
Revisiting Bellman Errors for Offline Model Selection

Joshua P. Zitovsky ∗

Department of Biostatistics
UNC-Chapel Hill

Chapel Hill, NC 27599

Daniel de Marchi
Department of Biostatistics

UNC-Chapel Hill
Chapel Hill, NC 27599

Rishabh Agarwal
Google Research, Brain Team
MILA, Université de Montréal

Michael R. Kosorok
Department of Biostatistics

UNC-Chapel Hill
Chapel Hill, NC 27599

Abstract

It is well-known that the empirical Bellman errors are poor predictors of value
function estimation accuracy and policy performance. This has led researchers to
abandon offline model selection procedures based on Bellman errors and instead
focus on directly estimating the expected return under different policies of interest.
The problem with this approach is that it can be very difficult to use an offline
dataset generated by one policy to estimate the expected returns of a different
policy. In contrast, we argue that Bellman errors can be useful for offline model
selection, and that the discouraging results in past literature has been due to
estimating and utilizing them incorrectly. We propose a new algorithm, Supervised
Bellman Validation, that estimates the expected squared Bellman error better than
the empirical Bellman errors. We demonstrate the relative merits of our method
over competing methods through both theoretical results and empirical results on
offline datasets from the Atari benchmark. We hope that our results will challenge
current attitudes and spur future research into Bellman errors and their utility in
offline model selection.

1 Introduction
Traditionally, reinforcement learning (RL) has assumed access to an online environment or high-
fidelity simulator with which to perform repeated interactions [36]. In contrast, offline RL [3, 24, 26]
focuses on training an agent solely from a fixed dataset of observed transitions. By not requiring any
further online interactions, offline RL algorithms can significantly improve real-world applicability
of RL to settings such as autonomous driving [41] and healthcare [34], where large-scale active data
collection may be expensive or unsafe but large data banks of previously-logged interactions are still
available.

There has been a recent surge of RL algorithms that can train an agent offline with varying success
[11, 15]. Most such algorithms rely on online environment interactions to tune their own hyperpa-
rameters. However, applying offline RL algorithms in real-world settings necessitates tuning their
hyperparameters offline as well (i.e. offline model selection). Prevalent offline model selection
approaches are typically based on offline policy evaluation (OPE) algorithms that estimate the ex-
pected returns under a given policy [29, 37, 42]. Unfortunately, accurately estimating the expected
returns under one policy using data generated by a completely different behavioral policy can be very
difficult. Other approaches that have been explored have been based on empirical Bellman errors
as an approximation for the true Bellman errors [13, 21, 29]. These works have found empirical

∗correspondence to Josh <joshz@live.unc.edu>

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Bellman errors to be poor predictors of value model accuracy, leading to a current belief that Bellman
errors are not useful in offline model selection [10, 14, 29].

Instead, our work argues that empirical Bellman errors have been found unhelpful in model selection
because they are poor proxies for the true Bellman errors. We propose a new algorithm, Supervised
Bellman Validation (SBV), that uses supervised learning to derive a Bellman error-based validation
loss function and provide a better proxy for the true Bellman errors. We argue several theoretical
benefits of SBV over competing methods and apply SBV to offline Atari datasets [3, 15] containing
high-dimensional image observations. We explore conditions in which approaches based on Bellman
errors can work well for model selection, and demonstrate that SBV performs competitively when
these conditions are satisfied. Finally, we discuss implications of our results and suggest potential
avenues for future work.

2 Preliminaries
In offline reinforcement learning (RL) [24, 26], we have a static dataset D = {(s, a, r, s′)} consisting
of |D| transitions (s, a, r, s′) where r ∈ R is the immediate reward observed after state s ∈ S was
observed and action a ∈ A was taken, before observing the new state s′ ∈ S. We assume the data
comes from a Markov decision process (MDP) M = (S,A, T,R, d0, γ) [31] with state space S,
action space A, transition probabilities T (s′|a, s) = Pr(St+1 = s′|At = a, St = s), reward function
R(St, At, St+1) = Rt, initial state probabilities d0(s) = Pr(S0 = s), and discount factor γ ∈ (0, 1).
We can think of the observed state-action pairs in D as being sampled from (or being identically
distributed as) Pµ

SA(s, a) = dµ(s)µ(a|s) where µ is the behavioral policy and dµ is the marginal
distribution of states over time points induced by policy µ and MDP M. Likewise, we can think
of the observed transitions (s, a, r, s′) in D as being sampled from (or being identically distributed
as) Pµ

T (s, a, r, s
′) = dµ(s)µ(a|s)T (s′|a, s) where r = R(s, a, s′). If D was generated by a single

stationary policy, µ is simply equal to this policy. On the other hand, if D consists of the intermediate
transitions observed from training an online RL algorithm, D can be thought of as being generated
from many different policies and µ becomes a mixture distribution of those policies.

