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ABSTRACT

Real-world robotic agents must act under partial observability and long horizons,
where key cues may appear long before they affect decision making. However,
most modern approaches rely solely on instantaneous information, without incor-
porating insights from the past. Standard recurrent or transformer models struggle
with retaining and leveraging long-term dependencies: context windows truncate
history, while naive memory extensions fail under scale and sparsity. We propose
ELMUR (External Layer Memory with Update/Rewrite), a transformer architec-
ture with structured external memory. Each layer maintains memory embeddings,
interacts with them via bidirectional cross-attention, and updates them through an
Least Recently Used (LRU) memory module using replacement or convex blend-
ing. ELMUR extends effective horizons up to 100,000 times beyond the attention
window and achieves a 100% success rate on a synthetic T-Maze task with corri-
dors up to one million steps. In POPGym, it outperforms baselines on more than
half of the tasks. On MIKASA-Robo sparse-reward manipulation tasks with vi-
sual observations, it nearly doubles the performance of strong baselines, achieving
the best success rate on 21 out of 23 tasks and improving the aggregate success
rate across all tasks by about 70% over the previous best baseline. These results
demonstrate that structured, layer-local external memory offers a simple and scal-
able approach to decision making under partial observability.

1 INTRODUCTION

Imagine a robot cooking pasta: it stirs once, adds salt, and later adds salt again, repeating until the
dish is inedible. The issue is simple: the robot cannot remember if salt was already added, since
it dissolves invisibly, nor how much is still in the container. This is a case of partial observability
— the world rarely reveals all necessary information. Humans recall past actions effortlessly, but
robots lack this ability. Though effective in controlled settings (Kim et al., 2024; Black et al.,
2024), robots often fail under partial observability (Fang et al., 2025; Cherepanov et al., 2025).
Standard recurrent (Ouyang et al., 2025) and transformer (Gao et al., 2025) models rely heavily
on short observation windows, making them brittle under long-horizon dependencies and sparse
signals. This motivates hybrid memory-augmented transformers that explicitly store and retrieve
past information (Fang et al., 2025; Shi et al., 2025).

Within the Reinforcement Learning (RL) paradigm (Sutton et al., 1998), long-horizon challenges
are compounded by sample inefficiency and sparse rewards: real-world exploration is costly and
unsafe, while simulation suffers from a sim-to-real gap (Zhang et al., 2025a). Offline RL mitigates
this with pre-collected datasets (Levine et al., 2020), but usually assumes dense feedback; reshaping
sparse rewards demands domain knowledge and risks bias (Wu et al., 2021; Mu et al., 2024; Wang
et al., 2025a). In robotics, delayed feedback makes long-term memory indispensable. A comple-
mentary paradigm is Imitation Learning (IL) (Zare et al., 2024), whose simplest form, Behavior
Cloning (BC), reduces control to supervised learning on demonstration pairs. Building on this idea,
recent Vision-Language-Action (VLA) models (Brohan et al., 2022; Team et al., 2024; Kim et al.,
2024) scale with large datasets, yet their fixed transformer windows (Fang et al., 2025; Shi et al.,
2025) leave three challenges: (i) extending context without quadratic cost, (ii) mitigating truncation-
induced forgetting, and (iii) retaining task-relevant information across long horizons. This motivates
our central question: how can we equip IL policies with efficient long-term memory to solve
long-horizon, partially observable tasks?
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Figure 1: ELMUR overview. Each transformer layer is augmented with an external memory track
that runs in parallel with the token track. Tokens attend to memory through a mem2tok block, while
memory embeddings are updated from tokens through a tok2mem block. LRU block selectively
rewrites memory via replacement or convex blending, ensuring bounded yet persistent storage. This
design enables token-memory interaction and long-horizon recall beyond the attention window.

To address these challenges, we introduce ELMUR (External Layer Memory with Update/Rewrite),
a transformer architecture in which every layer is augmented with a structured external layer mem-
ory (Figure 1). ELMUR combines three ingredients: (i) layer-local memory embeddings that
persist across segments, (ii) bidirectional token–memory read/write interaction via cross-attention
(mem2tok, tok2mem), and (iii) a Least Recently Used (LRU) update block that refreshes memory
through replacement or convex blending, balancing stability and adaptability. This design enables
efficient segment-level recurrence and extends retention of task-relevant information up to 100,000×
beyond the native attention window, making long-horizon decision making feasible in robotics.

We evaluate ELMUR on the synthetic T-Maze (Ni et al., 2023), the robotic MIKASA-
Robo (Cherepanov et al., 2025) suite of sparse-reward manipulation tasks with visual observations,
and the diverse POPGym benchmark (Morad et al., 2023a), all designed to test memory under par-
tial observability. ELMUR achieves a 100% success rate on T-Maze corridors up to one million
steps, nearly doubles baseline performance on MIKASA-Robo, ranking first on 21 of 23 tasks and
increasing the overall success rate across the suite by roughly 70% relative to the strongest prior
method., and obtains the top score on 24 of 48 POPGym tasks. These results demonstrate that EL-
MUR enables stable retention of task-relevant information, efficient long-term storage, and robust
generalization under partial observability.

Our contributions are twofold:

• We propose ELMUR, a transformer with layer-local external memory, bidirectional token-
memory cross-attention, and an LRU-based update rule rewriting memory via replacement
or convex blending (Section 3). This design extends memory horizons far beyond the
attention window.

• We empirically demonstrate that ELMUR achieves robust generalization under partial
observability across synthetic, robotic, and puzzle/control tasks (Section 5).

• We provide a theoretical analysis of LRU-based memory dynamics, establishing formal
bounds on forgetting, retention horizons, and stability of memory embeddings (Section 4).

2 BACKGROUND

Many real-world robotic and control tasks involve partial observability, where the agent cannot
directly access the true system state (Lauri et al., 2022). This setting is modeled as a partially
observable Markov decision process (POMDP), defined as the tuple (S,A,O, T, Z,R, ρ0, γ), with
latent state space S, action space A, and observation space O. The transition dynamics are T :
S × A → ∆(S), where T (s′ | s, a) is the probability of reaching s′ after taking a in s. The
observation function Z : S ×A → ∆(O) specifies Z(o | s′, a), the probability of observing o after

2
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Algorithm 1 ELMUR layer update for segment i at layer ℓ. Inputs are token hidden states h ∈
RB×L×d, memory (m, p) with m ∈RB×M×d, anchors p ∈ ZB×M , and absolute times t. Outputs
are updated hidden states h′ and memory (m′, p′).

// Input embedding (before first layer) – to encode observation
1: h← ObsEncoder(o)

// Token track – sequence processing and enrichment with information from memory
2: h← AddNorm

(
h+ SelfAttention(h; causal mask)

)
3: Brel ← RelativeBias(t, p) // bias for adding temporal dependence
4: h← AddNorm

(
h+CrossAttention(Q=h, K=m, V=m; noncausal mask, Bread)

)
5: h← AddNorm

(
h+TokenFFN(h)

)
6: h′ ← h

// Output decoding (after final layer)
7: a← ActionHead(h′) // map to action distribution and compute loss

// Memory track
8: Brel ← RelativeBias(p, t) // reversed bias for write
9: u← AddNorm

(
m+CrossAttention(Q=m, K=h′, V=h′; noncausal mask, Bwrite)

)
10: ũ← AddNorm

(
u+MemoryFFN(u)

)
11: (m′, p′)← LRU(m, p, ũ, t)
12: return h′, (m′, p′)

reaching s′ under action a. The reward function is R : S × A → R, the initial state distribution is
ρ0 ∈ ∆(S), and γ ∈ (0, 1) is the discount factor.

In the special case of full observability, the observation equals the state (ot ≡ st), reducing the
POMDP to a Markov decision process (MDP). The optimal policy then depends only on the current
state, π∗(at | st). In the general POMDP case, however, the agent cannot access st directly and must
rely on the full history ht = (o0, a0, o1, a1, . . . , ot), yielding π∗(at | ht). A practical alternative
is to approximate history with a learned memory state mt = fϕ(mt−1, ot, at−1), πθ : M →
∆(A), πθ(at | mt), where fϕ is a, for instance, recurrent (Hausknecht & Stone, 2015) or memory-
augmented (Parisotto et al., 2020) update rule.
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Figure 2: LRU-based memory management in EL-
MUR. Each layer maintains M memory slots, initial-
ized with random vectors (green). As new segments
arrive, tokens write updates into empty slots (purple)
by full replacement. Once all slots are filled, the least
recently used slot is refreshed via a convex update with
parameter λ that blends new content with the previous
memory (grey). Anchors below each row indicate the
timestep of the most recent update. This scheme en-
sures bounded capacity while preserving long-horizon
information.

Many real-world decision-making tasks
involve long horizons and partial ob-
servability, where key information may
appear thousands of steps before it is
needed. Standard transformers are lim-
ited by a fixed attention window: naive
extensions of context length increase cost
quadratically, while truncation causes for-
getting. Efficient long-term reasoning
thus requires a mechanism to store and
retrieve task-relevant information across
long trajectories. To this end, we pro-
pose ELMUR (External Layer Memory
with Update/Rewrite), a GPT-style (Rad-
ford et al., 2019) transformer decoder aug-
mented with structured external memory.
Unlike architectures that simply cache hid-
den states (Dai et al., 2019), ELMUR
equips each layer with its own memory
track and explicit read–write operations,
enabling persistent storage and selective
updating via the LRU memory manage-
ment.
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ELMUR Overview. As shown in Figure 1, each ELMUR layer has two coupled tracks. The token
track processes observations into actions, while the memory track persists across segments. Both
interact through cross-attention: memory shapes token representations, and tokens update mem-
ory. Interaction occurs via mem2tok (read) and tok2mem (write) blocks, modulated by relative
biases from token timesteps and memory anchors. Trajectories are split into segments, processed
sequentially for efficiency and recurrent memory updates. At each segment’s end, hidden states up-
date memory, carried forward. LRU memory management fills empty slots first, then refreshes the
least used slot by convexly blending old and new information. This bidirectional design provides
temporally grounded memory for long-horizon decisions. Algorithm 1 summarizes the method.

