35 17±7
5 6 8±8 61±73 83±13 1±1 0.763±0.041 51±57 602±171 (10) 834±151 (10) 890±110 (2) 62±36 17±11
5 7 15±8 68±46 90±10 4±2 0.776±0.035 60±38 610±62 (10) 797±86 (10) 855±0 (1) 122±59 17±8
5 8 11±8 89±61 77±13 2±1 0.765±0.031 72±45 473±120 (10) 753±116 (10) 888±42 (3) 156±84 14±8
5 9 22±17 123±86 88±8 2±1 0.757±0.049 97±66 471±187 (10) 712±164 (10) 872±96 5) 309±150 16±7
5 10 18±15 97±79 87±14 2±1 0.758±0.045 78±57 544±183 (10) 748±158 (10) 901±107 (4) 317±133 16±9
5 11 18±14 92±60 84±15 2±2 0.785±0.031 78±49 560±130 (10) 749±97 (10) 846±42 (2) 314±126 20±9
5 12 26±17 146±101 90±10 2±1 0.772±0.043 109±70 491±165 (10) 684±184 (10) 838±124 (6) 418±220 22±15
5 13 21±15 114±77 90±19 2±1 0.74±0.053 97±62 494±200 (10) 706±134 (9) 912±71 (6) 494±218 19±13
5 14 28±24 158±95 91±21 2±1 0.756±0.042 131±82 505±152 (10) 681±152 (10) 846±85 (7) 682±355 27±20
5 15 39±20 189±98 97±8 3±1 0.752±0.074 151±76 415±159 (10) 600±176 (10) 818±103 (8) 698±382 28±14
5 16 45±30 189±110 100±29 2±2 0.788±0.042 152±91 456±171 (10) 630±168 (10) 784±98 (7) 771±329 33±16
5 17 29±22 166±89 95±13 3±1 0.76±0.053 124±58 506±145 (10) 652±130 (10) 874±102 (8) 733±343 26±15
5 18 17±12 114±75 88±16 3±2 0.686±0.104 87±50 549±154 (10) 668±86 (8) 913±65 (6) 911±412 30±20
5 19 16±14 117±86 73±22 2±2 0.708±0.101 94±70 559±169 (10) 706±153 (9) 862±117 (5) 1287±520 24±23
5 20 32±16 183±72 85±17 3±2 0.752±0.072 151±60 417±161 (10) 628±111 (10) 878±102 (10) 1241±508 22±13

10 5 13±13 39±39 127±17 3±2 0.768±0.065 35±34 551±214 (9) 765±155 (7) 942±0 (1) 34±15 19±8
10 6 11±10 43±34 128±17 2±1 0.76±0.064 41±32 556±156 (10) 777±99 (7) Failed 34±20 16±8
10 7 13±8 41±28 138±12 3±2 0.767±0.066 38±27 550±140 (10) 835±106 (9) 997±0 (1) 62±43 19±9
10 8 12±9 41±26 138±13 2±2 0.751±0.093 36±22 575±156 (10) 786±123 (9) Failed 75±41 21±9
10 9 18±12 56±35 129±20 3±2 0.764±0.072 48±30 527±156 (10) 732±79 (8) 991±0 (1) 117±78 19±9
10 10 10±12 42±46 133±14 3±2 0.775±0.055 32±31 660±225 (10) 797±127 (7) 870±0 (1) 158±80 15±7
10 11 10±8 39±39 124±18 3±1 0.713±0.109 32±30 626±173 (10) 828±124 (7) 964±0 (1) 181±93 30±23
10 12 16±19 63±64 139±18 3±1 0.733±0.123 53±56 534±207 (10) 731±113 (8) 897±107 (2) 236±106 29±23
10 13 20±19 67±63 140±21 3±2 0.732±0.117 50±41 542±228 (9) 746±139 (8) 902±38 (3) 300±150 30±19
10 14 15±13 61±50 128±21 2±1 0.714±0.114 49±41 589±175 (10) 770±102 (8) 924±22 (2) 365±210 26±15
10 15 28±25 80±71 144±22 5±1 0.762±0.033 68±58 599±160 (10) 741±129 (8) 925±100 (4) 366±228 32±19
10 16 30±28 89±77 152±28 5±2 0.765±0.07 74±63 563±186 (10) 719±167 (9) 832±34 (3) 376±188 35±24
10 17 30±25 101±80 147±16 3±1 0.787±0.028 77±58 532±182 (9) 719±173 (9) 880±45 (5) 503±237 42±25
10 18 16±13 54±39 137±33 3±2 0.721±0.071 43±31 543±152 (10) 811±112 (9) 926±0 (1) 609±309 48±59
10 19 21±12 83±54 129±15 3±2 0.761±0.034 64±41 495±135 (9) 738±121 (9) 920±40 (4) 620±259 30±17
10 20 16±17 54±44 133±24 2±1 0.761±0.044 46±34 524±206 (9) 796±86 (8) 925±0 (1) 747±416 32±17
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Figure C4: Mamba and RNN (both batch size 16, augmentation rounds 10) and baseline Augmented
Memory (batch size 64, augmentation rounds 2). a. 3,000 oracle budget test experiment chunked
into 300 SMILES. UMAP embedding of the agent chemical space traversal (arrows are the centroid
of each chunk). b. Mamba exhibits a "hop-and-locally-explore" behavior where the intra-chunk
Tanimoto similarity (top values) are higher than RNN. The bottom value is the inter-chunk similarity.

C.1 Is "Hop-and-Locally-Explore" Always Good?1143

The results in the main text and this section so far provide evidence that Mamba with batch size 16 and1144

10 augmentation rounds exhibits local exploration behavior. We hypothesize that sample efficiency1145

improves because "similar molecules, on average, exhibit similar properties". But is this always1146

true? In the test experiment, it is straightforward to see that this indeed holds true. Cross-referencing1147

Fig. C5b, small changes to the molecular graphs should still display high polar surface area which1148

is the objective. However, oracles we care about are physics-based simulations. In the main text1149

results and later in the Appendix for Part 2 and Part 3 additional results, we show that this behavior is1150

beneficial for sample efficiency. The physics-based oracles used in this work are AutoDock Vina881151

and QuickVina 290 which run molecular docking. The question we pose is: are these oracles too1152

permissive? Such that the optimization landscape is smooth82. As we push towards higher-fidelity1153

oracles such as QM/MM and free energy simulations15,18, it is expected that they will be more1154

stringent and demand more specificity. This means that the current hypothesis of "similar molecules,1155

on average, exhibit similar properties" may be loosened. Whether this turns out to be detrimental or1156

not in high-fidelity oracle settings remains to be empirically tested which we leave for future work.1157

By characterizing the behavior of Saturn and understanding what exactly Augmented Memory is1158

doing, it is possible to adapt the current model accordingly. For example, decreasing augmentation1159

rounds relaxes the "hop-and-locally-explore" behavior, which could be advantageous for high-fidelity1160

oracles.1161
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Figure C5: Mamba (batch size 16, augmentation rounds 10) and baseline Augmented Memory
(batch size 64, augmentation rounds 2) which is labelled as RNN. a. 3,000 oracle budget test
experiment chunked into 100 SMILES. Mamba exhibits a "hop-and-locally-explore" behavior
where the intra-chunk Tanimoto similarity (top values) are higher than RNN. The bottom value is the
inter-chunk similarity. b. Qualitative examples of unique molecules generated at adjacent epochs.
Many substructures are shared and the model generates in the local neighborhood. Yellow highlights
are exact substructures shared while green indicates a portion.