Define the action-value function for policy π as Qπ(s, a) = Eπ[
∑∞

t=0 γ
tRt|S0 = s,A0 = a] where

Eπ denotes expectation over MDP M and policy π. The optimal policy π∗ is the policy whose
action-value function equals the optimal action-value function Q∗(s, a) = maxπ Q

π(s, a). For any
real-valued function of state-action pairs Q (oftentimes called a Q-function), the Bellman operator
B∗ satisfies:

B∗Q(s, a) = E[Rt + γmax
a′∈A

Q(St+1, a
′)|St = s,At = a] (1)

It can be shown that π∗ = πQ∗ , where πQ(s) = argmaxaQ(s, a) is the greedy policy of Q-function
Q, and that Q = B∗Q if and only if Q = Q∗ [36].

For any Q-function Q, density P of state-action pairs and dataset of transitions S = {(s, a, r, s′)}, let
||Q||2P = E(s,a)∼P [Q(s, a)2] and ||Q||2S = |S|−1

∑
(s,a)∈S [Q(s, a)2]. Define the Bellman backup

function for Q-function Q as (B∗Q)(s, a) and its Bellman error function as (Q− B∗Q)(s, a) (see
Equation 1). Likewise, define the empirical Bellman backups for Q-function Q and dataset S
as (BSQ)(s, a) = r + γmaxa′ Q(s′, a′), (s, a, r, s′) ∈ S and their empirical Bellman errors as
Q(s, a) − (BSQ)(s, a), (s, a) ∈ S. Q-learning algorithms update a working model based on its
empirical Bellman backups so as to approximate Q∗ [28, 40]. Throughout we assume all estimated
value functions and policies are fitted by Q-learning algorithms.

3 Related Work
In the offline model selection problem, we have a set of candidate value models Q = {Q1, ..., QM},
or estimators for Q∗, and our goal is to choose the "best" among them based on some criterion.
Here each candidate in Q was estimated via a Q-learning algorithm with a different hyperparameter
configuration. For example, candidates in Q could include Q-functions obtained from running a
single DQN algorithm and stopping at different numbers of training iterations, or it could include
Q-functions obtained from running DQN with different Q-network architectures. The most popular
approach for offline model selection is to use an offline policy evaluation (OPE) algorithm, which
estimates the marginal expectation of returns J(π) = Eπ[

∑∞
t=0 γ

tRt] under policies of interest
π ∈ {πQ1 , πQ2 , ..., πQM

} [12]. For example, importance sampling estimators directly estimate J(π)
from D by using importance weights to adjust for the distribution shift [30, 37]. Fitted Q-evaluation
indirectly estimates J(π) by estimating Qπ using another off-policy RL algorithm [25, 29]. Finally,

2

model-based approaches indirectly estimates J(π) by estimating the transition kernel T (·|a, s) for
all (a, s) ∈ A× S using standard density estimation techniques [7, 35, 42].

Existing OPE approaches often have difficulties with accurately estimating J(π). In particular,
importance sampling usually has prohibitively-large estimation variance, FQE introduces its own
hyperparameters that cannot be easily tuned offline and model-based approaches can have great
difficulty modelling the entire underlying MDP in complex and high-dimensional settings. For these
reasons, all of these methods have achieved highly sub-optimal performance on certain environments
and most of them have not even been attempted on environments with pixel-valued states [12]. In
contrast to estimating the expected returns associated with the greedy policies implicit in Q, another
approach is to assess candidates Qm, 1 ≤ m ≤ M via their mean squared Bellman error (MSBE):

||Qm − B∗Qm||2Pµ
SA

= E(s,a)∼Pµ
SA

[
(Qm(s, a)− (B∗Qm)(s, a))

2
]

(2)

We discuss theoretical justifications for using the Bellman error for model selection in section 5. To
estimate the true MSBE (Equation 2), previous literature has used the empirical mean square Bellman
error (EMSBE) [13, 21, 29]:

|Qm − BDQm||2D =
1

|D|
∑

(s,a,r,s′)∈D

[(
r +max

a′∈A
Qm(s′, a′)−Qm(s, a)

)2
]

(3)

The problem is that the EMSBE (Equation 3) is a biased estimator of the true MSBE and its minimizer
can be an arbitrarily poor estimator of Q∗ even in the asymptotic case (see section 5 for details). It is
likely for this reason that previous literature has found this to be ineffective at hyperparameter tuning
[13, 21].

The work by Farahmand and Szepesvari [10] is more related to our approach in that they propose
supervised learning to approximate the true Bellman errors. There are however two major distinctions
of Farahmand and Szepesvari [10] over our work: 1) their algorithm is much more sample inefficient
as they require partitioning the data into thirds as well as tight probabilistic upper bounds on the
excess risk of the estimates of B∗Qm [38]; 2) they did not investigate the empirical performance of
their algorithm or of the MSBE more generally.

