
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ELMUR: EXTERNAL LAYER MEMORY WITH UP-
DATE/REWRITE FOR LONG-HORIZON RL

Anonymous authors
Paper under double-blind review

ABSTRACT

Real-world robotic agents must act under partial observability and long horizons,
where key cues may appear long before they affect decision making. However,
most modern approaches rely solely on instantaneous information, without incor-
porating insights from the past. Standard recurrent or transformer models struggle
with retaining and leveraging long-term dependencies: context windows truncate
history, while naive memory extensions fail under scale and sparsity. We propose
ELMUR (External Layer Memory with Update/Rewrite), a transformer architec-
ture with structured external memory. Each layer maintains memory embeddings,
interacts with them via bidirectional cross-attention, and updates them through an
Least Recently Used (LRU) memory module using replacement or convex blend-
ing. ELMUR extends effective horizons up to 100,000 times beyond the attention
window and achieves a 100% success rate on a synthetic T-Maze task with corri-
dors up to one million steps. In POPGym, it outperforms baselines on more than
half of the tasks. On MIKASA-Robo sparse-reward manipulation tasks with vi-
sual observations, it nearly doubles the performance of strong baselines, achieving
the best success rate on 21 out of 23 tasks and improving the aggregate success
rate across all tasks by about 70% over the previous best baseline. These results
demonstrate that structured, layer-local external memory offers a simple and scal-
able approach to decision making under partial observability.

1 INTRODUCTION

Imagine a robot cooking pasta: it stirs once, adds salt, and later adds salt again, repeating until the
dish is inedible. The issue is simple: the robot cannot remember if salt was already added, since
it dissolves invisibly, nor how much is still in the container. This is a case of partial observability
— the world rarely reveals all necessary information. Humans recall past actions effortlessly, but
robots lack this ability. Though effective in controlled settings (Kim et al., 2024; Black et al.,
2024), robots often fail under partial observability (Fang et al., 2025; Cherepanov et al., 2025).
Standard recurrent (Ouyang et al., 2025) and transformer (Gao et al., 2025) models rely heavily
on short observation windows, making them brittle under long-horizon dependencies and sparse
signals. This motivates hybrid memory-augmented transformers that explicitly store and retrieve
past information (Fang et al., 2025; Shi et al., 2025).

Within the Reinforcement Learning (RL) paradigm (Sutton et al., 1998), long-horizon challenges
are compounded by sample inefficiency and sparse rewards: real-world exploration is costly and
unsafe, while simulation suffers from a sim-to-real gap (Zhang et al., 2025a). Offline RL mitigates
this with pre-collected datasets (Levine et al., 2020), but usually assumes dense feedback; reshaping
sparse rewards demands domain knowledge and risks bias (Wu et al., 2021; Mu et al., 2024; Wang
et al., 2025a). In robotics, delayed feedback makes long-term memory indispensable. A comple-
mentary paradigm is Imitation Learning (IL) (Zare et al., 2024), whose simplest form, Behavior
Cloning (BC), reduces control to supervised learning on demonstration pairs. Building on this idea,
recent Vision-Language-Action (VLA) models (Brohan et al., 2022; Team et al., 2024; Kim et al.,
2024) scale with large datasets, yet their fixed transformer windows (Fang et al., 2025; Shi et al.,
2025) leave three challenges: (i) extending context without quadratic cost, (ii) mitigating truncation-
induced forgetting, and (iii) retaining task-relevant information across long horizons. This motivates
our central question: how can we equip IL policies with efficient long-term memory to solve
long-horizon, partially observable tasks?

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Self-
Attention

mem2tok
block

tok2mem
block

A
d
d
 
&
 
N
o
r
m

TokenFFN

A
d
d
 
&
 
N
o
r
m

MemoryFFNMemory

Token Track

Memory Track

Action

A
d
d
 
&
 
N
o
r
m

A
d
d
 
&
 
N
o
r
m

A
c
t
i
o
n
 
H
e
a
d

O
b
s
.
 
E
n
c
o
d
e
r

S
e
q
u
e
n
c
e
 
o
f
 
o
b
s
e
r
v
a
t
i
o
n
s

Last Segment

First Segment

Text
vvvv

LRU
New

Memory

A
d
d
 
&
 
N
o
r
m

token-memory
interaction

External
Layer Memory

classic
transformer part

memory rewritingInfo
transformer
decoder

10

20

30

Figure 1: ELMUR overview. Each transformer layer is augmented with an external memory track
that runs in parallel with the token track. Tokens attend to memory through a mem2tok block, while
memory embeddings are updated from tokens through a tok2mem block. LRU block selectively
rewrites memory via replacement or convex blending, ensuring bounded yet persistent storage. This
design enables token-memory interaction and long-horizon recall beyond the attention window.

To address these challenges, we introduce ELMUR (External Layer Memory with Update/Rewrite),
a transformer architecture in which every layer is augmented with a structured external layer mem-
ory (Figure 1). ELMUR combines three ingredients: (i) layer-local memory embeddings that
persist across segments, (ii) bidirectional token–memory read/write interaction via cross-attention
(mem2tok, tok2mem), and (iii) a Least Recently Used (LRU) update block that refreshes memory
through replacement or convex blending, balancing stability and adaptability. This design enables
efficient segment-level recurrence and extends retention of task-relevant information up to 100,000×
beyond the native attention window, making long-horizon decision making feasible in robotics.

We evaluate ELMUR on the synthetic T-Maze (Ni et al., 2023), the robotic MIKASA-
Robo (Cherepanov et al., 2025) suite of sparse-reward manipulation tasks with visual observations,
and the diverse POPGym benchmark (Morad et al., 2023a), all designed to test memory under par-
tial observability. ELMUR achieves a 100% success rate on T-Maze corridors up to one million
steps, nearly doubles baseline performance on MIKASA-Robo, ranking first on 21 of 23 tasks and
increasing the overall success rate across the suite by roughly 70% relative to the strongest prior
method., and obtains the top score on 24 of 48 POPGym tasks. These results demonstrate that EL-
MUR enables stable retention of task-relevant information, efficient long-term storage, and robust
generalization under partial observability.

Our contributions are twofold:

• We propose ELMUR, a transformer with layer-local external memory, bidirectional token-
memory cross-attention, and an LRU-based update rule rewriting memory via replacement
or convex blending (Section 3). This design extends memory horizons far beyond the
attention window.

• We empirically demonstrate that ELMUR achieves robust generalization under partial
observability across synthetic, robotic, and puzzle/control tasks (Section 5).

• We provide a theoretical analysis of LRU-based memory dynamics, establishing formal
bounds on forgetting, retention horizons, and stability of memory embeddings (Section 4).

2 BACKGROUND

Many real-world robotic and control tasks involve partial observability, where the agent cannot
directly access the true system state (Lauri et al., 2022). This setting is modeled as a partially
observable Markov decision process (POMDP), defined as the tuple (S,A,O, T, Z,R, ρ0, γ), with
latent state space S, action space A, and observation space O. The transition dynamics are T :
S × A → ∆(S), where T (s′ | s, a) is the probability of reaching s′ after taking a in s. The
observation function Z : S ×A → ∆(O) specifies Z(o | s′, a), the probability of observing o after

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Algorithm 1 ELMUR layer update for segment i at layer ℓ. Inputs are token hidden states h ∈
RB×L×d, memory (m, p) with m ∈RB×M×d, anchors p ∈ ZB×M , and absolute times t. Outputs
are updated hidden states h′ and memory (m′, p′).

// Input embedding (before first layer) – to encode observation
1: h← ObsEncoder(o)

// Token track – sequence processing and enrichment with information from memory
2: h← AddNorm

(
h+ SelfAttention(h; causal mask)

)
3: Brel ← RelativeBias(t, p) // bias for adding temporal dependence
4: h← AddNorm

(
h+CrossAttention(Q=h, K=m, V=m; noncausal mask, Bread)

)
5: h← AddNorm

(
h+TokenFFN(h)

)
6: h′ ← h

// Output decoding (after final layer)
7: a← ActionHead(h′) // map to action distribution and compute loss

// Memory track
8: Brel ← RelativeBias(p, t) // reversed bias for write
9: u← AddNorm

(
m+CrossAttention(Q=m, K=h′, V=h′; noncausal mask, Bwrite)

)
10: ũ← AddNorm

(
u+MemoryFFN(u)

)
11: (m′, p′)← LRU(m, p, ũ, t)
12: return h′, (m′, p′)

reaching s′ under action a. The reward function is R : S × A → R, the initial state distribution is
ρ0 ∈ ∆(S), and γ ∈ (0, 1) is the discount factor.

In the special case of full observability, the observation equals the state (ot ≡ st), reducing the
POMDP to a Markov decision process (MDP). The optimal policy then depends only on the current
state, π∗(at | st). In the general POMDP case, however, the agent cannot access st directly and must
rely on the full history ht = (o0, a0, o1, a1, . . . , ot), yielding π∗(at | ht). A practical alternative
is to approximate history with a learned memory state mt = fϕ(mt−1, ot, at−1), πθ : M →
∆(A), πθ(at | mt), where fϕ is a, for instance, recurrent (Hausknecht & Stone, 2015) or memory-
augmented (Parisotto et al., 2020) update rule.

3 METHOD
...

-1 -1 -1 -1 -1

...

K-1 -1 -1 -1 -1

Segment 1

...

K-1 2K-1 -1 -1 -1

Segment 2

...

K-1 2K-1 3K-1 ... MK-1

Segment M

...

(M+1)K-1 2K-1 3K-1 ... MK-1

Segment M+1

...

(M+1)K-1 (M+2)K-1 3K-1 ... MK-1

Memory 
Initialization

Segment M+2

LRU Detailed

New
Memory

New
Memory

- Initial memory 
at slot j after 
a segment i

- New memory 
written to an 
empty slot 

- New memory
written in a 
filled slot 

Figure 2: LRU-based memory management in EL-
MUR. Each layer maintains M memory slots, initial-
ized with random vectors (green). As new segments
arrive, tokens write updates into empty slots (purple)
by full replacement. Once all slots are filled, the least
recently used slot is refreshed via a convex update with
parameter λ that blends new content with the previous
memory (grey). Anchors below each row indicate the
timestep of the most recent update. This scheme en-
sures bounded capacity while preserving long-horizon
information.

Many real-world decision-making tasks
involve long horizons and partial ob-
servability, where key information may
appear thousands of steps before it is
needed. Standard transformers are lim-
ited by a fixed attention window: naive
extensions of context length increase cost
quadratically, while truncation causes for-
getting. Efficient long-term reasoning
thus requires a mechanism to store and
retrieve task-relevant information across
long trajectories. To this end, we pro-
pose ELMUR (External Layer Memory
with Update/Rewrite), a GPT-style (Rad-
ford et al., 2019) transformer decoder aug-
mented with structured external memory.
Unlike architectures that simply cache hid-
den states (Dai et al., 2019), ELMUR
equips each layer with its own memory
track and explicit read–write operations,
enabling persistent storage and selective
updating via the LRU memory manage-
ment.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

ELMUR Overview. As shown in Figure 1, each ELMUR layer has two coupled tracks. The token
track processes observations into actions, while the memory track persists across segments. Both
interact through cross-attention: memory shapes token representations, and tokens update mem-
ory. Interaction occurs via mem2tok (read) and tok2mem (write) blocks, modulated by relative
biases from token timesteps and memory anchors. Trajectories are split into segments, processed
sequentially for efficiency and recurrent memory updates. At each segment’s end, hidden states up-
date memory, carried forward. LRU memory management fills empty slots first, then refreshes the
least used slot by convexly blending old and new information. This bidirectional design provides
temporally grounded memory for long-horizon decisions. Algorithm 1 summarizes the method.

Segment-Level Recurrence. Feeding infinitely long sequences into a transformer is infeasible,
since self-attention scales quadratically. Splitting into shorter segments reduces cost but complicates
information flow. Segment-level recurrence addresses this by treating the transformer as an RNN
over segments, passing memory from one segment to the next (Dai et al., 2019; Bulatov et al., 2022).
In ELMUR, this memory is realized as layer-local external memory instead of cached activations.
Each layer maintains memory that is read within the current segment and updated before moving to
the next. Formally, with context length L, a trajectory of length T is partitioned into S = ⌈T/L⌉
segments Si: h(i) = TokenTrack

(
Si, sg(m i−1)

)
, where h(i) ∈ RB×L×d denotes the hidden states

of tokens in segment i, computed from the segment Si and the detached memory sg(m i−1) carried
from the previous segment.

Token Track. Within each segment Si, observations are encoded into token embeddings x ∈
RL×d, where d is the model dimension. The token track models local dependencies and augments
them with information from memory m ∈ RM×d. Standard transformers rely on fixed-window self-
attention, whereas ELMUR also retrieves information from its external memory via cross-attention,
allowing predictions to depend not only on recent tokens but on distant past events stored in memory.
Self-attention, equipped with relative positional encodings (Dai et al., 2019) and a causal mask,
models local dependencies within the segment:

hsa = AddNorm(x+ SelfAttention(x)) , (1)
where AddNorm(·) denotes a residual connection followed by normalization. Long-term context is
handled by external memory. Tokens’ hidden states hsa then query memory via the mem2tok:

hmem2tok = AddNorm(hsa +CrossAttention(Q = hsa, K, V = m)) . (2)
Here memory embeddings act as keys and values, with a non-causal mask and a relative bias re-
flecting token-memory temporal distance. Finally, representations are refined with a feed-forward
network (FFN). In contrast to popular Decision Transformer (DT) Chen et al. (2021) that employ
a standard MLP-based FFN, we adopt a DeepSeek-MoE FFN (Dai et al., 2024), following the de-
sign of DeepSeek-V3 (Liu et al., 2024a). Mixture-of-Experts (MoE) improve parameter efficiency
and specialization by routing tokens to a sparse set of experts, scaling capacity without proportional
compute. This design enables expressive updates while keeping inference efficient:

h = AddNorm(hmem2tok + FFN(hmem2tok)) . (3)
The resulting hidden states are then passed to the action head, applied only after the final layer.
Training is supervised, minimizing the error between predicted and demonstrated actions, using
mean squared loss for continuous spaces and cross-entropy for discrete ones. The loss backpropa-
gates through the entire network to update model parameters.

Memory Track. Reading from memory is not enough for long-horizon reasoning; the model must
also write new information. Without an explicit write path, past events would be forgotten or cached
inefficiently. The memory track addresses this by allowing tokens to update persistent memory,
retaining salient information while overwriting less useful content.

Each layer maintains its own memory embeddings m ∈ RM×d. After processing a segment, token
states update memory through the tok2mem block:

mtok2mem = AddNorm(m+CrossAttention(Q = m, K, V = h)) . (4)
As in mem2tok, a non-causal mask is applied, but the relative bias is reversed to favor temporally
aligned memory embeddings. Updates are then refined by a FFN with residual connection:

mnew = AddNorm(mtok2mem + FFN(mtok2mem)) , (5)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

analogous to the token track, the FFN uses a DeepSeek-MoE block instead of a standard MLP.

Finally, mnew is merged with existing slots via the LRU rule (Figure 2, Figure 2), filling empty
slots first and otherwise refreshing the least recently used by convex blending. This keeps memory
bounded yet consistently updated with relevant information.