Figure C6: Mamba (batch size 16, augmentation rounds 10) with and without GA63 activated. The
experiment is the Part 3 MPO objective (docking against parp1).
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C.2 Genetic Algorithm Loosens "Hop-and-Locally-Explore Behavior"1162

In our investigations of applying a GA on the replay buffer, we show that while sample efficiency1163

does not improve, diversity recovers. To quantitatively show why, we plot the chunk similarity for1164

an experiment from Part 3 on the parp1 target with and without the GA activated (Fig. C6). The1165

Mamba model in both cases uses batch size 16 and 10 augmentation rounds. With the GA activated,1166

the intra-chunk similarities decrease, thus loosening the locally exploration behavior and is the reason1167

why diversity recovers.1168

D Part 2: Transferability of Sample Efficiency to Physics-based Oracles1169

This section contains information on the Autodock Vina88 docking protocol and additional results.1170

All results are averaged across 10 seeds (0-9 inclusive).1171

D.1 Docking Protocol1172

All protein receptor structures were pre-processed from the raw PDB.1173

The following were removed:1174

1. Duplicate protein chains and duplicate ligands.1175

2. Co-factors.1176

3. Ions.1177

4. All waters.1178

Next, Schrödinger’s Protein Preparation Wizard113,114 with default parameters was used to pre-process1179

the structure. PROPKA hydrogen-bond network optimization was performed at pH 7.4 and energy1180

minimization with OPLS3e force-field115. Below are details on the docking grids generated from the1181

pre-processed PDBs.1182

DRD2 - Dopamine Type 2 Receptor. The PDB ID is 6CM484 and the docking grid was centered at1183

(x, y, z) = (9.93, 5.85, -9.58).1184

MK2 - MK2 Kinase. The PDB ID is 3KC386 and the docking grid for the extracted monomer was1185

centered at (x, y, z) = (-61.62, 30.31, -21.9).1186

AChE - Acetylcholinesterase. The PDB ID is 1EVE85 and the docking grid was centered at (x, y, z)1187

= (2.78, 64.38, 67.97).1188

Docking. The search box for all grids was 15Å x 15Å x 15Å and docking was executed through1189

DockStream8. All generated molecules were first embedded using the RDKit Universal Force Field1190

(UFF)116 with the maximum convergence set to 600 iterations. Docking was parallelized over 16 CPU1191

cores (since the generative model’s batch size was 16). The cores were Intel(R) Xeon(R) Platinum1192

8360Y processors.1193

D.2 Additional Results1194

In the main text, results were shown at the 0.8 reward threshold. In this section, we also show1195

results for Saturn-RNN (batch size 16, augmentation rounds 10) and for the 0.7 reward threshold1196

(Tables 25 and 26). At the 0.7 reward threshold, Saturn-RNN’s performance is almost identical1197

to Saturn. However, at the 0.8 reward threshold, Saturn (using Mamba) is more performant. We1198

highlight that although at times, the difference may be small, it can be highly practically relevant when1199

using expensive oracles, e.g., 50 docking calls may be inconsequential but 50 molecular dynamics1200

simulations can be costly. Both Saturn-RNN and Saturn outperform baseline Augmented Memory.1201

Finally, adding a GA on top of Saturn recovers diversity but sample efficiency decreases.1202

D.3 Compute Time1203

Due to insufficient GPU resources, we ran all experiments in this section on CPU. Averaged across1204

all targets and across all 10 replicates, the wall times were as follows: 172 minutes (approximately1205
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Table 25: Docking MPO with 1,000 oracle budget. Baseline is vanilla Augmented Memory21. All
metrics are computed at the 0.7 reward threshold. IntDiv1 is the internal diversity, scaffolds is the
number of unique Bemis-Murcko scaffolds, OB is Oracle Burden (oracle calls required to generate
N unique molecules). The number in parentheses in the OB statistics represent how many runs out
of 10 were successful. The mean and standard deviation across 10 seeds (0-9 inclusive) is reported.
Saturn-RNN is RNN with batch size 16 and augmentation rounds 10.

Model Yield (↑) IntDiv1 (↑) Scaffolds (↑) OB 1 (↓) OB 10 (↓) OB 100 (↓)

DRD2

Baseline 630 ± 45 0.858 ± 0.006 585 ± 43 57 ± 2(10) 57 ± 2(10) 279 ± 32(10)
Saturn-RNN 818 ± 22 0.821 ± 0.011 671 ± 56 14 ± 1(10) 31 ± 6(10) 219 ± 16(10)

Saturn 850 ± 23 0.784 ± 0.015 677 ± 51 14 ± 1(10) 35 ± 7(10) 199 ± 20(10)
Saturn-GA 804 ± 26 0.817 ± 0.022 685 ± 56 14 ± 1(10) 35 ± 7(10) 199 ± 19(10)

MK2 Kinase

Baseline 431 ± 32 0.863 ± 0.005 406 ± 26 57 ± 2(10) 74 ± 26(10) 396 ± 37(10)
Saturn-RNN 704 ± 25 0.833 ± 0.013 525 ± 32 14 ± 1(10) 43 ± 9(10) 282 ± 19(10)

Saturn 702 ± 43 0.811 ± 0.022 519 ± 69 17 ± 6(10) 52 ± 12(10) 282 ± 31(10)
Saturn-GA 636 ± 29 0.827 ± 0.019 506 ± 68 17 ± 6(10) 52 ± 12(10) 291 ± 31(10)

AChE

Baseline 801 ± 27 0.867 ± 0.006 759 ± 30 57 ± 2(10) 57 ± 2(10) 201 ± 29(10)
Saturn-RNN 909 ± 21 0.842 ± 0.006 772 ± 73 14 ± 1(10) 25 ± 6(10) 163 ± 19(10)

Saturn 906 ± 15 0.816 ± 0.014 742 ± 76 14 ± 1(10) 27 ± 4(10) 158 ± 13(10)
Saturn-GA 874 ± 21 0.841 ± 0.008 732 ± 48 14 ± 1(10) 27 ± 4(10) 158 ± 14(10)

Table 26: Docking MPO with 1,000 oracle budget. Baseline is vanilla Augmented Memory21. All
metrics are computed at the 0.8 reward threshold. IntDiv1 is the internal diversity, scaffolds is the
number of unique Bemis-Murcko scaffolds, OB is Oracle Burden (oracle calls required to generate
N unique molecules). The number in parentheses in the OB statistics represent how many runs out
of 10 were successful. The mean and standard deviation across 10 seeds (0-9 inclusive) is reported.
Saturn-RNN is RNN with batch size 16 and augmentation rounds 10.

Model Yield (↑) IntDiv1 (↑) Scaffolds (↑) OB 1 (↓) OB 10 (↓) OB 100 (↓)

DRD2

Baseline 22 ± 7 0.774 ± 0.019 22 ± 7 143 ± 75(10) 733 ± 120(10) Failed
Saturn-RNN 185 ± 40 0.745 ± 0.022 148 ± 47 128 ± 94(10) 440 ± 72(10) 854 ± 63(10)

Saturn 369 ± 62 0.671 ± 0.050 310 ± 70 93 ± 53(10) 391 ± 56(10) 663 ± 55(10)
Saturn-GA 209 ± 55 0.745 ± 0.041 189 ± 57 96 ± 56(10) 403 ± 75(10) 806 ± 84(10)

MK2 Kinase

Baseline 0.2 ± 0.4 — 0.2 ± 0.4 836 ± 186(2) Failed Failed
Saturn-RNN 2.5 ± 3.4 0.414 ± 0.213 2.5 ± 3.4 642 ± 91(6) 999 ± 0(1) Failed

Saturn 14.9 ± 14.1 0.454 ± 0.212 14.1 ± 13.2 677 ± 186(9) 861 ± 108(6) Failed
Saturn-GA 6.1 ± 6.5 0.415 ± 0.202 5.5 ± 5.5 678 ± 140(9) 911 ± 11(2) Failed

AChE

Baseline 173 ± 19 0.843 ± 0.009 170 ± 18 57 ± 2(10) 189 ± 52(10) 776 ± 58(10)
Saturn-RNN 419 ± 38 0.804 ± 0.019 338 ± 55 21 ± 11(10) 165 ± 60(10) 531 ± 36(10)

