

000 001 002 003 004 005 ELMUR: EXTERNAL LAYER MEMORY WITH UP- 006 DATE/REWRITE FOR LONG-HORIZON RL 007 008 009

010 **Anonymous authors**
 011
 012
 013
 014
 015
 016
 017
 018
 019
 020
 021
 022
 023
 024
 025
 026
 027
 028
 029
 030
 031
 032
 033
 034
 035
 036
 037
 038
 039
 040
 041
 042
 043
 044
 045
 046
 047
 048
 049
 050
 051
 052
 053
 054
 055
 056
 057
 058
 059
 060
 061
 062
 063
 064
 065
 066
 067
 068
 069
 070
 071
 072
 073
 074
 075
 076
 077
 078
 079
 080
 081
 082
 083
 084
 085
 086
 087
 088
 089
 090
 091
 092
 093
 094
 095
 096
 097
 098
 099
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000

ABSTRACT

Real-world robotic agents must act under partial observability and long horizons, where key cues may appear long before they affect decision making. However, most modern approaches rely solely on instantaneous information, without incorporating insights from the past. Standard recurrent or transformer models struggle with retaining and leveraging long-term dependencies: context windows truncate history, while naive memory extensions fail under scale and sparsity. We propose **ELMUR** (External Layer Memory with Update/Rewrite), a transformer architecture with structured external memory. Each layer maintains memory embeddings, interacts with them via bidirectional cross-attention, and updates them through an **Least Recently Used (LRU)** memory module using replacement or convex blending. ELMUR extends effective horizons up to 100,000 times beyond the attention window and achieves a 100% success rate on a synthetic T-Maze task with corridors up to one million steps. In POPGym, it outperforms baselines on more than half of the tasks. On MIKASA-Robo sparse-reward manipulation tasks with visual observations, it nearly doubles the performance of strong baselines, **achieving the best success rate on 21 out of 23 tasks and improving the aggregate success rate across all tasks by about 70% over the previous best baseline**. These results demonstrate that structured, layer-local external memory offers a simple and scalable approach to decision making under partial observability.

1 INTRODUCTION

Imagine a robot cooking pasta: it stirs once, adds salt, and later adds salt again, repeating until the dish is inedible. The issue is simple: the robot cannot remember if salt was already added, since it dissolves invisibly, nor how much is still in the container. This is a case of partial observability — the world rarely reveals all necessary information. Humans recall past actions effortlessly, but robots lack this ability. Though effective in controlled settings (Kim et al., 2024; Black et al., 2024), robots often fail under partial observability (Fang et al., 2025; Cherepanov et al., 2025). Standard recurrent (Ouyang et al., 2025) and transformer (Gao et al., 2025) models rely heavily on short observation windows, making them brittle under long-horizon dependencies and sparse signals. This motivates hybrid memory-augmented transformers that explicitly store and retrieve past information (Fang et al., 2025; Shi et al., 2025).

Within the Reinforcement Learning (RL) paradigm (Sutton et al., 1998), long-horizon challenges are compounded by sample inefficiency and sparse rewards: real-world exploration is costly and unsafe, while simulation suffers from a sim-to-real gap (Zhang et al., 2025a). Offline RL mitigates this with pre-collected datasets (Levine et al., 2020), but usually assumes dense feedback; reshaping sparse rewards demands domain knowledge and risks bias (Wu et al., 2021; Mu et al., 2024; Wang et al., 2025a). In robotics, delayed feedback makes long-term memory indispensable. A complementary paradigm is Imitation Learning (IL) (Zare et al., 2024), whose simplest form, Behavior Cloning (BC), reduces control to supervised learning on demonstration pairs. Building on this idea, recent Vision-Language-Action (VLA) models (Brohan et al., 2022; Team et al., 2024; Kim et al., 2024) scale with large datasets, yet their fixed transformer windows (Fang et al., 2025; Shi et al., 2025) leave three challenges: (i) extending context without quadratic cost, (ii) mitigating truncation-induced forgetting, and (iii) retaining task-relevant information across long horizons. This motivates our central question: **how can we equip IL policies with efficient long-term memory to solve long-horizon, partially observable tasks?**

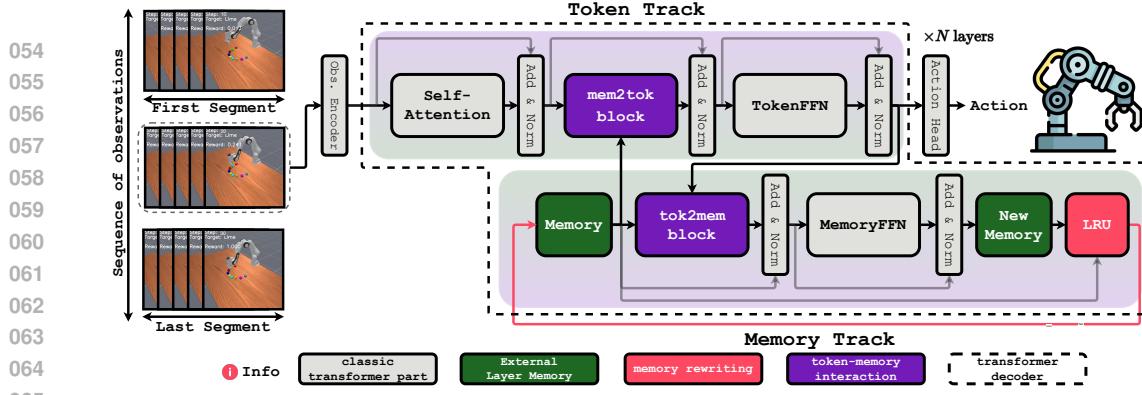


Figure 1: **ELMUR overview.** Each transformer layer is augmented with an external memory track that runs in parallel with the token track. Tokens attend to memory through a `mem2tok` block, while memory embeddings are updated from tokens through a `tok2mem` block. LRU block selectively rewrites memory via replacement or convex blending, ensuring bounded yet persistent storage. This design enables token-memory interaction and long-horizon recall beyond the attention window.

To address these challenges, we introduce **ELMUR** (External Layer Memory with Update/Rewrite), a [transformer](#) architecture in which every layer is augmented with a structured external layer memory ([Figure 1](#)). ELMUR combines three ingredients: (i) layer-local memory embeddings that persist across segments, (ii) bidirectional token–memory read/write interaction via cross-attention (`mem2tok`, `tok2mem`), and (iii) a Least Recently Used (LRU) update block that refreshes memory through replacement or convex blending, balancing stability and adaptability. This design enables efficient segment-level recurrence and extends retention of task-relevant information up to $100,000 \times$ beyond the native attention window, making long-horizon decision making feasible in robotics.

We evaluate ELMUR on the synthetic T-Maze ([Ni et al., 2023](#)), the robotic MIKASA-Robo ([Cherepanov et al., 2025](#)) suite of sparse-reward manipulation tasks with visual observations, and the diverse POPGym benchmark ([Morad et al., 2023a](#)), all designed to test memory under partial observability. ELMUR achieves a 100% success rate on T-Maze corridors up to one million steps, nearly doubles baseline performance on MIKASA-Robo, [ranking first on 21 of 23 tasks and increasing the overall success rate across the suite by roughly 70% relative to the strongest prior method.](#), and obtains the top score on 24 of 48 POPGym tasks. These results demonstrate that ELMUR enables stable retention of task-relevant information, efficient long-term storage, and robust generalization under partial observability.

Our contributions are twofold:

- **We propose ELMUR**, a [transformer](#) with layer-local external memory, bidirectional token–memory cross-attention, and an LRU-based update rule rewriting memory via replacement or convex blending ([Section 3](#)). This design extends memory horizons far beyond the attention window.
- **We empirically demonstrate** that ELMUR achieves robust generalization under partial observability across synthetic, robotic, and puzzle/control tasks ([Section 5](#)).
- **We provide a theoretical analysis** of LRU-based memory dynamics, establishing formal bounds on forgetting, retention horizons, and stability of memory embeddings ([Section 4](#)).

2 BACKGROUND

Many real-world robotic and control tasks involve partial observability, where the agent cannot directly access the true system state ([Lauri et al., 2022](#)). This setting is modeled as a partially observable Markov decision process (POMDP), defined as the tuple $(\mathcal{S}, \mathcal{A}, \mathcal{O}, T, Z, R, \rho_0, \gamma)$, with latent state space \mathcal{S} , action space \mathcal{A} , and observation space \mathcal{O} . The transition dynamics are $T : \mathcal{S} \times \mathcal{A} \rightarrow \Delta(\mathcal{S})$, where $T(s' | s, a)$ is the probability of reaching s' after taking a in s . The observation function $Z : \mathcal{S} \times \mathcal{A} \rightarrow \Delta(\mathcal{O})$ specifies $Z(o | s', a)$, the probability of observing o after

108
109 **Algorithm 1** ELMUR layer update for segment i at layer ℓ . Inputs are token hidden states $h \in \mathbb{R}^{B \times L \times d}$, memory (m, p) with $m \in \mathbb{R}^{B \times M \times d}$, anchors $p \in \mathbb{Z}^{B \times M}$, and absolute times t . Outputs
110 are updated hidden states h' and memory (m', p') .

```

111 // Input embedding (before first layer) – to encode observation
112 1:  $h \leftarrow \text{ObsEncoder}(o)$ 
113 // Token track – sequence processing and enrichment with information from memory
114 2:  $h \leftarrow \text{AddNorm}(h + \text{SelfAttention}(h; \text{causal mask}))$ 
115 3:  $B_{\text{rel}} \leftarrow \text{RelativeBias}(t, p)$  // bias for adding temporal dependence
116 4:  $h \leftarrow \text{AddNorm}(h + \text{CrossAttention}(Q=h, K=m, V=m; \text{noncausal mask}, B_{\text{read}}))$ 
117 5:  $h \leftarrow \text{AddNorm}(h + \text{TokenFFN}(h))$ 
118 6:  $h' \leftarrow h$ 
119 // Output decoding (after final layer)
120 7:  $a \leftarrow \text{ActionHead}(h')$  // map to action distribution and compute loss
121 // Memory track
122 8:  $B_{\text{rel}} \leftarrow \text{RelativeBias}(p, t)$  // reversed bias for write
123 9:  $u \leftarrow \text{AddNorm}(m + \text{CrossAttention}(Q=m, K=h', V=h'; \text{noncausal mask}, B_{\text{write}}))$ 
124 10:  $\tilde{u} \leftarrow \text{AddNorm}(u + \text{MemoryFFN}(u))$ 
125 11:  $(m', p') \leftarrow \text{LRU}(m, p, \tilde{u}, t)$ 
126 12: return  $h', (m', p')$ 
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

```

reaching s' under action a . The reward function is $R : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$, the initial state distribution is $\rho_0 \in \Delta(\mathcal{S})$, and $\gamma \in (0, 1)$ is the discount factor.

In the special case of full observability, the observation equals the state ($o_t \equiv s_t$), reducing the POMDP to a Markov decision process (MDP). The optimal policy then depends only on the current state, $\pi^*(a_t | s_t)$. In the general POMDP case, however, the agent cannot access s_t directly and must rely on the full history $h_t = (o_0, a_0, o_1, a_1, \dots, o_t)$, yielding $\pi^*(a_t | h_t)$. A practical alternative is to approximate history with a learned memory state $m_t = f_\phi(m_{t-1}, o_t, a_{t-1})$, $\pi_\theta : \mathcal{M} \rightarrow \Delta(\mathcal{A})$, $\pi_\theta(a_t | m_t)$, where f_ϕ is a, for instance, recurrent (Hausknecht & Stone, 2015) or memory-augmented (Parisotto et al., 2020) update rule.

3 METHOD

Many real-world decision-making tasks involve long horizons and partial observability, where key information may appear thousands of steps before it is needed. Standard transformers are limited by a fixed attention window: naive extensions of context length increase cost quadratically, while truncation causes forgetting. Efficient long-term reasoning thus requires a mechanism to store and retrieve task-relevant information across long trajectories. To this end, we propose **ELMUR** (External Layer Memory with Update/Rewrite), a GPT-style (Radford et al., 2019) transformer decoder augmented with structured external memory. Unlike architectures that simply cache hidden states (Dai et al., 2019), ELMUR equips each layer with its own memory track and explicit read–write operations, enabling persistent storage and selective updating via the LRU memory management.

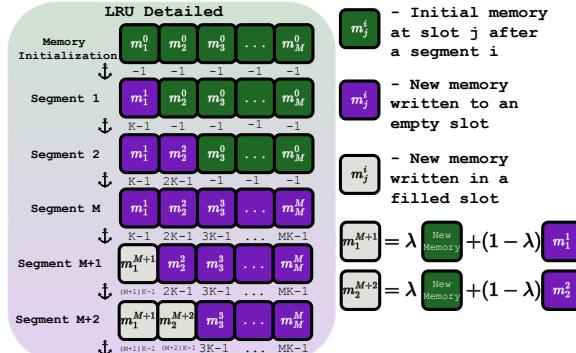


Figure 2: **LRU-based memory management in ELMUR.** Each layer maintains M memory slots, initialized with random vectors (green). As new segments arrive, tokens write updates into empty slots (purple) by full replacement. Once all slots are filled, the least recently used slot is refreshed via a convex update with parameter λ that blends new content with the previous memory (grey). Anchors below each row indicate the timestep of the most recent update. This scheme ensures bounded capacity while preserving long-horizon information.

162 **ELMUR Overview.** As shown in Figure 1, each ELMUR layer has two coupled tracks. The **token**
 163 **track** processes observations into actions, while the **memory track** persists across segments. Both
 164 interact through cross-attention: memory shapes token representations, and tokens update memory.
 165 Interaction occurs via `mem2tok` (read) and `tok2mem` (write) blocks, modulated by relative
 166 biases from token timesteps and memory anchors. Trajectories are split into segments, processed
 167 sequentially for efficiency and recurrent memory updates. At each segment’s end, hidden states up-
 168 date memory, carried forward. LRU memory management fills empty slots first, then refreshes the
 169 least used slot by convexly blending old and new information. This bidirectional design provides
 170 temporally grounded memory for long-horizon decisions. Algorithm 1 summarizes the method.

171 **Segment-Level Recurrence.** Feeding infinitely long sequences into a transformer is infeasible,
 172 since self-attention scales quadratically. Splitting into shorter segments reduces cost but complicates
 173 information flow. Segment-level recurrence addresses this by treating the transformer as an RNN
 174 over segments, passing memory from one segment to the next (Dai et al., 2019; Bulatov et al., 2022).
 175 In ELMUR, this memory is realized as layer-local external memory instead of cached activations.
 176 Each layer maintains memory that is read within the current segment and updated before moving to
 177 the next. Formally, with context length L , a trajectory of length T is partitioned into $S = \lceil T/L \rceil$
 178 segments \mathcal{S}_i : $\mathbf{h}^{(i)} = \text{TokenTrack}(\mathcal{S}_i, \text{sg}(\mathbf{m}^{i-1}))$, where $\mathbf{h}^{(i)} \in \mathbb{R}^{B \times L \times d}$ denotes the hidden states
 179 of tokens in segment i , computed from the segment \mathcal{S}_i and the detached memory $\text{sg}(\mathbf{m}^{i-1})$ carried
 180 from the previous segment.

181 **Token Track.** Within each segment \mathcal{S}_i , observations are encoded into token embeddings $\mathbf{x} \in$
 182 $\mathbb{R}^{L \times d}$, where d is the model dimension. The token track models local dependencies and augments
 183 them with information from memory $\mathbf{m} \in \mathbb{R}^{M \times d}$. Standard transformers rely on fixed-window self-
 184 attention, whereas ELMUR also retrieves information from its external memory via cross-attention,
 185 allowing predictions to depend not only on recent tokens but on distant past events stored in memory.
 186 Self-attention, equipped with relative positional encodings (Dai et al., 2019) and a causal mask,
 187 models local dependencies within the segment:

$$\mathbf{h}_{\text{sa}} = \text{AddNorm}(\mathbf{x} + \text{SelfAttention}(\mathbf{x})), \quad (1)$$

188 where $\text{AddNorm}(\cdot)$ denotes a residual connection followed by normalization. Long-term context is
 189 handled by external memory. Tokens’ hidden states \mathbf{h}_{sa} then query memory via the `mem2tok`:

$$\mathbf{h}_{\text{mem2tok}} = \text{AddNorm}(\mathbf{h}_{\text{sa}} + \text{CrossAttention}(Q = \mathbf{h}_{\text{sa}}, K, V = \mathbf{m})). \quad (2)$$

190 Here memory embeddings act as keys and values, with a non-causal mask and a relative bias re-
 191 reflecting token-memory temporal distance. Finally, representations are refined with a feed-forward
 192 network (FFN). In contrast to popular Decision Transformer (DT) Chen et al. (2021) that employ
 193 a standard MLP-based FFN, we adopt a DeepSeek-MoE FFN (Dai et al., 2024), following the de-
 194 sign of DeepSeek-V3 (Liu et al., 2024a). Mixture-of-Experts (MoE) improve parameter efficiency
 195 and specialization by routing tokens to a sparse set of experts, scaling capacity without proportional
 196 compute. This design enables expressive updates while keeping inference efficient:

$$\mathbf{h} = \text{AddNorm}(\mathbf{h}_{\text{mem2tok}} + \text{FFN}(\mathbf{h}_{\text{mem2tok}})). \quad (3)$$

197 The resulting hidden states are then passed to the action head, applied only after the final layer.
 198 Training is supervised, minimizing the error between predicted and demonstrated actions, using
 199 mean squared loss for continuous spaces and cross-entropy for discrete ones. The loss backpropa-
 200 gates through the entire network to update model parameters.

201 **Memory Track.** Reading from memory is not enough for long-horizon reasoning; the model must
 202 also write new information. Without an explicit write path, past events would be forgotten or cached
 203 inefficiently. The memory track addresses this by allowing tokens to update persistent memory,
 204 retaining salient information while overwriting less useful content.