Relative Bias. When memory extends across multiple segments, absolute indices become am-
biguous: the same token position may correspond to different points in the trajectory. To resolve
this, the model requires a signal that encodes relative distances between tokens and memory entries.
ELMUR provides this signal through a learned relative bias added to cross-attention logits:

Attn(Q,K) =
QK⊤
√
dh

+Brel. (6)

The bias Brel is derived from pairwise offsets ∆ = ±(t−p) between a token position t and a memory
anchor p (the last update time of a slot). Offsets are clamped to [−Dmax+1, Dmax−1], where Dmax

is the maximum relative distance supported by the bias table. These clamped values are shifted into
[0, 2Dmax−2] and used to index a learnable embedding table E ∈ R(2Dmax−1)×H , where H is the
number of attention heads. Each offset corresponds to a per-head embedding E[∆] ∈ RH , and
stacking these indices produces

Brel =

{
E[t− p] ∈ RB×H×L×M ,mem2tok (read)

E[p− t] ∈ RB×H×M×L,tok2mem (write).
(7)

Algorithm 2 LRU update for layer memory. Inputs:
current memory (m, p) (may be uninitialized), candi-
date updates ũ, newest segment time t, blend λ∈ [0, 1],
init scale σ. Output: updated memory (m′, p′).

// Initialization (cold start)
1: if m, p uninitialized then
2: m← N (0, σ2I) // initial slots
3: p← −1 // sentinel anchors
4: end if

// Choose write index
5: empty← (p < 0)
6: if any empty then
7: j⋆ ← first(empty) // use first empty slot
8: α← 1 // full replacement
9: else

10: j⋆ ← argminj pj // least recently used
11: α← λ // convex blend
12: end if

// Integrate
13: blend← α ũj⋆ + (1− α)mj⋆

14: m′ ← m; m′
j⋆ ← blend

15: p′ ← p; p′j⋆ ← t
16: return (m′, p′)

In the read path (mem2tok), the bias
prioritizes retrieval from temporally close
memory embeddings while keeping dis-
tant ones accessible. In the write path
(tok2mem), offsets are reversed, guid-
ing updates toward memory embeddings
aligned with the writing tokens. Both di-
rections draw from the same embedding
table E but can learn distinct patterns.
By relying on relative rather than absolute
timestep, ELMUR ensures consistent and
coherent memory interactions across long
horizons.

Memory Management with LRU. Ex-
ternal memory must remain bounded:
storing every token is infeasible, while
naive truncation risks catastrophic forget-
ting. A principled policy is needed to de-
cide which slots to refresh or preserve as
new content arrives. ELMUR employs a
Least Recently Used (LRU) block (Fig-
ure 2, Figure 2) that manages M slots per
layer, each holding a vector and an anchor
(its last update time). By always updating
the least recently used slot, the block en-
sures bounded capacity while retaining context.

At training start, initialization samples embeddings fromN (0, σ2I) and marks them empty. While
empty slots remain, full replacement inserts new vectors directly. Once all slots are filled, the block
switches to convex update, blending the oldest slot with new content:

m i+1
j = λmi+1

new + (1− λ)mi
j , (8)

where λ ∈ [0, 1] is a tunable hyperparameter that controls the balance between overwriting and
retention. By adjusting λ, one can choose whether memory favors fast plasticity (larger λ) or long-
term stability (smaller λ). This policy uses memory capacity fully before overwriting and applies
gradual blending thereafter, enabling bounded yet persistent long-horizon memory.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

By combining token-level processing with an explicit memory system, ELMUR offers three core
advantages: (i) relative-bias cross-attention provides temporally grounded read-write access, (ii) the
LRU-based manager ensures bounded capacity while remaining adaptive, and (iii) segment-level
recurrence enables scalable learning over long horizons.

4 THEORETICAL ANALYSIS

Understanding the retention properties of ELMUR’s memory is crucial for characterizing its ability
to handle long-horizon dependencies. In this section, we analyze how information is preserved or
forgotten under the LRU update mechanism. We derive bounds on memory retention and effective
horizons, and connect these results to the empirical behaviors observed in long-horizon tasks.

At the core of ELMUR’s memory module is the convex update rule with blending factor λ ∈ [0, 1].
Let fix a memory embedding j at segment index i. If this memory embedding is selected for update
with new content m i+1

new , the rule (Figure 2) is m i+1
j = λm i+1

new + (1 − λ)m i
j , while all other

memory embeddings n ̸= j remain unchanged: m i+1
n = m i

n. If the memory embedding was
empty, the update reduces to full replacement m i+1

j = m i+1
new .

Proposition 1 (Exponential Forgetting). After k overwrites of memory embedding j, the content
evolves as

m i+k
j = (1− λ)k m i

j +

k∑
u=1

λ(1− λ)k−u m i+u
new , (9)

where m i+u
new denotes the write at update i+u (see Appendix A.1 for a full derivation). Consequently,

the coefficient of the initial content m i
j after k overwrites is (1 − λ)k, and the contribution of the

write performed τ updates earlier is λ(1− λ)τ−1.

Corollary (Half-life). The number of overwrites k0.5 after which the contribution of m i
j halves is

k0.5 = ln(1/2)
ln(1−λ) = ln 2

− ln(1−λ) ∼
ln 2
λ , as λ→ 0. Thus, smaller λ extends retention, while larger λ

accelerates overwriting.

Effective horizon in environment steps. Since only one memory embedding is updated per seg-
ment of length L, a memory is overwritten once every M segments in expectation. The effective
retention horizon H(ϵ) thus quantifies how many environment steps a stored contribution remains
influential before its weight decays below a negligible threshold ϵ, i.e., H(ϵ) = M · L · ln(ϵ)

ln(1−λ) . In
particular, the half-life in environment steps is H0.5 = M ·L · ln 2

− ln(1−λ) ∼ M ·L · ln 2
λ , as λ→ 0.

Unlike models where all memory is updated at every step (like RNNs), ELMUR’s LRU policy
ensures (i) memory embeddings not selected for overwrite retain their content exactly until replace-
ment, and (ii) once selected, their contributions decay exponentially with rate λ. This produces a
retention horizon that scales linearly with both the number of memory embeddings M and the seg-
ment length L, providing a conservative lower bound. In practice, effective horizons are often much
longer (Figure 3).

Proposition 2 (Memory Boundedness). A natural question is whether repeated convex updates
could cause memory values to grow without limit. We show that, under standard bounded-input
assumptions, the norm of every memory embedding remains uniformly bounded throughout training
and inference. Suppose that every new write is norm-bounded, ∥m t

new∥ ≤ C for some constant
C > 0, and the initial memory satisfies ∥m 0

j ∥ ≤ C. Then for all segments i and slots j, it holds that
∥m i

j∥ ≤ C. Since each update is a convex combination of the previous and a bounded new values,
the memory embedding always remains inside the closed ball of radius C. This guarantees stability
of activations even across arbitrarily long trajectories. See Appendix A.2 for the detailed proof.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5 EXPERIMENTS

We evaluate ELMUR on synthetic (Ni et al., 2023) tasks, 48 POPGym puzzle/control tasks (Morad
et al., 2023a), and robotic manipulation (Cherepanov et al., 2025), all designed to test memory under
partial observability. Our study is guided by the following research questions (RQs):

1. RQ1: Does ELMUR retain information across horizons far beyond its attention window?

2. RQ2: How well does ELMUR generalize to shorter and longer sequences?

3. RQ3: Is ELMUR effective on manipulation tasks with visual observations?

4. RQ4: How consistent is ELMUR across puzzles, control, and robotics tasks?

5. RQ5: What is the impact of components of ELMUR on its memorization?

5.1 BENCHMARKS AND BASELINES

We evaluate ELMUR on three benchmarks designed to isolate memory (Appendix, Figure 7). The
T-Maze requires recalling an early cue after traversing a long corridor with sparse rewards. The
MIKASA-Robo suite provides robotic tabletop tasks with RGB observations and continuous ac-
tions, including color-recall (RememberColor) and delayed reversal (TakeItBack). Finally,
POPGym offers a diverse collection of partially observable puzzles and control environments for
evaluating general memory use. Detailed descriptions can be found in Appendix A.4.

We compare against baselines spanning sequence models and offline RL for long-horizon tasks.
We include transformers — Decision Transformer (DT) (Chen et al., 2021) and Recurrent Action
Transformer with Memory (RATE) (Cherepanov et al., 2023) — as representative architectures for
memory-augmented policy learning. We also evaluate DMamba (Ota, 2024), a state-space model
with efficient recurrence, as a recent alternative to attention. For IL/offline RL, we use Behavior
Cloning (BC) via MLP as the simplest supervised baseline, Conservative Q-Learning (CQL) (Kumar
et al., 2020) as a strong offline RL method, and Diffusion Policy (DP) (Chi et al., 2023) as a state-
of-the-art generative policy. Together, these span transformer, state-space, and offline/generative
approaches, providing a competitive reference set for evaluation. We do not compare with online
RL baselines, since they assume interactive data collection with exploration, yielding incomparable
training budgets. Likewise, we omit real-robot experiments to avoid confounds such as latency,
resets, and safety constraints, focusing instead on controlled, reproducible studies.

Experimental Setup. For RQ1, we test T-Maze cue retention by training with short contexts
(L=10, S=3) and evaluating on corridors up to 106 steps. For RQ2, we train on 7 T-Maze
lengths distributions (9–900) and validate on 11 shorter/longer ones (9–9600) to assess interpo-
lation and extrapolation. For RQ3, we use MIKASA-Robo tasks, training by imitation from ex-
pert demonstrations and evaluating zero-shot. For RQ4, we compare T-Maze, POPGym-48, and
MIKASA-Robo to test robustness across synthetic puzzles, control, and robotics. For RQ5, we
ablate RememberColor3-v0, varying M , λ, σ, and (L, S), and remove relative bias, LRU, and
per-layer memory to measure component contributions.

Evaluation Protocol. Unless stated otherwise, each model is trained with three (four for T-Maze)
independent runs (different initialization). For each run we evaluate on 100 episodes with distinct
environment seeds and compute the run mean. We then report the grand mean ± standard error of
the mean (SEM) across the three run means. For per-task leaderboards (e.g., POPGym-48) we apply
this protocol per task and aggregate as specified in the benchmark.

Training Details and Hardware. All models are trained from scratch under the same data budgets
and preprocessing. We use segment-level recurrence with detached memory between segments;
losses are applied on each processed segment. Optimizers, schedulers, and hyperparameters follow
the task-specific configuration table in Appendix, Table 7. All experiments were run on a single
NVIDIA A100 (80 GB) per job. Training/evaluation code paths, seeds, and environment versions
are fixed across methods for reproducibility.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

101 102 103 104 105 106

T-Maze Inference Corridor Length
0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e 

↑

ELMUR (Ours)
RATE

RMT
TrXL

DT
DMamba

BC-LSTM
BC-MLP

Persistent agent
Random agent

Figure 3: Success rate on the T-Maze task as a function of inference corridor length. ELMUR
achieves a 100% success rate up to corridor lengths of one million steps. In this figure, the context
length is L = 10 with S = 3 segments; thus ELMUR carries information across horizons 100,000
times longer than its context window.

5.2 RESULTS

9 30 90 150 300 600 900 1200 2400 4800 9600

Validation Sequence Length

9
30

90
15
0

30
0

60
0

90
0Tr

ai
ni

ng
 S

eq
ue

nc
e 

L
en

gt
h

1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

Figure 4: Generalization of ELMUR across
T-Maze lengths. Each cell shows success rate
(mean ± standard error) for training vs. valida-
tion lengths. ELMUR transfers perfectly: models
trained on shorter sequences retain 100% success
up to 9600 steps. Training lengths were split into
three equal segments.

We evaluate ELMUR on T-Maze, MIKASA-
Robo, and POPGym, addressing RQ1–RQ5 on
retention, generalization, manipulation, cross-
domain robustness, and ablations.

RQ1: Retention beyond attention. To test
memory retention, we train on T-Maze corri-
dors of length T while restricting the context
size to L < T , forcing the model to solve tasks
where the cue must be preserved beyond the na-
tive attention span. At validation, we evaluate
on much longer

corridors — up to one million steps — without
increasing L, thereby probing memory reten-
tion far beyond the training horizon. ELMUR
achieves 100% success even under this extreme extrapolation (Figure 3), implying retention hori-
zons nearly 100,000× larger than the attention window (L=10 with only S=3 segments used during
training).

RQ2: Generalization across sequence lengths. We train ELMUR on T-Maze with short contexts
(3 to 300 steps) and then evaluate across 11 validation lengths ranging from 9 to 9600 steps. The
model transfers seamlessly in both directions: it solves tasks shorter than those seen during training
without overfitting to a fixed scale, and it also extrapolates to sequences orders of magnitude longer.
As shown in Figure 4, ELMUR maintains 100% success across all train/test pairs, demonstrating
robust generalization beyond the training horizon.

RQ3: Manipulation with visual observations. Results in Table 1 indicate that EL-
MUR achieves higher success rates than other baselines on the MIKASA-Robo tasks. In

Table 1: Success rates (mean ± standard error) on MIKASA-Robo tasks, averaged over 3 runs with
100 evaluation seeds. ELMUR outperforms baselines, showing stronger memory in manipulation.
See results for all 32 MIKASA-Robo tasks in Appendix, Table 8.

Task RATE DT BC-MLP CQL-MLP DP ELMUR (ours)
RememberColor3-v0 0.65±0.04 0.01±0.01 0.27±0.03 0.29±0.01 0.32±0.01 0.89±0.07
RememberColor5-v0 0.13±0.03 0.07±0.05 0.12±0.01 0.15±0.02 0.10±0.02 0.19±0.03
RememberColor9-v0 0.09±0.02 0.01±0.01 0.12±0.02 0.15±0.01 0.17±0.01 0.23±0.02
TakeItBack-v0 0.42±0.24 0.08±0.04 0.33±0.10 0.04±0.01 0.05±0.02 0.78±0.03

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Aggregated returns on 48 POPGym tasks.

RATE DT Rand. BC-MLP BC-LSTM ELMUR
All (48) 9.5 5.8 -12.2 -6.8 9.0 10.4
Puzzle (33) 0.45 -3.5 -14.6 -11.9 -0.2 1.2
Reactive (15) 9.1 9.3 2.3 5.1 9.1 9.2

TakeItBack-v0, it obtains
0.78±0.03 compared to 0.42±0.24
for the next-best model, and in
RememberColor[3,5,9]-v0 its
performance remains stable as the number
of distractors increases. Overall, ELMUR
shows more reliable performance under visual interference in manipulation tasks with pixel inputs.

RQ4: Robustness across domains. Across synthetic (T-Maze), control/puzzle (48 POPGym),
and robotic (MIKASA-Robo) benchmarks, ELMUR consistently outperforms baselines, generaliz-
ing across diverse modalities, actions, and rewards. On POPGym, it achieves the best overall score
(10.4), with the largest gains on memory puzzles (1.2 vs. 0.45 for RATE; DT and BC-LSTM score
below zero), showing the importance of explicit memory for long-term dependencies. On reac-
tive tasks, ELMUR stays competitive without sacrificing puzzle performance, ranking first on 24 of
48 tasks (full results in Table 5). Figure 5 shows consistent per-task gains over DT, especially on
memory-intensive puzzles. Improved retention comes with little overhead: on T-Maze, ELMUR has
2.1M parameters (vs. 1.7M for RATE, 1.8M for DT) yet runs faster per step (6.8±0.5ms) than RATE
(7.2±0.3ms) and DT (10.7±0.1ms). Efficiency stems from (i) a short attention window with long-
term context handled by bounded memory, so complexity depends on memory size not sequence
length, and (ii) MoE feed-forward layers, which raise capacity without proportional compute. Thus,
explicit memory is both effective and efficient for long-horizon RL.