Saturn 480 ± 79 0.757 ± 0.020 400 ± 96 32 ± 24(10) 185 ± 82(10) 508 ± 80(10)
Saturn-GA 343 ± 57 0.809 ± 0.013 287 ± 50 32 ± 25(10) 187 ± 80(10) 565 ± 80(10)

3 hours) for Augmented Memory21, 246 minutes (approximately 4 hours) for Saturn-RNN, 1,4261206

minutes (approximately 24 hours) for Saturn, and 1,111 minutes (approximately 18.5 hours) for1207

Saturn-GA. There is such a large discrepancy in run time due to repeated SMILES (which do not1208

impose additional oracle calls) that still require backpropagation. Moreover, the runs with Mamba1209

take so much longer because the GPU implementation is highly optimized (we use the official code1210

from https://github.com/state-spaces/mamba). When run on GPU, the difference in wall1211

time between Saturn-RNN and Saturn (Mamba) are not significant.1212

E Part 3: Benchmarking Saturn1213

In this section, we detail how Saturn was pre-trained for benchmarking, the procedure we followed1214

to reproduce GEAM13, and additional results. We ensured exact reproducibility by using GEAM’s1215

official code: https://anonymous.4open.science/r/GEAM-45EF. For running Saturn with1216

GEAM’s objective function, all the oracle code was taken, without modification, from the same1217

repository.1218
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E.1 Saturn ZINC 250k Pre-training1219

GEAM pre-trained on ZINC 250k89 and provide the dataset in their repository. We used this dataset1220

as is for Saturn pre-training (Mamba model).1221

The pre-training parameters were:1222

1. Training steps = 50 (each training step entails a full pass through the dataset)1223

2. Seed = 01224

3. Batch size = 5121225

4. Learning rate = 0.00011226

5. Train with SMILES randomization25 (all SMILES in each batch was randomized)1227

Mamba model:1228

1. Vocabulary size = 66 (including the 2 added tokens for <START> and <END>)1229

2. 5,272,832 parameters1230

3. Used checkpoint from epoch 50 (NLL = 28.10, Validity (10k) = 95.2%)1231

All Saturn experiments were run on a single workstation equipped with an NVIDIA RTX A60001232

GPU and AMD Ryzen 9 5900X 12-Core CPU. The total run time for Saturn across all targets was1233

41.5 hours (total of 50 runs: 5 targets, 10 seeds each).1234

E.2 Reproducing GEAM’s Results1235

We followed the instructions directly in GEAM’s README: https://anonymous.4open.1236

science/r/GEAM-45EF/README.md. We trained the FGIB with seed 0. Everything else was1237

run with their default parameters. In the original work, 3 replicates were run but the seeds were not1238

specified. In our comparisons, we run GEAM across 10 seeds (0-9 inclusive) using an NVIDIA V1001239

GPU with a Xeon-Gold processor (2.1 GHz and 20 cores) CPU. The reason why a different GPU was1240

used in GEAM experiments compared to Saturn is due to CUDA compatibility in GEAM’s code.1241

E.3 GEAM’s MPO Objective1242

GEAM optimized for the following objective:1243

R(x) = D̂S(x)×QED(x)× ŜA(x) ∈ [0, 1] (22)

D̂S is the normalized QuickVina 290 docking score (Eq. 23), QED87 is the quantitative estimate of1244

drug-likeness, and ŜA is the normalized synthetic accessibility score91 (Eq. 24).1245

D̂S = −DS
20

(23)

ŜA =
10− SA

9
(24)

E.4 Saturn-Jaccard1246

In GEAM13, the "Novel" in Novel Hit Ratio enforces molecules to possess < 0.4 Tanimoto simi-1247

larity to ZINC 250k89. GEAM achieves this by use of their genetic algorithm which directly uses1248

GraphGA63. The crossover and mutation operations promote diversity. Otherwise, generative models1249

are pre-trained to model the training data distribution. This means that generated molecules would1250

not necessarily be very dissimilar to the training data, especially if the training data actually possesses1251

"good" molecules already. By virtue of pre-training on a selected dataset, we implicitly assume that1252

the pre-training dataset is "good" for our task, otherwise, we probably should not pre-train on this1253

data. This is the rationale on why ChEMBL79 and ZINC 250k89 are popular pre-training datasets:1254
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they contain bio-active molecules. To satisfy GEAM’s "Novel" criterion, we take the base Saturn1255

model and first teach it to generate molecules that are dissimilar to the ZINC 250k dataset which1256

was used for pre-training. The objective function is then defined as minimizing the max Tanimoto1257

similarity to any molecule in ZINC 250k. This experiment was run with an oracle budget of 1500 and1258

took about 10 minutes. The resulting Saturn-Jaccard model generates molecules with low Tanimoto1259

similarity to ZINC 250k. Starting from this model, we run GEAM’s case study and the results from1260

this are reported in the main text and here in the Appendix. We finally note that this criterion is1261

somewhat arbitrary and we do it so we can exactly match GEAM’s experiments.1262

E.5 Quantitative Supplementary Results1263

In this section, we present supplementary benchmarking results and show additional results for1264

Saturn-GA.1265

Table 27: Hit Ratio (%). Results are from Lee et al.12 except GEAM, datasets, and Saturn which
we ran across 10 seeds (0-9 inclusive). The mean and standard deviation are reported. Best results
(statistically significant at the 95% confidence level) are bolded.

Method Target Protein

parp1 fa7 5ht1b braf jak2

Datasets
ZINC 250k 89 3.993 ± 0.355 1.097 ± 0.192 24.26 ± 0.622 1.020 ± 0.193 6.183 ± 0.344

ChEMBL 33 79 6.077 ± 0.453 1.830 ± 0.240 24.163 ± 0.715 2.073 ± 0.181 9.013 ± 0.562

Generative Models
REINVENT 23 4.693 ± 1.776 1.967 ± 0.661 26.047 ± 2.497 2.207 ± 0.800 5.667 ± 1.067

JT-VAE 45 3.200 ± 0.348 0.933 ± 0.152 18.044 ± 0.747 0.644 ± 0.157 5.856 ± 0.204

GraphAF 93 0.822 ± 0.113 0.011 ± 0.016 6.978 ± 0.952 1.422 ± 0.556 1.233 ± 0.284

MORLD 94 0.047 ± 0.050 0.007 ± 0.013 0.893 ± 0.758 0.047 ± 0.040 0.227 ± 0.118

HierVAE 95 1.180 ± 0.182 0.033 ± 0.030 0.740 ± 0.371 0.367 ± 0.187 0.487 ± 0.183

GraphDF 99 0.044 ± 0.031 0.000 ± 0.000 0.000 ± 0.000 0.011 ± 0.016 0.011 ± 0.016

FREED 11 4.860 ± 1.415 1.487 ± 0.242 14.227 ± 5.116 2.707 ± 0.721 6.067 ± 0.790

FREED-QS 11 5.960 ± 0.902 1.687 ± 0.177 23.140 ± 2.422 3.880 ± 0.623 7.653 ± 1.373

LIMO 100 0.456 ± 0.057 0.044 ± 0.016 1.200 ± 0.178 0.278 ± 0.134 0.711 ± 0.329

GDSS 101 2.367 ± 0.316 0.467 ± 0.112 6.267 ± 0.287 0.300 ± 0.198 1.367 ± 0.258

MOOD 12 7.260 ± 0.764 0.787 ± 0.128 21.427 ± 0.502 5.913 ± 0.311 10.367 ± 0.616

Augmented Memory 21 16.966 ± 3.224 2.637 ± 0.860 52.016 ± 2.302 8.307 ± 1.714 21.548 ± 4.938

GEAM 13 45.158 ± 2.408 20.552 ± 2.357 47.664 ± 1.198 30.444 ± 1.610 46.129 ± 2.073

Ours
Saturn 57.981 ± 18.537 14.527 ± 9.961 68.185 ± 3.400 38.999 ± 10.114 60.827 ± 11.502
Saturn-GA 55.597 ± 5.617 16.711 ± 6.761 63.112 ± 4.316 34.284 ± 10.345 58.625 ± 6.982
Saturn-Jaccard 77.674 ± 7.127 23.119 ± 6.852 78.433 ± 1.029 30.258 ± 12.315 83.012 ± 6.678