205 Each layer maintains its own memory embeddings $\mathbf{m} \in \mathbb{R}^{M \times d}$. After processing a segment, token
 206 states update memory through the `tok2mem` block:

$$\mathbf{m}_{\text{tok2mem}} = \text{AddNorm}(\mathbf{m} + \text{CrossAttention}(Q = \mathbf{m}, K, V = \mathbf{h})). \quad (4)$$

207 As in `mem2tok`, a non-causal mask is applied, but the relative bias is reversed to favor temporally
 208 aligned memory embeddings. Updates are then refined by a FFN with residual connection:

$$\mathbf{m}_{\text{new}} = \text{AddNorm}(\mathbf{m}_{\text{tok2mem}} + \text{FFN}(\mathbf{m}_{\text{tok2mem}})), \quad (5)$$

216 analogous to the token track, the FFN uses a DeepSeek-MoE block instead of a standard MLP.
 217

218 Finally, \mathbf{m}_{new} is merged with existing slots via the LRU rule (Figure 2, Figure 2), filling empty
 219 slots first and otherwise refreshing the least recently used by convex blending. This keeps memory
 220 bounded yet consistently updated with relevant information.

221 **Relative Bias.** When memory extends across multiple segments, absolute indices become am-
 222 biguous: the same token position may correspond to different points in the trajectory. To resolve
 223 this, the model requires a signal that encodes relative distances between tokens and memory entries.
 224 ELMUR provides this signal through a learned relative bias added to cross-attention logits:
 225

$$\text{Attn}(\mathbf{Q}, \mathbf{K}) = \frac{\mathbf{Q}\mathbf{K}^\top}{\sqrt{d_h}} + \mathbf{B}_{\text{rel}}. \quad (6)$$

228 The bias \mathbf{B}_{rel} is derived from pairwise offsets $\Delta = \pm(t-p)$ between a token position t and a memory
 229 anchor p (the last update time of a slot). Offsets are clamped to $[-D_{\text{max}}+1, D_{\text{max}}-1]$, where D_{max}
 230 is the maximum relative distance supported by the bias table. These clamped values are shifted into
 231 $[0, 2D_{\text{max}}-2]$ and used to index a learnable embedding table $\mathbf{E} \in \mathbb{R}^{(2D_{\text{max}}-1) \times H}$, where H is the
 232 number of attention heads. Each offset corresponds to a per-head embedding $\mathbf{E}[\Delta] \in \mathbb{R}^H$, and
 233 stacking these indices produces

$$\mathbf{B}_{\text{rel}} = \begin{cases} \mathbf{E}[t-p] \in \mathbb{R}^{B \times H \times L \times M}, \text{mem2tok (read)} \\ \mathbf{E}[p-t] \in \mathbb{R}^{B \times H \times M \times L}, \text{tok2mem (write).} \end{cases} \quad (7)$$

234 In the read path (mem2tok), the bias
 235 prioritizes retrieval from temporally close
 236 memory embeddings while keeping distant
 237 ones accessible. In the write path
 238 (tok2mem), offsets are reversed, guiding
 239 updates toward memory embeddings
 240 aligned with the writing tokens. Both
 241 directions draw from the same embedding
 242 table \mathbf{E} but can learn distinct patterns.
 243 By relying on relative rather than absolute
 244 timestep, ELMUR ensures consistent and
 245 coherent memory interactions across long
 246 horizons.
 247

248 **Memory Management with LRU.** External
 249 memory must remain bounded: storing
 250 every token is infeasible, while
 251 naive truncation risks catastrophic forget-
 252 ting. A principled policy is needed to de-
 253 cide which slots to refresh or preserve as
 254 new content arrives. ELMUR employs a
 255 Least Recently Used (LRU) block (Figure
 256 2, Figure 2) that manages M slots per
 257 layer, each holding a vector and an anchor
 258 (its last update time). By always updating
 259 the least recently used slot, the block en-
 260 sures bounded capacity while retaining context.
 261

262 At training start, **initialization** samples embeddings from $\mathcal{N}(0, \sigma^2 I)$ and marks them empty. While
 263 empty slots remain, **full replacement** inserts new vectors directly. Once all slots are filled, the block
 264 switches to **convex update**, blending the oldest slot with new content:

$$\mathbf{m}_j^{i+1} = \lambda \mathbf{m}_{\text{new}}^{i+1} + (1 - \lambda) \mathbf{m}_j^i, \quad (8)$$

265 where $\lambda \in [0, 1]$ is a tunable hyperparameter that controls the balance between overwriting and
 266 retention. By adjusting λ , one can choose whether memory favors fast plasticity (larger λ) or long-
 267 term stability (smaller λ). This policy uses memory capacity fully before overwriting and applies
 268 gradual blending thereafter, enabling bounded yet persistent long-horizon memory.

270 By combining token-level processing with an explicit memory system, ELMUR offers three core
 271 advantages: (i) relative-bias cross-attention provides temporally grounded read-write access, (ii) the
 272 LRU-based manager ensures bounded capacity while remaining adaptive, and (iii) segment-level
 273 recurrence enables scalable learning over long horizons.

276 4 THEORETICAL ANALYSIS

278 Understanding the retention properties of ELMUR’s memory is crucial for characterizing its ability
 279 to handle long-horizon dependencies. In this section, we analyze how information is preserved or
 280 forgotten under the LRU update mechanism. We derive bounds on memory retention and effective
 281 horizons, and connect these results to the empirical behaviors observed in long-horizon tasks.

282 At the core of ELMUR’s memory module is the convex update rule with blending factor $\lambda \in [0, 1]$.
 283 Let fix a memory embedding j at segment index i . If this memory embedding is selected for update
 284 with new content $\mathbf{m}_{\text{new}}^{i+1}$, the rule (Figure 2) is $\mathbf{m}_j^{i+1} = \lambda \mathbf{m}_{\text{new}}^{i+1} + (1 - \lambda) \mathbf{m}_j^i$, while all other
 285 memory embeddings $n \neq j$ remain unchanged: $\mathbf{m}_n^{i+1} = \mathbf{m}_n^i$. If the memory embedding was
 286 empty, the update reduces to full replacement $\mathbf{m}_j^{i+1} = \mathbf{m}_{\text{new}}^{i+1}$.
 287

288 **Proposition 1 (Exponential Forgetting).** After k overwrites of memory embedding j , the content
 289 evolves as

$$291 \mathbf{m}_j^{i+k} = (1 - \lambda)^k \mathbf{m}_j^i + \sum_{u=1}^k \lambda(1 - \lambda)^{k-u} \mathbf{m}_{\text{new}}^{i+u}, \quad (9)$$

295 where $\mathbf{m}_{\text{new}}^{i+u}$ denotes the write at update $i+u$ (see Appendix A.1 for a full derivation). Consequently,
 296 the coefficient of the initial content \mathbf{m}_j^i after k overwrites is $(1 - \lambda)^k$, and the contribution of the
 297 write performed τ updates earlier is $\lambda(1 - \lambda)^{\tau-1}$.

299 **Corollary (Half-life).** The number of overwrites $k_{0.5}$ after which the contribution of \mathbf{m}_j^i halves is
 300 $k_{0.5} = \frac{\ln(1/2)}{\ln(1-\lambda)} = \frac{\ln 2}{-\ln(1-\lambda)} \sim \frac{\ln 2}{\lambda}$, as $\lambda \rightarrow 0$. Thus, smaller λ extends retention, while larger λ
 301 accelerates overwriting.

304 **Effective horizon in environment steps.** Since only one memory embedding is updated per seg-
 305 ment of length L , a memory is overwritten once every M segments in expectation. The *effective*
 306 *retention horizon* $H(\epsilon)$ thus quantifies how many environment steps a stored contribution remains
 307 influential before its weight decays below a negligible threshold ϵ , i.e., $H(\epsilon) = M \cdot L \cdot \frac{\ln(\epsilon)}{\ln(1-\lambda)}$. In
 308 particular, the half-life in environment steps is $H_{0.5} = M \cdot L \cdot \frac{\ln 2}{-\ln(1-\lambda)} \sim M \cdot L \cdot \frac{\ln 2}{\lambda}$, as $\lambda \rightarrow 0$.
 309

310 Unlike models where all memory is updated at every step (like RNNs), ELMUR’s LRU policy
 311 ensures (i) memory embeddings not selected for overwrite retain their content exactly until replace-
 312 ment, and (ii) once selected, their contributions decay exponentially with rate λ . This produces a
 313 retention horizon that scales linearly with both the number of memory embeddings M and the seg-
 314 ment length L , providing a conservative lower bound. In practice, effective horizons are often much
 315 longer (Figure 3).

316 **Proposition 2 (Memory Boundedness).** A natural question is whether repeated convex updates
 317 could cause memory values to grow without limit. We show that, under standard bounded-input
 318 assumptions, the norm of every memory embedding remains uniformly bounded throughout training
 319 and inference. Suppose that every new write is norm-bounded, $\|\mathbf{m}_{\text{new}}^t\| \leq C$ for some constant
 320 $C > 0$, and the initial memory satisfies $\|\mathbf{m}_j^0\| \leq C$. Then for all segments i and slots j , it holds that
 321 $\|\mathbf{m}_j^i\| \leq C$. Since each update is a convex combination of the previous and a bounded new values,
 322 the memory embedding always remains inside the closed ball of radius C . This guarantees stability
 323 of activations even across arbitrarily long trajectories. See Appendix A.2 for the detailed proof.

324 **5 EXPERIMENTS**

325

326 We evaluate ELMUR on synthetic (Ni et al., 2023) tasks, 48 POPGym puzzle/control tasks (Morad
 327 et al., 2023a), and robotic manipulation (Cherepanov et al., 2025), all designed to test memory under
 328 partial observability. Our study is guided by the following research questions (RQs):
 329

- 330 1. **RQ1**: Does ELMUR retain information across horizons far beyond its attention window?
 331 2. **RQ2**: How well does ELMUR generalize to shorter and longer sequences?
 332 3. **RQ3**: Is ELMUR effective on manipulation tasks with visual observations?
 333 4. **RQ4**: How consistent is ELMUR across puzzles, control, and robotics tasks?
 334 5. **RQ5**: What is the impact of components of ELMUR on its memorization?
 335

337 **5.1 BENCHMARKS AND BASELINES**

338

339 We evaluate ELMUR on three benchmarks designed to isolate memory (Appendix, Figure 7). The
 340 **T-Maze** requires recalling an early cue after traversing a long corridor with sparse rewards. The
 341 **MIKASA-Robo** suite provides robotic tabletop tasks with RGB observations and continuous ac-
 342 tions, including color-recall (RememberColor) and delayed reversal (TakeItBack). Finally,
 343 **POPGym** offers a diverse collection of partially observable puzzles and control environments for
 344 evaluating general memory use. Detailed descriptions can be found in Appendix A.4.

345 We compare against baselines spanning sequence models and offline RL for long-horizon tasks.
 346 We include transformers — Decision Transformer (DT) (Chen et al., 2021) and Recurrent Action
 347 Transformer with Memory (RATE) (Cherepanov et al., 2023) — as representative architectures for
 348 memory-augmented policy learning. We also evaluate DMamba (Ota, 2024), a state-space model
 349 with efficient recurrence, as a recent alternative to attention. For IL/offline RL, we use Behavior
 350 Cloning (BC) via MLP as the simplest supervised baseline, Conservative Q-Learning (CQL) (Kumar
 351 et al., 2020) as a strong offline RL method, and Diffusion Policy (DP) (Chi et al., 2023) as a state-
 352 of-the-art generative policy. Together, these span transformer, state-space, and offline/generative
 353 approaches, providing a competitive reference set for evaluation. We do not compare with online
 354 RL baselines, since they assume interactive data collection with exploration, yielding incomparable
 355 training budgets. Likewise, we omit real-robot experiments to avoid confounds such as latency,
 356 resets, and safety constraints, focusing instead on controlled, reproducible studies.
 357

Experimental Setup. For **RQ1**, we test T-Maze cue retention by training with short contexts
 358 ($L=10$, $S=3$) and evaluating on corridors up to 10^6 steps. For **RQ2**, we train on 7 T-Maze
 359 lengths distributions (9–900) and validate on 11 shorter/longer ones (9–9600) to assess inter-
 360 polation and extrapolation. For **RQ3**, we use MIKASA-Robo tasks, training by imitation from ex-
 361 pert demonstrations and evaluating zero-shot. For **RQ4**, we compare T-Maze, POPGym-48, and
 362 MIKASA-Robo to test robustness across synthetic puzzles, control, and robotics. For **RQ5**, we
 363 ablate RememberColor3-v0, varying M , λ , σ , and (L, S) , and remove relative bias, LRU, and
 364 per-layer memory to measure component contributions.
 365

Evaluation Protocol. Unless stated otherwise, each model is trained with three (four for T-Maze)
 366 independent runs (different initialization). For each run we evaluate on 100 episodes with distinct
 367 environment seeds and compute the run mean. We then report the grand mean \pm standard error of
 368 the mean (SEM) across the three run means. For per-task leaderboards (e.g., POPGym-48) we apply
 369 this protocol per task and aggregate as specified in the benchmark.
 370

Training Details and Hardware. All models are trained from scratch under the same data budgets
 371 and preprocessing. We use segment-level recurrence with detached memory between segments;
 372 losses are applied on each processed segment. Optimizers, schedulers, and hyperparameters follow
 373 the task-specific configuration table in Appendix, Table 7. All experiments were run on a single
 374 NVIDIA A100 (80 GB) per job. Training/evaluation code paths, seeds, and environment versions
 375 are fixed across methods for reproducibility.
 376

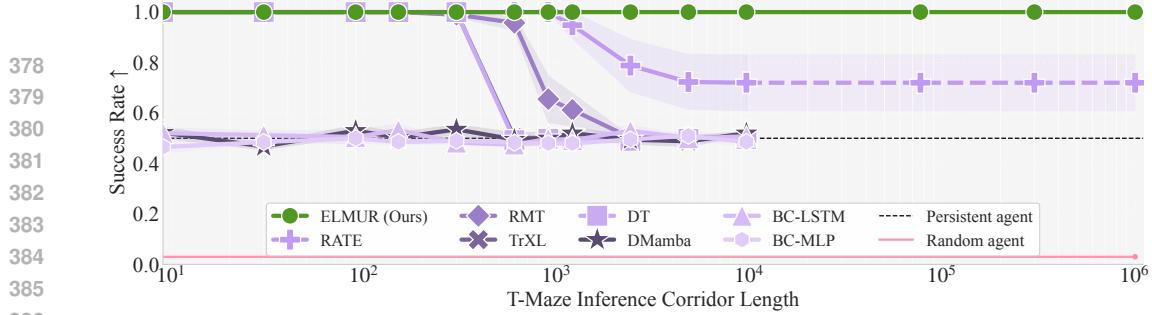


Figure 3: Success rate on the T-Maze task as a function of inference corridor length. ELMUR achieves a **100% success rate** up to corridor lengths of **one million steps**. In this figure, the context length is $L = 10$ with $S = 3$ segments; thus **ELMUR carries information across horizons 100,000 times longer than its context window**.

5.2 RESULTS

We evaluate ELMUR on T-Maze, MIKASA-Robo, and POPGym, addressing RQ1–RQ5 on retention, generalization, manipulation, cross-domain robustness, and ablations.

RQ1: Retention beyond attention. To test memory retention, we train on T-Maze corridors of length T while restricting the context size to $L < T$, forcing the model to solve tasks where the cue must be preserved beyond the native attention span. At validation, we evaluate on much longer

corridors — up to one million steps — without increasing L , thereby probing memory retention far beyond the training horizon. ELMUR achieves 100% success even under this extreme extrapolation (Figure 3), implying retention horizons nearly 100,000 \times larger than the attention window ($L=10$ with only $S=3$ segments used during training).

RQ2: Generalization across sequence lengths. We train ELMUR on T-Maze with short contexts (3 to 300 steps) and then evaluate across 11 validation lengths ranging from 9 to 9600 steps. The model transfers seamlessly in both directions: it solves tasks shorter than those seen during training without overfitting to a fixed scale, and it also extrapolates to sequences orders of magnitude longer. As shown in Figure 4, ELMUR maintains 100% success across all train/test pairs, demonstrating robust generalization beyond the training horizon.

RQ3: Manipulation with visual observations. Results in Table 1 indicate that ELMUR achieves higher success rates than other baselines on the MIKASA-Robo tasks. In

Table 1: Success rates (mean \pm standard error) on MIKASA-Robo tasks, averaged over 3 runs with 100 evaluation seeds. ELMUR outperforms baselines, showing stronger memory in manipulation. See results for all 32 MIKASA-Robo tasks in Appendix, Table 8.

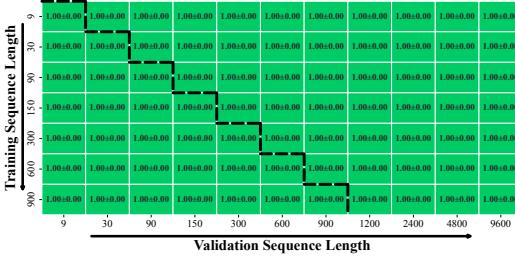


Figure 4: **Generalization of ELMUR across T-Maze lengths.** Each cell shows success rate (mean \pm standard error) for training vs. validation lengths. ELMUR transfers perfectly: models trained on shorter sequences retain 100% success up to 9600 steps. Training lengths were split into three equal segments.