Segment-Level Recurrence. Feeding infinitely long sequences into a transformer is infeasible,
since self-attention scales quadratically. Splitting into shorter segments reduces cost but complicates
information flow. Segment-level recurrence addresses this by treating the transformer as an RNN
over segments, passing memory from one segment to the next (Dai et al., 2019; Bulatov et al., 2022).
In ELMUR, this memory is realized as layer-local external memory instead of cached activations.
Each layer maintains memory that is read within the current segment and updated before moving to
the next. Formally, with context length L, a trajectory of length T is partitioned into S = ⌈T/L⌉
segments Si: h(i) = TokenTrack

(
Si, sg(m i−1)

)
, where h(i) ∈ RB×L×d denotes the hidden states

of tokens in segment i, computed from the segment Si and the detached memory sg(m i−1) carried
from the previous segment.

Token Track. Within each segment Si, observations are encoded into token embeddings x ∈
RL×d, where d is the model dimension. The token track models local dependencies and augments
them with information from memory m ∈ RM×d. Standard transformers rely on fixed-window self-
attention, whereas ELMUR also retrieves information from its external memory via cross-attention,
allowing predictions to depend not only on recent tokens but on distant past events stored in memory.
Self-attention, equipped with relative positional encodings (Dai et al., 2019) and a causal mask,
models local dependencies within the segment:

hsa = AddNorm(x+ SelfAttention(x)) , (1)
where AddNorm(·) denotes a residual connection followed by normalization. Long-term context is
handled by external memory. Tokens’ hidden states hsa then query memory via the mem2tok:

hmem2tok = AddNorm(hsa +CrossAttention(Q = hsa, K, V = m)) . (2)
Here memory embeddings act as keys and values, with a non-causal mask and a relative bias re-
flecting token-memory temporal distance. Finally, representations are refined with a feed-forward
network (FFN). In contrast to popular Decision Transformer (DT) Chen et al. (2021) that employ
a standard MLP-based FFN, we adopt a DeepSeek-MoE FFN (Dai et al., 2024), following the de-
sign of DeepSeek-V3 (Liu et al., 2024a). Mixture-of-Experts (MoE) improve parameter efficiency
and specialization by routing tokens to a sparse set of experts, scaling capacity without proportional
compute. This design enables expressive updates while keeping inference efficient:

h = AddNorm(hmem2tok + FFN(hmem2tok)) . (3)
The resulting hidden states are then passed to the action head, applied only after the final layer.
Training is supervised, minimizing the error between predicted and demonstrated actions, using
mean squared loss for continuous spaces and cross-entropy for discrete ones. The loss backpropa-
gates through the entire network to update model parameters.

Memory Track. Reading from memory is not enough for long-horizon reasoning; the model must
also write new information. Without an explicit write path, past events would be forgotten or cached
inefficiently. The memory track addresses this by allowing tokens to update persistent memory,
retaining salient information while overwriting less useful content.

Each layer maintains its own memory embeddings m ∈ RM×d. After processing a segment, token
states update memory through the tok2mem block:

mtok2mem = AddNorm(m+CrossAttention(Q = m, K, V = h)) . (4)
As in mem2tok, a non-causal mask is applied, but the relative bias is reversed to favor temporally
aligned memory embeddings. Updates are then refined by a FFN with residual connection:

mnew = AddNorm(mtok2mem + FFN(mtok2mem)) , (5)

4
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analogous to the token track, the FFN uses a DeepSeek-MoE block instead of a standard MLP.

Finally, mnew is merged with existing slots via the LRU rule (Figure 2, Figure 2), filling empty
slots first and otherwise refreshing the least recently used by convex blending. This keeps memory
bounded yet consistently updated with relevant information.

Relative Bias. When memory extends across multiple segments, absolute indices become am-
biguous: the same token position may correspond to different points in the trajectory. To resolve
this, the model requires a signal that encodes relative distances between tokens and memory entries.
ELMUR provides this signal through a learned relative bias added to cross-attention logits:

Attn(Q,K) =
QK⊤
√
dh

+Brel. (6)

The bias Brel is derived from pairwise offsets ∆ = ±(t−p) between a token position t and a memory
anchor p (the last update time of a slot). Offsets are clamped to [−Dmax+1, Dmax−1], where Dmax

is the maximum relative distance supported by the bias table. These clamped values are shifted into
[0, 2Dmax−2] and used to index a learnable embedding table E ∈ R(2Dmax−1)×H , where H is the
number of attention heads. Each offset corresponds to a per-head embedding E[∆] ∈ RH , and
stacking these indices produces

Brel =

{
E[t− p] ∈ RB×H×L×M ,mem2tok (read)

E[p− t] ∈ RB×H×M×L,tok2mem (write).
(7)

Algorithm 2 LRU update for layer memory. Inputs:
current memory (m, p) (may be uninitialized), candi-
date updates ũ, newest segment time t, blend λ∈ [0, 1],
init scale σ. Output: updated memory (m′, p′).

// Initialization (cold start)
1: if m, p uninitialized then
2: m← N (0, σ2I) // initial slots
3: p← −1 // sentinel anchors
4: end if

// Choose write index
5: empty← (p < 0)
6: if any empty then
7: j⋆ ← first(empty) // use first empty slot
8: α← 1 // full replacement
9: else

10: j⋆ ← argminj pj // least recently used
11: α← λ // convex blend
12: end if

// Integrate
13: blend← α ũj⋆ + (1− α)mj⋆

14: m′ ← m; m′
j⋆ ← blend

15: p′ ← p; p′j⋆ ← t
16: return (m′, p′)

In the read path (mem2tok), the bias
prioritizes retrieval from temporally close
memory embeddings while keeping dis-
tant ones accessible. In the write path
(tok2mem), offsets are reversed, guid-
ing updates toward memory embeddings
aligned with the writing tokens. Both di-
rections draw from the same embedding
table E but can learn distinct patterns.
By relying on relative rather than absolute
timestep, ELMUR ensures consistent and
coherent memory interactions across long
horizons.

Memory Management with LRU. Ex-
ternal memory must remain bounded:
storing every token is infeasible, while
naive truncation risks catastrophic forget-
ting. A principled policy is needed to de-
cide which slots to refresh or preserve as
new content arrives. ELMUR employs a
Least Recently Used (LRU) block (Fig-
ure 2, Figure 2) that manages M slots per
layer, each holding a vector and an anchor
(its last update time). By always updating
the least recently used slot, the block en-
sures bounded capacity while retaining context.

At training start, initialization samples embeddings fromN (0, σ2I) and marks them empty. While
empty slots remain, full replacement inserts new vectors directly. Once all slots are filled, the block
switches to convex update, blending the oldest slot with new content:

m i+1
j = λmi+1

new + (1− λ)mi
j , (8)

where λ ∈ [0, 1] is a tunable hyperparameter that controls the balance between overwriting and
retention. By adjusting λ, one can choose whether memory favors fast plasticity (larger λ) or long-
term stability (smaller λ). This policy uses memory capacity fully before overwriting and applies
gradual blending thereafter, enabling bounded yet persistent long-horizon memory.

5
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By combining token-level processing with an explicit memory system, ELMUR offers three core
advantages: (i) relative-bias cross-attention provides temporally grounded read-write access, (ii) the
LRU-based manager ensures bounded capacity while remaining adaptive, and (iii) segment-level
recurrence enables scalable learning over long horizons.

4 THEORETICAL ANALYSIS

Understanding the retention properties of ELMUR’s memory is crucial for characterizing its ability
to handle long-horizon dependencies. In this section, we analyze how information is preserved or
forgotten under the LRU update mechanism. We derive bounds on memory retention and effective
horizons, and connect these results to the empirical behaviors observed in long-horizon tasks.

At the core of ELMUR’s memory module is the convex update rule with blending factor λ ∈ [0, 1].
Let fix a memory embedding j at segment index i. If this memory embedding is selected for update
with new content m i+1

new , the rule (Figure 2) is m i+1
j = λm i+1

new + (1 − λ)m i
j , while all other

memory embeddings n ̸= j remain unchanged: m i+1
n = m i

n. If the memory embedding was
empty, the update reduces to full replacement m i+1

j = m i+1
new .

Proposition 1 (Exponential Forgetting). After k overwrites of memory embedding j, the content
evolves as

m i+k
j = (1− λ)k m i

j +

k∑
u=1

λ(1− λ)k−u m i+u
new , (9)

where m i+u
new denotes the write at update i+u (see Appendix A.1 for a full derivation). Consequently,

the coefficient of the initial content m i
j after k overwrites is (1 − λ)k, and the contribution of the

write performed τ updates earlier is λ(1− λ)τ−1.

Corollary (Half-life). The number of overwrites k0.5 after which the contribution of m i
j halves is

k0.5 = ln(1/2)
ln(1−λ) = ln 2

− ln(1−λ) ∼
ln 2
λ , as λ→ 0. Thus, smaller λ extends retention, while larger λ

accelerates overwriting.

Effective horizon in environment steps. Since only one memory embedding is updated per seg-
ment of length L, a memory is overwritten once every M segments in expectation. The effective
retention horizon H(ϵ) thus quantifies how many environment steps a stored contribution remains
influential before its weight decays below a negligible threshold ϵ, i.e., H(ϵ) = M · L · ln(ϵ)

ln(1−λ) . In
particular, the half-life in environment steps is H0.5 = M ·L · ln 2

− ln(1−λ) ∼ M ·L · ln 2
λ , as λ→ 0.

Unlike models where all memory is updated at every step (like RNNs), ELMUR’s LRU policy
ensures (i) memory embeddings not selected for overwrite retain their content exactly until replace-
ment, and (ii) once selected, their contributions decay exponentially with rate λ. This produces a
retention horizon that scales linearly with both the number of memory embeddings M and the seg-
ment length L, providing a conservative lower bound. In practice, effective horizons are often much
longer (Figure 3).

Proposition 2 (Memory Boundedness). A natural question is whether repeated convex updates
could cause memory values to grow without limit. We show that, under standard bounded-input
assumptions, the norm of every memory embedding remains uniformly bounded throughout training
and inference. Suppose that every new write is norm-bounded, ∥m t

new∥ ≤ C for some constant
C > 0, and the initial memory satisfies ∥m 0

j ∥ ≤ C. Then for all segments i and slots j, it holds that
∥m i

j∥ ≤ C. Since each update is a convex combination of the previous and a bounded new values,
the memory embedding always remains inside the closed ball of radius C. This guarantees stability
of activations even across arbitrarily long trajectories. See Appendix A.2 for the detailed proof.