4 Supervised Bellman Validation
To understand Supervised Bellman Validation (SBV), consider first the case where Q∗(s, a) is actually
known for state-action pairs (s, a) ∈ D and we wish to select the candidates Qm ∈ Q that best
estimate Q∗. An obvious criterion in this case would be the value function estimation mean squared
error (MSE):

||Q∗ −Qm||2Pµ
SA

= E(s,a)∼Pµ
SA

[
(Q∗(s, a)−Qm(s, a))

2
]
. (4)

While Pµ
SA is unknown, we can estimate the associated expectation by randomly partition 80% of the

trajectories present in D into a training set DT and reserving the remaining 20% of trajectories as a
validation set DV . We can then generate candidates Q = {Q1, ..., QM} by running deep Q-learning
algorithms on DT with M different hyperparameter configurations, and use DV to estimate the value
function estimation MSE (Equation 4) as ||Q∗ −Qm||2DV

, for each 1 ≤ m ≤ M .

In real-world RL, the targets Q∗(s, a), (s, a) ∈ D are not known: this is what separates supervised
learning from offline RL. Instead of a criterion based on Equation 4, SBV uses a surrogate criterion
based on the MSBE ||Qm −B∗Qm||2

Pµ
SA

(Equation 2). The relationship between estimation error and
Bellman error is discussed more in section 5. Similar to what we would do in supervised learning,
SBV creates a training set DT and a validation set DV by randomly partitioning trajectories from
D. SBV then trains M Q-functions Q = {Q1, ..., QM} on DT . Note that the MSBE actually
contains two unknown quantities: the population density Pµ

SA, and the M Bellman backup functions
B∗Qm, 1 ≤ m ≤ M . From Equation 1, we see that each (B∗Qm)(s, a) is just a conditional
expectation. Therefore, the M Bellman backup functions can be estimated by running M regression
algorithms on DT , with the mth such algorithm estimating B∗Qm by fitting a function f to minimize
the Bellman backup MSE:

||BDT
Qm − f ||2DT

=
1

|DT |
∑

(s,a,r,s′)∈DT

[(
r + γmax

a′
Qm(s′, a′)− f(s, a)

)2
]
. (5)

3

Algorithm 1: Supervised Bellman Validation (SBV)
1 Input: Set of observed transitions D = {(s, a, r, s′)}, hyperparameter configurations to evaluate

H = {H1, ...,Hm}
2 Randomly partition trajectories in D to training set DT and validation set DV

3 for configuration m ∈ {1, ...,M} do
4 Estimate Q∗ as Qm by running a Q-learning algorithm on DT with configuration Hm

5 Estimate B∗Qm as B̂∗Qm by minimizing ||BDT
Qm − f ||2DT

wrt f (see Equation 5)
6 Estimate the MSBE of Qm as ||Qm − B̂∗Qm||2DV

(see Equation 6).
7 end
8 Output Qm∗ as our estimate of Q∗ where m∗ = argmin1≤m≤M ||Qm − B̂∗Qm||2DV

Denote the fitted models from our regression algorithms as B̂∗Q1, ..., B̂∗QM . The MSBE for each
candidate Qm ∈ Q can then be estimated as:

||Qm − B̂∗Qm||2DV
=

1

|DV |
∑

(s,a)∈DV

[(
Qm(s, a)− (B̂∗Qm)(s, a)

)2
]
. (6)

Our method is summarized in Algorithm 1. Here a hyperparameter configuration Hm specifies all
relevant hyperparameters of the Q-learning algorithm, such as the specific training algorithm (e.g.
double DQN [16] or duelling DQN [39]), the Q-network architecture and the number of training
iterations.

To instantiate SBV, Algorithm 2 provides a practical implementation of SBV for tuning the number
of training iterations used by DQN. Here the Q-Network is a neural network Q-function Qθ with
trainable parameters θ that is trained by DQN to approximate Q∗, and Qθk+1

denotes the trained
Q-Network after k + 1 iterations of the DQN algorithm. Moreover, the Bellman Network is a neural
network model Bϕ with trainable parameters ϕ that is updated by SBV after every DQN training
iteration to approximate B∗Qθ for the current Q-Network Qθ. We let Bϕk+1

denote the Bellman
network updated by SBV in order to approximate B∗Qθk+1

.

While the Q-network hyperparameters can be tuned via SBV, the Bellman network itself has hyperpa-
rameters which must be tuned. As the Bellman network is solving a series of supervised learning
problems, the relevant hyperparameters can easily be tuned offline by minimizing validation Bellman
backup MSE on DV across the various sets of targets. The ability of SBV to fully tune its own
hyperparameters offline gives it real-world applicability and sets it apart from other approaches
like fitted Q-evaluation, whose hyperparameters have traditionally been chosen based on online
evaluations or previous literature on the environments of interest [29].