Task	RATE	DT	BC-MLP	CQL-MLP	DP	ELMUR (ours)
RememberColor3-v0	0.65 \pm 0.04	0.01 \pm 0.01	0.27 \pm 0.03	0.29 \pm 0.01	0.32 \pm 0.01	0.89\pm0.07
RememberColor5-v0	0.13 \pm 0.03	0.07 \pm 0.05	0.12 \pm 0.01	0.15 \pm 0.02	0.10 \pm 0.02	0.19\pm0.03
RememberColor9-v0	0.09 \pm 0.02	0.01 \pm 0.01	0.12 \pm 0.02	0.15 \pm 0.01	0.17 \pm 0.01	0.23\pm0.02
TakeItBack-v0	0.42 \pm 0.24	0.08 \pm 0.04	0.33 \pm 0.10	0.04 \pm 0.01	0.05 \pm 0.02	0.78\pm0.03

Table 2: Aggregated returns on 48 POPGym tasks.						
	RATE	DT	Rand.	BC-MLP	BC-LSTM	ELMUR
All (48)	9.5	5.8	-12.2	-6.8	9.0	10.4
Puzzle (33)	0.45	-3.5	-14.6	-11.9	-0.2	1.2
Reactive (15)	9.1	9.3	2.3	5.1	9.1	9.2

Table 2: Aggregated returns on 48 POPGym tasks.

	RATE	DT	Rand.	BC-MLP	BC-LSTM	ELMUR
All (48)	9.5	5.8	-12.2	-6.8	9.0	10.4
Puzzle (33)	0.45	-3.5	-14.6	-11.9	-0.2	1.2
Reactive (15)	9.1	9.3	2.3	5.1	9.1	9.2

RQ4: Robustness across domains. Across synthetic (T-Maze), control/puzzle (48 POPGym), and robotic (MIKASA-Robo) benchmarks, ELMUR consistently outperforms baselines, generalizing across diverse modalities, actions, and rewards. On POPGym, it achieves the best overall score (10.4), with the largest gains on memory puzzles (1.2 vs. 0.45 for RATE; DT and BC-LSTM score below zero), showing the importance of explicit memory for long-term dependencies. On reactive tasks, ELMUR stays competitive without sacrificing puzzle performance, ranking first on 24 of 48 tasks (full results in [Table 5](#)). [Figure 5](#) shows consistent per-task gains over DT, especially on memory-intensive puzzles. Improved retention comes with little overhead: on T-Maze, ELMUR has 2.1M parameters (vs. 1.7M for RATE, 1.8M for DT) yet runs faster per step (6.8 ± 0.5 ms) than RATE (7.2 ± 0.3 ms) and DT (10.7 ± 0.1 ms). Efficiency stems from (i) a short attention window with long-term context handled by bounded memory, so complexity depends on memory size not sequence length, and (ii) MoE feed-forward layers, which raise capacity without proportional compute. Thus, explicit memory is both effective and efficient for long-horizon RL.

RQ5: Ablation Study. We ablate ELMUR’s memory design on RememberColor3-v0 (Figure 6, Table 3). Unless noted, models use *per-layer* memory, relative-bias token–memory cross-attention, and LRU-based updates; *shared memory* denotes embeddings shared across layers. In Figure 6 (b–d) the LRU factor is fixed to $\lambda = 0$ to isolate other effects. Results average three runs of 20 episodes. Performance scales with memory size M : when $M \geq N$ (the number of segments needed), success is near-perfect; when $M < N$, accuracy drops sharply, especially near $M \approx N$ (Figure 6, c–d). Intermediate blending ($\lambda \approx 0.4\text{--}0.6$) is unstable (Figure 6, a), while larger initialization σ mitigates collapse (Figure 6, b). Finer recurrence (shorter segments, larger N) stresses capacity unless M scales accordingly. Component ablations confirm that capacity and LRU dominate. Removing LRU leaves stale entries, and removing both LRU and relative bias prevents effective retrieval. Relative bias gives modest gains, while shared memory degrades performance, underscoring the value of layer-local design. Finally, replacing MoE-FFN with MLP-FFN preserves accuracy while improving computational efficiency.

Table 3: Ablation study results.

Setting	Score
Baseline ELMUR	1.00 ± 0.00
Shared memory	0.45 ± 0.03
No rel. bias	0.95 ± 0.05
No LRU	0.43 ± 0.22
No rel. bias; No LRU	0.22 ± 0.11
MoE → MLP	1.00 ± 0.00

To confirm that memory mechanisms do not harm performance on fully observable MDPs, we evaluated all models on the simple control task `CartPole-v1` (Towers et al., 2024). ELMUR, RATE, RMT, TrXL, BC-MLP, BC-LSTM, and CQL all achieved the maximum return of 500 ± 0 , showing that adding memory does not break performance in standard MDP settings. See additional results on more competitive D4RL benchmark (Todorov et al., 2012) with MDP tasks in the Appendix, Section A.5, Table 4.

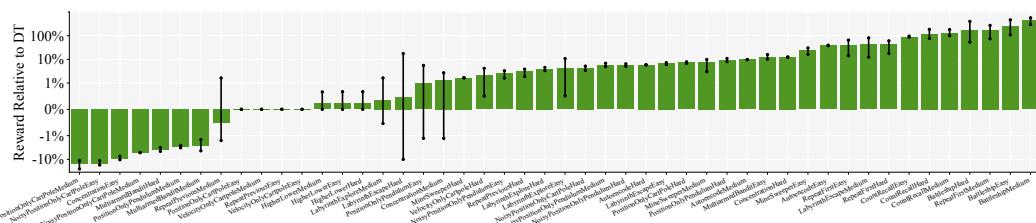


Figure 5: ELMUR compared to DT on all 48 POPGym tasks. Each model was trained with three independent runs, validated over 100 episodes each. Bars show the mean performance with 95% confidence intervals computed over these three means. ELMUR achieves consistent improvements over DT, with the largest gains on memory-intensive puzzles.

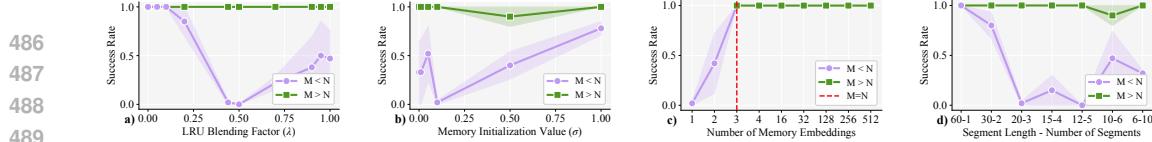


Figure 6: **Ablations of ELMUR’s memory hyperparameters on RememberColor3-v0.** (a) LRU blending factor (λ), (b) memory embeddings initialization (σ), (c) number of memory embeddings (M), and (d) segment configuration ($L - S$). Curves compare settings where the number of memory embeddings is smaller than the required segments to solve the task ($M < N$) versus larger ($M > N$). Results show that sufficient memory capacity ($M \geq N$) yields stable success, while under-provisioned memory ($M < N$) is highly sensitive to λ , σ , and segmentation.

6 RELATED WORK

Manipulation. Transformer approaches to robotic manipulation can be broadly categorized by their underlying design principles. *Perception-centric visuomotor transformers* focus on multi-view or 3D perception to improve near fully observable control (Shridhar et al., 2023; Goyal et al., 2024). *Sequence/skill modeling* distills demonstrations into reusable action chunks but remains bottlenecked by limited context (Huang et al., 2023; Kobayashi et al., 2025). *Planning/value-augmented transformers* integrate transformers with planning or value learning for closed-loop control under finite context (Zhang et al., 2025b; Hu et al., 2025). *Alternative backbones* adopt state-space models or diffusion for efficiency, but without persistent memory (Liu et al., 2024b; Chi et al., 2023). *Scaling to VLA* broadens task coverage with language but still suffers from fixed horizons, with some remedies via summarization, feature banks, or hierarchy (Zitkovich et al., 2023; Team et al., 2024; Kim et al., 2024; Fang et al., 2025; Shi et al., 2025). ELMUR differs by training as a standard IL transformer while removing the context bottleneck through structured, layer-local external memory.

Memory. Efforts to extend sequence models to long horizons take several forms. *Implicit recurrence and state-space models* compress history in hidden dynamics, offering efficiency but little control over forgetting (Beck et al., 2024; Gu & Dao, 2023). *External memory with learned access* provides addressable storage but complicates optimization (Graves et al., 2016; Santoro et al., 2016). *Transformer context extension* retains history via caches or auxiliary slots but keeps memory peripheral (Dai et al., 2019). In RL, memory is often implemented through *episodic buffers* for salient events (Lampinen et al., 2021) or *sequence-model adaptations* that retrofit transformers for recurrence (Parisotto et al., 2020; Cherepanov et al., 2024). Architectures vary in integration: RATE (Cherepanov et al., 2023) concatenates memory with tokens, Memformer (Wu et al., 2020) uses global slots, and Block-Recurrent Transformers (Hutchins et al., 2022) recycle hidden states. ELMUR instead gives each layer an external memory with dedicated mem2tok/tok2mem cross-attention and LRU updates, yielding bounded memory for long-horizon tasks (Appendix A.6).

7 CONCLUSION

We introduced ELMUR, a transformer architecture with layer-local external memory, bidirectional token–memory cross-attention, and an LRU-based update rule. Unlike prior methods, ELMUR integrates explicit memory into every layer, achieving retention horizons up to $100,000 \times$ beyond the native attention window. Our analysis establishes formal guarantees on half-life and boundedness under convex blending, and experiments on T-Maze, 48 POPGym tasks, and MIKASA-Robo demonstrate consistent improvements over strong baselines, underscoring reliable credit assignment under partial observability. We envision ELMUR as a simple and extensible framework for long-horizon decision-making with scalable memory in sequential control.

REPRODUCIBILITY STATEMENT

We have taken several measures to ensure the reproducibility of our results. **Model details:** A complete description of the ELMUR architecture, including pseudocode for the layer update and the LRU-based memory module, is provided in Section 3, Algorithm 1, and Figure 2. **Theoretical re-**

540 **sults:** All assumptions and formal proofs of our propositions on exponential forgetting, half-life, and
 541 boundedness are presented in [Section 4](#) and detailed in [Appendix A.1–A.2](#). **Experimental setup:**
 542 Benchmarks, training procedures, and evaluation protocols are described in [Section 5](#), with additional
 543 specifications (hyperparameters, dataset preprocessing, random seeds, and hardware setup)
 544 reported in [Appendix 7](#) and [A.4](#). **Baselines:** All baselines are implemented from open-source
 545 libraries or faithfully re-implemented with hyperparameters matched to their original publications,
 546 as described in [Section 5](#) and [Appendix A.6](#). **Code and data:** An anonymous repository with the
 547 implementation of ELMUR, training scripts, and configuration files is provided in the supple-
 548 mentary material. Together, these resources enable full replication of both our theoretical analysis and
 549 empirical findings.

550 **REFERENCES**

- 551 Hervé Abdi and Lynne J Williams. Principal component analysis. *Wiley interdisciplinary reviews: computational statistics*, 2(4):433–459, 2010.
- 552 Amir Hosein Khas Ahmadi. *Memory-based graph networks*. University of Toronto (Canada), 2020.
- 553 Maximilian Beck, Korbinian Pöppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova,
 554 Michael Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xlstm: Extended
 555 long short-term memory. *Advances in Neural Information Processing Systems*, 37:107547–
 556 107603, 2024.
- 557 Ali Behrouz, Peilin Zhong, and Vahab Mirrokni. Titans: Learning to memorize at test time. *arXiv preprint arXiv:2501.00663*, 2024.
- 558 Johan Bjorck, Fernando Castañeda, Nikita Cherniakov, Xingye Da, Runyu Ding, Linxi Fan,
 559 Yu Fang, Dieter Fox, Fengyuan Hu, Spencer Huang, et al. Gr00t n1: An open foundation model
 560 for generalist humanoid robots. *arXiv preprint arXiv:2503.14734*, 2025.
- 561 Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolò
 562 Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. pi_0: A vision-language-action flow
 563 model for general robot control. *arXiv preprint arXiv:2410.24164*, 2024.
- 564 Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
 565 Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
 566 transformer for real-world control at scale. *arXiv preprint arXiv:2212.06817*, 2022.
- 567 Aydar Bulatov, Yury Kuratov, and Mikhail Burtsev. Recurrent memory transformer. *Advances in Neural Information Processing Systems*, 35:11079–11091, 2022.
- 568 Yevgen Chebotar, Quan Vuong, Karol Hausman, Fei Xia, Yao Lu, Alex Irpan, Aviral Kumar, Tianhe
 569 Yu, Alexander Herzog, Karl Pertsch, et al. Q-transformer: Scalable offline reinforcement learning
 570 via autoregressive q-functions. In *Conference on Robot Learning*, pp. 3909–3928. PMLR, 2023.
- 571 Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
 572 Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
 573 modeling. *Advances in neural information processing systems*, 34:15084–15097, 2021.
- 574 Egor Cherepanov, Alexey Staroverov, Dmitry Yudin, Alexey K Kovalev, and Aleksandr I Panov.
 575 Recurrent action transformer with memory. *arXiv preprint arXiv:2306.09459*, 2023.
- 576 Egor Cherepanov, Nikita Kachaev, Artem Zhulus, Alexey K Kovalev, and Aleksandr I Panov. Un-
 577 raveling the complexity of memory in rl agents: an approach for classification and evaluation.
 578 *arXiv preprint arXiv:2412.06531*, 2024.
- 579 Egor Cherepanov, Nikita Kachaev, Alexey K Kovalev, and Aleksandr I Panov. Memory, benchmark
 580 & robots: A benchmark for solving complex tasks with reinforcement learning. *arXiv preprint
 581 arXiv:2502.10550*, 2025.
- 582 Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
 583 and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. *The International Journal of Robotics Research*, pp. 02783649241273668, 2023.

- 594 Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
 595 Zeng, Xingkai Yu, Yu Wu, et al. Deepseekmoe: Towards ultimate expert specialization in mixture-
 596 of-experts language models. *arXiv preprint arXiv:2401.06066*, 2024.
- 597
- 598 Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan Salakhutdinov. Transformer-xl: Attentive language models beyond a fixed-length context. *arXiv preprint arXiv:1901.02860*, 2019.
- 600
- 601 Murtaza Dalal, Ajay Mandlekar, Caelan Garrett, Ankur Handa, Ruslan Salakhutdinov, and Dieter Fox. Imitating task and motion planning with visuomotor transformers. *arXiv preprint arXiv:2305.16309*, 2023.
- 602
- 603
- 604 Siyu Ding, Junyuan Shang, Shuohuan Wang, Yu Sun, Hao Tian, Hua Wu, and Haifeng Wang. Ernie-
 605 doc: A retrospective long-document modeling transformer. *arXiv preprint arXiv:2012.15688*, 2020.
- 606
- 607
- 608 Kevin Esslinger, Robert Platt, and Christopher Amato. Deep transformer q-networks for partially
 609 observable reinforcement learning. *arXiv preprint arXiv:2206.01078*, 2022.
- 610
- 611 Haoquan Fang, Markus Grotz, Wilbert Pumacay, Yi Ru Wang, Dieter Fox, Ranjay Krishna, and
 612 Jiafei Duan. Sam2act: Integrating visual foundation model with a memory architecture for robotic
 613 manipulation. *arXiv preprint arXiv:2501.18564*, 2025.
- 614
- 615 Niklas Funk, Julen Urain, Joao Carvalho, Vignesh Prasad, Georgia Chalvatzaki, and Jan Peters.
 616 Actionflow: Equivariant, accurate, and efficient policies with spatially symmetric flow matching.
 617 *arXiv preprint arXiv:2409.04576*, 2024.
- 618
- 619 Kai Gao, Fan Wang, Erica Aduh, Dylan Randle, and Jane Shi. Must: Multi-head skill transformer
 620 for long-horizon dexterous manipulation with skill progress. *arXiv preprint arXiv:2502.02753*,
 621 2025.
- 622
- 623 Ankit Goyal, Jie Xu, Yijie Guo, Valts Blukis, Yu-Wei Chao, and Dieter Fox. Rvt: Robotic view
 624 transformer for 3d object manipulation. In *Conference on Robot Learning*, pp. 694–710. PMLR,
 625 2023.
- 626
- 627 Ankit Goyal, Valts Blukis, Jie Xu, Yijie Guo, Yu-Wei Chao, and Dieter Fox. Rvt-2: Learning precise
 628 manipulation from few demonstrations. *arXiv preprint arXiv:2406.08545*, 2024.
- 629
- 630 Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. *arXiv preprint arXiv:
 631 1410.5401*, 2014.
- 632
- 633 Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-
 634 Barwinska, Sergio Gomez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John P. Agapiou,
 635 Adrià Puigdomènech Badia, Karl Moritz Hermann, Yori Zwols, Georg Ostrovski, Adam Cain,
 636 Helen King, Christopher Summerfield, Phil Blunsom, Koray Kavukcuoglu, and Demis Hassabis.
 637 Hybrid computing using a neural network with dynamic external memory. *Nature*, 538:471–476,
 638 2016. URL <https://api.semanticscholar.org/CorpusID:205251479>.
- 639
- 640 Jake Grigsby, Justin Sasek, Samyak Parajuli, Daniel Adebi, Amy Zhang, and Yuke Zhu. Amago-2:
 641 Breaking the multi-task barrier in meta-reinforcement learning with transformers. *Advances in
 642 Neural Information Processing Systems*, 37:87473–87508, 2024.
- 643
- 644 Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. *arXiv
 645 preprint arXiv:2312.00752*, 2023.
- 646
- 647 Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
 648 state spaces. *arXiv preprint arXiv:2111.00396*, 2021.
- 649
- 650 ByungOk Han, Jaehong Kim, and Jinhyeok Jang. A dual process vla: Efficient robotic manipulation
 651 leveraging vlm. *arXiv preprint arXiv:2410.15549*, 2024.
- 652
- 653 Matthew J Hausknecht and Peter Stone. Deep recurrent q-learning for partially observable mdps. In
 654 *AAAI fall symposia*, volume 45, pp. 141, 2015.