6
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5 EXPERIMENTS

We evaluate ELMUR on synthetic (Ni et al., 2023) tasks, 48 POPGym puzzle/control tasks (Morad
et al., 2023a), and robotic manipulation (Cherepanov et al., 2025), all designed to test memory under
partial observability. Our study is guided by the following research questions (RQs):

1. RQ1: Does ELMUR retain information across horizons far beyond its attention window?

2. RQ2: How well does ELMUR generalize to shorter and longer sequences?

3. RQ3: Is ELMUR effective on manipulation tasks with visual observations?

4. RQ4: How consistent is ELMUR across puzzles, control, and robotics tasks?

5. RQ5: What is the impact of components of ELMUR on its memorization?

5.1 BENCHMARKS AND BASELINES

We evaluate ELMUR on three benchmarks designed to isolate memory (Appendix, Figure 7). The
T-Maze requires recalling an early cue after traversing a long corridor with sparse rewards. The
MIKASA-Robo suite provides robotic tabletop tasks with RGB observations and continuous ac-
tions, including color-recall (RememberColor) and delayed reversal (TakeItBack). Finally,
POPGym offers a diverse collection of partially observable puzzles and control environments for
evaluating general memory use. Detailed descriptions can be found in Appendix A.4.

We compare against baselines spanning sequence models and offline RL for long-horizon tasks.
We include transformers — Decision Transformer (DT) (Chen et al., 2021) and Recurrent Action
Transformer with Memory (RATE) (Cherepanov et al., 2023) — as representative architectures for
memory-augmented policy learning. We also evaluate DMamba (Ota, 2024), a state-space model
with efficient recurrence, as a recent alternative to attention. For IL/offline RL, we use Behavior
Cloning (BC) via MLP as the simplest supervised baseline, Conservative Q-Learning (CQL) (Kumar
et al., 2020) as a strong offline RL method, and Diffusion Policy (DP) (Chi et al., 2023) as a state-
of-the-art generative policy. Together, these span transformer, state-space, and offline/generative
approaches, providing a competitive reference set for evaluation. We do not compare with online
RL baselines, since they assume interactive data collection with exploration, yielding incomparable
training budgets. Likewise, we omit real-robot experiments to avoid confounds such as latency,
resets, and safety constraints, focusing instead on controlled, reproducible studies.

Experimental Setup. For RQ1, we test T-Maze cue retention by training with short contexts
(L=10, S=3) and evaluating on corridors up to 106 steps. For RQ2, we train on 7 T-Maze
lengths distributions (9–900) and validate on 11 shorter/longer ones (9–9600) to assess interpo-
lation and extrapolation. For RQ3, we use MIKASA-Robo tasks, training by imitation from ex-
pert demonstrations and evaluating zero-shot. For RQ4, we compare T-Maze, POPGym-48, and
MIKASA-Robo to test robustness across synthetic puzzles, control, and robotics. For RQ5, we
ablate RememberColor3-v0, varying M , λ, σ, and (L, S), and remove relative bias, LRU, and
per-layer memory to measure component contributions.

Evaluation Protocol. Unless stated otherwise, each model is trained with three (four for T-Maze)
independent runs (different initialization). For each run we evaluate on 100 episodes with distinct
environment seeds and compute the run mean. We then report the grand mean ± standard error of
the mean (SEM) across the three run means. For per-task leaderboards (e.g., POPGym-48) we apply
this protocol per task and aggregate as specified in the benchmark.

Training Details and Hardware. All models are trained from scratch under the same data budgets
and preprocessing. We use segment-level recurrence with detached memory between segments;
losses are applied on each processed segment. Optimizers, schedulers, and hyperparameters follow
the task-specific configuration table in Appendix, Table 7. All experiments were run on a single
NVIDIA A100 (80 GB) per job. Training/evaluation code paths, seeds, and environment versions
are fixed across methods for reproducibility.
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Figure 3: Success rate on the T-Maze task as a function of inference corridor length. ELMUR
achieves a 100% success rate up to corridor lengths of one million steps. In this figure, the context
length is L = 10 with S = 3 segments; thus ELMUR carries information across horizons 100,000
times longer than its context window.

5.2 RESULTS
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Figure 4: Generalization of ELMUR across
T-Maze lengths. Each cell shows success rate
(mean ± standard error) for training vs. valida-
tion lengths. ELMUR transfers perfectly: models
trained on shorter sequences retain 100% success
up to 9600 steps. Training lengths were split into
three equal segments.

We evaluate ELMUR on T-Maze, MIKASA-
Robo, and POPGym, addressing RQ1–RQ5 on
retention, generalization, manipulation, cross-
domain robustness, and ablations.

RQ1: Retention beyond attention. To test
memory retention, we train on T-Maze corri-
dors of length T while restricting the context
size to L < T , forcing the model to solve tasks
where the cue must be preserved beyond the na-
tive attention span. At validation, we evaluate
on much longer

corridors — up to one million steps — without
increasing L, thereby probing memory reten-
tion far beyond the training horizon. ELMUR
achieves 100% success even under this extreme extrapolation (Figure 3), implying retention hori-
zons nearly 100,000× larger than the attention window (L=10 with only S=3 segments used during
training).

RQ2: Generalization across sequence lengths. We train ELMUR on T-Maze with short contexts
(3 to 300 steps) and then evaluate across 11 validation lengths ranging from 9 to 9600 steps. The
model transfers seamlessly in both directions: it solves tasks shorter than those seen during training
without overfitting to a fixed scale, and it also extrapolates to sequences orders of magnitude longer.
As shown in Figure 4, ELMUR maintains 100% success across all train/test pairs, demonstrating
robust generalization beyond the training horizon.

RQ3: Manipulation with visual observations. Results in Table 1 indicate that EL-
MUR achieves higher success rates than other baselines on the MIKASA-Robo tasks. In

Table 1: Success rates (mean ± standard error) on MIKASA-Robo tasks, averaged over 3 runs with
100 evaluation seeds. ELMUR outperforms baselines, showing stronger memory in manipulation.
See results for all 32 MIKASA-Robo tasks in Appendix, Table 8.

Task RATE DT BC-MLP CQL-MLP DP ELMUR (ours)
RememberColor3-v0 0.65±0.04 0.01±0.01 0.27±0.03 0.29±0.01 0.32±0.01 0.89±0.07
RememberColor5-v0 0.13±0.03 0.07±0.05 0.12±0.01 0.15±0.02 0.10±0.02 0.19±0.03
RememberColor9-v0 0.09±0.02 0.01±0.01 0.12±0.02 0.15±0.01 0.17±0.01 0.23±0.02
TakeItBack-v0 0.42±0.24 0.08±0.04 0.33±0.10 0.04±0.01 0.05±0.02 0.78±0.03
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Table 2: Aggregated returns on 48 POPGym tasks.

RATE DT Rand. BC-MLP BC-LSTM ELMUR
All (48) 9.5 5.8 -12.2 -6.8 9.0 10.4
Puzzle (33) 0.45 -3.5 -14.6 -11.9 -0.2 1.2
Reactive (15) 9.1 9.3 2.3 5.1 9.1 9.2

TakeItBack-v0, it obtains
0.78±0.03 compared to 0.42±0.24
for the next-best model, and in
RememberColor[3,5,9]-v0 its
performance remains stable as the number
of distractors increases. Overall, ELMUR
shows more reliable performance under visual interference in manipulation tasks with pixel inputs.

RQ4: Robustness across domains. Across synthetic (T-Maze), control/puzzle (48 POPGym),
and robotic (MIKASA-Robo) benchmarks, ELMUR consistently outperforms baselines, generaliz-
ing across diverse modalities, actions, and rewards. On POPGym, it achieves the best overall score
(10.4), with the largest gains on memory puzzles (1.2 vs. 0.45 for RATE; DT and BC-LSTM score
below zero), showing the importance of explicit memory for long-term dependencies. On reac-
tive tasks, ELMUR stays competitive without sacrificing puzzle performance, ranking first on 24 of
48 tasks (full results in Table 5). Figure 5 shows consistent per-task gains over DT, especially on
memory-intensive puzzles. Improved retention comes with little overhead: on T-Maze, ELMUR has
2.1M parameters (vs. 1.7M for RATE, 1.8M for DT) yet runs faster per step (6.8±0.5ms) than RATE
(7.2±0.3ms) and DT (10.7±0.1ms). Efficiency stems from (i) a short attention window with long-
term context handled by bounded memory, so complexity depends on memory size not sequence
length, and (ii) MoE feed-forward layers, which raise capacity without proportional compute. Thus,
explicit memory is both effective and efficient for long-horizon RL.

Table 3: Ablation study results.

Setting Score

Baseline ELMUR 1.00± 0.00
Shared memory 0.45± 0.03
No rel. bias 0.95± 0.05
No LRU 0.43± 0.22
No rel. bias; No LRU 0.22± 0.11
MoE→MLP 1.00± 0.00

RQ5: Ablation Study. We ablate ELMUR’s memory design
on RememberColor3-v0 (Figure 6, Table 3). Unless noted,
models use per-layer memory, relative-bias token–memory cross-
attention, and LRU-based updates; shared memory denotes em-
beddings shared across layers. In Figure 6 (b–d) the LRU factor
is fixed to λ = 0 to isolate other effects. Results average three
runs of 20 episodes. Performance scales with memory size M :
when M ≥ N (the number of segments needed), success is near-
perfect; when M < N , accuracy drops sharply, especially near
M ≈ N (Figure 6, c–d). Intermediate blending (λ ≈ 0.4–0.6) is unstable (Figure 6, a), while
larger initialization σ mitigates collapse (Figure 6, b). Finer recurrence (shorter segments, larger N )
stresses capacity unless M scales accordingly. Component ablations confirm that capacity and LRU
dominate. Removing LRU leaves stale entries, and removing both LRU and relative bias prevents
effective retrieval. Relative bias gives modest gains, while shared memory degrades performance,
underscoring the value of layer-local design. Finally, replacing MoE-FFN with MLP-FFN preserves
accuracy while improving computational efficiency.