5 Theoretical Results
We begin by introducing some novel theoretical results to support our algorithm, the proofs of which
can be found in section A of the Appendix. Our first theorem, given below, implies that a candidate
value model Qm with sufficiently small Bellman errors should be sufficiently accurate and have

Algorithm 2: Applying Early Stopping to DQN with SBV
1 Input: Set of observed transitions D = {(s, a, r, s′)}
2 Randomly partition trajectories in D to training set DT and validation set DV

3 Initialize deep Q-network Qθ0 with trainable parameters θ0 and Bellman network Bϕ0 with
trainable parameters ϕ0

4 for iteration k ∈ {0, ...,K − 1} do
5 Update θk+1 from θk by running DQN on DT for one iteration
6 Update ϕk+1 from ϕk via gradient descent to minimize ||BDT

Qθk+1
− Bϕ||2DT

wrt ϕ (see 5)
7 Estimate of the MSBE of Qθk+1

as ||Qθk+1
− Bϕk+1

||2DV
(see 6)

8 end
9 Estimate Q∗ as Qk∗ and π∗ as πQk∗ where k∗ = argmin1≤k≤K ||Qθk − Bϕk

||2DV

4

a greedy policy that gives sufficiently high return. Moreover, if the Bellman errors Qm − B∗Qm

are unknown but are estimated with sufficient accuracy, the estimated Bellman errors will still be
informative in lower-bounding the estimation accuracy and policy value.

Theorem 1. Let B̂∗Qm be an estimate of B∗Qm and assume that ||Qm − B̂∗Qm||∞ ≤ ϵ and
||B̂∗Qm −B∗Qm||∞ ≤ δ. Then ||Q−Q∗||∞ ≤ 1

1−γ (ϵ+ δ) and ||V π∗ − V πQ ||∞ ≤ 2
(1−γ)2 (ϵ+ δ)

where V π(s) = Ea∼π(·|s) [Q
π(s, a)].

Let Fµ be the cumulative distribution function (CDF) associated with Pµ
T and let FD be the empirical

distribution function (EDF) of transitions associated with D [23]. Under general conditions, FD

converges to Fµ as |D| grows large. To study the bias and asymptotic properties of the EMSBE
(Equation 3) and SBV (Algorithm 1), we focus on the setting where |D| = ∞ and FD = Fµ.
Theorem 2 states that the EMSBE has non-negligible bias and that its minimum need not be close to
Q∗ even with infinite samples. In contrast, Theorem 3 states that SBV correctly recovers the true
MSBE and correctly selects the true optimal action-value function Q∗, at least in the asymptotic case.
These theorems help explain why SBV performs well empirically, both overall and relative to the
EMSBE (see section 6).
Theorem 2. Assume that FD = Fµ. Then argminQ:S×A→R||Q− BDQ||2D ̸= Q∗ in general and:

||Qm−BDQm||2D−||Qm−B∗Qm||2Pµ
SA

= E(St,At)∼Pµ
SA

{
Var

[
Rt +max

a′∈A
Qm(St+1, a

′)|St, At

]}
.
Theorem 3. Assume the following: (1) FD = Fµ; (2) DT and DV partition the trajectories present
in D; (3) B∗Qm is estimated as B̂∗Qm = argminf :S×A→R||BDT

Qm − f ||2DT
. Then under mild

technical conditions and with probability one, B̂∗Qm = B∗Qm, ||Qm − B̂∗Qm||2DV
= ||Qm −

B∗Qm||2
Pµ

SA
and ||Qm − B̂∗Qm||2DV

= 0 if and only if Qm = Q∗.

6 Experiments
We evaluated Supervised Bellman Validation (SBV; Algorithm 1) on four offline DQN-Replay
datasets [3] associated with the following Atari games [4]: Pong, Breakout, Asterix and Seaquest.
Atari environments are widely studied in deep RL and possess high-dimensional states, stochastic
nonlinear transition dynamics and long-term consequences from taking particular actions. They also
possess discrete action spaces amenable to Q-learning algorithms. These properties makes Atari
environments challenging and applicable candidates for benchmarking real-world performance of
SBV. Following [3], we uniformly sub-sampled 25% of our DQN-replay datasets to obtain four
training datasets with 10M transitions and four associated validation datasets with 2.5M transitions.
For each training dataset, we evaluate a Q-network after each training iteration across two deep
Q-learning configurations, which we dub DQN (S) and DDQN (L). DQN (S) uses the standard DQN
architecture [28] and the Adam optimizer following Agarwal et al. [3]. The DDQN (L) configuration
is described in section B of the Appendix, and involves a deeper network architecture and double
Q-learning target updates [16]. Each training configuration was run for 50 iterations, resulting in 100
candidate Q-networks to evaluate for each training dataset.