- 648 Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. *Neural Computation*, 9:1735–
 649 1780, 1997. URL <https://api.semanticscholar.org/CorpusID:1915014>.
 650
- 651 Jiaheng Hu, Rose Hendrix, Ali Farhadi, Aniruddha Kembhavi, Roberto Martín-Martín, Peter Stone,
 652 Kuo-Hao Zeng, and Kiana Ehsani. Flare: Achieving masterful and adaptive robot policies
 653 with large-scale reinforcement learning fine-tuning. In *2025 IEEE International Conference on*
 654 *Robotics and Automation (ICRA)*, pp. 3617–3624. IEEE, 2025.
- 655 Xiaoyu Huang, Dhruv Batra, Akshara Rai, and Andrew Sztot. Skill transformer: A monolithic policy
 656 for mobile manipulation. In *Proceedings of the IEEE/CVF International Conference on Computer*
 657 *Vision*, pp. 10852–10862, 2023.
- 658 Chia-Yu Hung, Qi Sun, Pengfei Hong, Amir Zadeh, Chuan Li, U Tan, Navonil Majumder, Soujanya
 659 Poria, et al. Nora: A small open-sourced generalist vision language action model for embodied
 660 tasks. *arXiv preprint arXiv:2504.19854*, 2025.
- 661 DeLesley Hutchins, Imanol Schlag, Yuhuai Wu, Ethan Dyer, and Behnam Neyshabur. Block-
 662 recurrent transformers. *Advances in neural information processing systems*, 35:33248–33261,
 663 2022.
- 664 Physical Intelligence, Kevin Black, Noah Brown, James Darpinian, Karan Dhabalia, Danny Driess,
 665 Adnan Esmail, Michael Equi, Chelsea Finn, Niccolò Fusai, et al. $pi_{\{-0.5\}}$: a vision-language-
 666 action model with open-world generalization. *arXiv preprint arXiv:2504.16054*, 2025.
- 667 Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
 668 modeling problem. *Advances in neural information processing systems*, 34:1273–1286, 2021.
- 669 Yunfan Jiang, Agrim Gupta, Zichen Zhang, Guanzhi Wang, Yongqiang Dou, Yanjun Chen, Li Fei-
 670 Fei, Anima Anandkumar, Yuke Zhu, and Linxi Fan. Vima: General robot manipulation with
 671 multimodal prompts. *arXiv preprint arXiv:2210.03094*, 2(3):6, 2022.
- 672 Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
 673 rnns: Fast autoregressive transformers with linear attention. In *International conference on ma-*
 674 *chine learning*, pp. 5156–5165. PMLR, 2020.
- 675 Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
 676 Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
 677 vision-language-action model. *arXiv preprint arXiv:2406.09246*, 2024.
- 678 Moo Jin Kim, Chelsea Finn, and Percy Liang. Fine-tuning vision-language-action models: Opti-
 679 mizing speed and success. *arXiv preprint arXiv:2502.19645*, 2025.
- 680 Masato Kobayashi, Thanpimon Buamanee, Yuki Uranishi, and Haruo Takemura. Ilbit: Imitation
 681 learning for robot using position and torque information based on bilateral control with trans-
 682 former. *IEEJ Journal of Industry Applications*, 14(2):161–168, 2025.
- 683 Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
 684 reinforcement learning. *Advances in neural information processing systems*, 33:1179–1191, 2020.
- 685 Andrew Lampinen, Stephanie Chan, Andrea Banino, and Felix Hill. Towards mental time travel:
 686 a hierarchical memory for reinforcement learning agents. *Advances in Neural Information Pro-*
 687 *cessing Systems*, 34:28182–28195, 2021.
- 688 Mikko Lauri, David Hsu, and Joni Pajarinen. Partially observable markov decision processes in
 689 robotics: A survey. *IEEE Transactions on Robotics*, 39(1):21–40, 2022.
- 690 Hung Le, Kien Do, Dung Nguyen, Sunil Gupta, and Svetha Venkatesh. Stable hadamard
 691 memory: Revitalizing memory-augmented agents for reinforcement learning. *arXiv preprint*
 692 *arXiv:2410.10132*, 2024.
- 693 Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
 694 rial, review, and perspectives on open problems. *arXiv preprint arXiv:2005.01643*, 2020.

- 702 Qixiu Li, Yaobo Liang, Zeyu Wang, Lin Luo, Xi Chen, Mozheng Liao, Fangyun Wei, Yu Deng,
 703 Sicheng Xu, Yizhong Zhang, et al. Cogact: A foundational vision-language-action model for
 704 synergizing cognition and action in robotic manipulation. *arXiv preprint arXiv:2411.19650*, 2024.
 705
- 706 Xinghang Li, Minghuan Liu, Hanbo Zhang, Cunjun Yu, Jie Xu, Hongtao Wu, Chilam Cheang,
 707 Ya Jing, Weinan Zhang, Huaping Liu, et al. Vision-language foundation models as effective robot
 708 imitators. *arXiv preprint arXiv:2311.01378*, 2023.
- 709 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 710 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint
 711 arXiv:2412.19437*, 2024a.
- 712 Hao Liu, Matei Zaharia, and Pieter Abbeel. Ring attention with blockwise transformers for near-
 713 infinite context. *arXiv preprint arXiv:2310.01889*, 2023.
- 714
- 715 Jiaming Liu, Mengzhen Liu, Zhenyu Wang, Pengju An, Xiaoqi Li, Kaichen Zhou, Senqiao Yang,
 716 Renrui Zhang, Yandong Guo, and Shanghang Zhang. Robomamba: Efficient vision-language-
 717 action model for robotic reasoning and manipulation. *Advances in Neural Information Processing
 718 Systems*, 37:40085–40110, 2024b.
- 719
- 720 Jiaming Liu, Hao Chen, Pengju An, Zhuoyang Liu, Renrui Zhang, Chenyang Gu, Xiaoqi Li, Ziyu
 721 Guo, Sixiang Chen, Mengzhen Liu, Chengkai Hou, Mengdi Zhao, KC alex Zhou, Pheng-Ann
 722 Heng, and Shanghang Zhang. Hybridvla: Collaborative diffusion and autoregression in a unified
 723 vision-language-action model, 2025. URL <https://arxiv.org/abs/2503.10631>.
- 724
- 725 Steven Morad, Ryan Kortvelesy, Matteo Bettini, Stephan Liwicki, and Amanda Prorok. POPGym:
 726 Benchmarking partially observable reinforcement learning. In *The Eleventh International Con-
 727 ference on Learning Representations*, 2023a. URL [https://openreview.net/forum?
 728 id=chDrutUTs0K](https://openreview.net/forum?id=chDrutUTs0K).
- 729
- 730 Steven Morad, Ryan Kortvelesy, Stephan Liwicki, and Amanda Prorok. Reinforcement learning
 731 with fast and forgetful memory. *Advances in Neural Information Processing Systems*, 36:72008–
 732 72029, 2023b.
- 733
- 734 Tongzhou Mu, Minghua Liu, and Hao Su. Drs: Learning reusable dense rewards for multi-
 735 stage tasks. *ArXiv*, abs/2404.16779, 2024. URL [https://api.semanticscholar.org/
 736 CorpusID:269362133](https://api.semanticscholar.org/CorpusID:269362133).
- 737
- 738 Tianwei Ni, Michel Ma, Benjamin Eysenbach, and Pierre-Luc Bacon. When do transformers shine
 739 in rl? decoupling memory from credit assignment. *Advances in Neural Information Processing
 740 Systems*, 36:50429–50452, 2023.
- 741
- 742 Toshihiro Ota. Decision mamba: Reinforcement learning via sequence modeling with selective state
 743 spaces. *arXiv preprint arXiv:2403.19925*, 2024.
- 744
- 745 Zikai Ouyang, Kaijun Wang, Junwei Liu, Haibo Lu, and Wei Zhang. Scil: Stage-conditioned imita-
 746 tion learning for multi-stage manipulation. *IEEE Control Systems Letters*, 2025.
- 747
- 748 Emilio Parisotto and Ruslan Salakhutdinov. Neural map: Structured memory for deep reinforce-
 749 ment learning. *arXiv preprint arXiv:1702.08360*, 2017.
- 750
- 751 Emilio Parisotto, Francis Song, Jack Rae, Razvan Pascanu, Caglar Gulcehre, Siddhant Jayakumar,
 752 Max Jaderberg, Raphael Lopez Kaufman, Aidan Clark, Seb Noury, et al. Stabilizing transformers
 753 for reinforcement learning. In *International conference on machine learning*, pp. 7487–7498.
 754 PMLR, 2020.
- 755
- 756 Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman,
 757 Huanqi Cao, Xin Cheng, Michael Chung, Matteo Grella, et al. Rwkv: Reinventing rnns for
 758 the transformer era. *arXiv preprint arXiv:2305.13048*, 2023.
- 759
- 760 Subhojeet Pramanik, Esraa Elelimy, Marlos C Machado, and Adam White. Agalite: Approximate
 761 gated linear transformers for online reinforcement learning. *arXiv preprint arXiv:2310.15719*,
 762 2023.

- 756 Delin Qu, Haoming Song, Qizhi Chen, Yuanqi Yao, Xinyi Ye, Yan Ding, Zhigang Wang, JiaYuan
 757 Gu, Bin Zhao, Dong Wang, et al. Spatialvla: Exploring spatial representations for visual-
 758 language-action model. *arXiv preprint arXiv:2501.15830*, 2025.
- 759
- 760 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 761 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.
- 762
- 763 Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, and Timothy P Lillicrap. Compressive
 764 transformers for long-range sequence modelling. *arXiv preprint arXiv:1911.05507*, 2019.
- 765
- 766 Moritz Reuss, Hongyi Zhou, Marcel Rühle, Ömer Erdinç Yağmurlu, Fabian Otto, and Rudolf Li-
 767 outikov. FLOWER: Democratizing generalist robot policies with efficient vision-language-action
 768 flow policies. In *7th Robot Learning Workshop: Towards Robots with Human-Level Abilities*,
 769 2025. URL <https://openreview.net/forum?id=ifo8oWSLSq>.
- 770
- 771 Ivan Rodkin, Yuri Kuratov, Aydar Bulatov, and Mikhail Burtsev. Associative recurrent memory
 772 transformer. *arXiv preprint arXiv:2407.04841*, 2024.
- 773
- 774 Adam Santoro, Sergey Bartunov, Matthew M. Botvinick, Daan Wierstra, and Timothy P. Lill-
 775 icrap. Meta-learning with memory-augmented neural networks. In *International Conference
 776 on Machine Learning*, 2016. URL [https://api.semanticscholar.org/CorpusID:
 6466088](https://api.semanticscholar.org/CorpusID:6466088).
- 777
- 778 Hao Shi, Bin Xie, Yingfei Liu, Lin Sun, Fengrong Liu, Tiancai Wang, Erjin Zhou, Haoqiang Fan,
 779 Xiangyu Zhang, and Gao Huang. Memoryvla: Perceptual-cognitive memory in vision-language-
 780 action models for robotic manipulation. *arXiv preprint arXiv:2508.19236*, 2025.
- 781
- 782 Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Perceiver-actor: A multi-task transformer for
 783 robotic manipulation. In *Conference on Robot Learning*, pp. 785–799. PMLR, 2023.
- 784
- 785 Artyom Sorokin, Nazar Buzun, Leonid Pugachev, and Mikhail Burtsev. Explain my surprise: Learn-
 786 ing efficient long-term memory by predicting uncertain outcomes. 07 2022. doi: 10.48550/arXiv.
 787 2207.13649.
- 788
- 789 Richard S Sutton, Andrew G Barto, et al. *Reinforcement learning: An introduction*, volume 1. MIT
 790 press Cambridge, 1998.
- 791
- 792 Denis Tarasov, Alexander Nikulin, Ilya Zisman, Albina Klepach, Nikita Lyubaykin, Andrei Pol-
 793 ubarov, Alexander Derevyagin, and Vladislav Kurenkov. Nina: Normalizing flows in action.
 794 training vla models with normalizing flows, 2025. URL [https://arxiv.org/abs/2508.
 16845](https://arxiv.org/abs/2508.16845).
- 795
- 796 Gemini Robotics Team, Saminda Abeyruwan, Joshua Ainslie, Jean-Baptiste Alayrac, Montser-
 797 rat Gonzalez Arenas, Travis Armstrong, Ashwin Balakrishna, Robert Baruch, Maria Bauza,
 798 Michiel Blokzijl, et al. Gemini robotics: Bringing ai into the physical world. *arXiv preprint
 799 arXiv:2503.20020*, 2025.
- 800
- 801 Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
 802 Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, et al. Octo: An open-source generalist robot
 803 policy. *arXiv preprint arXiv:2405.12213*, 2024.
- 804
- 805 Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
 806 In *2012 IEEE/RSJ international conference on intelligent robots and systems*, pp. 5026–5033.
 807 IEEE, 2012.
- 808
- 809 Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu,
 810 Manuel Goulão, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A standard
 811 interface for reinforcement learning environments. *arXiv preprint arXiv:2407.17032*, 2024.
- 812
- Linji Wang, Tong Xu, Yuanjie Lu, and Xuesu Xiao. Reward training wheels: Adaptive auxiliary
 813 rewards for robotics reinforcement learning. *arXiv preprint arXiv:2503.15724*, 2025a.

- 810 Yongyi Wang, Lingfeng Li, Bozhou Chen, Ang Li, Hanyu Liu, Qirui Zheng, Xionghui Yang, and
 811 Wenxin Li. Synthetic pomdps to challenge memory-augmented rl: Memory demand structure
 812 modeling. *arXiv preprint arXiv:2508.04282*, 2025b.
- 813 Junjie Wen, Yichen Zhu, Jinning Li, Zhibin Tang, Chaomin Shen, and Feifei Feng. Dexvla:
 814 Vision-language model with plug-in diffusion expert for general robot control. *arXiv preprint*
 815 *arXiv:2502.05855*, 2025a.
- 816 Junjie Wen, Yichen Zhu, Jinning Li, Minjie Zhu, Zhibin Tang, Kun Wu, Zhiyuan Xu, Ning Liu,
 817 Ran Cheng, Chaomin Shen, et al. Tinyvla: Towards fast, data-efficient vision-language-action
 818 models for robotic manipulation. *IEEE Robotics and Automation Letters*, 2025b.
- 819 Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. *arXiv preprint*
 820 *arXiv:1410.3916*, 2014.
- 821 Qingyang Wu, Zhenzhong Lan, Kun Qian, Jing Gu, Alborz Geramifard, and Zhou Yu. Memformer:
 822 A memory-augmented transformer for sequence modeling. *arXiv preprint arXiv:2010.06891*,
 823 2020.
- 824 Yuhuai Wu, Markus N Rabe, DeLesley Hutchins, and Christian Szegedy. Memorizing transformers.
 825 *arXiv preprint arXiv:2203.08913*, 2022.
- 826 Zheng Wu, Wenzhao Lian, Vaibhav Unhelkar, Masayoshi Tomizuka, and Stefan Schaal. Learning
 827 dense rewards for contact-rich manipulation tasks. In *2021 IEEE International Conference on*
 828 *Robotics and Automation (ICRA)*, pp. 6214–6221. IEEE, 2021.
- 829 William Yue, Bo Liu, and Peter Stone. Learning memory mechanisms for decision making through
 830 demonstrations. *arXiv preprint arXiv:2411.07954*, 2024.
- 831 Maryam Zare, Parham M Kebria, Abbas Khosravi, and Saeid Nahavandi. A survey of imitation
 832 learning: Algorithms, recent developments, and challenges. *IEEE Transactions on Cybernetics*,
 833 2024.
- 834 Daniil Zelezetsky, Egor Cherepanov, Alexey K Kovalev, and Aleksandr I Panov. Re: Frame-
 835 retrieving experience from associative memory. *arXiv preprint arXiv:2508.19344*, 2025.
- 836 Jianke Zhang, Yanjiang Guo, Xiaoyu Chen, Yen-Jen Wang, Yucheng Hu, Chengming Shi, and
 837 Jianyu Chen. Hirt: Enhancing robotic control with hierarchical robot transformers. *arXiv preprint*
 838 *arXiv:2410.05273*, 2024.
- 839 Kun Zhang, Peng Yun, Jun Cen, Junhao Cai, Didi Zhu, Hangjie Yuan, Chao Zhao, Tao Feng,
 840 Michael Yu Wang, Qifeng Chen, et al. Generative artificial intelligence in robotic manipulation:
 841 A survey. *arXiv preprint arXiv:2503.03464*, 2025a.
- 842 Xinyu Zhang, Yuhang Liu, Haonan Chang, Liam Schramm, and Abdeslam Boularias. Autoregressive
 843 action sequence learning for robotic manipulation. *IEEE Robotics and Automation Letters*, 2025b.
- 844 Qingqing Zhao, Yao Lu, Moo Jin Kim, Zipeng Fu, Zhuoyang Zhang, Yecheng Wu, Zhaoshuo Li,
 845 Qianli Ma, Song Han, Chelsea Finn, et al. Cot-vla: Visual chain-of-thought reasoning for vision-
 846 language-action models. In *Proceedings of the Computer Vision and Pattern Recognition Conference*,
 847 pp. 1702–1713, 2025.
- 848 Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
 849 manipulation with low-cost hardware. *arXiv preprint arXiv:2304.13705*, 2023.
- 850 Haoyu Zhen, Xiaowen Qiu, Peihao Chen, Jincheng Yang, Xin Yan, Yilun Du, Yining Hong, and
 851 Chuang Gan. 3d-vla: A 3d vision-language-action generative world model. *arXiv preprint*
 852 *arXiv:2403.09631*, 2024.
- 853 Ruijie Zheng, Yongyuan Liang, Shuaiyi Huang, Jianfeng Gao, Hal Daumé III, Andrey Kolobov,
 854 Furong Huang, and Jianwei Yang. Tracevla: Visual trace prompting enhances spatial-temporal
 855 awareness for generalist robotic policies. *arXiv preprint arXiv:2412.10345*, 2024.
- 856 Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart,
 857 Stefan Welker, Ayzaan Wahid, et al. Rt-2: Vision-language-action models transfer web knowledge
 858 to robotic control. In *Conference on Robot Learning*, pp. 2165–2183. PMLR, 2023.