To confirm that memory mechanisms do not harm performance on fully observable MDPs, we eval-
uated all models on the simple control task CartPole-v1 (Towers et al., 2024). ELMUR, RATE,
RMT, TrXL, BC-MLP, BC-LSTM, and CQL all achieved the maximum return of 500± 0, showing
that adding memory does not break performance in standard MDP settings. See additional results on
more competitive D4RL benchmark (Todorov et al., 2012) with MDP tasks in the Appendix, Sec-
tion A.5, Table 4.
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Figure 5: ELMUR compared to DT on all 48 POPGym tasks. Each model was trained with three
independent runs, validated over 100 episodes each. Bars show the mean performance with 95%
confidence intervals computed over these three means. ELMUR achieves consistent improvements
over DT, with the largest gains on memory-intensive puzzles.
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Figure 6: Ablations of ELMUR’s memory hyperparameters on RememberColor3-v0. (a)
LRU blending factor (λ), (b) memory embeddings initialization (σ), (c) number of memory embed-
dings (M ), and (d) segment configuration (L − S). Curves compare settings where the number of
memory embeddings is smaller than the required segments to solve the task (M < N ) versus larger
(M > N ). Results show that sufficient memory capacity (M ≥ N ) yields stable success, while
under-provisioned memory (M < N ) is highly sensitive to λ, σ, and segmentation.

6 RELATED WORK

Manipulation. Transformer approaches to robotic manipulation can be broadly categorized by
their underlying design principles. Perception-centric visuomotor transformers focus on multi-view
or 3D perception to improve near fully observable control (Shridhar et al., 2023; Goyal et al., 2024).
Sequence/skill modeling distills demonstrations into reusable action chunks but remains bottle-
necked by limited context (Huang et al., 2023; Kobayashi et al., 2025). Planning/value-augmented
transformers integrate transformers with planning or value learning for closed-loop control under
finite context (Zhang et al., 2025b; Hu et al., 2025). Alternative backbones adopt state-space models
or diffusion for efficiency, but without persistent memory (Liu et al., 2024b; Chi et al., 2023). Scal-
ing to VLA broadens task coverage with language but still suffers from fixed horizons, with some
remedies via summarization, feature banks, or hierarchy (Zitkovich et al., 2023; Team et al., 2024;
Kim et al., 2024; Fang et al., 2025; Shi et al., 2025). ELMUR differs by training as a standard IL
transformer while removing the context bottleneck through structured, layer-local external memory.

Memory. Efforts to extend sequence models to long horizons take several forms. Implicit recur-
rence and state-space models compress history in hidden dynamics, offering efficiency but little
control over forgetting (Beck et al., 2024; Gu & Dao, 2023). External memory with learned ac-
cess provides addressable storage but complicates optimization (Graves et al., 2016; Santoro et al.,
2016). Transformer context extension retains history via caches or auxiliary slots but keeps mem-
ory peripheral (Dai et al., 2019). In RL, memory is often implemented through episodic buffers
for salient events (Lampinen et al., 2021) or sequence-model adaptations that retrofit transformers
for recurrence (Parisotto et al., 2020; Cherepanov et al., 2024). Architectures vary in integration:
RATE (Cherepanov et al., 2023) concatenates memory with tokens, Memformer (Wu et al., 2020)
uses global slots, and Block-Recurrent Transformers (Hutchins et al., 2022) recycle hidden states.
ELMUR instead gives each layer an external memory with dedicated mem2tok/tok2mem cross-
attention and LRU updates, yielding bounded memory for long-horizon tasks (Appendix A.6).

7 CONCLUSION

We introduced ELMUR, a transformer architecture with layer-local external memory, bidirectional
token–memory cross-attention, and an LRU-based update rule. Unlike prior methods, ELMUR
integrates explicit memory into every layer, achieving retention horizons up to 100,000× beyond
the native attention window. Our analysis establishes formal guarantees on half-life and bounded-
ness under convex blending, and experiments on T-Maze, 48 POPGym tasks, and MIKASA-Robo
demonstrate consistent improvements over strong baselines, underscoring reliable credit assignment
under partial observability. We envision ELMUR as a simple and extensible framework for long-
horizon decision-making with scalable memory in sequential control.

REPRODUCIBILITY STATEMENT

We have taken several measures to ensure the reproducibility of our results. Model details: A com-
plete description of the ELMUR architecture, including pseudocode for the layer update and the
LRU-based memory module, is provided in Section 3, Algorithm 1, and Figure 2. Theoretical re-
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sults: All assumptions and formal proofs of our propositions on exponential forgetting, half-life, and
boundedness are presented in Section 4 and detailed in Appendix A.1–A.2. Experimental setup:
Benchmarks, training procedures, and evaluation protocols are described in Section 5, with addi-
tional specifications (hyperparameters, dataset preprocessing, random seeds, and hardware setup)
reported in Appendix 7 and A.4. Baselines: All baselines are implemented from open-source li-
braries or faithfully re-implemented with hyperparameters matched to their original publications,
as described in Section 5 and Appendix A.6. Code and data: An anonymous repository with the
implementation of ELMUR, training scripts, and configuration files is provided in the supplemen-
tary material. Together, these resources enable full replication of both our theoretical analysis and
empirical findings.
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A APPENDIX

A.1 PROOF OF EXPONENTIAL FORGETTING IN LRU UPDATES

Proposition 1 (Exponential Forgetting). Fix a slot j and a segment index i. Suppose this slot is
updated k times at segments i+ 1, . . . , i+ k according to

m t
j = λm t

new + (1− λ)m t−1
j , t = i+ 1, . . . , i+ k, (10)

with 0 ≤ λ ≤ 1. Then

m i+k
j = (1− λ)k m i

j +

k∑
u=1

λ(1− λ)k−u m i+u
new . (11)

Consequently, the coefficient of the initial content m i
j after k overwrites is (1− λ)k, and the coeffi-

cient of the write performed τ updates ago (at segment i+ τ ) is λ(1− λ)τ−1.

Proof. We prove Equation 11 by induction on k.

Base case k = 1. By the update rule,

m i+1
j = λm i+1

new + (1− λ)m i
j , (12)

which matches Equation 11 with k = 1.

Induction step. Assume Equation 11 holds for some k ≥ 1. For k + 1,

m i+k+1
j = λm i+k+1

new + (1− λ)m i+k
j . (13)

Insert the induction hypothesis for m i+k
j :

m i+k+1
j = λm i+k+1

new + (1− λ)

[
(1− λ)k m i

j +

k∑
u=1

λ(1− λ)k−u m i+u
new

]
. (14)

Distribute (1− λ) and regroup terms:

m i+k+1
j = (1− λ)k+1m i

j +

k∑
u=1

λ(1− λ)(k+1)−u m i+u
new + λm i+k+1

new , (15)

which is exactly Equation 11 with k replaced by k + 1. This completes the induction.

Finally, the coefficients in Equation 11 form a convex combination:

(1− λ)k +

k∑
u=1

λ(1− λ)k−u = (1− λ)k + λ

k−1∑
r=0

(1− λ)r = 1, (16)

so it is meaningful to call them “fractions” of contribution.

Corollary (Half-life). The number of overwrites k0.5 after which the contribution of m i
j halves

satisfies

(1− λ)k0.5 = 1
2 =⇒ k0.5 =

ln(1/2)

ln(1− λ)
. (17)

Equivalently,

k0.5 =
ln 2

− ln(1− λ)
. (18)

Using the Maclaurin series expansion ln(1− λ) ∼ −λ as λ→ 0, we obtain

lim
λ→0

k0.5 · λ = ln 2. (19)

Hence,

k0.5 ∼
ln 2

λ
as λ→ 0, (20)

showing that smaller λ yields longer retention horizons, while larger λ overwrites past content more
aggressively.
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A.2 BOUNDEDNESS OF MEMORY EMBEDDINGS

Fix a slot j and consider its update rule,

m i+1
j = λm i+1

new + (1− λ)m i
j , 0 ≤ λ ≤ 1. (21)

We prove the claim by induction on i.

Base case. At i = 0, the assumption gives ∥m 0
j ∥ ≤ C.

Induction step. Assume ∥m i
j∥ ≤ C for some i ≥ 0. Using the update rule,

∥m i+1
j ∥ = ∥λm i+1

new + (1− λ)m i
j∥. (22)

By the triangle inequality and the inductive hypothesis,

∥m i+1
j ∥ ≤ λ∥m i+1

new ∥+ (1− λ)∥m i
j∥ ≤ λC + (1− λ)C = C. (23)

Thus ∥m i+1
j ∥ ≤ C, completing the induction.

Therefore, for all i, the memory embedding satisfies ∥m i
j∥ ≤ C.

A.3 MEMORY-INTENSIVE ENVIRONMENTS

(a) MIKASA-Robo: RememberColor9-v0 (top)
and TakeItBack-v0 (bottom).

T-Maze

(b) T-Maze. (c) Some POPGym tasks.

Figure 7: Environments used in experiments.

Event–recall pairs and correlation horizon.
Following (Cherepanov et al., 2024), let α∆t

te
denote an event of duration ∆t starting at time
te, and let βtr (α

∆t
te ) be a later decision point

that must recall information from that event.
Define the correlation horizon as

ξ = tr − te −∆t+ 1. (24)

For an environment, collect all event–recall
horizons into the set Ξ = {ξn}n.

Recent works have proposed alternative
but complementary definitions of memory-
intensive environments. For instance, Wang
et al. (2025b) formalize memory demand
structures that capture the minimal past suffi-
cient to predict future transitions and rewards,
while Yue et al. (2024) introduce memory
dependency pairs to annotate which past observations must be recalled for correct decisions.
Both perspectives emphasize controllable ways to scale memory difficulty, either by increasing
order/span or by manipulating dependency graphs. In this paper, we adopt the event–recall horizon
framework for clarity and analytical tractability, but note that these alternative views are broadly
consistent and provide useful tools for designing and benchmarking memory-intensive tasks.

Definition (memory-intensive environment). A POMDP M̃P is memory-intensive if minn Ξ >
1; i.e., every relevant decision depends on information separated by at least one intervening step,
making reactive (myopic) policies insufficient. This definition cleanly separates POMDPs that gen-
uinely require memory from those that are effectively MDP-like.

A.4 MEMORY-INTENSIVE ENVIRONMENTS

The memory-intensive environments used in this work are presented in Figure 7.