We implemented SBV in a manner similar to Algorithm 2 to improve computational efficiency.
Moreover, the Bellman network training configuration was tuned offline so as to minimize validation
error across the 400 evaluated Q-functions and four Atari games, as discussed in section 4. To
demonstrate the efficacy of SBV, we compare it to EMSBE (Equation 3) and weighted per-decision
importance sampling (WIS) [30]. Full implementation details of SBV and WSE can be found in
section C of the Appendix. Due to the computational demands of implementing Fitted Q-evaluation
(FQE) and the inability to tune its hyperparameters offline, we have omitted results for FQE for now.
We also do not implement model-based approaches here: accurately estimating the underlying MDP
of Atari environments offline would be completely novel and extremely challenging, warranting a
paper in and of itself.

In Table 1, we calculate the mean return of the top-5 policies according to each method for each
environment, and standardize the mean returns to a [0, 1] range. We can see here that SBV consistently
performs better than competing methods with respect to top-5 policy returns. EMSBE does not
perform as well as SBV, but it still performs better than WIS.

5

Table 1: Standardized Top-5 Policy Mean Returns. A mean return of 0% implies that the method
choose the worst five policies possible on the given dataset (based on online evaluations), while a
mean return of 100% implies that the method choose the best five policies possible.

Method Pong Breakout Asterix Seaquest

WIS [30] 41% 40% 50% 13%
EMSBE (Equation 3) 77% 43% 51% 44%
SBV (Ours) 94% 79% 76% 65%

In Figure 1, we plot learning curves for the best configuration for each environment, and indicate the
iteration where training was stopped by each method. We can see that SBV performs significantly
better than competing methods on average. Moreover, only SBV performs as well or better than
applying no early stopping across all environments.

7 Discussion and Future Work
Our theoretical and empirical results challenge the current belief in the RL community that Bellman
errors are not helpful for offline model selection. In addition to the Atari results described in section 6,
we also plan to apply SBV to offline RL problems in physics and healthcare involving much smaller
offline datasets [27, 32] to further demonstrate the real-world applicability and robust performance
of our method. SBV only requires learning a univariate regression function, making it 1) more
statistically efficient than either offline RL or model-based learning; 2) straightforward to tune SBV’s
own hyperparameters to the dataset at hand; and 3) less biased and more sample-efficient than using
no function approximation whatsoever. These features make SBV a competitive candidate for offline
model selection.

Our empirical results on Atari games suggest that Bellman error-based model selection can perform
well in real-world settings provided certain conditions are met. For instance, model selection
algorithms based on the MSBE will not perform well if they do not accurately estimate the MSBE.
For this reason, the EMSBE is an ineffective model selector and SBV performance is dependent
on estimating B∗Qm with sufficient accuracy for all 1 ≤ m ≤ M . In the case of our experiments,
tuning the Bellman network to the datasets at hand so as to minimize validation MSE was a critical
component in achieving adequate performance with SBV. Model selection algorithms such as SBV
that estimate the MSBE also fail if the MSBE itself is a poor model selector. For example, for the
MSBE to perform well as a model selector, we require there to be sufficient diversity in the observed
state-action pairs (see the proof of Theorem 3 given in section A of the Appendix to better understand
the importance of this condition).

Finally, Theorem 1 and empirical investigations detailed in section D of the Appendix suggest that
the MSBE provides a tight lower bound on estimation error and a loose lower bound on policy
value. Consequently, the lower the MSBE value, the more informative it will be in terms of policy

Figure 1: Learning Curves for the Best Configuration. Returns are standardized to a [0, 1] range with
zero being the lowest return observed for a given run and one being the highest return observed. The
dashed horizontal line represents performance when no early stopping is applied. The vertical lines
represent the iterations where training was stopped according to different methods.

6

performance. For example, if J(π∗) = Eπ∗ [
∑

t≥0 γ
tRt] = 10, value models with an MSBE of 0.1

may have universally high estimation error but associated policy values in the wide range of [1, 10].
On the other hand, value models with an MSBE of only 0.01 would likely have policy values residing
in a much tighter range, such as [9, 10] (they will also all have much lower estimation error). The
MSBE will thus be an effective model selector when the set of candidate value functions Q include
value functions that have sufficiently small Bellman errors. In real-world settings, we can ensure
that our candidate set Q includes estimates with sufficiently small MSBE by exploring a sufficiently
large number of training configurations and/or by exploring training configurations which have been
shown in previous work to achieve robust performance in a variety of scenarios.

Our work opens up several avenues for future research. For example, one avenue for future work is to
investigate how to achieve sufficient performance with SBV while reducing computational demands.
Reducing the number of configurations we have to explore before achieving sufficient performance
with SBV would be helpful here, as would modifying the Bellman network training configuration
to improve computational efficiency. Moreover, our results focus on discrete control problems and
Q-learning algorithms. In contrast, continuous control problems and deep actor-critic algorithms
require two neural network models: a Q-network Qθ and a policy model πα. suggests that a πα ≈ π∗,
the γ-contraction properties of the Bellman operator and policy iteration theory [5] suggests that we
would need to ensure that both Qθ ≈ BπαQθ and that πα ≈ πQθ

. While SBV could help ensure that
the first condition is satisfied, extending SBV to deal with the second condition is left for future work.
Finally, recall that a major shortcoming of FQE is that it has its own hyperparameters that cannot be
easily tuned offline. in theory, one can use SBV to tune the hyperparameters of FQE and then use
FQE to tune the hyperparameters of deep Q-learning or deep actor-critic. The main issue here is the
computational demand: both SBV and FQE are already computationally demanding procedures in
their own right, and combining them in a computationally feasible manner is nontrivial.