Table 3: Ablation study results.

Setting Score

Baseline ELMUR 1.00± 0.00
Shared memory 0.45± 0.03
No rel. bias 0.95± 0.05
No LRU 0.43± 0.22
No rel. bias; No LRU 0.22± 0.11
MoE→MLP 1.00± 0.00

RQ5: Ablation Study. We ablate ELMUR’s memory design
on RememberColor3-v0 (Figure 6, Table 3). Unless noted,
models use per-layer memory, relative-bias token–memory cross-
attention, and LRU-based updates; shared memory denotes em-
beddings shared across layers. In Figure 6 (b–d) the LRU factor
is fixed to λ = 0 to isolate other effects. Results average three
runs of 20 episodes. Performance scales with memory size M :
when M ≥ N (the number of segments needed), success is near-
perfect; when M < N , accuracy drops sharply, especially near
M ≈ N (Figure 6, c–d). Intermediate blending (λ ≈ 0.4–0.6) is unstable (Figure 6, a), while
larger initialization σ mitigates collapse (Figure 6, b). Finer recurrence (shorter segments, larger N )
stresses capacity unless M scales accordingly. Component ablations confirm that capacity and LRU
dominate. Removing LRU leaves stale entries, and removing both LRU and relative bias prevents
effective retrieval. Relative bias gives modest gains, while shared memory degrades performance,
underscoring the value of layer-local design. Finally, replacing MoE-FFN with MLP-FFN preserves
accuracy while improving computational efficiency.

To confirm that memory mechanisms do not harm performance on fully observable MDPs, we eval-
uated all models on the simple control task CartPole-v1 (Towers et al., 2024). ELMUR, RATE,
RMT, TrXL, BC-MLP, BC-LSTM, and CQL all achieved the maximum return of 500± 0, showing
that adding memory does not break performance in standard MDP settings. See additional results on
more competitive D4RL benchmark (Todorov et al., 2012) with MDP tasks in the Appendix, Sec-
tion A.5, Table 4.

Positio
nOnlyCartPoleMedium

NoisyPositio
nOnlyCartPoleEasy

ConcentrationEasy

NoisyPositio
nOnlyCartPoleMedium

MultiarmedBanditHard

Positio
nOnlyPendulumMedium

MultiarmedBanditMedium

RepeatPreviousMedium

Positio
nOnlyCartPoleEasy

VelocityOnlyCartpoleMedium

RepeatPreviousEasy

VelocityOnlyCartpoleEasy

HigherLowerMedium

HigherLowerEasy

HigherLowerHard

LabyrinthExploreMedium

LabyrinthEscapeHard

Positio
nOnlyPendulumEasy

ConcentrationMedium

MineSweeperHard

VelocityOnlyCartpoleHard

NoisyPositio
nOnlyPendulumEasy

RepeatPreviousHard

LabyrinthExploreHard

LabyrinthExploreEasy

NoisyPositio
nOnlyCartPoleHard

NoisyPositio
nOnlyPendulumMedium

NoisyPositio
nOnlyPendulumHard

AutoencodeHard

LabyrinthEscapeEasy

Positio
nOnlyCartPoleHard

MineSweeperMedium

Positio
nOnlyPendulumHard

AutoencodeMedium

MultiarmedBanditEasy

ConcentrationHard

MineSweeperEasy

AutoencodeEasy

RepeatFirstE
asy

LabyrinthEscapeMedium

RepeatFirstH
ard

CountRecallEasy

CountRecallHard

CountRecallMedium

BattleshipHard

RepeatFirstM
edium

BattleshipEasy

BattleshipMedium

-10%
-1%

0%

1%
10%

100%

R
ew

ar
d 

R
el

at
iv

e 
to

 D
T

Figure 5: ELMUR compared to DT on all 48 POPGym tasks. Each model was trained with three
independent runs, validated over 100 episodes each. Bars show the mean performance with 95%
confidence intervals computed over these three means. ELMUR achieves consistent improvements
over DT, with the largest gains on memory-intensive puzzles.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

0.00 0.25 0.50 0.75 1.00
LRU Blending Factor (λ)

0.0

0.5

1.0

Su
cc

es
s R

at
e

a)

M < N
M > N

0.00 0.25 0.50 0.75 1.00
Memory Initialization Value (σ)

0.0

0.5

1.0

Su
cc

es
s R

at
e

b)

M < N
M > N

1 2 3 4 16 32 128 256 512
Number of Memory Embeddings

0.0

0.5

1.0

Su
cc

es
s R

at
e

c)

M < N
M > N
M=N

60-1 30-2 20-3 15-4 12-5 10-6 6-10
Segment Length - Number of Segments

0.0

0.5

1.0

Su
cc

es
s R

at
e

d)

M < N
M > N

Figure 6: Ablations of ELMUR’s memory hyperparameters on RememberColor3-v0. (a)
LRU blending factor (λ), (b) memory embeddings initialization (σ), (c) number of memory embed-
dings (M ), and (d) segment configuration (L − S). Curves compare settings where the number of
memory embeddings is smaller than the required segments to solve the task (M < N ) versus larger
(M > N ). Results show that sufficient memory capacity (M ≥ N ) yields stable success, while
under-provisioned memory (M < N ) is highly sensitive to λ, σ, and segmentation.

6 RELATED WORK

Manipulation. Transformer approaches to robotic manipulation can be broadly categorized by
their underlying design principles. Perception-centric visuomotor transformers focus on multi-view
or 3D perception to improve near fully observable control (Shridhar et al., 2023; Goyal et al., 2024).
Sequence/skill modeling distills demonstrations into reusable action chunks but remains bottle-
necked by limited context (Huang et al., 2023; Kobayashi et al., 2025). Planning/value-augmented
transformers integrate transformers with planning or value learning for closed-loop control under
finite context (Zhang et al., 2025b; Hu et al., 2025). Alternative backbones adopt state-space models
or diffusion for efficiency, but without persistent memory (Liu et al., 2024b; Chi et al., 2023). Scal-
ing to VLA broadens task coverage with language but still suffers from fixed horizons, with some
remedies via summarization, feature banks, or hierarchy (Zitkovich et al., 2023; Team et al., 2024;
Kim et al., 2024; Fang et al., 2025; Shi et al., 2025). ELMUR differs by training as a standard IL
transformer while removing the context bottleneck through structured, layer-local external memory.

Memory. Efforts to extend sequence models to long horizons take several forms. Implicit recur-
rence and state-space models compress history in hidden dynamics, offering efficiency but little
control over forgetting (Beck et al., 2024; Gu & Dao, 2023). External memory with learned ac-
cess provides addressable storage but complicates optimization (Graves et al., 2016; Santoro et al.,
2016). Transformer context extension retains history via caches or auxiliary slots but keeps mem-
ory peripheral (Dai et al., 2019). In RL, memory is often implemented through episodic buffers
for salient events (Lampinen et al., 2021) or sequence-model adaptations that retrofit transformers
for recurrence (Parisotto et al., 2020; Cherepanov et al., 2024). Architectures vary in integration:
RATE (Cherepanov et al., 2023) concatenates memory with tokens, Memformer (Wu et al., 2020)
uses global slots, and Block-Recurrent Transformers (Hutchins et al., 2022) recycle hidden states.
ELMUR instead gives each layer an external memory with dedicated mem2tok/tok2mem cross-
attention and LRU updates, yielding bounded memory for long-horizon tasks (Appendix A.6).

7 CONCLUSION

We introduced ELMUR, a transformer architecture with layer-local external memory, bidirectional
token–memory cross-attention, and an LRU-based update rule. Unlike prior methods, ELMUR
integrates explicit memory into every layer, achieving retention horizons up to 100,000× beyond
the native attention window. Our analysis establishes formal guarantees on half-life and bounded-
ness under convex blending, and experiments on T-Maze, 48 POPGym tasks, and MIKASA-Robo
demonstrate consistent improvements over strong baselines, underscoring reliable credit assignment
under partial observability. We envision ELMUR as a simple and extensible framework for long-
horizon decision-making with scalable memory in sequential control.

REPRODUCIBILITY STATEMENT

We have taken several measures to ensure the reproducibility of our results. Model details: A com-
plete description of the ELMUR architecture, including pseudocode for the layer update and the
LRU-based memory module, is provided in Section 3, Algorithm 1, and Figure 2. Theoretical re-

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

sults: All assumptions and formal proofs of our propositions on exponential forgetting, half-life, and
boundedness are presented in Section 4 and detailed in Appendix A.1–A.2. Experimental setup:
Benchmarks, training procedures, and evaluation protocols are described in Section 5, with addi-
tional specifications (hyperparameters, dataset preprocessing, random seeds, and hardware setup)
reported in Appendix 7 and A.4. Baselines: All baselines are implemented from open-source li-
braries or faithfully re-implemented with hyperparameters matched to their original publications,
as described in Section 5 and Appendix A.6. Code and data: An anonymous repository with the
implementation of ELMUR, training scripts, and configuration files is provided in the supplemen-
tary material. Together, these resources enable full replication of both our theoretical analysis and
empirical findings.

REFERENCES

Hervé Abdi and Lynne J Williams. Principal component analysis. Wiley interdisciplinary reviews:
computational statistics, 2(4):433–459, 2010.

Amir Hosein Khas Ahmadi. Memory-based graph networks. University of Toronto (Canada), 2020.

Maximilian Beck, Korbinian Pöppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova,
Michael Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xlstm: Extended
long short-term memory. Advances in Neural Information Processing Systems, 37:107547–
107603, 2024.

Ali Behrouz, Peilin Zhong, and Vahab Mirrokni. Titans: Learning to memorize at test time. arXiv
preprint arXiv:2501.00663, 2024.

Johan Bjorck, Fernando Castañeda, Nikita Cherniadev, Xingye Da, Runyu Ding, Linxi Fan,
Yu Fang, Dieter Fox, Fengyuan Hu, Spencer Huang, et al. Gr00t n1: An open foundation model
for generalist humanoid robots. arXiv preprint arXiv:2503.14734, 2025.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. pi 0: A vision-language-action flow
model for general robot control. arXiv preprint arXiv:2410.24164, 2024.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.

Aydar Bulatov, Yury Kuratov, and Mikhail Burtsev. Recurrent memory transformer. Advances in
Neural Information Processing Systems, 35:11079–11091, 2022.

Yevgen Chebotar, Quan Vuong, Karol Hausman, Fei Xia, Yao Lu, Alex Irpan, Aviral Kumar, Tianhe
Yu, Alexander Herzog, Karl Pertsch, et al. Q-transformer: Scalable offline reinforcement learning
via autoregressive q-functions. In Conference on Robot Learning, pp. 3909–3928. PMLR, 2023.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Egor Cherepanov, Alexey Staroverov, Dmitry Yudin, Alexey K Kovalev, and Aleksandr I Panov.
Recurrent action transformer with memory. arXiv preprint arXiv:2306.09459, 2023.

Egor Cherepanov, Nikita Kachaev, Artem Zholus, Alexey K Kovalev, and Aleksandr I Panov. Un-
raveling the complexity of memory in rl agents: an approach for classification and evaluation.
arXiv preprint arXiv:2412.06531, 2024.

Egor Cherepanov, Nikita Kachaev, Alexey K Kovalev, and Aleksandr I Panov. Memory, benchmark
& robots: A benchmark for solving complex tasks with reinforcement learning. arXiv preprint
arXiv:2502.10550, 2025.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The Inter-
national Journal of Robotics Research, pp. 02783649241273668, 2023.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
Zeng, Xingkai Yu, Yu Wu, et al. Deepseekmoe: Towards ultimate expert specialization in mixture-
of-experts language models. arXiv preprint arXiv:2401.06066, 2024.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan Salakhutdi-
nov. Transformer-xl: Attentive language models beyond a fixed-length context. arXiv preprint
arXiv:1901.02860, 2019.

Murtaza Dalal, Ajay Mandlekar, Caelan Garrett, Ankur Handa, Ruslan Salakhutdinov, and Di-
eter Fox. Imitating task and motion planning with visuomotor transformers. arXiv preprint
arXiv:2305.16309, 2023.

Siyu Ding, Junyuan Shang, Shuohuan Wang, Yu Sun, Hao Tian, Hua Wu, and Haifeng Wang. Ernie-
doc: A retrospective long-document modeling transformer. arXiv preprint arXiv:2012.15688,
2020.

Kevin Esslinger, Robert Platt, and Christopher Amato. Deep transformer q-networks for partially
observable reinforcement learning. arXiv preprint arXiv:2206.01078, 2022.

Haoquan Fang, Markus Grotz, Wilbert Pumacay, Yi Ru Wang, Dieter Fox, Ranjay Krishna, and
Jiafei Duan. Sam2act: Integrating visual foundation model with a memory architecture for robotic
manipulation. arXiv preprint arXiv:2501.18564, 2025.

Niklas Funk, Julen Urain, Joao Carvalho, Vignesh Prasad, Georgia Chalvatzaki, and Jan Peters.
Actionflow: Equivariant, accurate, and efficient policies with spatially symmetric flow matching.
arXiv preprint arXiv:2409.04576, 2024.

Kai Gao, Fan Wang, Erica Aduh, Dylan Randle, and Jane Shi. Must: Multi-head skill transformer
for long-horizon dexterous manipulation with skill progress. arXiv preprint arXiv:2502.02753,
2025.

Ankit Goyal, Jie Xu, Yijie Guo, Valts Blukis, Yu-Wei Chao, and Dieter Fox. Rvt: Robotic view
transformer for 3d object manipulation. In Conference on Robot Learning, pp. 694–710. PMLR,
2023.

Ankit Goyal, Valts Blukis, Jie Xu, Yijie Guo, Yu-Wei Chao, and Dieter Fox. Rvt-2: Learning precise
manipulation from few demonstrations. arXiv preprint arXiv:2406.08545, 2024.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014.

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwinska, Sergio Gomez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John P. Agapiou,
Adrià Puigdomènech Badia, Karl Moritz Hermann, Yori Zwols, Georg Ostrovski, Adam Cain,
Helen King, Christopher Summerfield, Phil Blunsom, Koray Kavukcuoglu, and Demis Hassabis.
Hybrid computing using a neural network with dynamic external memory. Nature, 538:471–476,
2016. URL https://api.semanticscholar.org/CorpusID:205251479.

Jake Grigsby, Justin Sasek, Samyak Parajuli, Daniel Adebi, Amy Zhang, and Yuke Zhu. Amago-2:
Breaking the multi-task barrier in meta-reinforcement learning with transformers. Advances in
Neural Information Processing Systems, 37:87473–87508, 2024.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021.

ByungOk Han, Jaehong Kim, and Jinhyeok Jang. A dual process vla: Efficient robotic manipulation
leveraging vlm. arXiv preprint arXiv:2410.15549, 2024.

Matthew J Hausknecht and Peter Stone. Deep recurrent q-learning for partially observable mdps. In
AAAI fall symposia, volume 45, pp. 141, 2015.

12

https://api.semanticscholar.org/CorpusID:205251479


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9:1735–
1780, 1997. URL https://api.semanticscholar.org/CorpusID:1915014.

Jiaheng Hu, Rose Hendrix, Ali Farhadi, Aniruddha Kembhavi, Roberto Martı́n-Martı́n, Peter Stone,
Kuo-Hao Zeng, and Kiana Ehsani. Flare: Achieving masterful and adaptive robot policies
with large-scale reinforcement learning fine-tuning. In 2025 IEEE International Conference on
Robotics and Automation (ICRA), pp. 3617–3624. IEEE, 2025.