T-Maze. The T-Maze (Ni et al., 2023) features a corridor ending in a junction with two goals.
At the start, one goal is randomly revealed, and the agent must recall this cue after traversing the
corridor to choose the correct branch. Observations are vectors; actions are discrete. Rewards are
sparse, provided only upon reaching the correct goal. The task tests whether the model can retain
early cues across long delays.
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Table 4: Normalized scores on MuJoCo tasks from the D4RL benchmark (Todorov et al.,
2012). Baselines include Trajectory Transformer (TT) (Janner et al., 2021), Decision Transformer
(DT) (Chen et al., 2021), Conservative Q-Learning (CQL) (Kumar et al., 2020), and Behavior
Cloning (BC) from (Chen et al., 2021). Top-1 and Top-2 results are highlighted. (R, o, a) and
(o) denote two conditioning modes of ELMUR: conditioning on returns-to-go, observations, and
actions, or conditioning on observations alone, respectively.

Dataset Environment CQL DT BC TT RATE ELMUR (R, o, a) ELMUR (o)

ME HalfCheetah 91.6 86.8±1.3 59.9 95.0±0.2 87.4±0.1 86.4±2.7 89.1±0.6
ME Hopper 105.4 107.6±1.8 79.6 110.0±2.7 112.5±0.2 111.7±0.2 85.3±1.6
ME Walker2d 108.8 108.1±0.2 36.6 101.9±6.8 108.7±0.5 108.9±0.2 108.4±0.1

M HalfCheetah 44.4 42.6±0.1 43.1 46.9±0.4 43.5±0.3 43.2±0.1 43.1±0.1
M Hopper 58.0 67.6±1.0 63.9 61.1±3.6 77.4±1.4 78.0±0.8 78.6±1.0
M Walker2d 72.5 74.0±1.4 77.3 79.0±2.8 80.7±0.7 79.4±0.2 79.5±0.4

MR HalfCheetah 45.5 36.6±0.8 4.3 41.9±2.5 39.0±0.6 40.4±0.6 39.8±1.0
MR Hopper 95.0 82.7±7.0 27.6 91.5±3.6 83.7±8.2 64.8±1.6 87.6±1.7
MR Walker2d 77.2 66.6±3.0 36.9 82.6±6.9 73.7±1.4 75.0±6.8 60.8±1.7

Average 77.6 74.7 47.7 78.9 78.5 76.4 74.7

MIKASA-Robo benchmark. We further evaluate on the MIKASA-Robo bench-
mark (Cherepanov et al., 2025), which provides robotic tabletop manipulation tasks designed
for memory evaluation. Each environment simulates a 7-DoF arm with a two-finger gripper.
Observations are paired RGB images (3 × 128 × 128) from a static and wrist camera; actions are
continuous (7 joints + gripper). Rewards are binary, given only on task success. We study two
families of MIKASA-Robo tasks: (i) RememberColor[3,5,9]-v0, where the agent must
recall the color of a hidden cube after a delay with distractors, and (ii) TakeItBack-v0, where
the agent first moves a cube to a goal, then must return it once the goal changes.

POPGym benchmark. POPGym benchmark (Morad et al., 2023a) is a large suite of 48 partially
observable environments designed to stress agent memory. The tasks span two categories: (i) di-
agnostic memory puzzles, which require agents to remember cues or solve algorithmic sequence
problems (e.g., copy, reverse, n-back, and long-horizon T-Mazes), and (ii) partially observable con-
trol tasks, which adapt classic control benchmarks such as CartPole, MountainCar, and LunarLander
to observation-limited settings. This diversity allows POPGym to test both symbolic memory skills
and generalization in continuous control, providing a broad and challenging benchmark for evalu-
ating memory-augmented RL methods. Detailed results across all 48 POPGym tasks for each of
considered baselines are presented in Table 5.

A.5 TRAJECTORY CONDITIONING

To assess (1) how ELMUR behaves on standard high-dimensional MDP control tasks and (2) how
different conditioning schemes influence performance, we evaluate it on the MuJoCo domains of the
D4RL benchmark (Todorov et al., 2012). The datasets contain trajectories of heterogeneous quality,
including many far from expert level, which typically requires conditioning on returns-to-go and
actions (as in DT (Chen et al., 2021)) to enable trajectory stitching.

We therefore test two conditioning modes for ELMUR: (R, o, a), analogous to DT, and o-only,
as in standard behavior cloning. Despite the lower quality of D4RL data, ELMUR achieves an
average normalized score of 76.4 under (R, o, a) conditioning, only about 2% higher than with o-
only conditioning. This demonstrates that the model remains robust to the choice of conditioning
variables and does not rely on access to return-to-go or action labels to perform well.

Overall, ELMUR matches or exceeds the performance of several established offline RL baselines
on these MDP tasks, confirming that its strong results are not restricted to memory-centric POMDP
environments. Its competitive behavior across conditioning modes further highlights its versatility
and ability to leverage suboptimal trajectories effectively.
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Table 5: POPGym benchmark results. Reported scores are mean± standard error, averaged over 3
runs and evaluated with 100 random seeds. Across 21 partially observable tasks spanning puzzle and
control domains, ELMUR achieves the best performance on 12 tasks, underscoring the effectiveness
of its memory module for reasoning under partial observability.

POPGym-48 Task RATE DT Random BC-MLP BC-LSTM ELMUR Expert
PPO-GRU

AutoencodeEasy-v0 -0.29±0.00 -0.47±0.00 -0.50±0.00 -0.47±0.00 -0.32±0.00 -0.26±0.00 -0.26
AutoencodeMedium-v0 -0.46±0.00 -0.49±0.00 -0.50±0.01 -0.50±0.00 -0.44±0.00 -0.44±0.00 -0.43
AutoencodeHard-v0 -0.47±0.00 -0.49±0.00 -0.50±0.00 -0.49±0.00 -0.47±0.00 -0.46±0.00 -0.48

BattleshipEasy-v0 -0.81±0.02 -0.93±0.03 -0.46±0.01 -1.00±0.00 -0.49±0.01 -0.79±0.02 -0.35
BattleshipMedium-v0 -0.92±0.01 -0.97±0.01 -0.41±0.00 -1.00±0.00 -0.67±0.01 -0.79±0.01 -0.40
BattleshipHard-v0 -0.91±0.02 -0.91±0.03 -0.39±0.01 -1.00±0.00 -0.81±0.02 -0.80±0.00 -0.43

ConcentrationEasy-v0 -0.06±0.02 -0.05±0.01 -0.19±0.01 -0.92±0.00 -0.14±0.00 -0.14±0.01 -0.12
ConcentrationMedium-v0 -0.25±0.00 -0.25±0.01 -0.19±0.00 -0.92±0.00 -0.19±0.01 -0.24±0.00 -0.44
ConcentrationHard-v0 -0.84±0.00 -0.84±0.00 -0.84±0.00 -0.88±0.00 -0.84±0.00 -0.82±0.00 -0.87

CountRecallEasy-v0 0.07±0.01 -0.46±0.01 -0.93±0.00 -0.92±0.00 0.05±0.00 0.03±0.01 0.22
CountRecallMedium-v0 -0.54±0.00 -0.81±0.02 -0.93±0.00 -0.92±0.00 -0.56±0.00 -0.56±0.01 -0.55
CountRecallHard-v0 -0.47±0.01 -0.75±0.03 -0.88±0.00 -0.88±0.00 -0.47±0.00 -0.47±0.00 -0.48

HigherLowerEasy-v0 0.50±0.00 0.50±0.00 0.00±0.01 0.47±0.00 0.50±0.00 0.50±0.00 0.51
HigherLowerMedium-v0 0.52±0.00 0.51±0.00 0.01±0.01 0.50±0.00 0.51±0.01 0.51±0.00 0.49
HigherLowerHard-v0 0.50±0.00 0.50±0.00 -0.01±0.00 0.49±0.00 0.50±0.00 0.50±0.00 0.49

LabyrinthEscapeEasy-v0 0.95±0.00 0.80±0.01 -0.39±0.00 0.72±0.05 0.92±0.01 0.92±0.00 0.95
LabyrinthEscapeMedium-v0 -0.56±0.01 -0.67±0.04 -0.84±0.04 -0.71±0.03 -0.69±0.02 -0.54±0.01 -0.49
LabyrinthEscapeHard-v0 -0.81±0.01 -0.82±0.01 -0.94±0.01 -0.89±0.01 -0.86±0.00 -0.82±0.01 -0.94

LabyrinthExploreEasy-v0 0.95±0.00 0.88±0.06 -0.34±0.01 0.87±0.01 0.93±0.00 0.96±0.00 0.96
LabyrinthExploreMedium-v0 0.88±0.00 0.86±0.01 -0.61±0.00 0.45±0.01 0.82±0.01 0.86±0.01 0.87
LabyrinthExploreHard-v0 0.79±0.00 0.77±0.01 -0.73±0.00 0.26±0.01 0.71±0.01 0.84±0.00 0.79

MineSweeperEasy-v0 0.15±0.03 -0.33±0.04 -0.26±0.03 -0.47±0.01 0.20±0.00 -0.17±0.02 0.28
MineSweeperMedium-v0 -0.20±0.00 -0.37±0.02 -0.39±0.01 -0.48±0.00 -0.16±0.00 -0.32±0.00 -0.10
MineSweeperHard-v0 -0.44±0.00 -0.40±0.01 -0.43±0.00 -0.49±0.00 -0.35±0.01 -0.39±0.01 -0.27

MultiarmedBanditEasy-v0 0.37±0.01 0.27±0.01 0.02±0.00 0.05±0.00 0.17±0.02 0.43±0.01 0.62
MultiarmedBanditMedium-v0 0.32±0.01 0.35±0.01 0.01±0.00 0.21±0.01 0.14±0.00 0.32±0.01 0.59
MultiarmedBanditHard-v0 0.22±0.03 0.27±0.01 0.01±0.00 0.01±0.00 0.17±0.01 0.22±0.01 0.43

NoisyPositionOnlyCartPoleEasy-v0 0.88±0.03 0.87±0.02 0.11±0.00 0.23±0.00 0.44±0.01 0.59±0.02 0.98
NoisyPositionOnlyCartPoleMedium-v0 0.33±0.01 0.34±0.00 0.12±0.01 0.18±0.00 0.25±0.01 0.27±0.00 0.57
NoisyPositionOnlyCartPoleHard-v0 0.18±0.01 0.17±0.01 0.11±0.00 0.16±0.00 0.22±0.01 0.22±0.01 0.36