References
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,

Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow,
Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,
Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete
Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015. URL https://www.tensorflow.
org/. Software available from tensorflow.org.

[2] Alekh Agarwal, Nan Jiang, Sham M. Kakade, and Wen Sun. Reinforcement learning: Theory
and algorithms, 2022. URL https://rltheorybook.github.io/. A working draft.

[3] Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective on
offline reinforcement learning. In ICML, 2020.

[4] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279,
2013. doi: 10.1613/jair.3912.

[5] Lucian Busoniu, Robert Babuska, Bart De Schutter, and Damien Ernst. Reinforcement Learning
and Dynamic Programming Using Function Approximators. CRC Press, 2010.

[6] François Chollet. Xception: Deep learning with depthwise separable convolutions. In CVPR,
2017.

[7] Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement
learning in a handful of trials using probabilistic dynamics models. In NeurIPS, 2018.

[8] Timothy Dozat. Incorporating nesterov momentum into adam. In ICLR, 2016.

[9] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu. IMPALA:
Scalable distributed deep-RL with importance weighted actor-learner architectures. In ICML,
2018.

7

https://www.tensorflow.org/
https://www.tensorflow.org/
https://rltheorybook.github.io/

[10] Amir Massoud Farahmand and Csaba Szepesvari. Model selection in reinforcement learning.
Machine Learning, 85:299–332, 2010.

[11] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for
deep data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

[12] Justin Fu, Mohammad Norouzi, Ofir Nachum, G. Tucker, Ziyun Wang, Alexander Novikov,
Mengjiao Yang, Michael R. Zhang, Yutian Chen, Aviral Kumar, Cosmin Paduraru, Sergey
Levine, and Tom Le Paine. Benchmarks for deep off-policy evaluation. In ICLR, 2021.

[13] Scott Fujimoto, David Meger, Doina Precup, Ofir Nachum, and Shixiang Shane Gu. Why
should i trust you, bellman? the bellman error is a poor replacement for value error. ArXiV,
abs/2201.12417, 2022.

[14] Aurélien Géron. Hands-On Machine Learning with Scikit-Learn, Keras and TensorFlow.
O’Reilly, second edition, 2019.

[15] Caglar Gulcehre, Ziyu Wang, Alexander Novikov, Thomas Paine, Sergio Gómez, Konrad Zolna,
Rishabh Agarwal, Josh S Merel, Daniel J Mankowitz, Cosmin Paduraru, et al. Rl unplugged:
A suite of benchmarks for offline reinforcement learning. Advances in Neural Information
Processing Systems, 33:7248–7259, 2020.

[16] Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double
q-learning. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, page
2094–2100, 2016.

[17] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning.
Springer, 2009. doi: 10.1007/978-0-387-84858-7.

[18] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

[19] Jie Hu, Li Shen, Samuel Albanie, Gang Sun, and Enhua Wu. Squeeze-and-excitation networks.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 42:2011–2023, 2020.

[20] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In ICML, 2015.

[21] Alex Irpan, Kanishka Rao, Konstantinos Bousmalis, Chris Harris, Julian Ibarz, and Sergey
Levine. Off-policy evaluation via off-policy classification. In NeurIPS, 2019.

[22] Steven Kapturowski, Georg Ostrovski, John Quan, Rémi Munos, and Will Dabney. Recurrent
experience replay in distributed reinforcement learning. In ICLR, 2019.

[23] Samuel Kotz, Campbell B. Read, N. Balakrishnan, Brani Vidakovic, and Norman L. Johnson.
Encyclopedia of Statistical Sciences. John Wiley & Sons, 2006.

[24] Michail G. Lagoudakis and Ronald E. Parr. Least-squares policy iteration. J. Mach. Learn. Res.,
4:1107–1149, 2003.

[25] Hoang Minh Le, Cameron Voloshin, and Yisong Yue. Batch policy learning under constraints.
In ICML, 2019.

[26] Sergey Levine, Aviral Kumar, G. Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. ArXiv, abs/2005.01643, 2020.

[27] Daniel J. Luckett, Eric B. Laber, Anna R. Kahkoska, David M. Maahs, Elizabeth J. Mayer-
Davis, and Michael R. Kosorok. Estimating dynamic treatment regimes in mobile health using
v-learning. Journal of the American Statistical Association, 115:692–706, 2020.

[28] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charlie Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan
Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement
learning. Nature, 518:529–533, 2015.