864 **A APPENDIX**865 **A.1 PROOF OF EXPONENTIAL FORGETTING IN LRU UPDATES**866 **Proposition 1 (Exponential Forgetting).** Fix a slot j and a segment index i . Suppose this slot is
867 updated k times at segments $i+1, \dots, i+k$ according to

868
$$\mathbf{m}_j^t = \lambda \mathbf{m}_{\text{new}}^t + (1-\lambda) \mathbf{m}_j^{t-1}, \quad t = i+1, \dots, i+k, \quad (10)$$

869 with $0 \leq \lambda \leq 1$. Then

870
$$\mathbf{m}_j^{i+k} = (1-\lambda)^k \mathbf{m}_j^i + \sum_{u=1}^k \lambda(1-\lambda)^{k-u} \mathbf{m}_{\text{new}}^{i+u}. \quad (11)$$

871 Consequently, the coefficient of the initial content \mathbf{m}_j^i after k overwrites is $(1-\lambda)^k$, and the coefficient
872 of the write performed τ updates ago (at segment $i+\tau$) is $\lambda(1-\lambda)^{\tau-1}$.873 **Proof.** We prove Equation 11 by induction on k .874 *Base case* $k=1$. By the update rule,

875
$$\mathbf{m}_j^{i+1} = \lambda \mathbf{m}_{\text{new}}^{i+1} + (1-\lambda) \mathbf{m}_j^i, \quad (12)$$

876 which matches Equation 11 with $k=1$.877 *Induction step.* Assume Equation 11 holds for some $k \geq 1$. For $k+1$,

878
$$\mathbf{m}_j^{i+k+1} = \lambda \mathbf{m}_{\text{new}}^{i+k+1} + (1-\lambda) \mathbf{m}_j^{i+k}. \quad (13)$$

879 Insert the induction hypothesis for \mathbf{m}_j^{i+k} :

880
$$\mathbf{m}_j^{i+k+1} = \lambda \mathbf{m}_{\text{new}}^{i+k+1} + (1-\lambda) \left[(1-\lambda)^k \mathbf{m}_j^i + \sum_{u=1}^k \lambda(1-\lambda)^{k-u} \mathbf{m}_{\text{new}}^{i+u} \right]. \quad (14)$$

881 Distribute $(1-\lambda)$ and regroup terms:

882
$$\mathbf{m}_j^{i+k+1} = (1-\lambda)^{k+1} \mathbf{m}_j^i + \sum_{u=1}^k \lambda(1-\lambda)^{(k+1)-u} \mathbf{m}_{\text{new}}^{i+u} + \lambda \mathbf{m}_{\text{new}}^{i+k+1}, \quad (15)$$

883 which is exactly Equation 11 with k replaced by $k+1$. This completes the induction.

884 Finally, the coefficients in Equation 11 form a convex combination:

885
$$(1-\lambda)^k + \sum_{u=1}^k \lambda(1-\lambda)^{k-u} = (1-\lambda)^k + \lambda \sum_{r=0}^{k-1} (1-\lambda)^r = 1, \quad (16)$$

886 so it is meaningful to call them “fractions” of contribution. ■887 **Corollary (Half-life).** The number of overwrites $k_{0.5}$ after which the contribution of \mathbf{m}_j^i halves
888 satisfies

889
$$(1-\lambda)^{k_{0.5}} = \frac{1}{2} \implies k_{0.5} = \frac{\ln(1/2)}{\ln(1-\lambda)}. \quad (17)$$

890 Equivalently,

891
$$k_{0.5} = \frac{\ln 2}{-\ln(1-\lambda)}. \quad (18)$$

892 Using the Maclaurin series expansion $\ln(1-\lambda) \sim -\lambda$ as $\lambda \rightarrow 0$, we obtain

893
$$\lim_{\lambda \rightarrow 0} k_{0.5} \cdot \lambda = \ln 2. \quad (19)$$

894 Hence,

895
$$k_{0.5} \sim \frac{\ln 2}{\lambda} \quad \text{as } \lambda \rightarrow 0, \quad (20)$$

896 showing that smaller λ yields longer retention horizons, while larger λ overwrites past content more
897 aggressively.

918 A.2 BOUNDEDNESS OF MEMORY EMBEDDINGS
919920 Fix a slot j and consider its update rule,

921
$$\mathbf{m}_j^{i+1} = \lambda \mathbf{m}_{\text{new}}^{i+1} + (1 - \lambda) \mathbf{m}_j^i, \quad 0 \leq \lambda \leq 1. \quad (21)$$

922

923 We prove the claim by induction on i .924 *Base case.* At $i = 0$, the assumption gives $\|\mathbf{m}_j^0\| \leq C$.925
926 *Induction step.* Assume $\|\mathbf{m}_j^i\| \leq C$ for some $i \geq 0$. Using the update rule,

927
$$\|\mathbf{m}_j^{i+1}\| = \|\lambda \mathbf{m}_{\text{new}}^{i+1} + (1 - \lambda) \mathbf{m}_j^i\|. \quad (22)$$

928

929 By the triangle inequality and the inductive hypothesis,

930
$$\|\mathbf{m}_j^{i+1}\| \leq \lambda \|\mathbf{m}_{\text{new}}^{i+1}\| + (1 - \lambda) \|\mathbf{m}_j^i\| \leq \lambda C + (1 - \lambda) C = C. \quad (23)$$

931

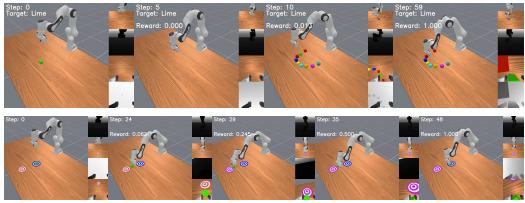
932 Thus $\|\mathbf{m}_j^{i+1}\| \leq C$, completing the induction.933
934 Therefore, for all i , the memory embedding satisfies $\|\mathbf{m}_j^i\| \leq C$. ■935 A.3 MEMORY-INTENSIVE ENVIRONMENTS
936937 **Event-recall pairs and correlation horizon.**938 Following (Cherepanov et al., 2024), let $\alpha_{t_e}^{\Delta t}$ denote an event of duration Δt starting at time
939 t_e , and let $\beta_{t_r}(\alpha_{t_e}^{\Delta t})$ be a later decision point
940 that must recall information from that event.
941 Define the **correlation horizon** as

942
$$\xi = t_r - t_e - \Delta t + 1. \quad (24)$$

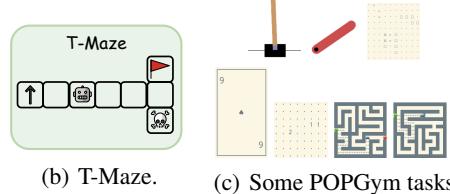
943

944 For an environment, collect all event-recall
945 horizons into the set $\Xi = \{\xi_n\}_n$.946 Recent works have proposed alternative
947 but complementary definitions of memory-
948 intensive environments. For instance, Wang
949 et al. (2025b) formalize **memory demand**
950 **structures** that capture the minimal past suffi-
951 cient to predict future transitions and rewards,
952 while Yue et al. (2024) introduce **memory**
953 **dependency pairs** to annotate which past observa-
954 tions must be recalled for correct decisions.
955 Both perspectives emphasize controllable ways to scale memory difficulty, either by increasing
956 order/span or by manipulating dependency graphs.
957 In this paper, we adopt the event-recall horizon
958 framework for clarity and analytical tractability,
959 but note that these alternative views are broadly
960 consistent and provide useful tools for designing and benchmarking memory-intensive tasks.961 **Definition (memory-intensive environment).** A POMDP \tilde{M}_P is **memory-intensive** if $\min_n \Xi > 1$; i.e., every relevant decision depends on information separated by at least one intervening step, making reactive (myopic) policies insufficient. This definition cleanly separates POMDPs that genuinely require memory from those that are effectively MDP-like.962 A.4 MEMORY-INTENSIVE ENVIRONMENTS
963

964 The memory-intensive environments used in this work are presented in Figure 7.

965
966 **T-Maze.** The T-Maze (Ni et al., 2023) features a corridor ending in a junction with two goals.
967 At the start, one goal is randomly revealed, and the agent must recall this cue after traversing the
968 corridor to choose the correct branch. Observations are vectors; actions are discrete. Rewards are
969 sparse, provided only upon reaching the correct goal. The task tests whether the model can retain
970 early cues across long delays.
971

(a) MIKASA-Robo: RememberColor9-v0 (top) and TakeItBack-v0 (bottom).



(b) T-Maze. (c) Some POPGym tasks.

Figure 7: Environments used in experiments.

972 Table 4: Normalized scores on MuJoCo tasks from the D4RL benchmark (Todorov et al.,
973 2012). Baselines include Trajectory Transformer (TT) (Janner et al., 2021), Decision Transformer
974 (DT) (Chen et al., 2021), Conservative Q-Learning (CQL) (Kumar et al., 2020), and Behavior
975 Cloning (BC) from (Chen et al., 2021). **Top-1** and **Top-2** results are highlighted. (R, o, a) and
976 (o) denote two conditioning modes of ELMUR: conditioning on returns-to-go, observations, and
977 actions, or conditioning on observations alone, respectively.

Dataset	Environment	CQL	DT	BC	TT	RATE	ELMUR (R, o, a)	ELMUR (o)
ME	HalfCheetah	91.6	86.8 \pm 1.3	59.9	95.0 \pm 0.2	87.4 \pm 0.1	86.4 \pm 2.7	89.1 \pm 0.6
ME	Hopper	105.4	107.6 \pm 1.8	79.6	110.0 \pm 2.7	112.5 \pm 0.2	111.7 \pm 0.2	85.3 \pm 1.6
ME	Walker2d	108.8	108.1 \pm 0.2	36.6	101.9 \pm 6.8	108.7 \pm 0.5	108.9 \pm 0.2	108.4 \pm 0.1
M	HalfCheetah	44.4	42.6 \pm 0.1	43.1	46.9 \pm 0.4	43.5 \pm 0.3	43.2 \pm 0.1	43.1 \pm 0.1
M	Hopper	58.0	67.6 \pm 1.0	63.9	61.1 \pm 3.6	77.4 \pm 1.4	78.0 \pm 0.8	78.6 \pm 1.0
M	Walker2d	72.5	74.0 \pm 1.4	77.3	79.0 \pm 2.8	80.7 \pm 0.7	79.4 \pm 0.2	79.5 \pm 0.4
MR	HalfCheetah	45.5	36.6 \pm 0.8	4.3	41.9 \pm 2.5	39.0 \pm 0.6	40.4 \pm 0.6	39.8 \pm 1.0
MR	Hopper	95.0	82.7 \pm 7.0	27.6	91.5 \pm 3.6	83.7 \pm 8.2	64.8 \pm 1.6	87.6 \pm 1.7
MR	Walker2d	77.2	66.6 \pm 3.0	36.9	82.6 \pm 6.9	73.7 \pm 1.4	75.0 \pm 6.8	60.8 \pm 1.7
Average		77.6	74.7	47.7	78.9	78.5	76.4	74.7

991 **MIKASA-Robo benchmark.** We further evaluate on the MIKASA-Robo benchmark
992 (Cherepanov et al., 2025), which provides robotic tabletop manipulation tasks designed
993 for memory evaluation. Each environment simulates a 7-DoF arm with a two-finger gripper.
994 Observations are paired RGB images ($3 \times 128 \times 128$) from a static and wrist camera; actions are
995 continuous (7 joints + gripper). Rewards are binary, given only on task success. We study two
996 families of MIKASA-Robo tasks: (i) RememberColor[3, 5, 9]–v0, where the agent must
997 recall the color of a hidden cube after a delay with distractors, and (ii) TakeItBack–v0, where
998 the agent first moves a cube to a goal, then must return it once the goal changes.

1000 **POPGym benchmark.** POPGym benchmark (Morad et al., 2023a) is a large suite of 48 partially
1001 observable environments designed to stress agent memory. The tasks span two categories: (i) di-
1002 agnostic memory puzzles, which require agents to remember cues or solve algorithmic sequence
1003 problems (e.g., copy, reverse, n-back, and long-horizon T-Mazes), and (ii) partially observable
1004 control tasks, which adapt classic control benchmarks such as CartPole, MountainCar, and LunarLander
1005 to observation-limited settings. This diversity allows POPGym to test both symbolic memory skills
1006 and generalization in continuous control, providing a broad and challenging benchmark for eval-
1007 uating memory-augmented RL methods. Detailed results across all 48 POPGym tasks for each of
1008 considered baselines are presented in Table 5.

A.5 TRAJECTORY CONDITIONING

1012 To assess (1) how ELMUR behaves on standard high-dimensional MDP control tasks and (2) how
1013 different conditioning schemes influence performance, we evaluate it on the MuJoCo domains of the
1014 D4RL benchmark (Todorov et al., 2012). The datasets contain trajectories of heterogeneous quality,
1015 including many far from expert level, which typically requires conditioning on returns-to-go and
1016 actions (as in DT (Chen et al., 2021)) to enable trajectory stitching.

1017 We therefore test two conditioning modes for ELMUR: (R, o, a) , analogous to DT, and o -only,
1018 as in standard behavior cloning. Despite the lower quality of D4RL data, ELMUR achieves an
1019 average normalized score of 76.4 under (R, o, a) conditioning, only about 2% higher than with o -
1020 only conditioning. This demonstrates that the model remains robust to the choice of conditioning
1021 variables and does not rely on access to return-to-go or action labels to perform well.

1022 Overall, ELMUR matches or exceeds the performance of several established offline RL baselines
1023 on these MDP tasks, confirming that its strong results are not restricted to memory-centric POMDP
1024 environments. Its competitive behavior across conditioning modes further highlights its versatility
1025 and ability to leverage suboptimal trajectories effectively.

Table 5: **POPGym benchmark results.** Reported scores are mean \pm standard error, averaged over 3 runs and evaluated with 100 random seeds. Across 21 partially observable tasks spanning puzzle and control domains, ELMUR achieves the best performance on 12 tasks, underscoring the effectiveness of its memory module for reasoning under partial observability.