NoisyPositionOnlyPendulumEasy-v0 0.87±0.00 0.84±0.01 0.27±0.01 0.31±0.00 0.88±0.00 0.88±0.00 0.90
NoisyPositionOnlyPendulumMedium-v0 0.68±0.00 0.63±0.01 0.27±0.01 0.30±0.00 0.72±0.00 0.72±0.00 0.73
NoisyPositionOnlyPendulumHard-v0 0.60±0.01 0.56±0.01 0.26±0.00 0.28±0.00 0.66±0.00 0.65±0.00 0.67

PositionOnlyCartPoleEasy-v0 0.93±0.03 1.00±0.00 0.12±0.00 0.15±0.00 0.17±0.00 1.00±0.00 1.00
PositionOnlyCartPoleMedium-v0 0.07±0.00 0.34±0.08 0.05±0.00 0.09±0.00 0.12±0.00 0.11±0.00 1.00
PositionOnlyCartPoleHard-v0 0.05±0.01 0.03±0.00 0.04±0.00 0.05±0.00 0.06±0.00 0.10±0.00 1.00

PositionOnlyPendulumEasy-v0 0.54±0.02 0.51±0.03 0.27±0.00 0.29±0.00 0.91±0.00 0.52±0.00 0.92
PositionOnlyPendulumMedium-v0 0.49±0.01 0.55±0.01 0.26±0.00 0.30±0.00 0.89±0.00 0.50±0.01 0.88
PositionOnlyPendulumHard-v0 0.47±0.01 0.49±0.01 0.26±0.00 0.28±0.00 0.82±0.00 0.63±0.01 0.82

RepeatFirstEasy-v0 1.00±0.00 0.45±0.16 -0.49±0.01 -0.50±0.00 1.00±0.00 1.00±0.00 1.00
RepeatFirstMedium-v0 0.99±0.01 -0.21±0.18 -0.50±0.00 -0.50±0.00 0.99±0.01 0.99±0.00 1.00
RepeatFirstHard-v0 0.10±0.02 0.42±0.14 -0.50±0.00 -0.50±0.00 -0.50±0.00 0.99±0.01 0.99

RepeatPreviousEasy-v0 1.00±0.00 1.00±0.00 -0.49±0.01 -0.52±0.00 1.00±0.00 1.00±0.00 1.00
RepeatPreviousMedium-v0 -0.38±0.01 -0.38±0.00 -0.50±0.01 -0.50±0.00 -0.38±0.00 -0.39±0.00 -0.39
RepeatPreviousHard-v0 -0.46±0.00 -0.47±0.00 -0.51±0.00 -0.48±0.00 -0.45±0.00 -0.46±0.00 -0.48

VelocityOnlyCartpoleEasy-v0 1.00±0.00 1.00±0.00 0.11±0.00 0.99±0.00 1.00±0.00 1.00±0.00 1.00
VelocityOnlyCartpoleMedium-v0 1.00±0.00 1.00±0.00 0.06±0.00 0.83±0.01 1.00±0.00 1.00±0.00 1.00
VelocityOnlyCartpoleHard-v0 1.00±0.00 0.96±0.02 0.04±0.00 0.63±0.00 1.00±0.00 1.00±0.00 0.99

Sum of returns 9.54 5.80 -12.24 -6.83 8.96 10.41 16.51

A.6 EXTENDED RELATED WORK

Transformers for manipulation. Work on transformer-based manipulation splits into character-
istic families with complementary strengths and limits. Perception-centric visuomotor transformers
emphasize 3D or multi-view geometry to map pixels to precise end-effector actions under (near) full
observability, excelling at spatial alignment but assuming short temporal credit assignment: Per-
Act (Shridhar et al., 2023), RVT (Goyal et al., 2023), RVT-2 (Goyal et al., 2024). Sequence/skill
models distill demonstrations into reusable action chunks and long-horizon trajectories, improv-
ing sample efficiency but remaining bottlenecked by finite context windows: ACT (Zhao et al.,
2023), Skill Transformer (Huang et al., 2023), ILBiT (Kobayashi et al., 2025). Planning/RL-driven
transformers blend sequence modeling with value learning or planning for closed-loop control un-
der uncertainty, yet still inherit fixed-context limitations: OPTIMUS (Dalal et al., 2023), Action-
Flow (Funk et al., 2024), Q-Transformer (Chebotar et al., 2023), CCT/ARP (Zhang et al., 2025b),
FLaRe (Hu et al., 2025). Alternative backbones (state-space, diffusion) target long continuous hori-
zons and smooth control but lack explicit persistent state: RoboMamba (Liu et al., 2024b), Diffusion
Policy (Chi et al., 2023).
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VLA models for manipulation. VLA models broaden task coverage by conditioning on language
and scaling data, while keeping the transformer core unchanged and context-bounded. Instruction-
following generalists demonstrate broad skill repertoires with language prompts but no explicit long-
term memory: RT-1 (Brohan et al., 2022), RT-2 (Zitkovich et al., 2023), Octo (Team et al., 2024),
OpenVLA (Kim et al., 2024), VIMA (Jiang et al., 2022). Efficiency/modularity variants freeze
large encoders and train lightweight adapters or experts for practicality at scale: RoboFlamingo (Li
et al., 2023), CogACT (Li et al., 2024), FLOWER (Reuss et al., 2025), NinA (Tarasov et al., 2025).
Reasoning/hierarchy extensions inject geometric priors, step-wise reasoning, or multi-level control
while still relying on finite windows: 3D-VLA (Zhen et al., 2024), CoT-VLA (Zhao et al., 2025),
TraceVLA (Zheng et al., 2024), HiRT (Zhang et al., 2024), DP-VLA (Han et al., 2024). Special-
ized and hybrid designs tailor the backbone to domain constraints (dexterous hands, spatial priors) or
mix diffusion with autoregression: HybridVLA (Liu et al., 2025), DexVLA (Wen et al., 2025a), Spa-
tialVLA (Qu et al., 2025), OpenVLA-OFT (Kim et al., 2025). Generalist robot agents pursue open-
world embodiment with growing breadth but inherit the same temporal limitations: TinyVLA (Wen
et al., 2025b), π0 (Black et al., 2024), π0.5 (Intelligence et al., 2025), GR00T N1 (Bjorck et al.,
2025), Gemini Robotics (Team et al., 2025), NORA (Hung et al., 2025).

Memory in Deep Learning. Mechanisms for long-term information fall into three broad tracks.
Implicit recurrence and long-range sequence models retain information in hidden dynamics but offer
limited, indirect control over storage and forgetting: LSTM (Hochreiter & Schmidhuber, 1997), xL-
STM (Beck et al., 2024), linear-attention Transformers (Katharopoulos et al., 2020), RWKV (Peng
et al., 2023), S4 (Gu et al., 2021), Mamba (Gu & Dao, 2023). Explicit external memory with learned
read–write provides addressable storage with content-based access, trading off simplicity for opti-
mization/scaling complexity: NTM (Graves et al., 2014), DNC (Graves et al., 2016), Memory Net-
works (Weston et al., 2014), differentiable memory for meta-learning (Santoro et al., 2016), recent
variants (Ahmadi, 2020). Transformer context extension pushes horizons via cached activations,
compression, or auxiliary memory modules but typically keeps memory peripheral to the core to-
ken computation: Transformer-XL (Dai et al., 2019), Compressive Transformer (Rae et al., 2019),
Memorizing Transformer (Wu et al., 2022), Ring Attention (Liu et al., 2023), Memformer (Wu et al.,
2020), associative-memory Transformers (Rodkin et al., 2024), ERNIE-style memory (Ding et al.,
2020), test-time memorization (TiTANS) (Behrouz et al., 2024).

Memory in RL. In partially observed decision processes, memory is not optional; it is the
state estimator. Spatial/episodic buffers externalize salient facts in read–write maps or associa-
tive stores (navigational and episodic use-cases): Neural Map (Parisotto & Salakhutdinov, 2017),
HCAM (Lampinen et al., 2021), Stable Hadamard Memory (Le et al., 2024). Sequence-model adap-
tations retrofit transformers for recurrence and stability in RL, improving long-horizon training but
leaving persistence bounded by context: DTQN (Esslinger et al., 2022), GTrXL (Parisotto et al.,
2020), AGaLiTe (Pramanik et al., 2023), AMAGO-2 (Grigsby et al., 2024). Evaluation frameworks
formalize memory demands and failure modes under partial observability: (Cherepanov et al., 2024;
Yue et al., 2024; Wang et al., 2025b). Transformers with external stores for RL insert explicit mem-
ory alongside the policy, but often as a sequence-level attachment: RATE (Cherepanov et al., 2023),
FFM (Morad et al., 2023b), Re:Frame (Zelezetsky et al., 2025).

Memory in manipulation tasks. Long-horizon, partially observed manipulation has motivated
three practical extensions. Trajectory summarization compresses the past into a short token set,
trading completeness for compactness: TraceVLA (Zheng et al., 2024). External feature banks
cache recent visual features for retrieval, focusing attention but leaving distant history underrepre-
sented: SAM2Act+ (Fang et al., 2025). Structured memory modules interface an explicit store with
the policy to persist scene/task variables: MemoryVLA (Shi et al., 2025). Hierarchies shift tem-
poral burden to slow planners or high-level controllers, which may mask but not remove the need
for persistent state at the policy layer: HiRT (Zhang et al., 2024), DP-VLA (Han et al., 2024). For
evaluation, targeted benchmarks isolate memory factors: MemoryBench (Fang et al., 2025); broader
suites capture multiple memory types and delays: MIKASA-Robo (Cherepanov et al., 2025).
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Table 6: Returns on ViZDoom-Two-Colors (mean ± standard error over 6 runs). Top-1 and Top-2
results are highlighted.