Xiaoyu Huang, Dhruv Batra, Akshara Rai, and Andrew Szot. Skill transformer: A monolithic policy
for mobile manipulation. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 10852–10862, 2023.

Chia-Yu Hung, Qi Sun, Pengfei Hong, Amir Zadeh, Chuan Li, U Tan, Navonil Majumder, Soujanya
Poria, et al. Nora: A small open-sourced generalist vision language action model for embodied
tasks. arXiv preprint arXiv:2504.19854, 2025.

DeLesley Hutchins, Imanol Schlag, Yuhuai Wu, Ethan Dyer, and Behnam Neyshabur. Block-
recurrent transformers. Advances in neural information processing systems, 35:33248–33261,
2022.

Physical Intelligence, Kevin Black, Noah Brown, James Darpinian, Karan Dhabalia, Danny Driess,
Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai, et al. pi {0.5}: a vision-language-
action model with open-world generalization. arXiv preprint arXiv:2504.16054, 2025.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. Advances in neural information processing systems, 34:1273–1286, 2021.

Yunfan Jiang, Agrim Gupta, Zichen Zhang, Guanzhi Wang, Yongqiang Dou, Yanjun Chen, Li Fei-
Fei, Anima Anandkumar, Yuke Zhu, and Linxi Fan. Vima: General robot manipulation with
multimodal prompts. arXiv preprint arXiv:2210.03094, 2(3):6, 2022.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. In International conference on ma-
chine learning, pp. 5156–5165. PMLR, 2020.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
vision-language-action model. arXiv preprint arXiv:2406.09246, 2024.

Moo Jin Kim, Chelsea Finn, and Percy Liang. Fine-tuning vision-language-action models: Opti-
mizing speed and success. arXiv preprint arXiv:2502.19645, 2025.

Masato Kobayashi, Thanpimon Buamanee, Yuki Uranishi, and Haruo Takemura. Ilbit: Imitation
learning for robot using position and torque information based on bilateral control with trans-
former. IEEJ Journal of Industry Applications, 14(2):161–168, 2025.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in neural information processing systems, 33:1179–1191, 2020.

Andrew Lampinen, Stephanie Chan, Andrea Banino, and Felix Hill. Towards mental time travel:
a hierarchical memory for reinforcement learning agents. Advances in Neural Information Pro-
cessing Systems, 34:28182–28195, 2021.

Mikko Lauri, David Hsu, and Joni Pajarinen. Partially observable markov decision processes in
robotics: A survey. IEEE Transactions on Robotics, 39(1):21–40, 2022.

Hung Le, Kien Do, Dung Nguyen, Sunil Gupta, and Svetha Venkatesh. Stable hadamard
memory: Revitalizing memory-augmented agents for reinforcement learning. arXiv preprint
arXiv:2410.10132, 2024.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

13

https://api.semanticscholar.org/CorpusID:1915014


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Qixiu Li, Yaobo Liang, Zeyu Wang, Lin Luo, Xi Chen, Mozheng Liao, Fangyun Wei, Yu Deng,
Sicheng Xu, Yizhong Zhang, et al. Cogact: A foundational vision-language-action model for
synergizing cognition and action in robotic manipulation. arXiv preprint arXiv:2411.19650, 2024.

Xinghang Li, Minghuan Liu, Hanbo Zhang, Cunjun Yu, Jie Xu, Hongtao Wu, Chilam Cheang,
Ya Jing, Weinan Zhang, Huaping Liu, et al. Vision-language foundation models as effective robot
imitators. arXiv preprint arXiv:2311.01378, 2023.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024a.

Hao Liu, Matei Zaharia, and Pieter Abbeel. Ring attention with blockwise transformers for near-
infinite context. arXiv preprint arXiv:2310.01889, 2023.

Jiaming Liu, Mengzhen Liu, Zhenyu Wang, Pengju An, Xiaoqi Li, Kaichen Zhou, Senqiao Yang,
Renrui Zhang, Yandong Guo, and Shanghang Zhang. Robomamba: Efficient vision-language-
action model for robotic reasoning and manipulation. Advances in Neural Information Processing
Systems, 37:40085–40110, 2024b.

Jiaming Liu, Hao Chen, Pengju An, Zhuoyang Liu, Renrui Zhang, Chenyang Gu, Xiaoqi Li, Ziyu
Guo, Sixiang Chen, Mengzhen Liu, Chengkai Hou, Mengdi Zhao, KC alex Zhou, Pheng-Ann
Heng, and Shanghang Zhang. Hybridvla: Collaborative diffusion and autoregression in a unified
vision-language-action model, 2025. URL https://arxiv.org/abs/2503.10631.

Steven Morad, Ryan Kortvelesy, Matteo Bettini, Stephan Liwicki, and Amanda Prorok. POPGym:
Benchmarking partially observable reinforcement learning. In The Eleventh International Con-
ference on Learning Representations, 2023a. URL https://openreview.net/forum?
id=chDrutUTs0K.

Steven Morad, Ryan Kortvelesy, Stephan Liwicki, and Amanda Prorok. Reinforcement learning
with fast and forgetful memory. Advances in Neural Information Processing Systems, 36:72008–
72029, 2023b.

Tongzhou Mu, Minghua Liu, and Hao Su. Drs: Learning reusable dense rewards for multi-
stage tasks. ArXiv, abs/2404.16779, 2024. URL https://api.semanticscholar.org/
CorpusID:269362133.

Tianwei Ni, Michel Ma, Benjamin Eysenbach, and Pierre-Luc Bacon. When do transformers shine
in rl? decoupling memory from credit assignment. Advances in Neural Information Processing
Systems, 36:50429–50452, 2023.

Toshihiro Ota. Decision mamba: Reinforcement learning via sequence modeling with selective state
spaces. arXiv preprint arXiv:2403.19925, 2024.

Zikai Ouyang, Kaijun Wang, Junwei Liu, Haibo Lu, and Wei Zhang. Scil: Stage-conditioned imita-
tion learning for multi-stage manipulation. IEEE Control Systems Letters, 2025.

Emilio Parisotto and Ruslan Salakhutdinov. Neural map: Structured memory for deep reinforcement
learning. arXiv preprint arXiv:1702.08360, 2017.

Emilio Parisotto, Francis Song, Jack Rae, Razvan Pascanu, Caglar Gulcehre, Siddhant Jayakumar,
Max Jaderberg, Raphael Lopez Kaufman, Aidan Clark, Seb Noury, et al. Stabilizing transformers
for reinforcement learning. In International conference on machine learning, pp. 7487–7498.
PMLR, 2020.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman,
Huanqi Cao, Xin Cheng, Michael Chung, Matteo Grella, et al. Rwkv: Reinventing rnns for
the transformer era. arXiv preprint arXiv:2305.13048, 2023.

Subhojeet Pramanik, Esraa Elelimy, Marlos C Machado, and Adam White. Agalite: Approximate
gated linear transformers for online reinforcement learning. arXiv preprint arXiv:2310.15719,
2023.

14

https://arxiv.org/abs/2503.10631
https://openreview.net/forum?id=chDrutUTs0K
https://openreview.net/forum?id=chDrutUTs0K
https://api.semanticscholar.org/CorpusID:269362133
https://api.semanticscholar.org/CorpusID:269362133


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Delin Qu, Haoming Song, Qizhi Chen, Yuanqi Yao, Xinyi Ye, Yan Ding, Zhigang Wang, JiaYuan
Gu, Bin Zhao, Dong Wang, et al. Spatialvla: Exploring spatial representations for visual-
language-action model. arXiv preprint arXiv:2501.15830, 2025.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, and Timothy P Lillicrap. Compressive
transformers for long-range sequence modelling. arXiv preprint arXiv:1911.05507, 2019.

Moritz Reuss, Hongyi Zhou, Marcel Rühle, Ömer Erdinç Yağmurlu, Fabian Otto, and Rudolf Li-
outikov. FLOWER: Democratizing generalist robot policies with efficient vision-language-action
flow policies. In 7th Robot Learning Workshop: Towards Robots with Human-Level Abilities,
2025. URL https://openreview.net/forum?id=ifo8oWSLSq.

Ivan Rodkin, Yuri Kuratov, Aydar Bulatov, and Mikhail Burtsev. Associative recurrent memory
transformer. arXiv preprint arXiv:2407.04841, 2024.

Adam Santoro, Sergey Bartunov, Matthew M. Botvinick, Daan Wierstra, and Timothy P. Lill-
icrap. Meta-learning with memory-augmented neural networks. In International Conference
on Machine Learning, 2016. URL https://api.semanticscholar.org/CorpusID:
6466088.

Hao Shi, Bin Xie, Yingfei Liu, Lin Sun, Fengrong Liu, Tiancai Wang, Erjin Zhou, Haoqiang Fan,
Xiangyu Zhang, and Gao Huang. Memoryvla: Perceptual-cognitive memory in vision-language-
action models for robotic manipulation. arXiv preprint arXiv:2508.19236, 2025.

Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Perceiver-actor: A multi-task transformer for
robotic manipulation. In Conference on Robot Learning, pp. 785–799. PMLR, 2023.

Artyom Sorokin, Nazar Buzun, Leonid Pugachev, and Mikhail Burtsev. Explain my surprise: Learn-
ing efficient long-term memory by predicting uncertain outcomes. 07 2022. doi: 10.48550/arXiv.
2207.13649.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Denis Tarasov, Alexander Nikulin, Ilya Zisman, Albina Klepach, Nikita Lyubaykin, Andrei Pol-
ubarov, Alexander Derevyagin, and Vladislav Kurenkov. Nina: Normalizing flows in action.
training vla models with normalizing flows, 2025. URL https://arxiv.org/abs/2508.
16845.

Gemini Robotics Team, Saminda Abeyruwan, Joshua Ainslie, Jean-Baptiste Alayrac, Montser-
rat Gonzalez Arenas, Travis Armstrong, Ashwin Balakrishna, Robert Baruch, Maria Bauza,
Michiel Blokzijl, et al. Gemini robotics: Bringing ai into the physical world. arXiv preprint
arXiv:2503.20020, 2025.

Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, et al. Octo: An open-source generalist robot
policy. arXiv preprint arXiv:2405.12213, 2024.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012.

Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A standard
interface for reinforcement learning environments. arXiv preprint arXiv:2407.17032, 2024.

Linji Wang, Tong Xu, Yuanjie Lu, and Xuesu Xiao. Reward training wheels: Adaptive auxiliary
rewards for robotics reinforcement learning. arXiv preprint arXiv:2503.15724, 2025a.

15

https://openreview.net/forum?id=ifo8oWSLSq
https://api.semanticscholar.org/CorpusID:6466088
https://api.semanticscholar.org/CorpusID:6466088
https://arxiv.org/abs/2508.16845
https://arxiv.org/abs/2508.16845


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Yongyi Wang, Lingfeng Li, Bozhou Chen, Ang Li, Hanyu Liu, Qirui Zheng, Xionghui Yang, and
Wenxin Li. Synthetic pomdps to challenge memory-augmented rl: Memory demand structure
modeling. arXiv preprint arXiv:2508.04282, 2025b.

Junjie Wen, Yichen Zhu, Jinming Li, Zhibin Tang, Chaomin Shen, and Feifei Feng. Dexvla:
Vision-language model with plug-in diffusion expert for general robot control. arXiv preprint
arXiv:2502.05855, 2025a.

Junjie Wen, Yichen Zhu, Jinming Li, Minjie Zhu, Zhibin Tang, Kun Wu, Zhiyuan Xu, Ning Liu,
Ran Cheng, Chaomin Shen, et al. Tinyvla: Towards fast, data-efficient vision-language-action
models for robotic manipulation. IEEE Robotics and Automation Letters, 2025b.

Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. arXiv preprint
arXiv:1410.3916, 2014.

Qingyang Wu, Zhenzhong Lan, Kun Qian, Jing Gu, Alborz Geramifard, and Zhou Yu. Memformer:
A memory-augmented transformer for sequence modeling. arXiv preprint arXiv:2010.06891,
2020.

Yuhuai Wu, Markus N Rabe, DeLesley Hutchins, and Christian Szegedy. Memorizing transformers.
arXiv preprint arXiv:2203.08913, 2022.

Zheng Wu, Wenzhao Lian, Vaibhav Unhelkar, Masayoshi Tomizuka, and Stefan Schaal. Learning
dense rewards for contact-rich manipulation tasks. In 2021 IEEE International Conference on
Robotics and Automation (ICRA), pp. 6214–6221. IEEE, 2021.

William Yue, Bo Liu, and Peter Stone. Learning memory mechanisms for decision making through
demonstrations. arXiv preprint arXiv:2411.07954, 2024.

Maryam Zare, Parham M Kebria, Abbas Khosravi, and Saeid Nahavandi. A survey of imitation
learning: Algorithms, recent developments, and challenges. IEEE Transactions on Cybernetics,
2024.

Daniil Zelezetsky, Egor Cherepanov, Alexey K Kovalev, and Aleksandr I Panov. Re: Frame–
retrieving experience from associative memory. arXiv preprint arXiv:2508.19344, 2025.

Jianke Zhang, Yanjiang Guo, Xiaoyu Chen, Yen-Jen Wang, Yucheng Hu, Chengming Shi, and
Jianyu Chen. Hirt: Enhancing robotic control with hierarchical robot transformers. arXiv preprint
arXiv:2410.05273, 2024.

Kun Zhang, Peng Yun, Jun Cen, Junhao Cai, Didi Zhu, Hangjie Yuan, Chao Zhao, Tao Feng,
Michael Yu Wang, Qifeng Chen, et al. Generative artificial intelligence in robotic manipulation:
A survey. arXiv preprint arXiv:2503.03464, 2025a.

Xinyu Zhang, Yuhan Liu, Haonan Chang, Liam Schramm, and Abdeslam Boularias. Autoregressive
action sequence learning for robotic manipulation. IEEE Robotics and Automation Letters, 2025b.

Qingqing Zhao, Yao Lu, Moo Jin Kim, Zipeng Fu, Zhuoyang Zhang, Yecheng Wu, Zhaoshuo Li,
Qianli Ma, Song Han, Chelsea Finn, et al. Cot-vla: Visual chain-of-thought reasoning for vision-
language-action models. In Proceedings of the Computer Vision and Pattern Recognition Confer-
ence, pp. 1702–1713, 2025.

Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
manipulation with low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.

Haoyu Zhen, Xiaowen Qiu, Peihao Chen, Jincheng Yang, Xin Yan, Yilun Du, Yining Hong, and
Chuang Gan. 3d-vla: A 3d vision-language-action generative world model. arXiv preprint
arXiv:2403.09631, 2024.

Ruijie Zheng, Yongyuan Liang, Shuaiyi Huang, Jianfeng Gao, Hal Daumé III, Andrey Kolobov,
Furong Huang, and Jianwei Yang. Tracevla: Visual trace prompting enhances spatial-temporal
awareness for generalist robotic policies. arXiv preprint arXiv:2412.10345, 2024.

Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart,
Stefan Welker, Ayzaan Wahid, et al. Rt-2: Vision-language-action models transfer web knowledge
to robotic control. In Conference on Robot Learning, pp. 2165–2183. PMLR, 2023.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 PROOF OF EXPONENTIAL FORGETTING IN LRU UPDATES

Proposition 1 (Exponential Forgetting). Fix a slot j and a segment index i. Suppose this slot is
updated k times at segments i+ 1, . . . , i+ k according to

m t
j = λm t

new + (1− λ)m t−1
j , t = i+ 1, . . . , i+ k, (10)

with 0 ≤ λ ≤ 1. Then

m i+k
j = (1− λ)k m i

j +

k∑
u=1

λ(1− λ)k−u m i+u
new . (11)

Consequently, the coefficient of the initial content m i
j after k overwrites is (1− λ)k, and the coeffi-

cient of the write performed τ updates ago (at segment i+ τ ) is λ(1− λ)τ−1.

Proof. We prove Equation 11 by induction on k.

Base case k = 1. By the update rule,

m i+1
j = λm i+1

new + (1− λ)m i
j , (12)

which matches Equation 11 with k = 1.

Induction step. Assume Equation 11 holds for some k ≥ 1. For k + 1,

m i+k+1
j = λm i+k+1

new + (1− λ)m i+k
j . (13)

Insert the induction hypothesis for m i+k
j :

m i+k+1
j = λm i+k+1

new + (1− λ)

[
(1− λ)k m i

j +

k∑
u=1

λ(1− λ)k−u m i+u
new

]
. (14)

Distribute (1− λ) and regroup terms:

m i+k+1
j = (1− λ)k+1m i

j +

k∑
u=1

λ(1− λ)(k+1)−u m i+u
new + λm i+k+1

new , (15)

which is exactly Equation 11 with k replaced by k + 1. This completes the induction.

Finally, the coefficients in Equation 11 form a convex combination:

(1− λ)k +

k∑
u=1

λ(1− λ)k−u = (1− λ)k + λ

k−1∑
r=0

(1− λ)r = 1, (16)

so it is meaningful to call them “fractions” of contribution.

Corollary (Half-life). The number of overwrites k0.5 after which the contribution of m i
j halves

satisfies

(1− λ)k0.5 = 1
2 =⇒ k0.5 =

ln(1/2)

ln(1− λ)
. (17)

Equivalently,

k0.5 =
ln 2

− ln(1− λ)
. (18)

Using the Maclaurin series expansion ln(1− λ) ∼ −λ as λ→ 0, we obtain

lim
λ→0

k0.5 · λ = ln 2. (19)

Hence,

k0.5 ∼
ln 2

λ
as λ→ 0, (20)

showing that smaller λ yields longer retention horizons, while larger λ overwrites past content more
aggressively.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A.2 BOUNDEDNESS OF MEMORY EMBEDDINGS

Fix a slot j and consider its update rule,

m i+1
j = λm i+1

new + (1− λ)m i
j , 0 ≤ λ ≤ 1. (21)

We prove the claim by induction on i.

Base case. At i = 0, the assumption gives ∥m 0
j ∥ ≤ C.

Induction step. Assume ∥m i
j∥ ≤ C for some i ≥ 0. Using the update rule,

∥m i+1
j ∥ = ∥λm i+1

new + (1− λ)m i
j∥. (22)

By the triangle inequality and the inductive hypothesis,

∥m i+1
j ∥ ≤ λ∥m i+1

new ∥+ (1− λ)∥m i
j∥ ≤ λC + (1− λ)C = C. (23)

Thus ∥m i+1
j ∥ ≤ C, completing the induction.

Therefore, for all i, the memory embedding satisfies ∥m i
j∥ ≤ C.

A.3 MEMORY-INTENSIVE ENVIRONMENTS

(a) MIKASA-Robo: RememberColor9-v0 (top)
and TakeItBack-v0 (bottom).

T-Maze

(b) T-Maze. (c) Some POPGym tasks.

Figure 7: Environments used in experiments.

Event–recall pairs and correlation horizon.
Following (Cherepanov et al., 2024), let α∆t

te
denote an event of duration ∆t starting at time
te, and let βtr (α

∆t
te ) be a later decision point

that must recall information from that event.
Define the correlation horizon as

ξ = tr − te −∆t+ 1. (24)

For an environment, collect all event–recall
horizons into the set Ξ = {ξn}n.

Recent works have proposed alternative
but complementary definitions of memory-
intensive environments. For instance, Wang
et al. (2025b) formalize memory demand
structures that capture the minimal past suffi-
cient to predict future transitions and rewards,
while Yue et al. (2024) introduce memory
dependency pairs to annotate which past observations must be recalled for correct decisions.
Both perspectives emphasize controllable ways to scale memory difficulty, either by increasing
order/span or by manipulating dependency graphs. In this paper, we adopt the event–recall horizon
framework for clarity and analytical tractability, but note that these alternative views are broadly
consistent and provide useful tools for designing and benchmarking memory-intensive tasks.

Definition (memory-intensive environment). A POMDP M̃P is memory-intensive if minn Ξ >
1; i.e., every relevant decision depends on information separated by at least one intervening step,
making reactive (myopic) policies insufficient. This definition cleanly separates POMDPs that gen-
uinely require memory from those that are effectively MDP-like.

A.4 MEMORY-INTENSIVE ENVIRONMENTS

The memory-intensive environments used in this work are presented in Figure 7.

T-Maze. The T-Maze (Ni et al., 2023) features a corridor ending in a junction with two goals.
At the start, one goal is randomly revealed, and the agent must recall this cue after traversing the
corridor to choose the correct branch. Observations are vectors; actions are discrete. Rewards are
sparse, provided only upon reaching the correct goal. The task tests whether the model can retain
early cues across long delays.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 4: Normalized scores on MuJoCo tasks from the D4RL benchmark (Todorov et al.,
2012). Baselines include Trajectory Transformer (TT) (Janner et al., 2021), Decision Transformer
(DT) (Chen et al., 2021), Conservative Q-Learning (CQL) (Kumar et al., 2020), and Behavior
Cloning (BC) from (Chen et al., 2021). Top-1 and Top-2 results are highlighted. (R, o, a) and
(o) denote two conditioning modes of ELMUR: conditioning on returns-to-go, observations, and
actions, or conditioning on observations alone, respectively.

Dataset Environment CQL DT BC TT RATE ELMUR (R, o, a) ELMUR (o)

ME HalfCheetah 91.6 86.8±1.3 59.9 95.0±0.2 87.4±0.1 86.4±2.7 89.1±0.6
ME Hopper 105.4 107.6±1.8 79.6 110.0±2.7 112.5±0.2 111.7±0.2 85.3±1.6
ME Walker2d 108.8 108.1±0.2 36.6 101.9±6.8 108.7±0.5 108.9±0.2 108.4±0.1

M HalfCheetah 44.4 42.6±0.1 43.1 46.9±0.4 43.5±0.3 43.2±0.1 43.1±0.1
M Hopper 58.0 67.6±1.0 63.9 61.1±3.6 77.4±1.4 78.0±0.8 78.6±1.0
M Walker2d 72.5 74.0±1.4 77.3 79.0±2.8 80.7±0.7 79.4±0.2 79.5±0.4

MR HalfCheetah 45.5 36.6±0.8 4.3 41.9±2.5 39.0±0.6 40.4±0.6 39.8±1.0
MR Hopper 95.0 82.7±7.0 27.6 91.5±3.6 83.7±8.2 64.8±1.6 87.6±1.7
MR Walker2d 77.2 66.6±3.0 36.9 82.6±6.9 73.7±1.4 75.0±6.8 60.8±1.7

Average 77.6 74.7 47.7 78.9 78.5 76.4 74.7

MIKASA-Robo benchmark. We further evaluate on the MIKASA-Robo bench-
mark (Cherepanov et al., 2025), which provides robotic tabletop manipulation tasks designed
for memory evaluation. Each environment simulates a 7-DoF arm with a two-finger gripper.
Observations are paired RGB images (3 × 128 × 128) from a static and wrist camera; actions are
continuous (7 joints + gripper). Rewards are binary, given only on task success. We study two
families of MIKASA-Robo tasks: (i) RememberColor[3,5,9]-v0, where the agent must
recall the color of a hidden cube after a delay with distractors, and (ii) TakeItBack-v0, where
the agent first moves a cube to a goal, then must return it once the goal changes.

POPGym benchmark. POPGym benchmark (Morad et al., 2023a) is a large suite of 48 partially
observable environments designed to stress agent memory. The tasks span two categories: (i) di-
agnostic memory puzzles, which require agents to remember cues or solve algorithmic sequence
problems (e.g., copy, reverse, n-back, and long-horizon T-Mazes), and (ii) partially observable con-
trol tasks, which adapt classic control benchmarks such as CartPole, MountainCar, and LunarLander
to observation-limited settings. This diversity allows POPGym to test both symbolic memory skills
and generalization in continuous control, providing a broad and challenging benchmark for evalu-
ating memory-augmented RL methods. Detailed results across all 48 POPGym tasks for each of
considered baselines are presented in Table 5.

A.5 TRAJECTORY CONDITIONING

To assess (1) how ELMUR behaves on standard high-dimensional MDP control tasks and (2) how
different conditioning schemes influence performance, we evaluate it on the MuJoCo domains of the
D4RL benchmark (Todorov et al., 2012). The datasets contain trajectories of heterogeneous quality,
including many far from expert level, which typically requires conditioning on returns-to-go and
actions (as in DT (Chen et al., 2021)) to enable trajectory stitching.

We therefore test two conditioning modes for ELMUR: (R, o, a), analogous to DT, and o-only,
as in standard behavior cloning. Despite the lower quality of D4RL data, ELMUR achieves an
average normalized score of 76.4 under (R, o, a) conditioning, only about 2% higher than with o-
only conditioning. This demonstrates that the model remains robust to the choice of conditioning
variables and does not rely on access to return-to-go or action labels to perform well.

Overall, ELMUR matches or exceeds the performance of several established offline RL baselines
on these MDP tasks, confirming that its strong results are not restricted to memory-centric POMDP
environments. Its competitive behavior across conditioning modes further highlights its versatility
and ability to leverage suboptimal trajectories effectively.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 5: POPGym benchmark results. Reported scores are mean± standard error, averaged over 3
runs and evaluated with 100 random seeds. Across 21 partially observable tasks spanning puzzle and
control domains, ELMUR achieves the best performance on 12 tasks, underscoring the effectiveness
of its memory module for reasoning under partial observability.

POPGym-48 Task RATE DT Random BC-MLP BC-LSTM ELMUR Expert
PPO-GRU

AutoencodeEasy-v0 -0.29±0.00 -0.47±0.00 -0.50±0.00 -0.47±0.00 -0.32±0.00 -0.26±0.00 -0.26
AutoencodeMedium-v0 -0.46±0.00 -0.49±0.00 -0.50±0.01 -0.50±0.00 -0.44±0.00 -0.44±0.00 -0.43
AutoencodeHard-v0 -0.47±0.00 -0.49±0.00 -0.50±0.00 -0.49±0.00 -0.47±0.00 -0.46±0.00 -0.48

BattleshipEasy-v0 -0.81±0.02 -0.93±0.03 -0.46±0.01 -1.00±0.00 -0.49±0.01 -0.79±0.02 -0.35
BattleshipMedium-v0 -0.92±0.01 -0.97±0.01 -0.41±0.00 -1.00±0.00 -0.67±0.01 -0.79±0.01 -0.40
BattleshipHard-v0 -0.91±0.02 -0.91±0.03 -0.39±0.01 -1.00±0.00 -0.81±0.02 -0.80±0.00 -0.43

ConcentrationEasy-v0 -0.06±0.02 -0.05±0.01 -0.19±0.01 -0.92±0.00 -0.14±0.00 -0.14±0.01 -0.12
ConcentrationMedium-v0 -0.25±0.00 -0.25±0.01 -0.19±0.00 -0.92±0.00 -0.19±0.01 -0.24±0.00 -0.44
ConcentrationHard-v0 -0.84±0.00 -0.84±0.00 -0.84±0.00 -0.88±0.00 -0.84±0.00 -0.82±0.00 -0.87

CountRecallEasy-v0 0.07±0.01 -0.46±0.01 -0.93±0.00 -0.92±0.00 0.05±0.00 0.03±0.01 0.22
CountRecallMedium-v0 -0.54±0.00 -0.81±0.02 -0.93±0.00 -0.92±0.00 -0.56±0.00 -0.56±0.01 -0.55
CountRecallHard-v0 -0.47±0.01 -0.75±0.03 -0.88±0.00 -0.88±0.00 -0.47±0.00 -0.47±0.00 -0.48

HigherLowerEasy-v0 0.50±0.00 0.50±0.00 0.00±0.01 0.47±0.00 0.50±0.00 0.50±0.00 0.51
HigherLowerMedium-v0 0.52±0.00 0.51±0.00 0.01±0.01 0.50±0.00 0.51±0.01 0.51±0.00 0.49
HigherLowerHard-v0 0.50±0.00 0.50±0.00 -0.01±0.00 0.49±0.00 0.50±0.00 0.50±0.00 0.49

LabyrinthEscapeEasy-v0 0.95±0.00 0.80±0.01 -0.39±0.00 0.72±0.05 0.92±0.01 0.92±0.00 0.95
LabyrinthEscapeMedium-v0 -0.56±0.01 -0.67±0.04 -0.84±0.04 -0.71±0.03 -0.69±0.02 -0.54±0.01 -0.49
LabyrinthEscapeHard-v0 -0.81±0.01 -0.82±0.01 -0.94±0.01 -0.89±0.01 -0.86±0.00 -0.82±0.01 -0.94

LabyrinthExploreEasy-v0 0.95±0.00 0.88±0.06 -0.34±0.01 0.87±0.01 0.93±0.00 0.96±0.00 0.96
LabyrinthExploreMedium-v0 0.88±0.00 0.86±0.01 -0.61±0.00 0.45±0.01 0.82±0.01 0.86±0.01 0.87
LabyrinthExploreHard-v0 0.79±0.00 0.77±0.01 -0.73±0.00 0.26±0.01 0.71±0.01 0.84±0.00 0.79

MineSweeperEasy-v0 0.15±0.03 -0.33±0.04 -0.26±0.03 -0.47±0.01 0.20±0.00 -0.17±0.02 0.28
MineSweeperMedium-v0 -0.20±0.00 -0.37±0.02 -0.39±0.01 -0.48±0.00 -0.16±0.00 -0.32±0.00 -0.10
MineSweeperHard-v0 -0.44±0.00 -0.40±0.01 -0.43±0.00 -0.49±0.00 -0.35±0.01 -0.39±0.01 -0.27

MultiarmedBanditEasy-v0 0.37±0.01 0.27±0.01 0.02±0.00 0.05±0.00 0.17±0.02 0.43±0.01 0.62
MultiarmedBanditMedium-v0 0.32±0.01 0.35±0.01 0.01±0.00 0.21±0.01 0.14±0.00 0.32±0.01 0.59
MultiarmedBanditHard-v0 0.22±0.03 0.27±0.01 0.01±0.00 0.01±0.00 0.17±0.01 0.22±0.01 0.43

NoisyPositionOnlyCartPoleEasy-v0 0.88±0.03 0.87±0.02 0.11±0.00 0.23±0.00 0.44±0.01 0.59±0.02 0.98
NoisyPositionOnlyCartPoleMedium-v0 0.33±0.01 0.34±0.00 0.12±0.01 0.18±0.00 0.25±0.01 0.27±0.00 0.57
NoisyPositionOnlyCartPoleHard-v0 0.18±0.01 0.17±0.01 0.11±0.00 0.16±0.00 0.22±0.01 0.22±0.01 0.36