POPGym-48 Task	RATE	DT	Random	BC-MLP	BC-LSTM	ELMUR	Expert PPO-GRU
AutoencodeEasy-v0	-0.29 \pm 0.00	-0.47 \pm 0.00	-0.50 \pm 0.00	-0.47 \pm 0.00	-0.32 \pm 0.00	-0.26 \pm 0.00	-0.26
AutoencodeMedium-v0	-0.46 \pm 0.00	-0.49 \pm 0.00	-0.50 \pm 0.01	-0.50 \pm 0.00	-0.44 \pm 0.00	-0.44 \pm 0.00	-0.43
AutoencodeHard-v0	-0.47 \pm 0.00	-0.49 \pm 0.00	-0.50 \pm 0.00	-0.49 \pm 0.00	-0.47 \pm 0.00	-0.46 \pm 0.00	-0.48
BattleshipEasy-v0	-0.81 \pm 0.02	-0.93 \pm 0.03	-0.46 \pm 0.01	-1.00 \pm 0.00	-0.49 \pm 0.01	-0.79 \pm 0.02	-0.35
BattleshipMedium-v0	-0.92 \pm 0.01	-0.97 \pm 0.01	-0.41 \pm 0.00	-1.00 \pm 0.00	-0.67 \pm 0.01	-0.79 \pm 0.01	-0.40
BattleshipHard-v0	-0.91 \pm 0.02	-0.91 \pm 0.03	-0.39 \pm 0.01	-1.00 \pm 0.00	-0.81 \pm 0.02	-0.80 \pm 0.00	-0.43
ConcentrationEasy-v0	-0.06 \pm 0.02	-0.05 \pm 0.01	-0.19 \pm 0.01	-0.92 \pm 0.00	-0.14 \pm 0.00	-0.14 \pm 0.01	-0.12
ConcentrationMedium-v0	-0.25 \pm 0.00	-0.25 \pm 0.01	-0.19 \pm 0.00	-0.92 \pm 0.00	-0.19 \pm 0.01	-0.24 \pm 0.00	-0.44
ConcentrationHard-v0	-0.84 \pm 0.00	-0.84 \pm 0.00	-0.84 \pm 0.00	-0.88 \pm 0.00	-0.84 \pm 0.00	-0.82 \pm 0.00	-0.87
CountRecallEasy-v0	0.07 \pm 0.01	-0.46 \pm 0.01	-0.93 \pm 0.00	-0.92 \pm 0.00	0.05 \pm 0.00	0.03 \pm 0.01	0.22
CountRecallMedium-v0	-0.54 \pm 0.00	-0.81 \pm 0.02	-0.93 \pm 0.00	-0.92 \pm 0.00	-0.56 \pm 0.00	-0.56 \pm 0.01	-0.55
CountRecallHard-v0	-0.47 \pm 0.01	-0.75 \pm 0.03	-0.88 \pm 0.00	-0.88 \pm 0.00	-0.47 \pm 0.00	-0.47 \pm 0.00	-0.48
HigherLowerEasy-v0	0.50 \pm 0.00	0.50 \pm 0.00	0.00 \pm 0.01	0.47 \pm 0.00	0.50 \pm 0.00	0.50 \pm 0.00	0.51
HigherLowerMedium-v0	0.52 \pm 0.00	0.51 \pm 0.00	0.01 \pm 0.01	0.50 \pm 0.00	0.51 \pm 0.01	0.51 \pm 0.00	0.49
HigherLowerHard-v0	0.50 \pm 0.00	0.50 \pm 0.00	-0.01 \pm 0.00	0.49 \pm 0.00	0.50 \pm 0.00	0.50 \pm 0.00	0.49
LabyrinthEscapeEasy-v0	0.95 \pm 0.00	0.80 \pm 0.01	-0.39 \pm 0.00	0.72 \pm 0.05	0.92 \pm 0.01	0.92 \pm 0.00	0.95
LabyrinthEscapeMedium-v0	-0.56 \pm 0.01	-0.67 \pm 0.04	-0.84 \pm 0.04	-0.71 \pm 0.03	-0.69 \pm 0.02	-0.54 \pm 0.01	-0.49
LabyrinthEscapeHard-v0	-0.81 \pm 0.01	-0.82 \pm 0.01	-0.94 \pm 0.01	-0.89 \pm 0.01	-0.86 \pm 0.00	-0.82 \pm 0.01	-0.94
LabyrinthExploreEasy-v0	0.95 \pm 0.00	0.88 \pm 0.06	-0.34 \pm 0.01	0.87 \pm 0.01	0.93 \pm 0.00	0.96 \pm 0.00	0.96
LabyrinthExploreMedium-v0	0.88 \pm 0.00	0.86 \pm 0.01	-0.61 \pm 0.00	0.45 \pm 0.01	0.82 \pm 0.01	0.86 \pm 0.01	0.87
LabyrinthExploreHard-v0	0.79 \pm 0.00	0.77 \pm 0.01	-0.73 \pm 0.00	0.26 \pm 0.01	0.71 \pm 0.01	0.84 \pm 0.00	0.79
MineSweeperEasy-v0	0.15 \pm 0.03	-0.33 \pm 0.04	-0.26 \pm 0.03	-0.47 \pm 0.01	0.20 \pm 0.00	-0.17 \pm 0.02	0.28
MineSweeperMedium-v0	-0.20 \pm 0.00	-0.37 \pm 0.02	-0.39 \pm 0.01	-0.48 \pm 0.00	-0.16 \pm 0.00	-0.32 \pm 0.00	-0.10
MineSweeperHard-v0	-0.44 \pm 0.00	-0.40 \pm 0.01	-0.43 \pm 0.00	-0.49 \pm 0.00	-0.35 \pm 0.01	-0.39 \pm 0.01	-0.27
MultiarmedBanditEasy-v0	0.37 \pm 0.01	0.27 \pm 0.01	0.02 \pm 0.00	0.05 \pm 0.00	0.17 \pm 0.02	0.43 \pm 0.01	0.62
MultiarmedBanditMedium-v0	0.32 \pm 0.01	0.35 \pm 0.01	0.01 \pm 0.00	0.21 \pm 0.01	0.14 \pm 0.00	0.32 \pm 0.01	0.59
MultiarmedBanditHard-v0	0.22 \pm 0.03	0.27 \pm 0.01	0.01 \pm 0.00	0.01 \pm 0.00	0.17 \pm 0.01	0.22 \pm 0.01	0.43
NoisyPositionOnlyCartPoleEasy-v0	0.88 \pm 0.03	0.87 \pm 0.02	0.11 \pm 0.00	0.23 \pm 0.00	0.44 \pm 0.01	0.59 \pm 0.02	0.98
NoisyPositionOnlyCartPoleMedium-v0	0.33 \pm 0.01	0.34 \pm 0.00	0.12 \pm 0.01	0.18 \pm 0.00	0.25 \pm 0.01	0.27 \pm 0.00	0.57
NoisyPositionOnlyCartPoleHard-v0	0.18 \pm 0.01	0.17 \pm 0.01	0.11 \pm 0.00	0.16 \pm 0.00	0.22 \pm 0.01	0.22 \pm 0.01	0.36
NoisyPositionOnlyPendulumEasy-v0	0.87 \pm 0.00	0.84 \pm 0.01	0.27 \pm 0.01	0.31 \pm 0.00	0.88 \pm 0.00	0.88 \pm 0.00	0.90
NoisyPositionOnlyPendulumMedium-v0	0.68 \pm 0.00	0.63 \pm 0.01	0.27 \pm 0.01	0.30 \pm 0.00	0.72 \pm 0.00	0.72 \pm 0.00	0.73
NoisyPositionOnlyPendulumHard-v0	0.60 \pm 0.01	0.56 \pm 0.01	0.26 \pm 0.00	0.28 \pm 0.00	0.66 \pm 0.00	0.65 \pm 0.00	0.67
PositionOnlyCartPoleEasy-v0	0.93 \pm 0.03	1.00 \pm 0.00	0.12 \pm 0.00	0.15 \pm 0.00	0.17 \pm 0.00	1.00 \pm 0.00	1.00
PositionOnlyCartPoleMedium-v0	0.07 \pm 0.00	0.34 \pm 0.08	0.05 \pm 0.00	0.09 \pm 0.00	0.12 \pm 0.00	0.11 \pm 0.00	1.00
PositionOnlyCartPoleHard-v0	0.05 \pm 0.01	0.03 \pm 0.00	0.04 \pm 0.00	0.05 \pm 0.00	0.06 \pm 0.00	0.10 \pm 0.00	1.00
PositionOnlyPendulumEasy-v0	0.54 \pm 0.02	0.51 \pm 0.03	0.27 \pm 0.00	0.29 \pm 0.00	0.91 \pm 0.00	0.52 \pm 0.00	0.92
PositionOnlyPendulumMedium-v0	0.49 \pm 0.01	0.55 \pm 0.01	0.26 \pm 0.00	0.30 \pm 0.00	0.89 \pm 0.00	0.50 \pm 0.01	0.88
PositionOnlyPendulumHard-v0	0.47 \pm 0.01	0.49 \pm 0.01	0.26 \pm 0.00	0.28 \pm 0.00	0.82 \pm 0.00	0.63 \pm 0.01	0.82
RepeatFirstEasy-v0	1.00 \pm 0.00	0.45 \pm 0.16	-0.49 \pm 0.01	-0.50 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	1.00
RepeatFirstMedium-v0	0.99 \pm 0.01	-0.21 \pm 0.18	-0.50 \pm 0.00	-0.50 \pm 0.00	0.99 \pm 0.01	0.99 \pm 0.00	1.00
RepeatFirstHard-v0	0.10 \pm 0.02	0.42 \pm 0.14	-0.50 \pm 0.00	-0.50 \pm 0.00	-0.50 \pm 0.00	0.99 \pm 0.01	0.99
RepeatPreviousEasy-v0	1.00 \pm 0.00	1.00 \pm 0.00	-0.49 \pm 0.01	-0.52 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	1.00
RepeatPreviousMedium-v0	-0.38 \pm 0.01	-0.38 \pm 0.00	-0.50 \pm 0.01	-0.50 \pm 0.00	-0.38 \pm 0.00	-0.39 \pm 0.00	-0.39
RepeatPreviousHard-v0	-0.46 \pm 0.00	-0.47 \pm 0.00	-0.51 \pm 0.00	-0.48 \pm 0.00	-0.45 \pm 0.00	-0.46 \pm 0.00	-0.48
VelocityOnlyCartpoleEasy-v0	1.00 \pm 0.00	1.00 \pm 0.00	0.11 \pm 0.00	0.99 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	1.00
VelocityOnlyCartpoleMedium-v0	1.00 \pm 0.00	1.00 \pm 0.00	0.06 \pm 0.00	0.83 \pm 0.01	1.00 \pm 0.00	1.00 \pm 0.00	1.00
VelocityOnlyCartpoleHard-v0	1.00 \pm 0.00	0.96 \pm 0.02	0.04 \pm 0.00	0.63 \pm 0.00	1.00 \pm 0.00	1.00 \pm 0.00	0.99
Sum of returns	9.54	5.80	-12.24	-6.83	8.96	10.41	16.51

A.6 EXTENDED RELATED WORK

Transformers for manipulation. Work on transformer-based manipulation splits into characteristic families with complementary strengths and limits. *Perception-centric visuomotor transformers* emphasize 3D or multi-view geometry to map pixels to precise end-effector actions under (near) full observability, excelling at spatial alignment but assuming short temporal credit assignment: Per-Act (Shridhar et al., 2023), RVT (Goyal et al., 2023), RVT-2 (Goyal et al., 2024). *Sequence/skill models* distill demonstrations into reusable action chunks and long-horizon trajectories, improving sample efficiency but remaining bottlenecked by finite context windows: ACT (Zhao et al., 2023), Skill Transformer (Huang et al., 2023), ILBiT (Kobayashi et al., 2025). *Planning/RL-driven transformers* blend sequence modeling with value learning or planning for closed-loop control under uncertainty, yet still inherit fixed-context limitations: OPTIMUS (Dala et al., 2023), Action-Flow (Funk et al., 2024), Q-Transformer (Chebotar et al., 2023), CCT/ARP (Zhang et al., 2025b), FLaRe (Hu et al., 2025). *Alternative backbones* (state-space, diffusion) target long continuous horizons and smooth control but lack explicit persistent state: RoboMamba (Liu et al., 2024b), Diffusion Policy (Chi et al., 2023).

1080 **VLA models for manipulation.** VLA models broaden task coverage by conditioning on language
 1081 and scaling data, while keeping the transformer core unchanged and context-bounded. *Instruction-*
 1082 *following generalists* demonstrate broad skill repertoires with language prompts but no explicit long-
 1083 term memory: RT-1 (Brohan et al., 2022), RT-2 (Zitkovich et al., 2023), Octo (Team et al., 2024),
 1084 OpenVLA (Kim et al., 2024), VIMA (Jiang et al., 2022). *Efficiency/modularity variants* freeze
 1085 large encoders and train lightweight adapters or experts for practicality at scale: RoboFlamingo (Li
 1086 et al., 2023), CogACT (Li et al., 2024), FLOWER (Reuss et al., 2025), NinA (Tarasov et al., 2025).
 1087 *Reasoning/hierarchy extensions* inject geometric priors, step-wise reasoning, or multi-level control
 1088 while still relying on finite windows: 3D-VLA (Zhen et al., 2024), CoT-VLA (Zhao et al., 2025),
 1089 TraceVLA (Zheng et al., 2024), HiRT (Zhang et al., 2024), DP-VLA (Han et al., 2024). *Special-
 1090 ized and hybrid designs* tailor the backbone to domain constraints (dexterous hands, spatial priors) or
 1091 mix diffusion with autoregression: HybridVLA (Liu et al., 2025), DexVLA (Wen et al., 2025a), Spa-
 1092 tialVLA (Qu et al., 2025), OpenVLA-OFT (Kim et al., 2025). *Generalist robot agents* pursue open-
 1093 world embodiment with growing breadth but inherit the same temporal limitations: TinyVLA (Wen
 1094 et al., 2025b), π_0 (Black et al., 2024), $\pi_{0.5}$ (Intelligence et al., 2025), GR00T N1 (Bjorck et al.,
 1095 2025), Gemini Robotics (Team et al., 2025), NORA (Hung et al., 2025).

1096
 1097 **Memory in Deep Learning.** Mechanisms for long-term information fall into three broad tracks.
 1098 *Implicit recurrence and long-range sequence models* retain information in hidden dynamics but offer
 1099 limited, indirect control over storage and forgetting: LSTM (Hochreiter & Schmidhuber, 1997), xL-
 1100 STM (Beck et al., 2024), linear-attention Transformers (Katharopoulos et al., 2020), RWKV (Peng
 1101 et al., 2023), S4 (Gu et al., 2021), Mamba (Gu & Dao, 2023). *Explicit external memory with learned
 1102 read–write* provides addressable storage with content-based access, trading off simplicity for optimi-
 1103 zation/scaling complexity: NTM (Graves et al., 2014), DNC (Graves et al., 2016), Memory Net-
 1104 works (Weston et al., 2014), differentiable memory for meta-learning (Santoro et al., 2016), recent
 1105 variants (Ahmadi, 2020). *Transformer context extension* pushes horizons via cached activations,
 1106 compression, or auxiliary memory modules but typically keeps memory peripheral to the core to-
 1107 ken computation: Transformer-XL (Dai et al., 2019), Compressive Transformer (Rae et al., 2019),
 1108 Memorizing Transformer (Wu et al., 2022), Ring Attention (Liu et al., 2023), Memformer (Wu et al.,
 1109 2020), associative-memory Transformers (Rodkin et al., 2024), ERNIE-style memory (Ding et al.,
 1110 2020), test-time memorization (TiTANS) (Behrouz et al., 2024).

1111
 1112 **Memory in RL.** In partially observed decision processes, memory is not optional; it is the
 1113 state estimator. *Spatial/episodic buffers* externalize salient facts in read–write maps or associa-
 1114 tive stores (navigational and episodic use-cases): Neural Map (Parisotto & Salakhutdinov, 2017),
 1115 HCAM (Lampinen et al., 2021), Stable Hadamard Memory (Le et al., 2024). *Sequence-model adap-
 1116 tations* retrofit transformers for recurrence and stability in RL, improving long-horizon training but
 1117 leaving persistence bounded by context: DTQN (Esslinger et al., 2022), GTrXL (Parisotto et al.,
 1118 2020), AGaLiTe (Pramanik et al., 2023), AMAGO-2 (Grigsby et al., 2024). *Evaluation frameworks*
 1119 formalize memory demands and failure modes under partial observability: (Cherepanov et al., 2024;
 1120 Yue et al., 2024; Wang et al., 2025b). *Transformers with external stores for RL* insert explicit mem-
 1121 ory alongside the policy, but often as a sequence-level attachment: RATE (Cherepanov et al., 2023),
 1122 FFM (Morad et al., 2023b), Re:Frame (Zelezetsky et al., 2025).

1123
 1124
 1125 **Memory in manipulation tasks.** Long-horizon, partially observed manipulation has motivated
 1126 three practical extensions. *Trajectory summarization* compresses the past into a short token set,
 1127 trading completeness for compactness: TraceVLA (Zheng et al., 2024). *External feature banks*
 1128 cache recent visual features for retrieval, focusing attention but leaving distant history underrepre-
 1129 sented: SAM2Act+ (Fang et al., 2025). *Structured memory modules* interface an explicit store with
 1130 the policy to persist scene/task variables: MemoryVLA (Shi et al., 2025). *Hierarchies* shift tem-
 1131 poral burden to slow planners or high-level controllers, which may mask but not remove the need
 1132 for persistent state at the policy layer: HiRT (Zhang et al., 2024), DP-VLA (Han et al., 2024). For
 1133 evaluation, *targeted benchmarks* isolate memory factors: MemoryBench (Fang et al., 2025); broader
 suites capture multiple memory types and delays: MIKASA-Robo (Cherepanov et al., 2025).

1134 Table 6: Returns on ViZDoom-Two-Colors (mean \pm standard error over 6 runs). **Top-1** and **Top-2**
 1135 results are highlighted.

Method	Return (mean \pm sem)
ELMUR	55.28 \pm 0.94
RATE	59.21 \pm 1.19
DT	31.45 \pm 1.21
RMT	53.53 \pm 3.15
TrXL	49.62 \pm 0.88
BC-LSTM	52.16 \pm 2.59
CQL-MLP	12.49 \pm 0.19
Random	4.78

A.7 3D VISUAL NAVIGATION

To evaluate ELMUR’s ability to handle 3D long-horizon navigation with visual input, we additionally experiment in the ViZDoom-Two-Colors environment (Sorokin et al., 2022). The agent moves in a room with an acid floor that continuously drains health at every timestep. At the beginning of each episode it briefly observes a single colored pole (green or red) for 45 steps. The pole then disappears, and the agent must navigate among green and red objects scattered on the floor and collect only those whose color matches the initial pole in order to receive rewards and restore health. The results in Table 6 show that ELMUR matches the performance of the previous best baseline within statistical uncertainty, indicating that ELMUR is effective not only on memory-intensive manipulation tasks but also on challenging memory-dependent navigation tasks with 3D visual observations.

A.8 TRAINING PROCESS

When training ELMUR, we compute the loss on every segment processed recursively, detaching the memory state between segments (i.e., without backpropagation through time). The choice of loss depends on the task domain: for T-Maze, CartPole-v1, and a subset of POPGym tasks with discrete actions, we apply a cross-entropy loss; for MIKASA-Robo and the remaining POPGym tasks with continuous actions, we use a mean-squared error (MSE) loss. The ELMUR hyperparameters used in the experiments are presented in Table 7.

For data, we follow a consistent offline imitation-learning setup. Each MIKASA-Robo environment provides a dataset of 1000 expert demonstrations generated by a PPO policy trained with oracle-level state access. For T-Maze, we collect 6000 successful oracle-level trajectories. For POPGym, we adopt the datasets of Morad et al. (2023a), consisting of 3000 trajectories per environment generated by a PPO-GRU expert. Finally, for CartPole-v1, we use 1000 successful trajectories collected from a pre-trained PPO policy.

Figure 8: **ViZDoom-Two-Colors environment.**

1188	Parameter	RememberColor	TakeItBack	T-Maze	POPGym-AutoencodeEasy	CartPole-v1
1189	d_{model}	128	32	128	64	128
1190	Routed d_{ff}	128	256	32	128	128
1191	Shared d_{ff}	128	32	512	256	256
1192	Layers	4	2	2	12	4
1193	Heads	16	16	2	4	4
1194	Experts (MoE)	16	1	2	1	4
1195	Shared Experts	1	1	2	2	1
1196	Top- k routing	2	1	3	1	2
1197	Memory size	256	32	2	8	16
1198	Memory init std	0.1	0.001	0.001	0	0.01
1199	Memory dropout	0.06	0.23	0.01	0.17	0.05
1200	LRU blend α	0.40	0.20	0.05	0.80	0.9
1201	Dropout	0.13	0.01	0.10	0.14	0.10
1202	Dropatt	0.30	0.18	0.17	0.26	0.10
1203	Label smoothing	0.21	0.20	0.16	0.22	0.00
1204	Context length	20	60	10	35	30
1205	Batch size	64	64	128	128	512
1206	Learning rate	2.05e-4	2.57e-4	2.06e-4	1.16e-4	3.0e-4
1207	Warmup steps	30000	30000	10000	50000	1000
1208	Cosine decay	True	False	True	False	True
1209	LR end factor	0.1	0.01	1.0	0.01	0.1
1210	Weight decay	0.001	0.01	0.0001	0.1	0.01
1211	Epochs	200	300	1000	800	100
1212	Grad clip	5	1	5	5	1.0
1213	Beta1	0.99	0.9	0.95	0.99	0.9
1214	Beta2	0.99	0.99	0.999	0.99	0.999

Table 7: **Hyperparameters for ELMUR.** We report all architecture and training parameters used across tasks.