Method Return (mean ± sem)

ELMUR 55.28± 0.94
RATE 59.21± 1.19
DT 31.45± 1.21
RMT 53.53± 3.15
TrXL 49.62± 0.88
BC-LSTM 52.16± 2.59
CQL-MLP 12.49± 0.19
Random 4.78

A.7 3D VISUAL NAVIGATION

To evaluate ELMUR’s ability to handle 3D long-horizon navigation with visual input, we addition-
ally experiment in the ViZDoom-Two-Colors environment (Sorokin et al., 2022). The agent moves
in a room with an acid floor that continuously drains health at every timestep. At the beginning of
each episode it briefly observes a single colored pole (green or red) for 45 steps. The pole then dis-
appears, and the agent must navigate among green and red objects scattered on the floor and collect
only those whose color matches the initial pole in order to receive rewards and restore health. The
results in Table 6 show that ELMUR matches the performance of the previous best baseline within
statistical uncertainty, indicating that ELMUR is effective not only on memory-intensive manipula-
tion tasks but also on challenging memory-dependent navigation tasks with 3D visual observations.

A.8 TRAINING PROCESS

When training ELMUR, we compute the loss on every segment processed recursively, detaching the
memory state between segments (i.e., without backpropagation through time). The choice of loss
depends on the task domain: for T-Maze, CartPole-v1, and a subset of POPGym tasks with dis-
crete actions, we apply a cross-entropy loss; for MIKASA-Robo and the remaining POPGym tasks
with continuous actions, we use a mean-squared error (MSE) loss. The ELMUR hyperparameters
used in the experiments are presented in The ELMUR hyperparameters used in the experiments are
presented in Table 7.

For data, we follow a consistent offline imitation-learning setup. Each MIKASA-Robo environment
provides a dataset of 1000 expert demonstrations generated by a PPO policy trained with oracle-level
state access. For T-Maze, we collect 6000 successful oracle-level trajectories. For POPGym, we
adopt the datasets of Morad et al. (2023a), consisting of 3000 trajectories per environment generated
by a PPO-GRU expert. Finally, for CartPole-v1, we use 1000 successful trajectories collected from
a pre-trained PPO policy.

Figure 8: ViZDoom-Two-Colors environment.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Parameter RememberColor TakeItBack T-Maze POPGym-AutoencodeEasy CartPole-v1

dmodel 128 32 128 64 128
Routed dff 128 256 32 128 128
Shared dff 128 32 512 256 256
Layers 4 2 2 12 4
Heads 16 16 2 4 4
Experts (MoE) 16 1 2 1 4
Shared Experts 1 1 2 2 1
Top-k routing 2 1 3 1 2
Memory size 256 32 2 8 16
Memory init std 0.1 0.001 0.001 0 0.01
Memory dropout 0.06 0.23 0.01 0.17 0.05
LRU blend α 0.40 0.20 0.05 0.80 0.9
Dropout 0.13 0.01 0.10 0.14 0.10
Dropatt 0.30 0.18 0.17 0.26 0.10
Label smoothing 0.21 0.20 0.16 0.22 0.00
Context length 20 60 10 35 30
Batch size 64 64 128 128 512
Learning rate 2.05e-4 2.57e-4 2.06e-4 1.16e-4 3.0e-4
Warmup steps 30000 30000 10000 50000 1000
Cosine decay True False True False True
LR end factor 0.1 0.01 1.0 0.01 0.1
Weight decay 0.001 0.01 0.0001 0.1 0.01
Epochs 200 300 1000 800 100
Grad clip 5 1 5 5 1.0
Beta1 0.99 0.9 0.95 0.99 0.9
Beta2 0.99 0.99 0.999 0.99 0.999

Table 7: Hyperparameters for ELMUR. We report all architecture and training parameters used
across tasks.

A.9 MEMORY PROBING

To examine whether ELMUR stores task-relevant information in its external memory rather than
relying solely on increased parameter count, we perform a controlled memory probing study on
the RememberColor3-v0 environment. The goal is to determine whether memory embeddings
contain linearly or nonlinearly decodable information about the target cube color, which serves as
the minimal sufficient statistic required for correct decision making in the recall stage of the task.

Dataset construction. We first train an ELMUR policy to expert-level performance on
RememberColor3-v0. Using the trained policy, we collect 1000 evaluation episodes and ex-
tract, at every timestep, all layer-local memory embeddings and the corresponding ground-truth tar-
get color. We retain only episodes that successfully complete the task to avoid confounding effects
from incorrect trajectories and to ensure that the probed representations correspond to functional
memory usage. The resulting dataset contains tuples of the form

(ℓ, t,m
(ℓ)
t , y),

where ℓ is the layer index, t is the timestep at which the memory vector was recorded, m(ℓ)
t ∈ RM×d

is the memory embedding of layer ℓ at timestep t, and y ∈ {0, 1, 2} is the target color label.

Probing protocol. Memory in ELMUR is structured and evolves differently across layers and
timesteps. To distinguish these effects, we construct a separate probing dataset for every layer
ℓ ∈ {0, . . . , L − 1} and every chosen timestep t (we use t ∈ {0, 1, 5, 10, 20}). For each pair (ℓ, t)
we train an independent probe on the corresponding memory vectors {m(ℓ)

t }.
Each probe is a three-layer multilayer perceptron (MLP) with hidden size 512 and ReLU nonlinear-
ities. We train the probes with a cross-entropy loss to predict the target cube color solely from the
memory vector. Probes are trained with Adam for 200 epochs using an 80/20 train-validation split.
Importantly, probes are not allowed to influence the base policy; the probing procedure is strictly
post-hoc.

Memory Evaluation. For every (ℓ, t) pair we report the accuracy and confusion matrix of the cor-
responding probe. At t=0, when memory is initialized with random noise, all layers yield roughly
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Figure 9: Memory probing confusion matrices on RememberColor3-v0. Each panel shows
the confusion matrix (percentage) of the color probe trained on ELMUR memory embeddings for
a specific timestep (rows, t ∈ {0, 1, 5, 10, 20}) and layer (columns, ℓ ∈ {0, 1, 2, 3}). At t=0 (top
row), when memory is still random, all probes sit near the 33% chance level, indicating that the
target color is not decodable from initialization. After the first write at t=1, the first layer already
supports accurate decoding, with performance gradually decreasing for deeper layers. At t=5, once
the cue has disappeared, probes achieve almost perfect accuracy, including 100% for the first layer.
At the decision time t=10 and late in the episode at t=20, prediction remains essentially perfect in
the first three layers and very high in the last layer, demonstrating stable long-horizon retention of
the target color in memory.

33% accuracy per class, indicating that the target color is not decodable from the initial memory em-
beddings. After the first update at t=1, the first layer already supports reliable decoding for all three
colors, with accuracy gradually decreasing for deeper layers, which shows that the model writes a
usable color code into memory immediately after observing the cue. By t=5, when the colored cube
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Figure 10: Memory update patterns across layers on RememberColor3-v0. Each heatmap
shows, for one ELMUR layer, which memory slot is updated at each timestep (horizontal axis:
timestep t ∈ [0, 60], vertical axis: slots 0–2; green indicates an update, purple indicates no update).
All layers exhibit the same structured schedule: early in the episode only slot 0 is updated, then
responsibility shifts to slot 1, and finally to slot 2, producing a clean rotation of writes enforced by
the LRU policy. After a slot becomes inactive it is not modified again, which implies that once the
target color has been written into a slot its content is preserved for the remainder of the episode
without further overwriting.

has disappeared from the scene, prediction accuracy improves further, reaching 100% for the first
layer and remaining high for the others. At t=10, when the agent sees all three cubes and must select
the target, the probes achieve 100% accuracy on the first three layers and near perfect accuracy on
the last layer, and the same pattern persists at t=20. Aggregated confusion matrices across layers
and timesteps are shown in Figure 9.

Together, these findings confirm that ELMUR allocates memory capacity to storing the latent task
variable required to solve the environment and that its superior performance arises from functional
memory usage rather than increased model size. In addition, the memory update patterns in Fig-
ure 10 show a consistent and interpretable write schedule across layers: each episode produces a
single dominant write into a dedicated slot immediately after observing the cue, followed by long
spans of preservation with no overwriting. The LRU mechanism activates only when necessary,
producing sparse, well-timed updates rather than continuous churn.

The inter-slot similarity analysis in Figure 11 further supports this behavior. At the moment when
the target cube is first observed, all layers exhibit a sharp transition in cosine similarity structure:
a single slot becomes highly similar across repeated episodes while the remaining slots remain
decorrelated. This indicates that ELMUR allocates one stable slot as the canonical container for the
task variable. After this write event, the similarity trajectories remain nearly constant throughout
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Figure 11: Inter–slot similarity and variance of memory embeddings on
RememberColor3-v0. For each ELMUR layer (rows), the left panels show the cosine
similarity between pairs of memory slots (0–1, 0–2, 1–2) as a function of timestep, averaged over 20
batches (shaded region: standard deviation). Around the transition to the second segment (t = 20)
the similarities jump from near zero to higher, stable values, indicating that one slot acquires a
structured representation which becomes partially shared with the others. A second transition to the
third segment appears at t = 40, when another slot is written, after which the similarity profiles
remain nearly constant, consistent with persistent storage. The right panels show the standard
deviation of embeddings within each slot over episodes. Only the currently written slot exhibits
a sharp increase in variance at its corresponding write time, while the other slots remain nearly
constant, confirming that the model performs localized, slot-specific writes followed by stable
retention of the encoded content.

the blank stage and the distractor stage, demonstrating that the stored representation is preserved
without drift.

The slotwise variance plots show the same phenomenon from a complementary angle. The chosen
slot exhibits a sudden rise in variance immediately after the cue is written, reflecting the encoding of
task-specific information, while the unused slots retain near-zero variance for the remainder of the
episode. Throughout the delay period the variance of the active slot remains stable, indicating that
the stored color representation is neither degraded nor rewritten.

Taken together, the update patterns, similarity dynamics, and variance profiles reveal a coherent
mechanism: ELMUR performs a targeted, one-shot write into a designated memory slot, then main-
tains this representation with high stability until retrieval, even in the presence of visually similar
distractors. This behavior aligns precisely with the probing results and provides strong causal evi-
dence that ELMUR employs explicit long-term memory rather than incidental capacity effects. A
more detailed, layer-wise visualization of evolution of memory embeddings across the entire episode
is presented in Figure 12.