NoisyPositionOnlyPendulumEasy-v0 0.87±0.00 0.84±0.01 0.27±0.01 0.31±0.00 0.88±0.00 0.88±0.00 0.90
NoisyPositionOnlyPendulumMedium-v0 0.68±0.00 0.63±0.01 0.27±0.01 0.30±0.00 0.72±0.00 0.72±0.00 0.73
NoisyPositionOnlyPendulumHard-v0 0.60±0.01 0.56±0.01 0.26±0.00 0.28±0.00 0.66±0.00 0.65±0.00 0.67

PositionOnlyCartPoleEasy-v0 0.93±0.03 1.00±0.00 0.12±0.00 0.15±0.00 0.17±0.00 1.00±0.00 1.00
PositionOnlyCartPoleMedium-v0 0.07±0.00 0.34±0.08 0.05±0.00 0.09±0.00 0.12±0.00 0.11±0.00 1.00
PositionOnlyCartPoleHard-v0 0.05±0.01 0.03±0.00 0.04±0.00 0.05±0.00 0.06±0.00 0.10±0.00 1.00

PositionOnlyPendulumEasy-v0 0.54±0.02 0.51±0.03 0.27±0.00 0.29±0.00 0.91±0.00 0.52±0.00 0.92
PositionOnlyPendulumMedium-v0 0.49±0.01 0.55±0.01 0.26±0.00 0.30±0.00 0.89±0.00 0.50±0.01 0.88
PositionOnlyPendulumHard-v0 0.47±0.01 0.49±0.01 0.26±0.00 0.28±0.00 0.82±0.00 0.63±0.01 0.82

RepeatFirstEasy-v0 1.00±0.00 0.45±0.16 -0.49±0.01 -0.50±0.00 1.00±0.00 1.00±0.00 1.00
RepeatFirstMedium-v0 0.99±0.01 -0.21±0.18 -0.50±0.00 -0.50±0.00 0.99±0.01 0.99±0.00 1.00
RepeatFirstHard-v0 0.10±0.02 0.42±0.14 -0.50±0.00 -0.50±0.00 -0.50±0.00 0.99±0.01 0.99

RepeatPreviousEasy-v0 1.00±0.00 1.00±0.00 -0.49±0.01 -0.52±0.00 1.00±0.00 1.00±0.00 1.00
RepeatPreviousMedium-v0 -0.38±0.01 -0.38±0.00 -0.50±0.01 -0.50±0.00 -0.38±0.00 -0.39±0.00 -0.39
RepeatPreviousHard-v0 -0.46±0.00 -0.47±0.00 -0.51±0.00 -0.48±0.00 -0.45±0.00 -0.46±0.00 -0.48

VelocityOnlyCartpoleEasy-v0 1.00±0.00 1.00±0.00 0.11±0.00 0.99±0.00 1.00±0.00 1.00±0.00 1.00
VelocityOnlyCartpoleMedium-v0 1.00±0.00 1.00±0.00 0.06±0.00 0.83±0.01 1.00±0.00 1.00±0.00 1.00
VelocityOnlyCartpoleHard-v0 1.00±0.00 0.96±0.02 0.04±0.00 0.63±0.00 1.00±0.00 1.00±0.00 0.99

Sum of returns 9.54 5.80 -12.24 -6.83 8.96 10.41 16.51

A.6 EXTENDED RELATED WORK

Transformers for manipulation. Work on transformer-based manipulation splits into character-
istic families with complementary strengths and limits. Perception-centric visuomotor transformers
emphasize 3D or multi-view geometry to map pixels to precise end-effector actions under (near) full
observability, excelling at spatial alignment but assuming short temporal credit assignment: Per-
Act (Shridhar et al., 2023), RVT (Goyal et al., 2023), RVT-2 (Goyal et al., 2024). Sequence/skill
models distill demonstrations into reusable action chunks and long-horizon trajectories, improv-
ing sample efficiency but remaining bottlenecked by finite context windows: ACT (Zhao et al.,
2023), Skill Transformer (Huang et al., 2023), ILBiT (Kobayashi et al., 2025). Planning/RL-driven
transformers blend sequence modeling with value learning or planning for closed-loop control un-
der uncertainty, yet still inherit fixed-context limitations: OPTIMUS (Dalal et al., 2023), Action-
Flow (Funk et al., 2024), Q-Transformer (Chebotar et al., 2023), CCT/ARP (Zhang et al., 2025b),
FLaRe (Hu et al., 2025). Alternative backbones (state-space, diffusion) target long continuous hori-
zons and smooth control but lack explicit persistent state: RoboMamba (Liu et al., 2024b), Diffusion
Policy (Chi et al., 2023).

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

VLA models for manipulation. VLA models broaden task coverage by conditioning on language
and scaling data, while keeping the transformer core unchanged and context-bounded. Instruction-
following generalists demonstrate broad skill repertoires with language prompts but no explicit long-
term memory: RT-1 (Brohan et al., 2022), RT-2 (Zitkovich et al., 2023), Octo (Team et al., 2024),
OpenVLA (Kim et al., 2024), VIMA (Jiang et al., 2022). Efficiency/modularity variants freeze
large encoders and train lightweight adapters or experts for practicality at scale: RoboFlamingo (Li
et al., 2023), CogACT (Li et al., 2024), FLOWER (Reuss et al., 2025), NinA (Tarasov et al., 2025).
Reasoning/hierarchy extensions inject geometric priors, step-wise reasoning, or multi-level control
while still relying on finite windows: 3D-VLA (Zhen et al., 2024), CoT-VLA (Zhao et al., 2025),
TraceVLA (Zheng et al., 2024), HiRT (Zhang et al., 2024), DP-VLA (Han et al., 2024). Special-
ized and hybrid designs tailor the backbone to domain constraints (dexterous hands, spatial priors) or
mix diffusion with autoregression: HybridVLA (Liu et al., 2025), DexVLA (Wen et al., 2025a), Spa-
tialVLA (Qu et al., 2025), OpenVLA-OFT (Kim et al., 2025). Generalist robot agents pursue open-
world embodiment with growing breadth but inherit the same temporal limitations: TinyVLA (Wen
et al., 2025b), π0 (Black et al., 2024), π0.5 (Intelligence et al., 2025), GR00T N1 (Bjorck et al.,
2025), Gemini Robotics (Team et al., 2025), NORA (Hung et al., 2025).

Memory in Deep Learning. Mechanisms for long-term information fall into three broad tracks.
Implicit recurrence and long-range sequence models retain information in hidden dynamics but offer
limited, indirect control over storage and forgetting: LSTM (Hochreiter & Schmidhuber, 1997), xL-
STM (Beck et al., 2024), linear-attention Transformers (Katharopoulos et al., 2020), RWKV (Peng
et al., 2023), S4 (Gu et al., 2021), Mamba (Gu & Dao, 2023). Explicit external memory with learned
read–write provides addressable storage with content-based access, trading off simplicity for opti-
mization/scaling complexity: NTM (Graves et al., 2014), DNC (Graves et al., 2016), Memory Net-
works (Weston et al., 2014), differentiable memory for meta-learning (Santoro et al., 2016), recent
variants (Ahmadi, 2020). Transformer context extension pushes horizons via cached activations,
compression, or auxiliary memory modules but typically keeps memory peripheral to the core to-
ken computation: Transformer-XL (Dai et al., 2019), Compressive Transformer (Rae et al., 2019),
Memorizing Transformer (Wu et al., 2022), Ring Attention (Liu et al., 2023), Memformer (Wu et al.,
2020), associative-memory Transformers (Rodkin et al., 2024), ERNIE-style memory (Ding et al.,
2020), test-time memorization (TiTANS) (Behrouz et al., 2024).

Memory in RL. In partially observed decision processes, memory is not optional; it is the
state estimator. Spatial/episodic buffers externalize salient facts in read–write maps or associa-
tive stores (navigational and episodic use-cases): Neural Map (Parisotto & Salakhutdinov, 2017),
HCAM (Lampinen et al., 2021), Stable Hadamard Memory (Le et al., 2024). Sequence-model adap-
tations retrofit transformers for recurrence and stability in RL, improving long-horizon training but
leaving persistence bounded by context: DTQN (Esslinger et al., 2022), GTrXL (Parisotto et al.,
2020), AGaLiTe (Pramanik et al., 2023), AMAGO-2 (Grigsby et al., 2024). Evaluation frameworks
formalize memory demands and failure modes under partial observability: (Cherepanov et al., 2024;
Yue et al., 2024; Wang et al., 2025b). Transformers with external stores for RL insert explicit mem-
ory alongside the policy, but often as a sequence-level attachment: RATE (Cherepanov et al., 2023),
FFM (Morad et al., 2023b), Re:Frame (Zelezetsky et al., 2025).

Memory in manipulation tasks. Long-horizon, partially observed manipulation has motivated
three practical extensions. Trajectory summarization compresses the past into a short token set,
trading completeness for compactness: TraceVLA (Zheng et al., 2024). External feature banks
cache recent visual features for retrieval, focusing attention but leaving distant history underrepre-
sented: SAM2Act+ (Fang et al., 2025). Structured memory modules interface an explicit store with
the policy to persist scene/task variables: MemoryVLA (Shi et al., 2025). Hierarchies shift tem-
poral burden to slow planners or high-level controllers, which may mask but not remove the need
for persistent state at the policy layer: HiRT (Zhang et al., 2024), DP-VLA (Han et al., 2024). For
evaluation, targeted benchmarks isolate memory factors: MemoryBench (Fang et al., 2025); broader
suites capture multiple memory types and delays: MIKASA-Robo (Cherepanov et al., 2025).

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 6: Returns on ViZDoom-Two-Colors (mean ± standard error over 6 runs). Top-1 and Top-2
results are highlighted.

Method Return (mean ± sem)

ELMUR 55.28± 0.94
RATE 59.21± 1.19
DT 31.45± 1.21
RMT 53.53± 3.15
TrXL 49.62± 0.88
BC-LSTM 52.16± 2.59
CQL-MLP 12.49± 0.19
Random 4.78

A.7 3D VISUAL NAVIGATION

To evaluate ELMUR’s ability to handle 3D long-horizon navigation with visual input, we addition-
ally experiment in the ViZDoom-Two-Colors environment (Sorokin et al., 2022). The agent moves
in a room with an acid floor that continuously drains health at every timestep. At the beginning of
each episode it briefly observes a single colored pole (green or red) for 45 steps. The pole then dis-
appears, and the agent must navigate among green and red objects scattered on the floor and collect
only those whose color matches the initial pole in order to receive rewards and restore health. The
results in Table 6 show that ELMUR matches the performance of the previous best baseline within
statistical uncertainty, indicating that ELMUR is effective not only on memory-intensive manipula-
tion tasks but also on challenging memory-dependent navigation tasks with 3D visual observations.

A.8 TRAINING PROCESS

When training ELMUR, we compute the loss on every segment processed recursively, detaching the
memory state between segments (i.e., without backpropagation through time). The choice of loss
depends on the task domain: for T-Maze, CartPole-v1, and a subset of POPGym tasks with dis-
crete actions, we apply a cross-entropy loss; for MIKASA-Robo and the remaining POPGym tasks
with continuous actions, we use a mean-squared error (MSE) loss. The ELMUR hyperparameters
used in the experiments are presented in The ELMUR hyperparameters used in the experiments are
presented in Table 7.

For data, we follow a consistent offline imitation-learning setup. Each MIKASA-Robo environment
provides a dataset of 1000 expert demonstrations generated by a PPO policy trained with oracle-level
state access. For T-Maze, we collect 6000 successful oracle-level trajectories. For POPGym, we
adopt the datasets of Morad et al. (2023a), consisting of 3000 trajectories per environment generated
by a PPO-GRU expert. Finally, for CartPole-v1, we use 1000 successful trajectories collected from
a pre-trained PPO policy.

Figure 8: ViZDoom-Two-Colors environment.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Parameter RememberColor TakeItBack T-Maze POPGym-AutoencodeEasy CartPole-v1

dmodel 128 32 128 64 128
Routed dff 128 256 32 128 128
Shared dff 128 32 512 256 256
Layers 4 2 2 12 4
Heads 16 16 2 4 4
Experts (MoE) 16 1 2 1 4
Shared Experts 1 1 2 2 1
Top-k routing 2 1 3 1 2
Memory size 256 32 2 8 16
Memory init std 0.1 0.001 0.001 0 0.01
Memory dropout 0.06 0.23 0.01 0.17 0.05
LRU blend α 0.40 0.20 0.05 0.80 0.9
Dropout 0.13 0.01 0.10 0.14 0.10
Dropatt 0.30 0.18 0.17 0.26 0.10
Label smoothing 0.21 0.20 0.16 0.22 0.00
Context length 20 60 10 35 30
Batch size 64 64 128 128 512
Learning rate 2.05e-4 2.57e-4 2.06e-4 1.16e-4 3.0e-4
Warmup steps 30000 30000 10000 50000 1000
Cosine decay True False True False True
LR end factor 0.1 0.01 1.0 0.01 0.1
Weight decay 0.001 0.01 0.0001 0.1 0.01
Epochs 200 300 1000 800 100
Grad clip 5 1 5 5 1.0
Beta1 0.99 0.9 0.95 0.99 0.9
Beta2 0.99 0.99 0.999 0.99 0.999

Table 7: Hyperparameters for ELMUR. We report all architecture and training parameters used
across tasks.

A.9 MEMORY PROBING

To examine whether ELMUR stores task-relevant information in its external memory rather than
relying solely on increased parameter count, we perform a controlled memory probing study on
the RememberColor3-v0 environment. The goal is to determine whether memory embeddings
contain linearly or nonlinearly decodable information about the target cube color, which serves as
the minimal sufficient statistic required for correct decision making in the recall stage of the task.

Dataset construction. We first train an ELMUR policy to expert-level performance on
RememberColor3-v0. Using the trained policy, we collect 1000 evaluation episodes and ex-
tract, at every timestep, all layer-local memory embeddings and the corresponding ground-truth tar-
get color. We retain only episodes that successfully complete the task to avoid confounding effects
from incorrect trajectories and to ensure that the probed representations correspond to functional
memory usage. The resulting dataset contains tuples of the form

(ℓ, t,m
(ℓ)
t , y),

where ℓ is the layer index, t is the timestep at which the memory vector was recorded, m(ℓ)
t ∈ RM×d

is the memory embedding of layer ℓ at timestep t, and y ∈ {0, 1, 2} is the target color label.

Probing protocol. Memory in ELMUR is structured and evolves differently across layers and
timesteps. To distinguish these effects, we construct a separate probing dataset for every layer
ℓ ∈ {0, . . . , L − 1} and every chosen timestep t (we use t ∈ {0, 1, 5, 10, 20}). For each pair (ℓ, t)
we train an independent probe on the corresponding memory vectors {m(ℓ)

t }.
Each probe is a three-layer multilayer perceptron (MLP) with hidden size 512 and ReLU nonlinear-
ities. We train the probes with a cross-entropy loss to predict the target cube color solely from the
memory vector. Probes are trained with Adam for 200 epochs using an 80/20 train-validation split.
Importantly, probes are not allowed to influence the base policy; the probing procedure is strictly
post-hoc.