Hit Ratio (%). Table 27 shows the Hit Ratio (%) results. Random sampling of 3,000 molecules from1266

common datasets (ZINC 250k89 and ChEMBL 3379) are included as baselines. The results show that1267

only GEAM13 and Saturn outperform these baselines with both methods performing similarly overall.1268

With the exception of a few targets where performance differs (significant at the 95% confidence1269

level), Saturn notably exhibits higher variance which is expected given the small batch size (16). One1270

way to mitigate high variance is to use a larger batch size, as this makes the approximation for the1271

expected reward less noisy. Next, we show that the Saturn-Jaccard agent displays notably high Hit1272

Ratios but do not present this in the main results as the purpose of the Jaccard agent is to generate1273

hits that have less than 0.4 Tanimoto similarity to the ZINC 250k89 training dataset. It is difficult to1274

predict a priori a favorable chemical space to move the agent. However, this result is interesting as it1275

suggests that this simple additional pre-training which took minutes via curriculum learning (CL),1276

makes the agent more suited for the docking tasks. Finally, we show that using the GA (Saturn-GA)1277

is a straightforward solution to recover diversity. From Part 1 and Part 2 experiments, activating1278

the GA comes at the expense of some sample efficiency but interestingly, this is not the case here1279

(Table 28). Moreover, Saturn-GA also decreases variance in this case study (Table 27). Based on1280

these results, it would actually be beneficial to activate the GA in this case, but it is difficult to know1281

a priori the best configuration, thus we report the out-of-the-box hyperparameters (without GA) in1282

the main text based on tuning on the test experiment in Part 1.1283

Novel Hit Ratio (%). Table 29 shows the Novel Hit Ratio (%) results with all additional metrics,1284

mirroring the main text table. Similar to the main text results, Mamba-Jaccard agent generates1285

significantly more molecules passing the strict filter and also much faster (fewer oracle calls).1286
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Table 28: Strict Hit Ratio (%) (QED > 0.7 and SA < 3) additional results. GEAM and Saturn results
are across 10 seeds (0-9 inclusive). OB is Oracle Burden (oracle calls required to generate N unique
molecules). The number in parentheses in the OB statistics represent how many runs out of 10 were
successful. The mean and standard deviation are reported. Best results (statistically significant at the
95% confidence level) are bolded.

Method Target Protein

parp1 fa7 5ht1b braf jak2

GEAM 13 - Presented in Main Text
Strict Hit Ratio (↑) 6.510 ± 1.087 2.106 ± 0.958 8.719 ± 0.903 3.685 ± 0.524 7.944 ± 1.157
IntDiv1 (↑) 0.766 ± 0.017 0.709 ± 0.043 0.799 ± 0.017 0.751 ± 0.023 0.763 ± 0.021
#Circles (↑) 14 ± 3 7 ± 2 25 ± 3 11 ± 2 18 ± 2
OB (1) (↓) 250 ± 157(10) 433 ± 209(10) 114 ± 112(10) 355 ± 96(10) 230 ± 117(10)
OB (10) (↓) 743 ± 52(10) 1446 ± 404(10) 531 ± 38(10) 892 ± 144(10) 537 ± 70(10)
OB (100) (↓) 2106 ± 202(10) 2927 ± 0(1) 1527 ± 110(10) 2674 ± 163(6) 1606 ± 218(10)

Saturn (ours) - Presented in Main Text
Strict Hit Ratio 55.102 ± 18.027 13.887 ± 9.723 64.730 ± 3.717 37.250 ± 9.615 55.903 ± 13.613
IntDiv1 (↑) 0.596 ± 0.049 0.592 ± 0.066 0.685 ± 0.021 0.597 ± 0.042 0.638 ± 0.034
#Circles (↑) 5 ± 0 3 ± 1 17 ± 3 4 ± 0 7 ± 1
OB (1) (↓) 139 ± 96(10) 352 ± 206(10) 21 ± 7(10) 291 ± 143(10) 88 ± 56(10)
OB (10) (↓) 518 ± 92(10) 924 ± 247(10) 105 ± 23(10) 581 ± 123(10) 348 ± 96(10)
OB (100) (↓) 956 ± 259(10) 1776 ± 551(10) 441 ± 44(10) 1057 ± 187(10) 785 ± 191(10)

Saturn-GA (ours) - Newly presented here
Strict Hit Ratio 47.146 ± 4.952 13.187 ± 6.340 53.055 ± 3.764 28.377 ± 9.703 49.528 ± 5.463
IntDiv1 (↑) 0.659 ± 0.023 0.636 ± 0.039 0.724 ± 0.022 0.625 ± 0.047 0.676 ± 0.041
#Circles (↑) 8 ± 2 4 ± 1 22 ± 4 6 ± 1 12 ± 2
OB (1) (↓) 121 ± 71(10) 350 ± 203(10) 20 ± 6(10) 242 ± 194(10) 91 ± 43(10)
OB (10) (↓) 467 ± 114(10) 912 ± 168(10) 110 ± 36(10) 582 ± 177(10) 375 ± 120(10)
OB (100) (↓) 937 ± 136(10) 1852 ± 349(10) 499 ± 85(10) 1266 ± 486(10) 861 ± 123(10)

Table 29: Strict Novel Hit Ratio (%) (QED > 0.7 and SA < 3). GEAM and Saturn results are
across 10 seeds (0-9 inclusive). OB is Oracle Burden (oracle calls required to generate N unique
molecules). The number in parentheses in the OB statistics represent how many runs out of 10 were
successful. The mean and standard deviation are reported. Best results (statistically significant at the
95% confidence level) are bolded.

Method Target Protein

parp1 fa7 5ht1b braf jak2

GEAM 13

Strict Hit Ratio (↑) 4.018 ± 0.849 1.676 ± 0.836 5.338 ± 0.789 2.621 ± 0.464 5.930 ± 1.151
IntDiv1 (↑) 0.768 ± 0.019 0.710 ± 0.047 0.793 ± 0.019 0.753 ± 0.026 0.763 ± 0.026
#Circles (↑) 13 ± 2 5 ± 2 21 ± 3 11 ± 2 16 ± 3
OB (1) (↓) 319 ± 175(10) 502 ± 209(10) 253 ± 159(10) 419 ± 102(10) 242 ± 124(10)
OB (10) (↓) 857 ± 86(10) 1625 ± 380(10) 689 ± 77(10) 1047 ± 136(10) 616 ± 83(10)
OB (100) (↓) 2633 ± 202(9) Failed 2221 ± 224(10) 2942 ± 0(1) 2005 ± 268(10)

Saturn-Jaccard (ours)
Strict Novel Hit Rate 47.405 ± 8.593 17.130 ± 5.538 50.445 ± 6.334 18.228 ± 9.438 45.185 ± 13.321
IntDiv1 (↑) 0.595 ± 0.029 0.600 ± 0.030 0.559 ± 0.032 0.520 ± 0.040 0.567 ± 0.041
#Circles (↑) 2 ± 0 2 ± 0 2 ± 0 1 ± 0 1 ± 0
OB (1) (↓) 26 ± 17(10) 98 ± 53(10) 15 ± 0(10) 164 ± 137(10) 18 ± 7(10)
OB (10) (↓) 177 ± 38(10) 320 ± 69(10) 31 ± 5(10) 388 ± 156(10) 70 ± 13(10)
OB (100) (↓) 562 ± 94(10) 1051 ± 251(10) 223 ± 50(10) 1041 ± 585(9) 402 ± 196(10)