A.9 MEMORY PROBING

To examine whether ELMUR stores task-relevant information in its external memory rather than relying solely on increased parameter count, we perform a controlled memory probing study on the RememberColor3-v0 environment. The goal is to determine whether memory embeddings contain linearly or nonlinearly decodable information about the target cube color, which serves as the minimal sufficient statistic required for correct decision making in the recall stage of the task.

Dataset construction. We first train an ELMUR policy to expert-level performance on RememberColor3-v0. Using the trained policy, we collect 1000 evaluation episodes and extract, at every timestep, all layer-local memory embeddings and the corresponding ground-truth target color. We retain only episodes that successfully complete the task to avoid confounding effects from incorrect trajectories and to ensure that the probed representations correspond to functional memory usage. The resulting dataset contains tuples of the form

$$(\ell, t, m_t^{(\ell)}, y),$$

where ℓ is the layer index, t is the timestep at which the memory vector was recorded, $m_t^{(\ell)} \in \mathbb{R}^{M \times d}$ is the memory embedding of layer ℓ at timestep t , and $y \in \{0, 1, 2\}$ is the target color label.

Probing protocol. Memory in ELMUR is structured and evolves differently across layers and timesteps. To distinguish these effects, we construct a separate probing dataset for every layer $\ell \in \{0, \dots, L-1\}$ and every chosen timestep t (we use $t \in \{0, 1, 5, 10, 20\}$). For each pair (ℓ, t) we train an independent probe on the corresponding memory vectors $\{m_t^{(\ell)}\}$.

Each probe is a three-layer multilayer perceptron (MLP) with hidden size 512 and ReLU nonlinearities. We train the probes with a cross-entropy loss to predict the target cube color solely from the memory vector. Probes are trained with Adam for 200 epochs using an 80/20 train-validation split. Importantly, probes are not allowed to influence the base policy; the probing procedure is strictly post-hoc.

Memory Evaluation. For every (ℓ, t) pair we report the accuracy and confusion matrix of the corresponding probe. At $t=0$, when memory is initialized with random noise, all layers yield roughly

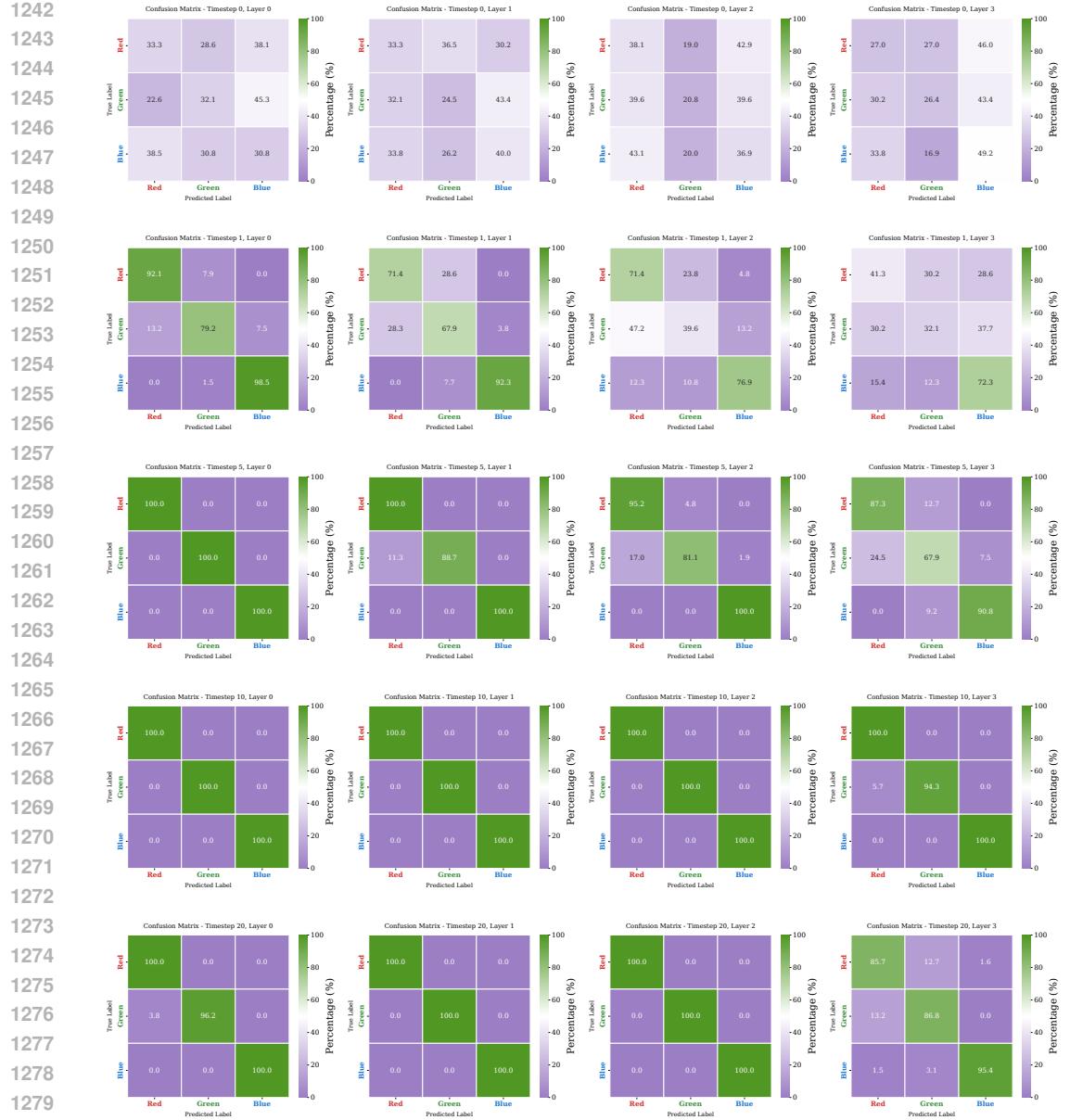


Figure 9: **Memory probing confusion matrices on RememberColor3-v0.** Each panel shows the confusion matrix (percentage) of the color probe trained on ELMUR memory embeddings for a specific timestep ($t \in \{0, 1, 5, 10, 20\}$) and layer ($\ell \in \{0, 1, 2, 3\}$). At $t=0$ (top row), when memory is still random, all probes sit near the 33% chance level, indicating that the target color is not decodable from initialization. After the first write at $t=1$, the first layer already supports accurate decoding, with performance gradually decreasing for deeper layers. At $t=5$, once the cue has disappeared, probes achieve almost perfect accuracy, including 100% for the first layer. At the decision time $t=10$ and late in the episode at $t=20$, prediction remains essentially perfect in the first three layers and very high in the last layer, demonstrating stable long-horizon retention of the target color in memory.

33% accuracy per class, indicating that the target color is not decodable from the initial memory embeddings. After the first update at $t=1$, the first layer already supports reliable decoding for all three colors, with accuracy gradually decreasing for deeper layers, which shows that the model writes a usable color code into memory immediately after observing the cue. By $t=5$, when the colored cube

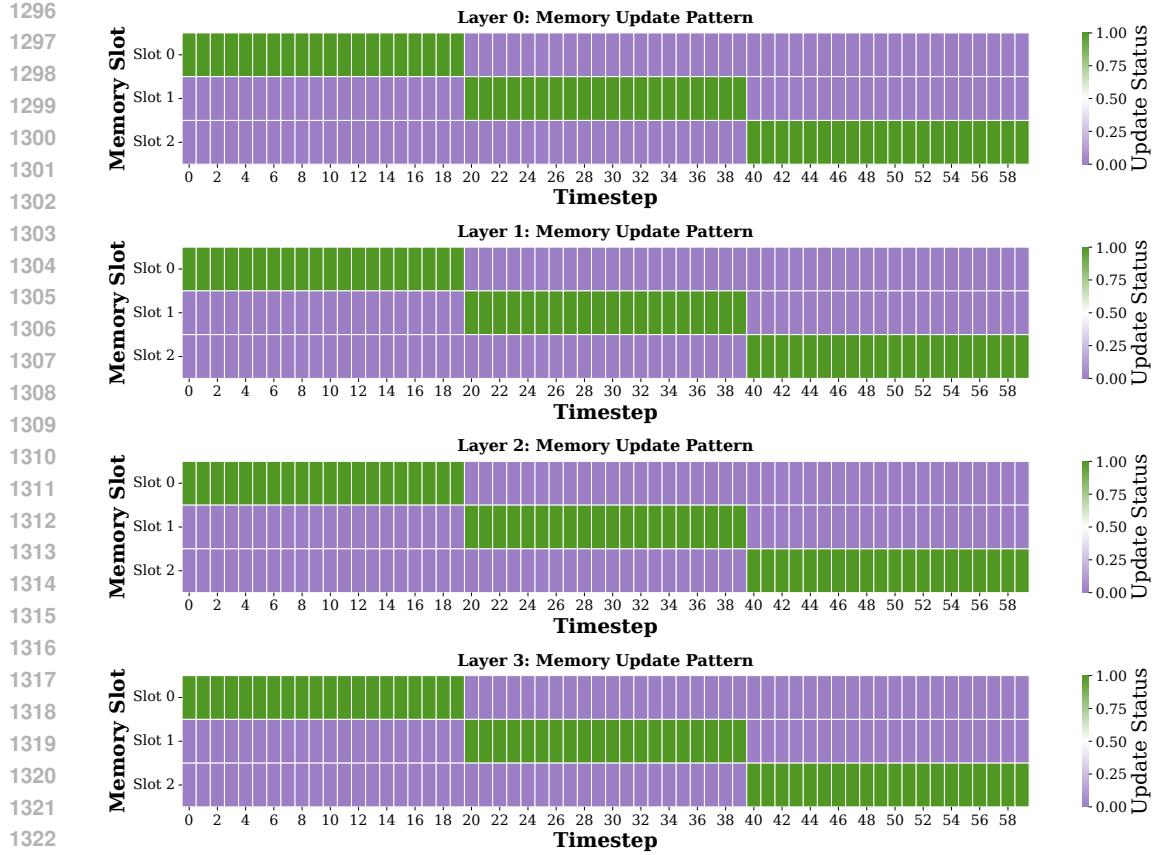


Figure 10: **Memory update patterns across layers on RememberColor3-v0.** Each heatmap shows, for one ELMUR layer, which memory slot is updated at each timestep (horizontal axis: timestep $t \in [0, 60]$, vertical axis: slots 0–2; green indicates an update, purple indicates no update). All layers exhibit the same structured schedule: early in the episode only slot 0 is updated, then responsibility shifts to slot 1, and finally to slot 2, producing a clean rotation of writes enforced by the LRU policy. After a slot becomes inactive it is not modified again, which implies that once the target color has been written into a slot its content is preserved for the remainder of the episode without further overwriting.

has disappeared from the scene, prediction accuracy improves further, reaching 100% for the first layer and remaining high for the others. At $t=10$, when the agent sees all three cubes and must select the target, the probes achieve 100% accuracy on the first three layers and near perfect accuracy on the last layer, and the same pattern persists at $t=20$. Aggregated confusion matrices across layers and timesteps are shown in Figure 9.

Together, these findings confirm that ELMUR allocates memory capacity to storing the latent task variable required to solve the environment and that its superior performance arises from functional memory usage rather than increased model size. In addition, the memory update patterns in Figure 10 show a consistent and interpretable write schedule across layers: each episode produces a single dominant write into a dedicated slot immediately after observing the cue, followed by long spans of preservation with no overwriting. The LRU mechanism activates only when necessary, producing sparse, well-timed updates rather than continuous churn.

The inter-slot similarity analysis in Figure 11 further supports this behavior. At the moment when the target cube is first observed, all layers exhibit a sharp transition in cosine similarity structure: a single slot becomes highly similar across repeated episodes while the remaining slots remain decorrelated. This indicates that ELMUR allocates one stable slot as the canonical container for the task variable. After this write event, the similarity trajectories remain nearly constant throughout

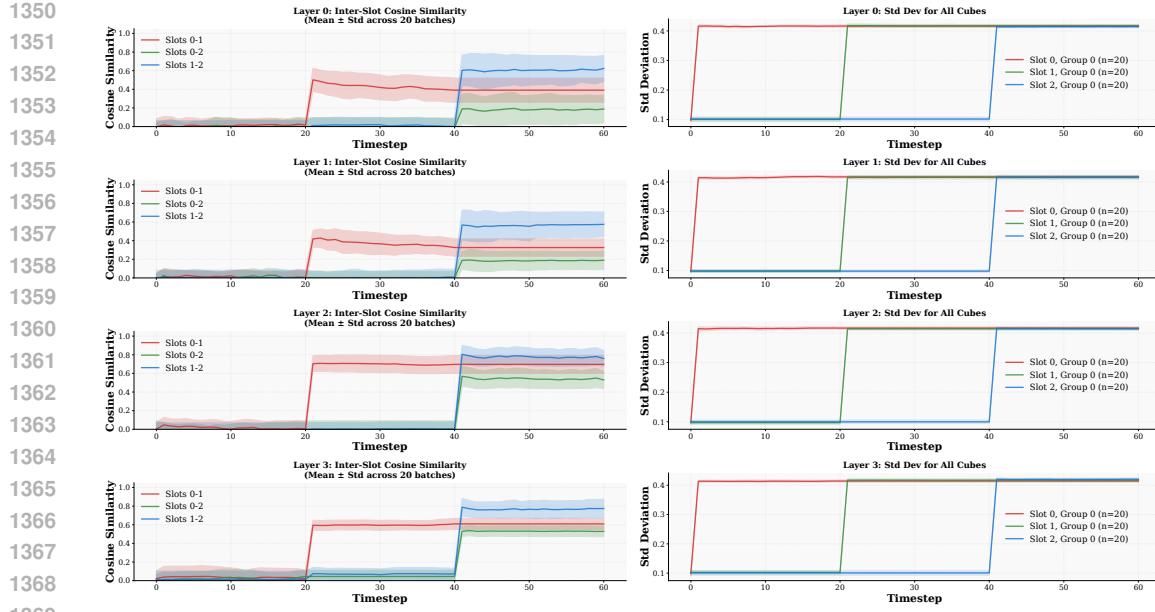


Figure 11: **Inter-slot similarity and variance of memory embeddings on RememberColor3-v0.** For each ELMUR layer (rows), the left panels show the cosine similarity between pairs of memory slots (0–1, 0–2, 1–2) as a function of timestep, averaged over 20 batches (shaded region: standard deviation). Around the transition to the second segment ($t = 20$) the similarities jump from near zero to higher, stable values, indicating that one slot acquires a structured representation which becomes partially shared with the others. A second transition to the third segment appears at $t = 40$, when another slot is written, after which the similarity profiles remain nearly constant, consistent with persistent storage. The right panels show the standard deviation of embeddings within each slot over episodes. Only the currently written slot exhibits a sharp increase in variance at its corresponding write time, while the other slots remain nearly constant, confirming that the model performs localized, slot-specific writes followed by stable retention of the encoded content.

the blank stage and the distractor stage, demonstrating that the stored representation is preserved without drift.

The slotwise variance plots show the same phenomenon from a complementary angle. The chosen slot exhibits a sudden rise in variance immediately after the cue is written, reflecting the encoding of task-specific information, while the unused slots retain near-zero variance for the remainder of the episode. Throughout the delay period the variance of the active slot remains stable, indicating that the stored color representation is neither degraded nor rewritten.

Taken together, the update patterns, similarity dynamics, and variance profiles reveal a coherent mechanism: ELMUR performs a targeted, one-shot write into a designated memory slot, then maintains this representation with high stability until retrieval, even in the presence of visually similar distractors. This behavior aligns precisely with the probing results and provides strong causal evidence that ELMUR employs explicit long-term memory rather than incidental capacity effects. A more detailed, layer-wise visualization of evolution of memory embeddings across the entire episode is presented in Figure 12.

A.10 PCA MEMORY ANALYSIS

The geometric structure of memory representations is further illustrated by the Principal Component Analysis (PCA; Abdi & Williams (2010)) in Figure 13. The top row shows projections colored by memory slot (slots 0, 1, and 2), while the bottom row shows projections colored by layer. From left to right, we display all target colors together, then restrict to red, green, and blue targets respectively. In the slot based views, embeddings from different slots largely occupy the same manifolds for a

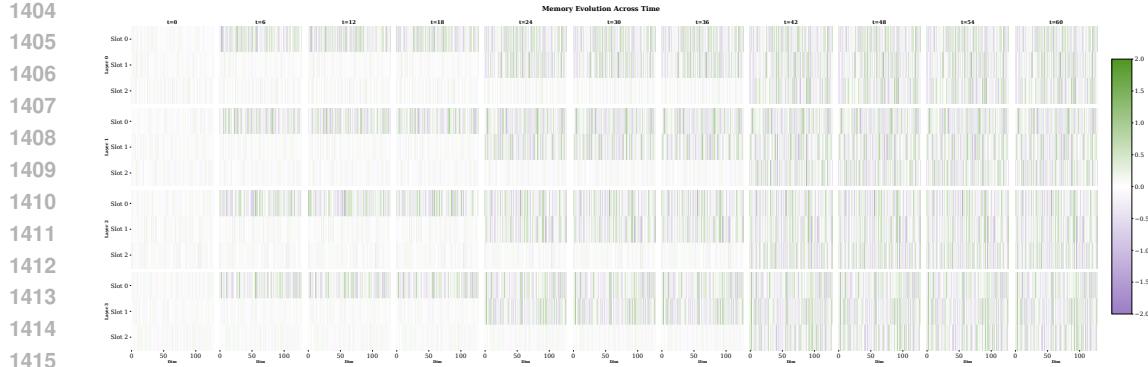


Figure 12: **Memory evolution across layers, slots, and time on RememberColor3-v0.** Each block corresponds to a snapshot of the memory state at a given timestep (columns, $t \in \{0, 6, \dots, 60\}$). Within each block, rows index memory slots (0–2) for a given layer (stacked vertically from Layer 0 to Layer 3), and the horizontal axis shows embedding dimensions. Color encodes activation value. Early timesteps exhibit near-random low-amplitude activations, while after the cue is observed a single slot in each layer becomes strongly structured and remains stable over subsequent timesteps. Later in the episode additional slots are written once and then preserved, illustrating that ELMUR performs sparse, slot-specific updates followed by long-horizon retention of the encoded representation.

fixed color, indicating that slots are not tied to particular colors and instead share a common content space. In the layer based views, points from different layers form well separated clusters, especially when conditioning on a single color, which suggests that deeper layers produce progressively more structured and compact encodings of the target color while maintaining clear separation between colors in the joint view.