Memory Evaluation. For every (ℓ, t) pair we report the accuracy and confusion matrix of the cor-
responding probe. At t=0, when memory is initialized with random noise, all layers yield roughly

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Red Green Blue
Predicted Label

R
ed

G
re
en

B
lu
e

Tr
ue

 L
ab

el

33.3 28.6 38.1

22.6 32.1 45.3

38.5 30.8 30.8

Confusion Matrix - Timestep 0, Layer 0

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

Red Green Blue
Predicted Label

R
ed

G
re
en

B
lu
e

Tr
ue

 L
ab

el

33.3 36.5 30.2

32.1 24.5 43.4

33.8 26.2 40.0

Confusion Matrix - Timestep 0, Layer 1

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

Red Green Blue
Predicted Label

R
ed

G
re
en

B
lu
e

Tr
ue

 L
ab

el

38.1 19.0 42.9

39.6 20.8 39.6

43.1 20.0 36.9

Confusion Matrix - Timestep 0, Layer 2

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

Red Green Blue
Predicted Label

R
ed

G
re
en

B
lu
e

Tr
ue

 L
ab

el

27.0 27.0 46.0

30.2 26.4 43.4

33.8 16.9 49.2

Confusion Matrix - Timestep 0, Layer 3

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

Red Green Blue
Predicted Label

R
ed

G
re
en

B
lu
e

Tr
ue

 L
ab

el

92.1 7.9 0.0

13.2 79.2 7.5

0.0 1.5 98.5

Confusion Matrix - Timestep 1, Layer 0

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

Red Green Blue
Predicted Label

R
ed

G
re
en

B
lu
e

Tr
ue

 L
ab

el

71.4 28.6 0.0

28.3 67.9 3.8

0.0 7.7 92.3

Confusion Matrix - Timestep 1, Layer 1

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

Red Green Blue
Predicted Label

R
ed

G
re
en

B
lu
e

Tr
ue

 L
ab

el

71.4 23.8 4.8

47.2 39.6 13.2

12.3 10.8 76.9

Confusion Matrix - Timestep 1, Layer 2

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

Red Green Blue
Predicted Label

R
ed

G
re
en

B
lu
e

Tr
ue

 L
ab

el

41.3 30.2 28.6

30.2 32.1 37.7

15.4 12.3 72.3

Confusion Matrix - Timestep 1, Layer 3

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

Red Green Blue
Predicted Label

R
ed

G
re
en

B
lu
e

Tr
ue

 L
ab

el

100.0 0.0 0.0

0.0 100.0 0.0

0.0 0.0 100.0

Confusion Matrix - Timestep 5, Layer 0

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

Red Green Blue
Predicted Label

R
ed

G
re
en

B
lu
e

Tr
ue

 L
ab

el

100.0 0.0 0.0

11.3 88.7 0.0

0.0 0.0 100.0

Confusion Matrix - Timestep 5, Layer 1

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

Red Green Blue
Predicted Label

R
ed

G
re
en

B
lu
e

Tr
ue

 L
ab

el

95.2 4.8 0.0

17.0 81.1 1.9

0.0 0.0 100.0

Confusion Matrix - Timestep 5, Layer 2

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

Red Green Blue
Predicted Label

R
ed

G
re
en

B
lu
e

Tr
ue

 L
ab

el

87.3 12.7 0.0

24.5 67.9 7.5

0.0 9.2 90.8

Confusion Matrix - Timestep 5, Layer 3

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

Red Green Blue
Predicted Label

R
ed

G
re
en

B
lu
e

Tr
ue

 L
ab

el

100.0 0.0 0.0

0.0 100.0 0.0

0.0 0.0 100.0

Confusion Matrix - Timestep 10, Layer 0

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

Red Green Blue
Predicted Label

R
ed

G
re
en

B
lu
e

Tr
ue

 L
ab

el

100.0 0.0 0.0

0.0 100.0 0.0

0.0 0.0 100.0

Confusion Matrix - Timestep 10, Layer 1

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

Red Green Blue
Predicted Label

R
ed

G
re
en

B
lu
e

Tr
ue

 L
ab

el

100.0 0.0 0.0

0.0 100.0 0.0

0.0 0.0 100.0

Confusion Matrix - Timestep 10, Layer 2

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

Red Green Blue
Predicted Label

R
ed

G
re
en

B
lu
e

Tr
ue

 L
ab

el

100.0 0.0 0.0

5.7 94.3 0.0

0.0 0.0 100.0

Confusion Matrix - Timestep 10, Layer 3

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

Red Green Blue
Predicted Label

R
ed

G
re
en

B
lu
e

Tr
ue

 L
ab

el

100.0 0.0 0.0

3.8 96.2 0.0

0.0 0.0 100.0

Confusion Matrix - Timestep 20, Layer 0

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

Red Green Blue
Predicted Label

R
ed

G
re
en

B
lu
e

Tr
ue

 L
ab

el

100.0 0.0 0.0

0.0 100.0 0.0

0.0 0.0 100.0

Confusion Matrix - Timestep 20, Layer 1

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

Red Green Blue
Predicted Label

R
ed

G
re
en

B
lu
e

Tr
ue

 L
ab

el

100.0 0.0 0.0

0.0 100.0 0.0

0.0 0.0 100.0

Confusion Matrix - Timestep 20, Layer 2

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

Red Green Blue
Predicted Label

R
ed

G
re
en

B
lu
e

Tr
ue

 L
ab

el

85.7 12.7 1.6

13.2 86.8 0.0

1.5 3.1 95.4

Confusion Matrix - Timestep 20, Layer 3

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

Figure 9: Memory probing confusion matrices on RememberColor3-v0. Each panel shows
the confusion matrix (percentage) of the color probe trained on ELMUR memory embeddings for
a specific timestep (rows, t ∈ {0, 1, 5, 10, 20}) and layer (columns, ℓ ∈ {0, 1, 2, 3}). At t=0 (top
row), when memory is still random, all probes sit near the 33% chance level, indicating that the
target color is not decodable from initialization. After the first write at t=1, the first layer already
supports accurate decoding, with performance gradually decreasing for deeper layers. At t=5, once
the cue has disappeared, probes achieve almost perfect accuracy, including 100% for the first layer.
At the decision time t=10 and late in the episode at t=20, prediction remains essentially perfect in
the first three layers and very high in the last layer, demonstrating stable long-horizon retention of
the target color in memory.

33% accuracy per class, indicating that the target color is not decodable from the initial memory em-
beddings. After the first update at t=1, the first layer already supports reliable decoding for all three
colors, with accuracy gradually decreasing for deeper layers, which shows that the model writes a
usable color code into memory immediately after observing the cue. By t=5, when the colored cube

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58
Timestep

Slot 0

Slot 1

Slot 2

M
em

or
y 

Sl
ot

Layer 0: Memory Update Pattern

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58
Timestep

Slot 0

Slot 1

Slot 2

M
em

or
y 

Sl
ot

Layer 1: Memory Update Pattern

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58
Timestep

Slot 0

Slot 1

Slot 2

M
em

or
y 

Sl
ot

Layer 2: Memory Update Pattern

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58
Timestep

Slot 0

Slot 1

Slot 2

M
em

or
y 

Sl
ot

Layer 3: Memory Update Pattern

0.00

0.25

0.50

0.75

1.00

U
pd

at
e 

St
at

us

0.00

0.25

0.50

0.75

1.00

U
pd

at
e 

St
at

us

0.00

0.25

0.50

0.75

1.00

U
pd

at
e 

St
at

us

0.00

0.25

0.50

0.75

1.00

U
pd

at
e 

St
at

us

Figure 10: Memory update patterns across layers on RememberColor3-v0. Each heatmap
shows, for one ELMUR layer, which memory slot is updated at each timestep (horizontal axis:
timestep t ∈ [0, 60], vertical axis: slots 0–2; green indicates an update, purple indicates no update).
All layers exhibit the same structured schedule: early in the episode only slot 0 is updated, then
responsibility shifts to slot 1, and finally to slot 2, producing a clean rotation of writes enforced by
the LRU policy. After a slot becomes inactive it is not modified again, which implies that once the
target color has been written into a slot its content is preserved for the remainder of the episode
without further overwriting.

has disappeared from the scene, prediction accuracy improves further, reaching 100% for the first
layer and remaining high for the others. At t=10, when the agent sees all three cubes and must select
the target, the probes achieve 100% accuracy on the first three layers and near perfect accuracy on
the last layer, and the same pattern persists at t=20. Aggregated confusion matrices across layers
and timesteps are shown in Figure 9.

Together, these findings confirm that ELMUR allocates memory capacity to storing the latent task
variable required to solve the environment and that its superior performance arises from functional
memory usage rather than increased model size. In addition, the memory update patterns in Fig-
ure 10 show a consistent and interpretable write schedule across layers: each episode produces a
single dominant write into a dedicated slot immediately after observing the cue, followed by long
spans of preservation with no overwriting. The LRU mechanism activates only when necessary,
producing sparse, well-timed updates rather than continuous churn.

The inter-slot similarity analysis in Figure 11 further supports this behavior. At the moment when
the target cube is first observed, all layers exhibit a sharp transition in cosine similarity structure:
a single slot becomes highly similar across repeated episodes while the remaining slots remain
decorrelated. This indicates that ELMUR allocates one stable slot as the canonical container for the
task variable. After this write event, the similarity trajectories remain nearly constant throughout

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

0 10 20 30 40 50 60
Timestep

0.0

0.2

0.4

0.6

0.8

1.0

C
os

in
e 

Si
m

ila
ri

ty

Layer 0: Inter-Slot Cosine Similarity
(Mean ± Std across 20 batches)

Slots 0-1
Slots 0-2
Slots 1-2

0 10 20 30 40 50 60
Timestep

0.0

0.2

0.4

0.6

0.8

1.0

C
os

in
e 

Si
m

ila
ri

ty

Layer 1: Inter-Slot Cosine Similarity
(Mean ± Std across 20 batches)

Slots 0-1
Slots 0-2
Slots 1-2

0 10 20 30 40 50 60
Timestep

0.0

0.2

0.4

0.6

0.8

1.0

C
os

in
e 

Si
m

ila
ri

ty

Layer 2: Inter-Slot Cosine Similarity
(Mean ± Std across 20 batches)

Slots 0-1
Slots 0-2
Slots 1-2

0 10 20 30 40 50 60
Timestep

0.0

0.2

0.4

0.6

0.8

1.0

C
os

in
e 

Si
m

ila
ri

ty

Layer 3: Inter-Slot Cosine Similarity
(Mean ± Std across 20 batches)

Slots 0-1
Slots 0-2
Slots 1-2

0 10 20 30 40 50 60
Timestep

0.1

0.2

0.3

0.4

St
d 

D
ev

ia
ti

on

Layer 0: Std Dev for All Cubes

Slot 0, Group 0 (n=20)
Slot 1, Group 0 (n=20)
Slot 2, Group 0 (n=20)

0 10 20 30 40 50 60
Timestep

0.1

0.2

0.3

0.4

St
d 

D
ev

ia
ti

on

Layer 1: Std Dev for All Cubes

Slot 0, Group 0 (n=20)
Slot 1, Group 0 (n=20)
Slot 2, Group 0 (n=20)

0 10 20 30 40 50 60
Timestep

0.1

0.2

0.3

0.4

St
d 

D
ev

ia
ti

on

Layer 2: Std Dev for All Cubes

Slot 0, Group 0 (n=20)
Slot 1, Group 0 (n=20)
Slot 2, Group 0 (n=20)

0 10 20 30 40 50 60
Timestep

0.1

0.2

0.3

0.4

St
d 

D
ev

ia
ti

on

Layer 3: Std Dev for All Cubes

Slot 0, Group 0 (n=20)
Slot 1, Group 0 (n=20)
Slot 2, Group 0 (n=20)

Figure 11: Inter–slot similarity and variance of memory embeddings on
RememberColor3-v0. For each ELMUR layer (rows), the left panels show the cosine
similarity between pairs of memory slots (0–1, 0–2, 1–2) as a function of timestep, averaged over 20
batches (shaded region: standard deviation). Around the transition to the second segment (t = 20)
the similarities jump from near zero to higher, stable values, indicating that one slot acquires a
structured representation which becomes partially shared with the others. A second transition to the
third segment appears at t = 40, when another slot is written, after which the similarity profiles
remain nearly constant, consistent with persistent storage. The right panels show the standard
deviation of embeddings within each slot over episodes. Only the currently written slot exhibits
a sharp increase in variance at its corresponding write time, while the other slots remain nearly
constant, confirming that the model performs localized, slot-specific writes followed by stable
retention of the encoded content.

the blank stage and the distractor stage, demonstrating that the stored representation is preserved
without drift.

The slotwise variance plots show the same phenomenon from a complementary angle. The chosen
slot exhibits a sudden rise in variance immediately after the cue is written, reflecting the encoding of
task-specific information, while the unused slots retain near-zero variance for the remainder of the
episode. Throughout the delay period the variance of the active slot remains stable, indicating that
the stored color representation is neither degraded nor rewritten.

Taken together, the update patterns, similarity dynamics, and variance profiles reveal a coherent
mechanism: ELMUR performs a targeted, one-shot write into a designated memory slot, then main-
tains this representation with high stability until retrieval, even in the presence of visually similar
distractors. This behavior aligns precisely with the probing results and provides strong causal evi-
dence that ELMUR employs explicit long-term memory rather than incidental capacity effects. A
more detailed, layer-wise visualization of evolution of memory embeddings across the entire episode
is presented in Figure 12.

A.10 PCA MEMORY ANALYSIS

The geometric structure of memory representations is further illustrated by the Principal Component
Analysis (PCA; Abdi & Williams (2010)) in Figure 13. The top row shows projections colored by
memory slot (slots 0, 1, and 2), while the bottom row shows projections colored by layer. From left
to right, we display all target colors together, then restrict to red, green, and blue targets respectively.
In the slot based views, embeddings from different slots largely occupy the same manifolds for a

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Slot 0

Slot 1

Slot 2

La
ye

r 
0

t=0 t=6 t=12 t=18 t=24 t=30 t=36 t=42 t=48 t=54 t=60

Slot 0

Slot 1

Slot 2

La
ye

r 
1

Slot 0

Slot 1

Slot 2

La
ye

r 
2

0 50 100
Dim

Slot 0

Slot 1

Slot 2

La
ye

r 
3

0 50 100
Dim

0 50 100
Dim

0 50 100
Dim

0 50 100
Dim

0 50 100
Dim

0 50 100
Dim

0 50 100
Dim

0 50 100
Dim

0 50 100
Dim

0 50 100
Dim

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Ac
tiv

at
io

n 
Va

lu
e

Memory Evolution Across Time

Figure 12: Memory evolution across layers, slots, and time on RememberColor3-v0.
Each block corresponds to a snapshot of the memory state at a given timestep (columns, t ∈
{0, 6, . . . , 60}). Within each block, rows index memory slots (0–2) for a given layer (stacked verti-
cally from Layer 0 to Layer 3), and the horizontal axis shows embedding dimensions. Color encodes
activation value. Early timesteps exhibit near-random low-amplitude activations, while after the cue
is observed a single slot in each layer becomes strongly structured and remains stable over subse-
quent timesteps. Later in the episode additional slots are written once and then preserved, illustrating
that ELMUR performs sparse, slot-specific updates followed by long-horizon retention of the en-
coded representation.

fixed color, indicating that slots are not tied to particular colors and instead share a common content
space. In the layer based views, points from different layers form well separated clusters, especially
when conditioning on a single color, which suggests that deeper layers produce progressively more
structured and compact encodings of the target color while maintaining clear separation between
colors in the joint view.