8

[29] Tom Le Paine, Cosmin Paduraru, Andrea Michi, Caglar Gulcehre, Konrad Zolna, Alexander
Novikov, Ziyun Wang, and Nando de Freitas. Hyperparameter selection for offline reinforcement
learning. ArXiv, abs/2007.09055, 2020.

[30] Doina Precup, Richard S. Sutton, and Satinder Singh. Eligibility traces for off-policy policy
evaluation. In ICML, 2000.

[31] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley & Sons, 1994.

[32] Jette Randløv and Preben Alstrøm. Learning to drive a bicycle using reinforcement learning
and shaping. In ICML, 1998.

[33] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV), 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

[34] Susan M. Shortreed, Eric B. Laber, Daniel J. Lizotte, T. Scott Stroup, Joelle Pineau, and Susan A.
Murphy. Informing sequential clinical decision-making through reinforcement learning: an
empirical study. Machine Learning, 84:109–136, 2010.

[35] Richard S. Sutton. Integrated architectures for learning, planning, and reacting based on
approximating dynamic programming. In ICML, 1990.

[36] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT
Press, second edition, 2018.

[37] Philip S. Thomas and Emma Brunskill. Data-efficient off-policy policy evaluation for reinforce-
ment learning. In ICML, 2016.

[38] Vladimir N Vapnik. Statistical Learning Theory. John Wiley & Sons, 1998.

[39] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Van Hasselt, Marc Lanctot, and Nando De Freitas.
Dueling network architectures for deep reinforcement learning. In ICML, 2016.

[40] Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learning, 8(3-4):279–292,
1992. doi: 10.1007/bf00992698.

[41] Fisher Yu, Wenqi Xian, Yingying Chen, Fangchen Liu, Mike Liao, Vashisht Madhavan, and
Trevor Darrell. Bdd100k: A diverse driving video database with scalable annotation tooling.
ArXiv, abs/1805.04687, 2018.

[42] Michael R Zhang, Thomas Paine, Ofir Nachum, Cosmin Paduraru, George Tucker, ziyu wang,
and Mohammad Norouzi. Autoregressive dynamics models for offline policy evaluation and
optimization. In ICLR, 2021.

Appendix
A Mathematical Proofs

Theorem 1. Let B̂∗Qm be an estimate of B∗Qm and assume that ||Qm − B̂∗Qm||∞ ≤ ϵ and
||B̂∗Qm −B∗Qm||∞ ≤ δ. Then ||Q−Q∗||∞ ≤ 1

1−γ (ϵ+ δ) and ||V π∗ − V πQ ||∞ ≤ 2
(1−γ)2 (ϵ+ δ)

where V π(s) = Ea∼π(·|s)Q
π(s, a).

Proof. Suppose ||Qm − B̂∗Qm||∞ ≤ ϵ and ||B̂∗Qm − B∗Qm||∞ ≤ δ. Then:

9

||Qm −Q∗||∞ =||Qm − B∗Qm + B∗Qm −Q∗||∞
≤||Qm − B∗Qm||∞ + ||B∗Qm −Q∗||∞ (Subadditivity of L∞ norm)

=||Qm − B∗Qm||∞ + ||B∗Qm − B∗Q∗||∞ (Q∗ is a fixed point of B∗)

≤||Qm − B∗Qm||∞ + γ||Qm −Q∗||∞ (B∗ is a γ-contraction)

⇒ ||Qm −Q∗||∞ ≤ 1

1− γ
||Qm − B∗Qm||∞

=
1

1− γ
||Qm − B̂∗Qm + B̂∗Qm − B∗Qm||∞

≤ 1

1− γ

(
||Qm − B̂∗Qm||∞ + ||B̂∗Qm − B∗Qm||∞

)
(Subadditivity of L∞ norm)

≤ 1

1− γ
(ϵ+ δ)

Moreover, it was proven in Lemma 1.11 of [2] that ||V ∗ − V πQm ||∞ ≤ 2
1−γ ||Q − Q∗||∞. This

concludes the proof.

Theorem 2. Assume that FD = Fµ. Then argminQ:S×A→R||Q− BDQ||2D ̸= Q∗ and:

||Qm−BDQm||2D−||Qm−B∗Qm||2Pµ
SA

= E(St,At)∼Pµ
SA

{
Var

[
Rt +max

a′∈A
Qm(St+1, a

′)|St, At

]}
.