The temporal evolution of memory representations is illustrated in Figure 14, which shows PCA projections of all memory vectors with color indicating timestep. The first panel aggregates all target colors, while the remaining three panels condition on red, green, and blue targets respectively. In all cases the trajectories exhibit a characteristic pattern: memories start from a diffuse cloud near the initialization region (early timesteps in purple), then rapidly converge onto a small number of low-dimensional manifolds after the cue is written, and remain confined there for the rest of the episode (late timesteps in green). Conditioning on a single color reveals that these manifolds are largely color specific, with each target color occupying its own stable region in PCA space and showing minimal drift over time. This behavior indicates that ELMUR quickly encodes the target color into a compact representation and maintains it throughout the delay and retrieval phases without substantial degradation.

A.11 CROSS-ATTENTION MAPS

Figure 15 visualizes the cross-attention patterns of the write (tok2mem , left) and read (mem2tok , right) modules. Each row corresponds to one of the 16 attention heads, the horizontal axis shows timesteps (0–60), and the vertical axis indexes the three memory slots. In the tok2mem maps, attention is almost entirely suppressed at the beginning of the episode and then exhibits a short, high-intensity burst around the cue presentation, concentrated on a single slot across many heads. After this write event, activity becomes sparse with only occasional weak updates, consistent with a one-shot allocation of the cue into a dedicated slot followed by long-term preservation. In contrast, the mem2tok maps display more sustained but still structured activity: once the cue has been written, several heads repeatedly attend to the same slot throughout the blank interval and the decision phase, with peaks near the timesteps where the agent must choose the correct cube. Other heads remain nearly inactive or attend to alternative slots, suggesting head specialization. Overall, these attention patterns corroborate the memory probing and similarity analyses, showing that ELMUR performs a sharp, localized write of the target color into a single slot and then repeatedly reads from that slot during subsequent reasoning and action.

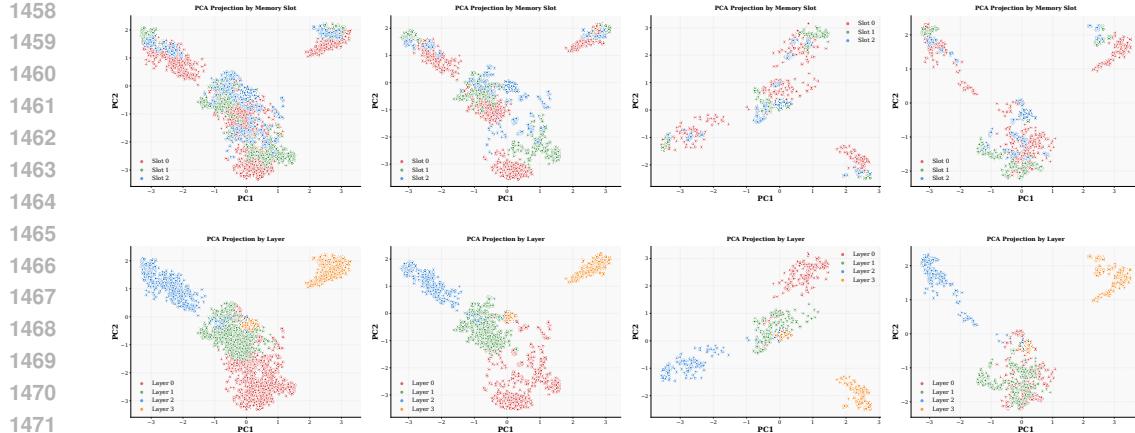


Figure 13: **PCA structure of memory embeddings by slot and layer on RememberColor3-v0.** Each panel shows a 2D PCA projection of all memory vectors. The top row colors points by memory slot (0, 1, 2), while the bottom row colors them by layer (0, 1, 2, 3). From left to right, we display embeddings for all target colors, and then restricted to red, green, and blue targets respectively. In the slot-based views, embeddings from different slots largely occupy the same manifolds for a fixed color, indicating that slots share a common content space rather than being tied to particular colors. In contrast, the layer-based views form well-separated clusters, especially when conditioning on a single color, showing that deeper layers produce progressively more specialized and compact representations of the same latent task variable.

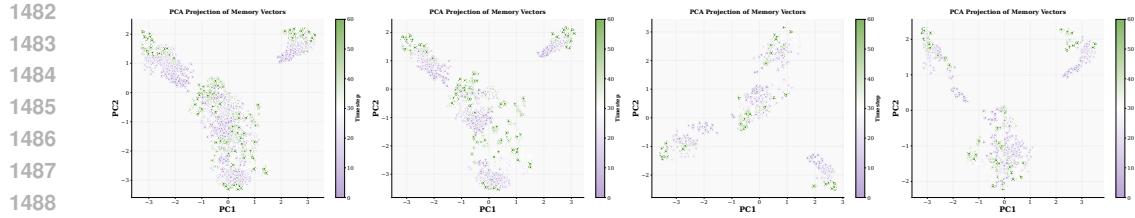


Figure 14: **PCA projection of memory embeddings over time.** Each panel shows memory vectors from all layers and slots in RememberColor3-v0, projected onto the first two principal components and colored by timestep (see colorbar). From left to right we plot all episodes, and then subsets conditioned on the target cube being red, green, or blue. Early timesteps occupy a diffuse region of the space, while vectors shortly after the cue observation move into compact, color-specific clusters that remain stable for the rest of the episode, indicating that the memory state rapidly converges to a persistent representation of the target color.

A.12 LIMITATIONS

ELMUR uses a simple LRU rule with fixed blending, which makes its memory mechanism transparent and easy to analyze, though future work could explore adaptive variants. Segment-level recurrence adds a small cross-attention cost per layer, but this cost scales with the fixed number of memory slots rather than sequence length, making efficiency predictable even in long horizons. MoE-based FFNs already provide parameter efficiency at our scale, and larger architectures may further amplify this benefit. Finally, our study focuses on synthetic, POPGym, and simulated robotic tasks under IL, giving controlled and reproducible insights; extending to online RL and real-robot deployments offers promising next steps.

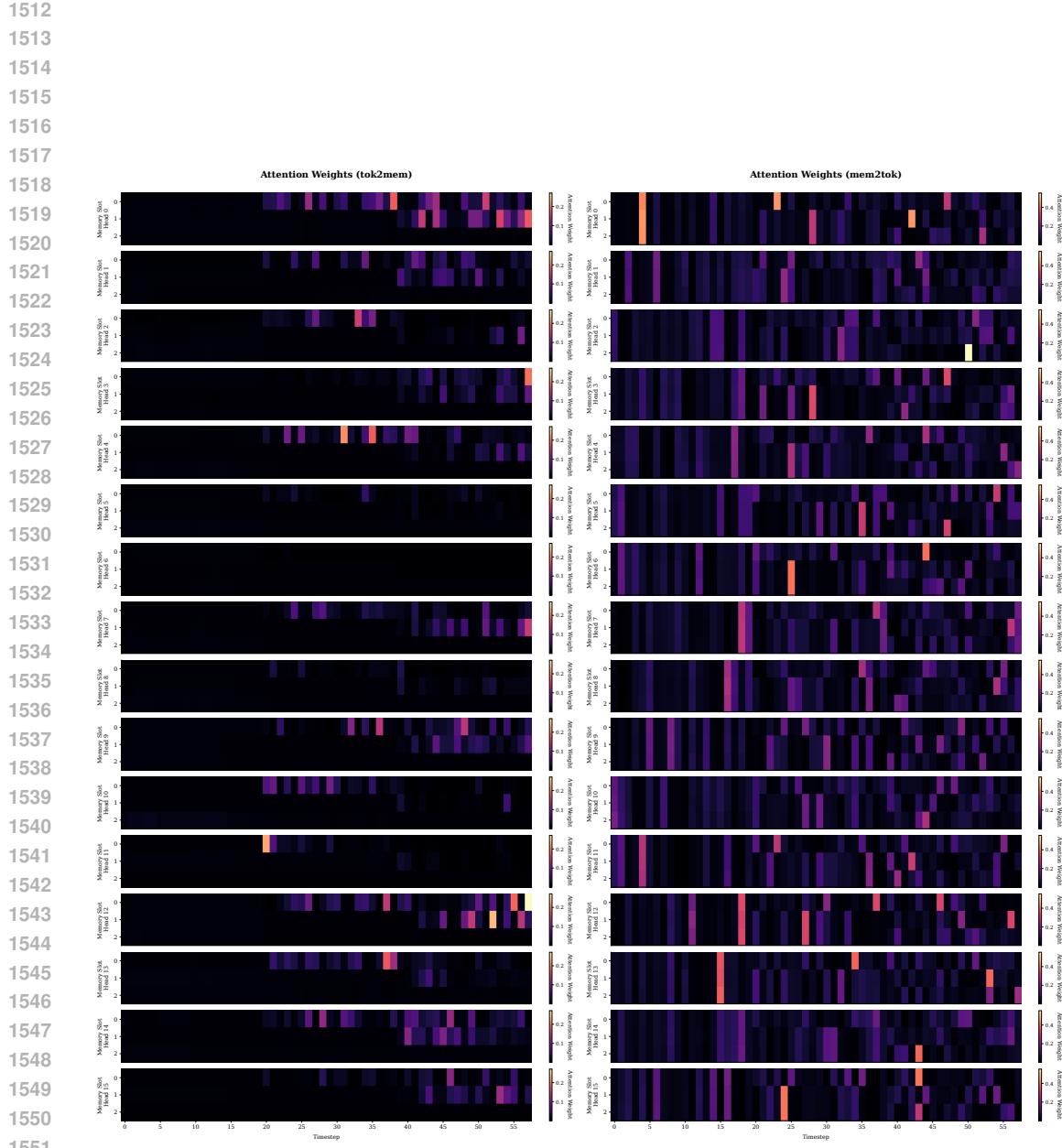


Figure 15: **Cross-attention patterns between tokens and memory slots in ELMUR.** Heatmaps show attention weights for the *tok2mem* module (left) and the *mem2tok* module (right) in the RememberColor3-v0 task. Each row corresponds to one of the 16 attention heads, the horizontal axis is the timestep ($t \in [0, 60]$), and the vertical axis indexes the three memory slots. Color intensity indicates the magnitude of the attention weight. *tok2mem* heads exhibit sparse, sharply localized write events into a single slot around cue and update timesteps, whereas *mem2tok* heads display broader read patterns that concentrate on the slot carrying the target color during the decision phase, consistent with targeted write, once storage followed by repeated retrieval of the latent task variable.

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

Table 8: **Offline RL baselines on the MIKASA-Robo benchmark.** We compare transformer-based methods (RATE, DT), behavior cloning (BC), classical offline RL algorithms (CQL), and Diffusion Policy (DP) across all 32 tasks. Scores are reported as mean \pm sem over three seeds, with each seed averaged over 100 evaluation episodes. All models are trained from RGB observations (top-view and wrist-view cameras) under sparse, success-only rewards. Even with access to memory, existing baselines (RATE, DT) fail on most tasks, whereas ELMUR achieves the highest performance on 21 of the 23 tasks with non zero success rates and exceeds the previous state-of-the-art, RATE, by roughly 70% in aggregate success across all 32 tasks.

Environment	RATE	DT	BC	CQL	DP	ELMUR
ShellGameTouch-v0	0.92 \pm 0.01	0.53 \pm 0.07	0.28 \pm 0.01	0.16 \pm 0.04	0.18 \pm 0.02	0.96 \pm 0.02
ShellGamePush-v0	0.78 \pm 0.06	0.62 \pm 0.14	0.27 \pm 0.01	0.25 \pm 0.01	0.22 \pm 0.03	0.87 \pm 0.04
ShellGamePick-v0	0.02 \pm 0.01	0.00 \pm 0.00	0.01 \pm 0.01	0.00 \pm 0.00	0.01 \pm 0.00	0.66 \pm 0.01
InterceptSlow-v0	0.23 \pm 0.02	0.40 \pm 0.02	0.37 \pm 0.06	0.25 \pm 0.01	0.33 \pm 0.05	0.61 \pm 0.04
InterceptMedium-v0	0.32 \pm 0.02	0.56 \pm 0.01	0.31 \pm 0.14	0.03 \pm 0.01	0.68 \pm 0.02	0.64 \pm 0.03
InterceptFast-v0	0.30 \pm 0.04	0.36 \pm 0.04	0.03 \pm 0.02	0.02 \pm 0.02	0.21 \pm 0.05	0.54 \pm 0.02
InterceptGrabSlow-v0	0.09 \pm 0.03	0.00 \pm 0.00	0.28 \pm 0.18	0.03 \pm 0.00	0.03 \pm 0.01	0.08 \pm 0.03
InterceptGrabMedium-v0	0.09 \pm 0.03	0.00 \pm 0.00	0.11 \pm 0.02	0.08 \pm 0.04	0.03 \pm 0.01	0.10 \pm 0.04
InterceptGrabFast-v0	0.14 \pm 0.03	0.11 \pm 0.03	0.09 \pm 0.02	0.08 \pm 0.03	0.18 \pm 0.02	0.20 \pm 0.01
RotateLenientPos-v0	0.11 \pm 0.04	0.01 \pm 0.01	0.15 \pm 0.03	0.16 \pm 0.02	0.11 \pm 0.02	0.24 \pm 0.02
RotateLenientPosNeg-v0	0.29 \pm 0.03	0.05 \pm 0.02	0.22 \pm 0.01	0.12 \pm 0.02	0.14 \pm 0.05	0.26 \pm 0.00
RotateStrictPos-v0	0.03 \pm 0.02	0.05 \pm 0.04	0.01 \pm 0.00	0.03 \pm 0.01	0.06 \pm 0.02	0.16 \pm 0.00
RotateStrictPosNeg-v0	0.08 \pm 0.01	0.05 \pm 0.03	0.04 \pm 0.02	0.04 \pm 0.02	0.15 \pm 0.01	0.12 \pm 0.02
TakeItBack-v0	0.42 \pm 0.24	0.08 \pm 0.04	0.33 \pm 0.10	0.04 \pm 0.01	0.05 \pm 0.02	0.78 \pm 0.03
RememberColor3-v0	0.65 \pm 0.04	0.01 \pm 0.01	0.27 \pm 0.03	0.29 \pm 0.01	0.32 \pm 0.01	0.89 \pm 0.07
RememberColor5-v0	0.13 \pm 0.03	0.07 \pm 0.05	0.12 \pm 0.01	0.15 \pm 0.02	0.10 \pm 0.02	0.19 \pm 0.03
RememberColor9-v0	0.09 \pm 0.02	0.01 \pm 0.01	0.12 \pm 0.02	0.15 \pm 0.01	0.17 \pm 0.01	0.23 \pm 0.02
RememberShape3-v0	0.21 \pm 0.04	0.05 \pm 0.04	0.31 \pm 0.04	0.20 \pm 0.10	0.32 \pm 0.05	0.76 \pm 0.01
RememberShape5-v0	0.17 \pm 0.04	0.04 \pm 0.04	0.18 \pm 0.01	0.15 \pm 0.00	0.21 \pm 0.04	0.27 \pm 0.02
RememberShape9-v0	0.05 \pm 0.00	0.05 \pm 0.02	0.10 \pm 0.02	0.14 \pm 0.01	0.11 \pm 0.02	0.17 \pm 0.03
RememberShapeAndColor3x2-v0	0.14 \pm 0.02	0.04 \pm 0.02	0.13 \pm 0.02	0.11 \pm 0.05	0.14 \pm 0.02	0.19 \pm 0.02
RememberShapeAndColor3x3-v0	0.08 \pm 0.03	0.06 \pm 0.06	0.09 \pm 0.02	0.09 \pm 0.02	0.16 \pm 0.01	0.19 \pm 0.02
RememberShapeAndColor5x3-v0	0.07 \pm 0.02	0.01 \pm 0.01	0.09 \pm 0.01	0.09 \pm 0.02	0.11 \pm 0.03	0.13 \pm 0.01
BunchOfColors3-v0	0.00 \pm 0.00					
BunchOfColors5-v0	0.00 \pm 0.00					
BunchOfColors7-v0	0.00 \pm 0.00					
SqoOfColors3-v0	0.00 \pm 0.00					
SqoOfColors5-v0	0.00 \pm 0.00					
SqoOfColors7-v0	0.00 \pm 0.00					
ChainOfColors3-v0	0.00 \pm 0.00					
ChainOfColors5-v0	0.00 \pm 0.00					
ChainOfColors7-v0	0.00 \pm 0.00					
Sum Across All Tasks	5.42	3.15	3.92	2.66	4.02	9.24

1611

1612

1613

1614

1615

1616

1617

1618

1619