Saturn-Jaccard-GA (ours)
Strict Novel Hit Rate 29.801 ± 11.603 11.895 ± 5.197 40.261 ± 8.168 17.845 ± 7.943 37.498 ± 11.200
IntDiv1 (↑) 0.621 ± 0.041 0.596 ± 0.030 0.613 ± 0.042 0.640 ± 0.040 0.606 ± 0.034
#Circles (↑) 3 ± 1 2 ± 1 3 ± 1 3 ± 1 3 ± 1
OB (1) (↓) 36 ± 38(10) 216 ± 232(10) 15 ± 0(10) 181 ± 122(10) 17 ± 5(10)
OB (10) (↓) 205 ± 65(10) 556 ± 275(10) 27 ± 5(10) 472 ± 135(10) 96 ± 13(10)
OB (100) (↓) 703 ± 113(10) 1490 ± 460(9) 272 ± 39(10) 1367 ± 561(10) 480 ± 84(10)

However, the diversity notably drops (much more than the Mamba agent without Jaccard distance1287

training presented in the main text). However, diversity is particularly low. We first not that when1288

moving to high-fidelity oracles where satisfying the objective function equates to higher true positive1289

hit rates, low diversity need not be detrimental. We additionally run an experiment with the GA1290

activated and we see diversity recovers, but is still notably lower than GEAM. Moreover, the sample1291

efficiency drops notably here compared to without GA, but is still much more performant than GEAM1292

in finding hits faster. Finally, to recover more diversity, one could make the Diversity Filter77 more1293

stringent. In this work, a bucket size of 10 was used (allow 10 of the same scaffold to be generated1294

before truncating the reward to 0). Decreasing the bucket size to 5 or even lower, may recover more1295

diversity.1296
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E.6 Saturn: Architecture Scaling.1297

In the main text Part 1, we investigated why Mamba (5.2M) outperforms LSTM26 RNN (5.8M)1298

and decoder transformer27,28 (6.3M). Augmented Memory21 squeezes the likelihood of generating1299

augmented forms of any replay buffer molecules. Increased capacity to match this distribution directly1300

leads to the "hop-and-locally-explore" behavior which improves sample efficiency. We note that our1301

observations are for optimization landscapes that are not too rough81,82. It is difficult to know a priori1302

the roughness of optimization and also whether the benefits of "hop-and-locally-explore" behavior is1303

beneficial in higher-fidelity oracle settings. We leave this for future work.1304

Based on these observations, we investigate scaling benefits for the LSTM RNN and decoder1305

transformer models. Increasing model size can lead to lower loss convergence, which in this case,1306

means modelling the conditional token distribution of the SMILES30. One may argue that this is1307

simply a hyperparameter tuning which we missed. However, the purpose of this work is in the1308

goal-directed learning setting where we want to tune the model’s distribution towards desirable1309

molecules. If desirable molecules are already in the training data, minimal optimization is required.1310

Moreover, it is difficult to know a priori whether matching the training distribution very closely is1311

strictly advantageous for an arbitrary MPO objective, unless we have an enormous amount of data,1312

by the law of large numbers. Therefore, all pre-trained models (priors) in this work were trained until1313

loss flattens out and Validity (fraction of valid SMILES generated) is high.1314

In this section, we scale up the LSTM RNN and decoder transformer models to around 25M to make1315

the distribution learning capability approach Mamba (5.2M). We use the training loss for this, where1316

similar loss convergence is taken as the proxy. We first present the exact model parameter counts,1317

hyperparameters, and training details.1318

LSTM RNN 24.7M:1319

1. Seed = 01320

2. Parameters = 24,741,4421321

3. Vocabulary Size = 661322

4. Embedding Dimension = 2561323

5. Hidden Dimension = 5121324

6. Number of Layers = 121325

7. Dropout = 0.01326

8. Layer Normalization = False1327

9. Train Epochs = 3001328

10. Batch Size = 5121329

11. Learning Rate = 0.00011330

12. Final NLL Loss at Epoch 300 = 29.3181331

Decoder 25.3M:1332

1. Seed = 01333

2. Parameters = 25,306,1781334

3. Vocabulary Size = 661335

4. Embedding Dimension = 2561336

5. Hidden Dimension = 10241337

6. Number of Layers = 321338

7. Number of Heads = 161339

8. Dropout = 0.01340

9. Train Epochs = 1001341

10. Batch Size = 5121342

11. Learning Rate = 0.00011343
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12. Final NLL Loss at Epoch 100 = 26.9631344

In addition, we scale up Mamba to 16M and 21M and also present the exact model parameter counts,1345

hyperparameters, and training details. For these two models, we intentionally train until the loss is at1346

similar values (NLL = 26) which suggests both models have learned the training distribution to a1347

similar extent. Optimization then starts from a similar distribution.1348

Mamba 15.8M:1349

1. Seed = 01350

2. Parameters = 15,785,7281351

3. Vocabulary Size = 661352

4. Embedding Dimension = 2561353

5. Number of Layers = 361354

6. Use RMSNorm = True1355

7. Residual in fp32 = True1356

8. Fused AddNorm = True1357

9. Train Epochs = 1001358

10. Batch Size = 5121359

11. Learning Rate = 0.00011360

12. Final NLL Loss at Epoch 92 = 26.0031361

Mamba 21.0M:1362

1. Seed = 01363

2. Parameters = 21,041,9201364

3. Vocabulary Size = 661365

4. Embedding Dimension = 2561366

5. Number of Layers = 481367

6. Use RMSNorm = True1368

7. Residual in fp32 = True1369

8. Fused AddNorm = True1370

9. Train Epochs = 1001371

10. Batch Size = 5121372

11. Learning Rate = 0.00011373

12. Final NLL Loss at Epoch 75 = 25.9931374

Hit Ratios (%). Table 30 shows the Hit Ratios of compared models. Saturn outperforms baseline1375

Augmented Memory and GEAM. In terms of architecture scaling, we show decoder transformer1376

and RNN approach Mamba performance but are still less performant. Scaling up Mamba does not1377

necessarily lead to better results, as there is notably even higher variance.1378

Sample Efficiency Metrics Table 31 presents the Strict Hit Ratios for compared models. While1379

GEAM outperforms baseline Augmented Memory for the Hit Ratio, the results here show that the1380

optimization capability of baseline Augmented Memory exceeds that of GEAM. Saturn outperforms1381

both Augmented Memory and GEAM to generate more hits and also finds them faster (lower1382

OB). Next, we investigate architecture scaling again, but this time, under the strict filter. decoder1383

transformer (25.3M) approaches Mamba (5.2M) performance and outperforms it in many tasks (Fig.1384

31), trading off even more diversity. Variance is also higher. However, we believe this is an interesting1385

observation as Augmented Memory’s mechanism is squeezing the likelihood of augmented sequences.1386

By simply scaling up the architecture and enabling the model to converge to this distribution, sample1387

efficiency improves. This directly draws parallel to NLP LLMs where scaling improves downstream1388

performance on many tasks, when trained on next token prediction117. Finally, while scaling up the1389

architecture to the parameter counts we have investigated adds negligible generation time, Mamba1390

(5.2M) is parameter-efficient in its synergistic behavior with Augmented Memory.1391
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Table 30: Architecture scaling experiments: Hit Ratio (%) metrics. GEAM13 and Saturn results are
across 10 seeds (0-9 inclusive). The mean and standard deviation are reported.