The temporal evolution of memory representations is illustrated in Figure 14, which shows PCA
projections of all memory vectors with color indicating timestep. The first panel aggregates all target
colors, while the remaining three panels condition on red, green, and blue targets respectively. In all
cases the trajectories exhibit a characteristic pattern: memories start from a diffuse cloud near the
initialization region (early timesteps in purple), then rapidly converge onto a small number of low-
dimensional manifolds after the cue is written, and remain confined there for the rest of the episode
(late timesteps in green). Conditioning on a single color reveals that these manifolds are largely
color specific, with each target color occupying its own stable region in PCA space and showing
minimal drift over time. This behavior indicates that ELMUR quickly encodes the target color
into a compact representation and maintains it throughout the delay and retrieval phases without
substantial degradation.

A.11 CROSS-ATTENTION MAPS

Figure 15 visualizes the cross-attention patterns of the write (tok2mem, left) and read (mem2tok,
right) modules. Each row corresponds to one of the 16 attention heads, the horizontal axis shows
timesteps (0-60), and the vertical axis indexes the three memory slots. In the tok2mem maps,
attention is almost entirely suppressed at the beginning of the episode and then exhibits a short, high-
intensity burst around the cue presentation, concentrated on a single slot across many heads. After
this write event, activity becomes sparse with only occasional weak updates, consistent with a one-
shot allocation of the cue into a dedicated slot followed by long-term preservation. In contrast, the
mem2tok maps display more sustained but still structured activity: once the cue has been written,
several heads repeatedly attend to the same slot throughout the blank interval and the decision phase,
with peaks near the timesteps where the agent must choose the correct cube. Other heads remain
nearly inactive or attend to alternative slots, suggesting head specialization. Overall, these attention
patterns corroborate the memory probing and similarity analyses, showing that ELMUR performs a
sharp, localized write of the target color into a single slot and then repeatedly reads from that slot
during subsequent reasoning and action.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

−3 −2 −1 0 1 2 3
PC1

−3

−2

−1

0

1

2

PC
2

PCA Projection by Memory Slot

Slot 0
Slot 1
Slot 2

−3 −2 −1 0 1 2 3
PC1

−3

−2

−1

0

1

2

PC
2

PCA Projection by Memory Slot

Slot 0
Slot 1
Slot 2

−3 −2 −1 0 1 2 3
PC1

−2

−1

0

1

2

3

PC
2

PCA Projection by Memory Slot

Slot 0
Slot 1
Slot 2

−3 −2 −1 0 1 2 3
PC1

−2

−1

0

1

2

PC
2

PCA Projection by Memory Slot

Slot 0
Slot 1
Slot 2

−3 −2 −1 0 1 2 3
PC1

−3

−2

−1

0

1

2

PC
2

PCA Projection by Layer

Layer 0
Layer 1
Layer 2
Layer 3

−3 −2 −1 0 1 2 3
PC1

−3

−2

−1

0

1

2

PC
2

PCA Projection by Layer

Layer 0
Layer 1
Layer 2
Layer 3

−3 −2 −1 0 1 2 3
PC1

−2

−1

0

1

2

3

PC
2

PCA Projection by Layer

Layer 0
Layer 1
Layer 2
Layer 3

−3 −2 −1 0 1 2 3
PC1

−2

−1

0

1

2

PC
2

PCA Projection by Layer

Layer 0
Layer 1
Layer 2
Layer 3

Figure 13: PCA structure of memory embeddings by slot and layer on RememberColor3-v0.
Each panel shows a 2D PCA projection of all memory vectors. The top row colors points by memory
slot (0, 1, 2), while the bottom row colors them by layer (0, 1, 2, 3). From left to right, we display
embeddings for all target colors, and then restricted to red, green, and blue targets respectively.
In the slot-based views, embeddings from different slots largely occupy the same manifolds for a
fixed color, indicating that slots share a common content space rather than being tied to particular
colors. In contrast, the layer-based views form well-separated clusters, especially when conditioning
on a single color, showing that deeper layers produce progressively more specialized and compact
representations of the same latent task variable.

−3 −2 −1 0 1 2 3
PC1

−3

−2

−1

0

1

2

PC
2

PCA Projection of Memory Vectors

0

10

20

30

40

50

60

Ti
m

es
te

p

−3 −2 −1 0 1 2 3
PC1

−3

−2

−1

0

1

2

PC
2

PCA Projection of Memory Vectors

0

10

20

30

40

50

60

Ti
m

es
te

p

−3 −2 −1 0 1 2 3
PC1

−2

−1

0

1

2

3

PC
2

PCA Projection of Memory Vectors

0

10

20

30

40

50

60

Ti
m

es
te

p

−3 −2 −1 0 1 2 3
PC1

−2

−1

0

1

2

PC
2

PCA Projection of Memory Vectors

0

10

20

30

40

50

60

Ti
m

es
te

p

Figure 14: PCA projection of memory embeddings over time. Each panel shows memory vectors
from all layers and slots in RememberColor3-v0, projected onto the first two principal compo-
nents and colored by timestep (see colorbar). From left to right we plot all episodes, and then subsets
conditioned on the target cube being red, green, or blue. Early timesteps occupy a diffuse region of
the space, while vectors shortly after the cue observation move into compact, color-specific clusters
that remain stable for the rest of the episode, indicating that the memory state rapidly converges to a
persistent representation of the target color.

A.12 LIMITATIONS

ELMUR uses a simple LRU rule with fixed blending, which makes its memory mechanism trans-
parent and easy to analyze, though future work could explore adaptive variants. Segment-level
recurrence adds a small cross-attention cost per layer, but this cost scales with the fixed number
of memory slots rather than sequence length, making efficiency predictable even in long horizons.
MoE-based FFNs already provide parameter efficiency at our scale, and larger architectures may fur-
ther amplify this benefit. Finally, our study focuses on synthetic, POPGym, and simulated robotic
tasks under IL, giving controlled and reproducible insights; extending to online RL and real-robot
deployments offers promising next steps.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

0

1

2M
em

or
y 

Sl
ot

 
H

ea
d 

0

0

1

2M
em

or
y 

Sl
ot

 
H

ea
d 

1

0

1

2M
em

or
y 

Sl
ot

 
H

ea
d 

2

0

1

2M
em

or
y 

Sl
ot

 
H

ea
d 

3

0

1

2M
em

or
y 

Sl
ot

 
H

ea
d 

4

0

1

2M
em

or
y 

Sl
ot

 
H

ea
d 

5

0

1

2M
em

or
y 

Sl
ot

 
H

ea
d 

6

0

1

2M
em

or
y 

Sl
ot

 
H

ea
d 

7

0

1

2M
em

or
y 

Sl
ot

 
H

ea
d 

8

0

1

2M
em

or
y 

Sl
ot

 
H

ea
d 

9

0

1

2M
em

or
y 

Sl
ot

 
H

ea
d 

10

0

1

2M
em

or
y 

Sl
ot

 
H

ea
d 

11

0

1

2M
em

or
y 

Sl
ot

 
H

ea
d 

12

0

1

2M
em

or
y 

Sl
ot

 
H

ea
d 

13

0

1

2M
em

or
y 

Sl
ot

 
H

ea
d 

14

0 5 10 15 20 25 30 35 40 45 50 55
Timestep

0

1

2M
em

or
y 

Sl
ot

 
H

ea
d 

15

0.1

0.2

Attention W
eight

0.1

0.2

Attention W
eight

0.1

0.2

Attention W
eight

0.1

0.2

Attention W
eight

0.1

0.2

Attention W
eight

0.1

0.2

Attention W
eight

0.1

0.2
Attention W

eight

0.1

0.2

Attention W
eight

0.1

0.2

Attention W
eight

0.1

0.2

Attention W
eight

0.1

0.2

Attention W
eight

0.1

0.2

Attention W
eight

0.1

0.2

Attention W
eight

0.1

0.2

Attention W
eight

0.1

0.2

Attention W
eight

0.1

0.2

Attention W
eight

Attention Weights (tok2mem)

0

1

2M
em

or
y 

Sl
ot

 
H

ea
d 

0

0

1

2M
em

or
y 

Sl
ot

 
H

ea
d 

1

0

1

2M
em

or
y 

Sl
ot

 
H

ea
d 

2

0

1

2M
em

or
y 

Sl
ot

 
H

ea
d 

3

0

1

2M
em

or
y 

Sl
ot

 
H

ea
d 

4

0

1

2M
em

or
y 

Sl
ot

 
H

ea
d 

5

0

1

2M
em

or
y 

Sl
ot

 
H

ea
d 

6

0

1

2M
em

or
y 

Sl
ot

 
H

ea
d 

7

0

1

2M
em

or
y 

Sl
ot

 
H

ea
d 

8

0

1

2M
em

or
y 

Sl
ot

 
H

ea
d 

9

0

1

2M
em

or
y 

Sl
ot

 
H

ea
d 

10

0

1

2M
em

or
y 

Sl
ot

 
H

ea
d 

11

0

1

2M
em

or
y 

Sl
ot

 
H

ea
d 

12

0

1

2M
em

or
y 

Sl
ot

 
H

ea
d 

13

0

1

2M
em

or
y 

Sl
ot

 
H

ea
d 

14

0 5 10 15 20 25 30 35 40 45 50 55
Timestep

0

1

2M
em

or
y 

Sl
ot

 
H

ea
d 

15

0.2

0.4

Attention W
eight

0.2

0.4

Attention W
eight

0.2

0.4

Attention W
eight

0.2

0.4

Attention W
eight

0.2

0.4

Attention W
eight

0.2

0.4

Attention W
eight

0.2

0.4

Attention W
eight

0.2

0.4

Attention W
eight

0.2

0.4

Attention W
eight

0.2

0.4

Attention W
eight

0.2

0.4

Attention W
eight

0.2

0.4

Attention W
eight

0.2

0.4

Attention W
eight

0.2

0.4

Attention W
eight

0.2

0.4

Attention W
eight

0.2

0.4

Attention W
eight

Attention Weights (mem2tok)

Figure 15: Cross–attention patterns between tokens and memory slots in ELMUR. Heatmaps
show attention weights for the tok2mem module (left) and the mem2tok module (right) in the
RememberColor3-v0 task. Each row corresponds to one of the 16 attention heads, the hori-
zontal axis is the timestep (t ∈ [0, 60]), and the vertical axis indexes the three memory slots. Color
intensity indicates the magnitude of the attention weight. tok2mem heads exhibit sparse, sharply
localized write events into a single slot around cue and update timesteps, whereas mem2tok heads
display broader read patterns that concentrate on the slot carrying the target color during the decision
phase, consistent with targeted write, once storage followed by repeated retrieval of the latent task
variable.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Table 8: Offline RL baselines on the MIKASA-Robo benchmark. We compare transformer-based
methods (RATE, DT), behavior cloning (BC), classical offline RL algorithms (CQL), and Diffusion
Policy (DP) across all 32 tasks. Scores are reported as mean ± sem over three seeds, with each seed
averaged over 100 evaluation episodes. All models are trained from RGB observations (top-view
and wrist-view cameras) under sparse, success-only rewards. Even with access to memory, existing
baselines (RATE, DT) fail on most tasks, whereas ELMUR achieves the highest performance on
21 of the 23 tasks with non zero success rates and exceeds the previous state-of-the-art, RATE, by
roughly 70% in aggregate success across all 32 tasks.

Environment RATE DT BC CQL DP ELMUR
ShellGameTouch-v0 0.92±0.01 0.53±0.07 0.28±0.01 0.16±0.04 0.18±0.02 0.96±0.02
ShellGamePush-v0 0.78±0.06 0.62±0.14 0.27±0.01 0.25±0.01 0.22±0.03 0.87±0.04
ShellGamePick-v0 0.02±0.01 0.00±0.00 0.01±0.01 0.00±0.00 0.01±0.00 0.66±0.01
InterceptSlow-v0 0.23±0.02 0.40±0.02 0.37±0.06 0.25±0.01 0.33±0.05 0.61±0.04
InterceptMedium-v0 0.32±0.02 0.56±0.01 0.31±0.14 0.03±0.01 0.68±0.02 0.64±0.03
InterceptFast-v0 0.30±0.04 0.36±0.04 0.03±0.02 0.02±0.02 0.21±0.05 0.54±0.02
InterceptGrabSlow-v0 0.09±0.03 0.00±0.00 0.28±0.18 0.03±0.00 0.03±0.01 0.08±0.03
InterceptGrabMedium-v0 0.09±0.03 0.00±0.00 0.11±0.02 0.08±0.04 0.03±0.01 0.10±0.04
InterceptGrabFast-v0 0.14±0.03 0.11±0.03 0.09±0.02 0.08±0.03 0.18±0.02 0.20±0.01
RotateLenientPos-v0 0.11±0.04 0.01±0.01 0.15±0.03 0.16±0.02 0.11±0.02 0.24±0.02
RotateLenientPosNeg-v0 0.29±0.03 0.05±0.02 0.22±0.01 0.12±0.02 0.14±0.05 0.26±0.00
RotateStrictPos-v0 0.03±0.02 0.05±0.04 0.01±0.00 0.03±0.01 0.06±0.02 0.16±0.00
RotateStrictPosNeg-v0 0.08±0.01 0.05±0.03 0.04±0.02 0.04±0.02 0.15±0.01 0.12±0.02
TakeItBack-v0 0.42±0.24 0.08±0.04 0.33±0.10 0.04±0.01 0.05±0.02 0.78±0.03
RememberColor3-v0 0.65±0.04 0.01±0.01 0.27±0.03 0.29±0.01 0.32±0.01 0.89±0.07
RememberColor5-v0 0.13±0.03 0.07±0.05 0.12±0.01 0.15±0.02 0.10±0.02 0.19±0.03
RememberColor9-v0 0.09±0.02 0.01±0.01 0.12±0.02 0.15±0.01 0.17±0.01 0.23±0.02
RememberShape3-v0 0.21±0.04 0.05±0.04 0.31±0.04 0.20±0.10 0.32±0.05 0.76±0.01
RememberShape5-v0 0.17±0.04 0.04±0.04 0.18±0.01 0.15±0.00 0.21±0.04 0.27±0.02
RememberShape9-v0 0.05±0.00 0.05±0.02 0.10±0.02 0.14±0.01 0.11±0.02 0.17±0.03
RememberShapeAndColor3x2-v0 0.14±0.02 0.04±0.02 0.13±0.02 0.11±0.05 0.14±0.02 0.19±0.02
RememberShapeAndColor3x3-v0 0.08±0.03 0.06±0.06 0.09±0.02 0.09±0.02 0.16±0.01 0.19±0.02
RememberShapeAndColor5x3-v0 0.07±0.02 0.01±0.01 0.09±0.01 0.09±0.02 0.11±0.03 0.13±0.01
BunchOfColors3-v0 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
BunchOfColors5-v0 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
BunchOfColors7-v0 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
SeqOfColors3-v0 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
SeqOfColors5-v0 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
SeqOfColors7-v0 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
ChainOfColors3-v0 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
ChainOfColors5-v0 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
ChainOfColors7-v0 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
Sum Across All Tasks 5.42 3.15 3.92 2.66 4.02 9.24

30


	Introduction
	Background
	Method
	Theoretical Analysis
	Experiments
	Benchmarks and Baselines
	Results

	Related Work
	Conclusion
	Appendix
	Proof of Exponential Forgetting in LRU Updates
	Boundedness of Memory Embeddings
	Memory-intensive environments
	Memory-Intensive Environments
	Trajectory Conditioning
	Extended Related Work
	3D Visual Navigation
	Training Process
	Memory Probing
	PCA Memory Analysis
	Cross-attention Maps
	Limitations