A.10 PCA MEMORY ANALYSIS

The geometric structure of memory representations is further illustrated by the Principal Component
Analysis (PCA; Abdi & Williams (2010)) in Figure 13. The top row shows projections colored by
memory slot (slots 0, 1, and 2), while the bottom row shows projections colored by layer. From left
to right, we display all target colors together, then restrict to red, green, and blue targets respectively.
In the slot based views, embeddings from different slots largely occupy the same manifolds for a
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Figure 12: Memory evolution across layers, slots, and time on RememberColor3-v0.
Each block corresponds to a snapshot of the memory state at a given timestep (columns, t ∈
{0, 6, . . . , 60}). Within each block, rows index memory slots (0–2) for a given layer (stacked verti-
cally from Layer 0 to Layer 3), and the horizontal axis shows embedding dimensions. Color encodes
activation value. Early timesteps exhibit near-random low-amplitude activations, while after the cue
is observed a single slot in each layer becomes strongly structured and remains stable over subse-
quent timesteps. Later in the episode additional slots are written once and then preserved, illustrating
that ELMUR performs sparse, slot-specific updates followed by long-horizon retention of the en-
coded representation.

fixed color, indicating that slots are not tied to particular colors and instead share a common content
space. In the layer based views, points from different layers form well separated clusters, especially
when conditioning on a single color, which suggests that deeper layers produce progressively more
structured and compact encodings of the target color while maintaining clear separation between
colors in the joint view.

The temporal evolution of memory representations is illustrated in Figure 14, which shows PCA
projections of all memory vectors with color indicating timestep. The first panel aggregates all target
colors, while the remaining three panels condition on red, green, and blue targets respectively. In all
cases the trajectories exhibit a characteristic pattern: memories start from a diffuse cloud near the
initialization region (early timesteps in purple), then rapidly converge onto a small number of low-
dimensional manifolds after the cue is written, and remain confined there for the rest of the episode
(late timesteps in green). Conditioning on a single color reveals that these manifolds are largely
color specific, with each target color occupying its own stable region in PCA space and showing
minimal drift over time. This behavior indicates that ELMUR quickly encodes the target color
into a compact representation and maintains it throughout the delay and retrieval phases without
substantial degradation.

A.11 CROSS-ATTENTION MAPS

Figure 15 visualizes the cross-attention patterns of the write (tok2mem, left) and read (mem2tok,
right) modules. Each row corresponds to one of the 16 attention heads, the horizontal axis shows
timesteps (0-60), and the vertical axis indexes the three memory slots. In the tok2mem maps,
attention is almost entirely suppressed at the beginning of the episode and then exhibits a short, high-
intensity burst around the cue presentation, concentrated on a single slot across many heads. After
this write event, activity becomes sparse with only occasional weak updates, consistent with a one-
shot allocation of the cue into a dedicated slot followed by long-term preservation. In contrast, the
mem2tok maps display more sustained but still structured activity: once the cue has been written,
several heads repeatedly attend to the same slot throughout the blank interval and the decision phase,
with peaks near the timesteps where the agent must choose the correct cube. Other heads remain
nearly inactive or attend to alternative slots, suggesting head specialization. Overall, these attention
patterns corroborate the memory probing and similarity analyses, showing that ELMUR performs a
sharp, localized write of the target color into a single slot and then repeatedly reads from that slot
during subsequent reasoning and action.
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Figure 13: PCA structure of memory embeddings by slot and layer on RememberColor3-v0.
Each panel shows a 2D PCA projection of all memory vectors. The top row colors points by memory
slot (0, 1, 2), while the bottom row colors them by layer (0, 1, 2, 3). From left to right, we display
embeddings for all target colors, and then restricted to red, green, and blue targets respectively.
In the slot-based views, embeddings from different slots largely occupy the same manifolds for a
fixed color, indicating that slots share a common content space rather than being tied to particular
colors. In contrast, the layer-based views form well-separated clusters, especially when conditioning
on a single color, showing that deeper layers produce progressively more specialized and compact
representations of the same latent task variable.
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Figure 14: PCA projection of memory embeddings over time. Each panel shows memory vectors
from all layers and slots in RememberColor3-v0, projected onto the first two principal compo-
nents and colored by timestep (see colorbar). From left to right we plot all episodes, and then subsets
conditioned on the target cube being red, green, or blue. Early timesteps occupy a diffuse region of
the space, while vectors shortly after the cue observation move into compact, color-specific clusters
that remain stable for the rest of the episode, indicating that the memory state rapidly converges to a
persistent representation of the target color.

A.12 LIMITATIONS

ELMUR uses a simple LRU rule with fixed blending, which makes its memory mechanism trans-
parent and easy to analyze, though future work could explore adaptive variants. Segment-level
recurrence adds a small cross-attention cost per layer, but this cost scales with the fixed number
of memory slots rather than sequence length, making efficiency predictable even in long horizons.
MoE-based FFNs already provide parameter efficiency at our scale, and larger architectures may fur-
ther amplify this benefit. Finally, our study focuses on synthetic, POPGym, and simulated robotic
tasks under IL, giving controlled and reproducible insights; extending to online RL and real-robot
deployments offers promising next steps.
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Figure 15: Cross–attention patterns between tokens and memory slots in ELMUR. Heatmaps
show attention weights for the tok2mem module (left) and the mem2tok module (right) in the
RememberColor3-v0 task. Each row corresponds to one of the 16 attention heads, the hori-
zontal axis is the timestep (t ∈ [0, 60]), and the vertical axis indexes the three memory slots. Color
intensity indicates the magnitude of the attention weight. tok2mem heads exhibit sparse, sharply
localized write events into a single slot around cue and update timesteps, whereas mem2tok heads
display broader read patterns that concentrate on the slot carrying the target color during the decision
phase, consistent with targeted write, once storage followed by repeated retrieval of the latent task
variable.
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Table 8: Offline RL baselines on the MIKASA-Robo benchmark. We compare transformer-based
methods (RATE, DT), behavior cloning (BC), classical offline RL algorithms (CQL), and Diffusion
Policy (DP) across all 32 tasks. Scores are reported as mean ± sem over three seeds, with each seed
averaged over 100 evaluation episodes. All models are trained from RGB observations (top-view
and wrist-view cameras) under sparse, success-only rewards. Even with access to memory, existing
baselines (RATE, DT) fail on most tasks, whereas ELMUR achieves the highest performance on
21 of the 23 tasks with non zero success rates and exceeds the previous state-of-the-art, RATE, by
roughly 70% in aggregate success across all 32 tasks.

Environment RATE DT BC CQL DP ELMUR
ShellGameTouch-v0 0.92±0.01 0.53±0.07 0.28±0.01 0.16±0.04 0.18±0.02 0.96±0.02
ShellGamePush-v0 0.78±0.06 0.62±0.14 0.27±0.01 0.25±0.01 0.22±0.03 0.87±0.04
ShellGamePick-v0 0.02±0.01 0.00±0.00 0.01±0.01 0.00±0.00 0.01±0.00 0.66±0.01
InterceptSlow-v0 0.23±0.02 0.40±0.02 0.37±0.06 0.25±0.01 0.33±0.05 0.61±0.04
InterceptMedium-v0 0.32±0.02 0.56±0.01 0.31±0.14 0.03±0.01 0.68±0.02 0.64±0.03
InterceptFast-v0 0.30±0.04 0.36±0.04 0.03±0.02 0.02±0.02 0.21±0.05 0.54±0.02
InterceptGrabSlow-v0 0.09±0.03 0.00±0.00 0.28±0.18 0.03±0.00 0.03±0.01 0.08±0.03
InterceptGrabMedium-v0 0.09±0.03 0.00±0.00 0.11±0.02 0.08±0.04 0.03±0.01 0.10±0.04
InterceptGrabFast-v0 0.14±0.03 0.11±0.03 0.09±0.02 0.08±0.03 0.18±0.02 0.20±0.01
RotateLenientPos-v0 0.11±0.04 0.01±0.01 0.15±0.03 0.16±0.02 0.11±0.02 0.24±0.02
RotateLenientPosNeg-v0 0.29±0.03 0.05±0.02 0.22±0.01 0.12±0.02 0.14±0.05 0.26±0.00
RotateStrictPos-v0 0.03±0.02 0.05±0.04 0.01±0.00 0.03±0.01 0.06±0.02 0.16±0.00
RotateStrictPosNeg-v0 0.08±0.01 0.05±0.03 0.04±0.02 0.04±0.02 0.15±0.01 0.12±0.02
TakeItBack-v0 0.42±0.24 0.08±0.04 0.33±0.10 0.04±0.01 0.05±0.02 0.78±0.03
RememberColor3-v0 0.65±0.04 0.01±0.01 0.27±0.03 0.29±0.01 0.32±0.01 0.89±0.07
RememberColor5-v0 0.13±0.03 0.07±0.05 0.12±0.01 0.15±0.02 0.10±0.02 0.19±0.03
RememberColor9-v0 0.09±0.02 0.01±0.01 0.12±0.02 0.15±0.01 0.17±0.01 0.23±0.02
RememberShape3-v0 0.21±0.04 0.05±0.04 0.31±0.04 0.20±0.10 0.32±0.05 0.76±0.01
RememberShape5-v0 0.17±0.04 0.04±0.04 0.18±0.01 0.15±0.00 0.21±0.04 0.27±0.02
RememberShape9-v0 0.05±0.00 0.05±0.02 0.10±0.02 0.14±0.01 0.11±0.02 0.17±0.03
RememberShapeAndColor3x2-v0 0.14±0.02 0.04±0.02 0.13±0.02 0.11±0.05 0.14±0.02 0.19±0.02
RememberShapeAndColor3x3-v0 0.08±0.03 0.06±0.06 0.09±0.02 0.09±0.02 0.16±0.01 0.19±0.02
RememberShapeAndColor5x3-v0 0.07±0.02 0.01±0.01 0.09±0.01 0.09±0.02 0.11±0.03 0.13±0.01
BunchOfColors3-v0 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
BunchOfColors5-v0 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
BunchOfColors7-v0 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
SeqOfColors3-v0 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
SeqOfColors5-v0 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
SeqOfColors7-v0 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
ChainOfColors3-v0 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
ChainOfColors5-v0 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
ChainOfColors7-v0 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
Sum Across All Tasks 5.42 3.15 3.92 2.66 4.02 9.24
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