Method Target Protein

parp1 fa7 5ht1b braf jak2

Datasets
ZINC 250k 89 3.993 ± 0.355 1.097 ± 0.192 24.26 ± 0.622 1.020 ± 0.193 6.183 ± 0.344

ChEMBL 33 79 6.077 ± 0.453 1.830 ± 0.240 24.163 ± 0.715 2.073 ± 0.181 9.013 ± 0.562

Generative Models
Augmented Memory 21 16.983 ± 3.221 2.641 ± 0.868 52.046 ± 2.327 8.354 ± 1.727 21.604 ± 4.958

GEAM 13 49.597 ± 3.078 21.988 ± 2.968 51.765 ± 1.463 33.086 ± 1.673 51.228 ± 3.132

Ours
Saturn-Mamba 5.2M 57.981 ± 18.537 14.527 ± 9.961 68.185 ± 3.400 38.999 ± 10.114 60.827 ± 11.502
Saturn-Mamba 15.8M 56.088 ± 9.899 18.804 ± 13.980 68.322 ± 3.885 38.699 ± 19.841 61.320 ± 18.673
Saturn-Mamba 21.0M 56.299 ± 16.583 23.764 ± 19.280 65.015 ± 6.060 32.018 ± 12.584 59.175 ± 20.689
Saturn-Decoder 25.3M 61.732 ± 16.032 21.058 ± 13.940 68.340 ± 5.094 37.399 ± 12.632 65.470 ± 12.628
Saturn-RNN 24.7M 52.914 ± 9.955 13.254 ± 7.276 63.799 ± 3.249 33.805 ± 8.694 54.165 ± 7.445

E.7 Qualitative Supplementary Results1392

In this section, we show random generated molecules from Saturn that pass the Strict Filter (Fig. E7).1393

All molecules possess QuickVina 290 docking scores better than the median of known actives12 while1394

possessing QED87 > 0.7 and SA score91 < 3. We further highlight two points: firstly, there may be1395

some particularly large rings that are undesirable from a chemistry perspective, even though QED1396

and SA score permits them. Saturn is an optimization engine and if specific chemistry is desired,1397

including it into the MPO objective will steer the agent away from this chemical space. In this1398

work, a concrete example of this is in the main text Part 3 experiments where the Saturn pre-trained1399

model was additionally pre-trained via curriculum learning81 to generate molecules dissimilar to the1400

ZINC 250k89 training data to satisfy the Novel metric defined Lee et al12,13. This example shows the1401

flexibility of Saturn. Secondly, as stereochemistry was not purged from the vocabulary, Saturn can1402

generate stereoisomers.1403
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Figure E7: Example Saturn generated molecules passing the Strict Filter for all 5 targets: parp1, fa7,
5ht1b, braf, and jak2. The scores are annotated from top to bottom, QuickVina 290 docking score,
QED87, and SA score91.
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Table 31: Architecture scaling experiments: Strict Hit Ratio (%) (QED > 0.7 and SA < 3). GEAM
and Saturn results are across 10 seeds (0-9 inclusive). OB is Oracle Burden (oracle calls required to
generate N unique molecules). The number in parentheses in the OB statistics represent how many
runs out of 10 were successful. The mean and standard deviation are reported.

Method Target Protein

parp1 fa7 5ht1b braf jak2

GEAM 13

Strict Hit Ratio (↑) 6.510 ± 1.087 2.106 ± 0.958 8.719 ± 0.903 3.685 ± 0.524 7.944 ± 1.157
IntDiv1 (↑) 0.766 ± 0.017 0.709 ± 0.043 0.799 ± 0.017 0.751 ± 0.023 0.763 ± 0.021
#Circles (↑) 14 ± 3 7 ± 2 25 ± 3 11 ± 2 18 ± 2
OB (1) (↓) 250 ± 157(10) 433 ± 209(10) 114 ± 112(10) 355 ± 96(10) 230 ± 117(10)
OB (10) (↓) 743 ± 52(10) 1446 ± 404(10) 531 ± 38(10) 892 ± 144(10) 537 ± 70(10)
OB (100) (↓) 2106 ± 202(10) 2927 ± 0(1) 1527 ± 110(10) 2674 ± 163(6) 1606 ± 218(10)

Augmented Memory 21

Strict Hit Ratio 13.486 ± 3.033 1.757 ± 0.805 43.824 ± 2.124 6.920 ± 1.734 17.884 ± 4.636
IntDiv1 (↑) 0.748 ± 0.019 0.718 ± 0.047 0.779 ± 0.007 0.685 ± 0.022 0.772 ± 0.013
#Circles (↑) 20 ± 5 9 ± 2 54 ± 6 8 ± 1 27 ± 3
OB (1) (↓) 173 ± 149(10) 503 ± 313 61 ± 1(10) 329 ± 152 80 ± 28(10)
OB (10) (↓) 686 ± 214(10) 1776 ± 257(10) 117 ± 51(10) 1173 ± 375(10) 420 ± 54(10)
OB (100) (↓) 1836 ± 174(10) 2867 ± 0(1) 657 ± 80(10) 2396 ± 139(9) 1499 ± 109(10)

Ours
Saturn-Mamba 5.2M
Strict Hit Ratio 55.102 ± 18.027 13.887 ± 9.723 64.730 ± 3.717 37.250 ± 9.615 55.903 ± 13.613
IntDiv1 (↑) 0.596 ± 0.049 0.592 ± 0.066 0.685 ± 0.021 0.597 ± 0.042 0.638 ± 0.034
#Circles (↑) 5 ± 0 3 ± 1 17 ± 3 4 ± 0 7 ± 1
OB (1) (↓) 139 ± 96(10) 352 ± 206(10) 21 ± 7(10) 291 ± 143(10) 88 ± 56(10)
OB (10) (↓) 518 ± 92(10) 924 ± 247(10) 105 ± 23(10) 581 ± 123(10) 348 ± 96(10)
OB (100) (↓) 956 ± 259(10) 1776 ± 551(10) 441 ± 44(10) 1057 ± 187(10) 785 ± 191(10)

Saturn-Mamba 15.8M
Strict Hit Ratio 52.093 ± 12.503 18.064 ± 13.932 63.740 ± 5.623 37.350 ± 19.173 59.372 ± 18.465
IntDiv1 (↑) 0.587 ± 0.033 0.587 ± 0.068 0.662 ± 0.042 0.568 ± 0.064 0.633 ± 0.035
#Circles (↑) 6 ± 2 3 ± 1 18 ± 3 4 ± 1 9 ± 2
OB (1) (↓) 157 ± 112(10) 223 ± 167(10) 25 ± 10(10) 204 ± 115(10) 54 ± 43(10)
OB (10) (↓) 406 ± 111(10) 691 ± 151(10) 108 ± 31(10) 634 ± 180(10) 266 ± 50(10)
OB (100) (↓) 905 ± 204(10) 1491 ± 389(8) 421 ± 61(10) 1220 ± 410(10) 786 ± 254(10)

Saturn-Mamba 21.0M
Strict Hit Ratio 54.297 ± 16.480 23.021 ± 19.064 61.307 ± 5.991 30.972 ± 12.605 57.013 ± 20.601
IntDiv1 (↑) 0.590 ± 0.041 0.535 ± 0.056 0.655 ± 0.042 0.560 ± 0.060 0.605 ± 0.046
#Circles (↑) 6 ± 1 4 ± 1 17 ± 3 4 ± 1 8 ± 1
OB (1) (↓) 167 ± 73(10) 316 ± 236(10) 28 ± 13(10) 235 ± 138(10) 68 ± 78(10)
OB (10) (↓) 425 ± 91(10) 710 ± 314(10) 115 ± 44(10) 556 ± 147(10) 335 ± 118(10)
OB (100) (↓) 831 ± 147(10) 1446 ± 629(9) 432 ± 69(10) 1134 ± 282(10) 798 ± 340(10)

Saturn-Decoder 25.3M
Strict Hit Ratio 59.560 ± 15.480 20.195 ± 13.394 65.202 ± 5.847 35.857 ± 12.228 62.874 ± 11.810
IntDiv1 (↑) 0.615 ± 0.034 0.575 ± 0.078 0.658 ± 0.031 0.614 ± 0.045 0.590 ± 0.062
#Circles (↑) 6 ± 1 3 ± 1 13 ± 3 4 ± 1 6 ± 1
OB (1) (↓) 98 ± 81(10) 242 ± 160(10) 18 ± 5(10) 248 ± 81(10) 52 ± 37(10)
OB (10) (↓) 375 ± 131(10) 797 ± 227(10) 92 ± 29(10) 515 ± 98(10) 320 ± 63(10)
OB (100) (↓) 769 ± 165(10) 1698 ± 507(10) 378 ± 43(10) 1101 ± 216(10) 722 ± 140(10)

Saturn-RNN 24.7M
Strict Hit Ratio 50.586 ± 9.574 12.731 ± 7.211 60.331 ± 3.294 32.380 ± 8.503 51.819 ± 7.247
IntDiv1 (↑) 0.654 ± 0.023 0.642 ± 0.042 0.719 ± 0.018 0.636 ± 0.030 0.693 ± 0.027
#Circles (↑) 8 ± 2 4 ± 1 25 ± 5 7 ± 1 12 ± 2
OB (1) (↓) 126 ± 99(10) 384 ± 289(10) 27 ± 19(10) 186 ± 170(10) 50 ± 52(10)
OB (10) (↓) 465 ± 71(10) 1243 ± 273(10) 111 ± 41(10) 714 ± 214(10) 305 ± 100(10)
OB (100) (↓) 1045 ± 148(10) 2150 ± 311(10) 487 ± 61(10) 1404 ± 269(10) 935 ± 130(10)

NeurIPS Paper Checklist1404

1. Claims1405

Question: Do the main claims made in the abstract and introduction accurately reflect the1406

paper’s contributions and scope?1407

Answer: [Yes]1408

Justification: The paper starts by elucidating the mechanism of SMILES augmentation and1409

experience replay and how Mamba synergistically leverages this. The remanining paper1410

benchmarks the model against previous works.1411

Guidelines:1412

• The answer NA means that the abstract and introduction do not include the claims1413

made in the paper.1414
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• The abstract and/or introduction should clearly state the claims made, including the1415

contributions made in the paper and important assumptions and limitations. A No or1416

NA answer to this question will not be perceived well by the reviewers.1417

• The claims made should match theoretical and experimental results, and reflect how1418

much the results can be expected to generalize to other settings.1419

• It is fine to include aspirational goals as motivation as long as it is clear that these goals1420

are not attained by the paper.1421

2. Limitations1422

Question: Does the paper discuss the limitations of the work performed by the authors?1423

Answer: [Yes]1424

Justification: Limitations are discussed in the Conclusion section.1425

Guidelines:1426

• The answer NA means that the paper has no limitation while the answer No means that1427

the paper has limitations, but those are not discussed in the paper.1428

• The authors are encouraged to create a separate "Limitations" section in their paper.1429

• The paper should point out any strong assumptions and how robust the results are to1430

violations of these assumptions (e.g., independence assumptions, noiseless settings,1431

model well-specification, asymptotic approximations only holding locally). The authors1432

should reflect on how these assumptions might be violated in practice and what the1433

implications would be.1434

• The authors should reflect on the scope of the claims made, e.g., if the approach was1435

only tested on a few datasets or with a few runs. In general, empirical results often1436

depend on implicit assumptions, which should be articulated.1437

• The authors should reflect on the factors that influence the performance of the approach.1438

For example, a facial recognition algorithm may perform poorly when image resolution1439

is low or images are taken in low lighting. Or a speech-to-text system might not be1440

used reliably to provide closed captions for online lectures because it fails to handle1441

technical jargon.1442

• The authors should discuss the computational efficiency of the proposed algorithms1443

and how they scale with dataset size.1444

• If applicable, the authors should discuss possible limitations of their approach to1445

address problems of privacy and fairness.1446

• While the authors might fear that complete honesty about limitations might be used by1447

reviewers as grounds for rejection, a worse outcome might be that reviewers discover1448

limitations that aren’t acknowledged in the paper. The authors should use their best1449

judgment and recognize that individual actions in favor of transparency play an impor-1450

tant role in developing norms that preserve the integrity of the community. Reviewers1451

will be specifically instructed to not penalize honesty concerning limitations.1452

3. Theory Assumptions and Proofs1453

Question: For each theoretical result, does the paper provide the full set of assumptions and1454

a complete (and correct) proof?1455

Answer: [NA]1456

Justification: No formal proofs are introduced in this work.1457

Guidelines:1458

• The answer NA means that the paper does not include theoretical results.1459

• All the theorems, formulas, and proofs in the paper should be numbered and cross-1460

referenced.1461

• All assumptions should be clearly stated or referenced in the statement of any theorems.1462

• The proofs can either appear in the main paper or the supplemental material, but if1463

they appear in the supplemental material, the authors are encouraged to provide a short1464

proof sketch to provide intuition.1465

• Inversely, any informal proof provided in the core of the paper should be complemented1466

by formal proofs provided in appendix or supplemental material.1467
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• Theorems and Lemmas that the proof relies upon should be properly referenced.1468

4. Experimental Result Reproducibility1469

Question: Does the paper fully disclose all the information needed to reproduce the main ex-1470

perimental results of the paper to the extent that it affects the main claims and/or conclusions1471

of the paper (regardless of whether the code and data are provided or not)?1472

Answer: [Yes]1473

Justification: In the provided anonymous code-base, instructions and prepared files are1474

provided to reproduce the experiments. Checkpoint models are also provided. We further1475

detail the exact GPUs and CPUs we used in the Appendix.1476

Guidelines:1477

• The answer NA means that the paper does not include experiments.1478

• If the paper includes experiments, a No answer to this question will not be perceived1479

well by the reviewers: Making the paper reproducible is important, regardless of1480

whether the code and data are provided or not.1481

• If the contribution is a dataset and/or model, the authors should describe the steps taken1482

to make their results reproducible or verifiable.1483

• Depending on the contribution, reproducibility can be accomplished in various ways.1484

For example, if the contribution is a novel architecture, describing the architecture fully1485

might suffice, or if the contribution is a specific model and empirical evaluation, it may1486

be necessary to either make it possible for others to replicate the model with the same1487

dataset, or provide access to the model. In general. releasing code and data is often1488

one good way to accomplish this, but reproducibility can also be provided via detailed1489

instructions for how to replicate the results, access to a hosted model (e.g., in the case1490

of a large language model), releasing of a model checkpoint, or other means that are1491

appropriate to the research performed.1492

• While NeurIPS does not require releasing code, the conference does require all submis-1493

sions to provide some reasonable avenue for reproducibility, which may depend on the1494

nature of the contribution. For example1495

(a) If the contribution is primarily a new algorithm, the paper should make it clear how1496

to reproduce that algorithm.1497

(b) If the contribution is primarily a new model architecture, the paper should describe1498

the architecture clearly and fully.1499

(c) If the contribution is a new model (e.g., a large language model), then there should1500

either be a way to access this model for reproducing the results or a way to reproduce1501

the model (e.g., with an open-source dataset or instructions for how to construct1502

the dataset).1503

(d) We recognize that reproducibility may be tricky in some cases, in which case1504

authors are welcome to describe the particular way they provide for reproducibility.1505

In the case of closed-source models, it may be that access to the model is limited in1506

some way (e.g., to registered users), but it should be possible for other researchers1507

to have some path to reproducing or verifying the results.1508

5. Open access to data and code1509

Question: Does the paper provide open access to the data and code, with sufficient instruc-1510

tions to faithfully reproduce the main experimental results, as described in supplemental1511

material?1512

Answer: [Yes]1513

Justification: In the provided anonymous code-base, instructions and prepared files are1514

provided to reproduce the experiments. Checkpoint models are also provided.1515

Guidelines:1516

• The answer NA means that paper does not include experiments requiring code.1517

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/1518

public/guides/CodeSubmissionPolicy) for more details.1519

52

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• While we encourage the release of code and data, we understand that this might not be1520

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not1521

including code, unless this is central to the contribution (e.g., for a new open-source1522

benchmark).1523

• The instructions should contain the exact command and environment needed to run to1524

reproduce the results. See the NeurIPS code and data submission guidelines (https:1525

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.1526

• The authors should provide instructions on data access and preparation, including how1527

to access the raw data, preprocessed data, intermediate data, and generated data, etc.1528

• The authors should provide scripts to reproduce all experimental results for the new1529

proposed method and baselines. If only a subset of experiments are reproducible, they1530

should state which ones are omitted from the script and why.1531

• At submission time, to preserve anonymity, the authors should release anonymized1532

versions (if applicable).1533

• Providing as much information as possible in supplemental material (appended to the1534

paper) is recommended, but including URLs to data and code is permitted.1535

6. Experimental Setting/Details1536

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-1537

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the1538

results?1539

Answer: [Yes]1540

Justification: Exact details on the model hyperparameters and step-by-step training data1541

pre-processing are provided in the Appendix.1542

Guidelines:1543

• The answer NA means that the paper does not include experiments.1544

• The experimental setting should be presented in the core of the paper to a level of detail1545

that is necessary to appreciate the results and make sense of them.1546

• The full details can be provided either with the code, in appendix, or as supplemental1547

material.1548

7. Experiment Statistical Significance1549

Question: Does the paper report error bars suitably and correctly defined or other appropriate1550

information about the statistical significance of the experiments?1551

Answer: [Yes]1552

Justification: Every experiment was run across 10 seeds (0-9 inclusive) and all metrics report1553

the mean and standard deviation. "Best" performance is reported via t-test 95% significance.1554

Guidelines:1555

• The answer NA means that the paper does not include experiments.1556

• The authors should answer "Yes" if the results are accompanied by error bars, confi-1557

dence intervals, or statistical significance tests, at least for the experiments that support1558

the main claims of the paper.1559

• The factors of variability that the error bars are capturing should be clearly stated (for1560

example, train/test split, initialization, random drawing of some parameter, or overall1561

run with given experimental conditions).1562

• The method for calculating the error bars should be explained (closed form formula,1563

call to a library function, bootstrap, etc.)1564

• The assumptions made should be given (e.g., Normally distributed errors).1565

• It should be clear whether the error bar is the standard deviation or the standard error1566

of the mean.1567

• It is OK to report 1-sigma error bars, but one should state it. The authors should1568

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis1569

of Normality of errors is not verified.1570
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• For asymmetric distributions, the authors should be careful not to show in tables or1571

figures symmetric error bars that would yield results that are out of range (e.g. negative1572

error rates).1573

• If error bars are reported in tables or plots, The authors should explain in the text how1574

they were calculated and reference the corresponding figures or tables in the text.1575

8. Experiments Compute Resources1576

Question: For each experiment, does the paper provide sufficient information on the com-1577

puter resources (type of compute workers, memory, time of execution) needed to reproduce1578

the experiments?1579

Answer: [Yes]1580

Justification: Details on the exact GPUs and CPUs used and also the wall times are presented1581

in the Appendix.1582

Guidelines:1583

• The answer NA means that the paper does not include experiments.1584

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,1585

or cloud provider, including relevant memory and storage.1586

• The paper should provide the amount of compute required for each of the individual1587

experimental runs as well as estimate the total compute.1588

• The paper should disclose whether the full research project required more compute1589

than the experiments reported in the paper (e.g., preliminary or failed experiments that1590

didn’t make it into the paper).1591

9. Code Of Ethics1592

Question: Does the research conducted in the paper conform, in every respect, with the1593

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1594

Answer: [Yes]1595

Justification: We conform with the NeurIPS Code of Ethics as detailed in the URL.1596

Guidelines:1597

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1598

• If the authors answer No, they should explain the special circumstances that require a1599

deviation from the Code of Ethics.1600

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-1601

eration due to laws or regulations in their jurisdiction).1602

10. Broader Impacts1603

Question: Does the paper discuss both potential positive societal impacts and negative1604

societal impacts of the work performed?1605

Answer: [Yes]1606

Justification: We add a section after the Conclusion to discuss Broader Impacts.1607

Guidelines:1608

• The answer NA means that there is no societal impact of the work performed.1609

• If the authors answer NA or No, they should explain why their work has no societal1610

impact or why the paper does not address societal impact.1611

• Examples of negative societal impacts include potential malicious or unintended uses1612

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1613

(e.g., deployment of technologies that could make decisions that unfairly impact specific1614

groups), privacy considerations, and security considerations.1615

• The conference expects that many papers will be foundational research and not tied1616

to particular applications, let alone deployments. However, if there is a direct path to1617

any negative applications, the authors should point it out. For example, it is legitimate1618

to point out that an improvement in the quality of generative models could be used to1619

generate deepfakes for disinformation. On the other hand, it is not needed to point out1620

that a generic algorithm for optimizing neural networks could enable people to train1621

models that generate Deepfakes faster.1622
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• The authors should consider possible harms that could arise when the technology is1623

being used as intended and functioning correctly, harms that could arise when the1624

technology is being used as intended but gives incorrect results, and harms following1625

from (intentional or unintentional) misuse of the technology.1626

• If there are negative societal impacts, the authors could also discuss possible mitigation1627

strategies (e.g., gated release of models, providing defenses in addition to attacks,1628

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1629

feedback over time, improving the efficiency and accessibility of ML).1630

11. Safeguards1631

Question: Does the paper describe safeguards that have been put in place for responsible1632

release of data or models that have a high risk for misuse (e.g., pretrained language models,1633

image generators, or scraped datasets)?1634

Answer: [NA]1635

Justification: The released models and case studies are not directly applicable for malicious1636

misuse. Focus is on therapeutics design.1637

Guidelines:1638

• The answer NA means that the paper poses no such risks.1639

• Released models that have a high risk for misuse or dual-use should be released with1640

necessary safeguards to allow for controlled use of the model, for example by requiring1641

that users adhere to usage guidelines or restrictions to access the model or implementing1642

safety filters.1643

• Datasets that have been scraped from the Internet could pose safety risks. The authors1644

should describe how they avoided releasing unsafe images.1645

• We recognize that providing effective safeguards is challenging, and many papers do1646

not require this, but we encourage authors to take this into account and make a best1647

faith effort.1648

12. Licenses for existing assets1649

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1650

the paper, properly credited and are the license and terms of use explicitly mentioned and1651

properly respected?1652

Answer: [Yes]1653

Justification: A license is provided in the anonymous repository. In the code-base, some1654

code was adapted from existing code-bases which are licensed under Apache 2.0. For these1655

code files, we explicitly state where the code was adapted from.1656
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• The answer NA means that the paper does not use existing assets.1658
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URL.1661
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13. New Assets1673
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provided alongside the assets?1675
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Answer: [Yes]1676

Justification: The released anonymous code is licensed under Apache 2.0.1677
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• The answer NA means that the paper does not release new assets.1679

• Researchers should communicate the details of the dataset/code/model as part of their1680
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limitations, etc.1682
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asset is used.1684

• At submission time, remember to anonymize your assets (if applicable). You can either1685

create an anonymized URL or include an anonymized zip file.1686

14. Crowdsourcing and Research with Human Subjects1687
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include the full text of instructions given to participants and screenshots, if applicable, as1689

well as details about compensation (if any)?1690

Answer: [NA]1691

Justification: Neither crowdsourcing nor human subjects were involved.1692

Guidelines:1693

• The answer NA means that the paper does not involve crowdsourcing nor research with1694

human subjects.1695

• Including this information in the supplemental material is fine, but if the main contribu-1696

tion of the paper involves human subjects, then as much detail as possible should be1697

included in the main paper.1698

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1699

or other labor should be paid at least the minimum wage in the country of the data1700
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such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1705

approvals (or an equivalent approval/review based on the requirements of your country or1706

institution) were obtained?1707

Answer: [NA]1708

Justification: Neither crowdsourcing nor reseach with human subjects were involved.1709
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• The answer NA means that the paper does not involve crowdsourcing nor research with1711

human subjects.1712

• Depending on the country in which research is conducted, IRB approval (or equivalent)1713

may be required for any human subjects research. If you obtained IRB approval, you1714

should clearly state this in the paper.1715

• We recognize that the procedures for this may vary significantly between institutions1716

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1717

guidelines for their institution.1718

• For initial submissions, do not include any information that would break anonymity (if1719

applicable), such as the institution conducting the review.1720
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