Proof. Suppose FD = Fµ. Then:

||BDQm −Qm||2D =E(s,a,r,s′)∼Pµ

[(
r +max

a′
Qm(s′, a′)−Qm(s, a)

)2
]

=E(s,a,r,s′)∼Pµ

[(
r +max

a′
Qm(s′, a′)− B∗Qm(s, a) + B∗Qm(s, a)−Qm(s, a)

)2
]

=||B∗Qm −Qm||2Pµ

+ E(s,a,r,s′)∼Pµ

[(
r +max

a′
Qm(s′, a′)− B∗Qm(s, a)

)2
]

+2E(s,a,r,s′)∼Pµ

[
(B∗Qm(s, a)−Qm(s, a))

(
r +max

a′
Qm(s′, a′)− B∗Qm(s, a

)]
Recalling that B∗Qm(s, a) = Es′∼T (·|s,a)[R(s, a, s′) + maxa′ Qm(s′, a′)] and
Pµ(s, a, r, s′) = Pµ(s, a)T (s′|s, a):

E(s,a,r,s′)∼Pµ

[(
r +max

a′
Qm(s′, a′)− B∗Qm(s, a

)2
]

=E(s,a)∼Pµ

{
Es′∼T (·|s,a)

[(
R(s, a, s′) + max

a′
Qm(s′, a′)− B∗Qm(s, a)

)2
]}

=E(St,At)∼Pµ

{
Var

[
Rt +max

a′
Qm(St+1, a

′)|St, At

]}

Moreover:

10

E(s,a,r,s′)∼Pµ

[
(B∗Qm(s, a)−Qm(s, a))

(
r +max

a′
Qm(s′, a′)− B∗Qm(s, a

)]
=E(s,a)∼Pµ

{
Es′∼T (·|s,a)

[
(B∗Qm(s, a)−Qm(s, a))

(
R(s, a, s′) + max

a′
Qm(s′, a′)− B∗Qm(s, a

)]}
=E(s,a)∼Pµ

{
(B∗Qm(s, a)−Qm(s, a))Es′∼T (·|s,a)

[(
R(s, a, s′) + max

a′
Qm(s′, a′)− B∗Qm(s, a

)]}
=E(s,a)∼Pµ {(B∗Qm(s, a)−Qm(s, a))× 0} = 0

Therefore:

||Qm − BDQm||2D = ||Qm − B∗Qm||2Pµ + E(St,At)∼Pµ

{
Var

[
Rt +max

a′
Qm(St+1, a

′)|St, At

]}
Finally, we need to show that argminQ||Q − BDQ||2D ̸= 0 in general. In the proof of Theo-
rem 3, we show that argminQ||Q − B∗Q||2Pµ = Q∗ (with probability one) under the condition
that the behavioral policy µ is uniformly bounded away from zero. Unless state transitions are
deterministic, E(St,At)∼Pµ {Var [Rt +maxa′ Q(St+1, a

′)|St, At]} ̸= 0 and thus it is clear that
argminQ

[
||Q− B∗Q||2Pµ + EPµ {Var [Rt +maxa′ Q(St+1, a

′)|St, At]}
]

will not be the same as
argminQ||Q − B∗Q||2Pµ in general. Specifically, the former will tend to be biased away from
argminQ||Q− B∗Q||2Pµ torwards lower-variance Q-functions. This concludes the proof.

Theorem 3. Assume the following: (1) FD = Fµ; (2) DT and DV partition the trajectories present
in D; (3) B∗Qm is estimated as B̂∗Qm = argminf :S×A→R||BDT

Qm − f ||2DT
. Then under mild

technical conditions and with probability one, B̂∗Qm = B∗Qm, ||Qm − B̂∗Qm||2DV
= ||Qm −

B∗Qm||2
Pµ

SA
and ||Qm − B̂∗Qm||2DV

= 0 if and only if Qm = Q∗.

Proof. (Sketch) In addition to the assumptions given above, we make the following
additional technical assumptions: (T1) D consists of an infinite number of finite-
length trajectories τ = (s0, a0, r0, s1,, aT , rT , sT+1) distributed iid as Pµ

Traj(τ) =

Pr(T |s0, a0, ..., aT , sT+1)d0(s0)
∏T

t=0 µ(at|st)T (st+1|at, st) (T2) There exists an ϵ > 0 such that
µ(a|s) > ϵ for all (s, a) ∈ S ×A (T3) S is countable and A is finite

Assumption (T3) is made for mathematical convenience. The proofs for when S and A are both
infinite or even uncountable are similar, but they would require a few minor technical changes and
the use of measure theory. When our state-action space is countable, the equalities B̂∗Qm = B∗Qm

and argminQ||Q− B̂∗Q||2DV
= Q∗ hold surely, i.e. for all state-action pairs (s, a) ∈ S ×A. For the

uncountable case, there could still exist a set of state-action pairs with measure zero such that these
equalities do not hold. However, the probability of observing these state-action pairs would be zero
under Pπ(s, a) = π(a|s)dπ(s) for any policy π, and thus these equalities still hold almost surely, i.e.
with probability one (this difference is mathematically important but practically meaningless).

As DT and DV are constructed by randomly partitioning the trajectories in D and D consists of
an infinite number of finite-length trajectories with distribution Pµ

Traj, it is easy to see that DT

and DV would themselves consist of an infinite number of trajectories with the same distribution.
It is also easy to see that a population distribution of trajectories Pµ

Traj induces the population
distribution of transitions Pµ

T . Thus as the trajectories in DT and DV are both distributed as Pµ
Traj,

FDT = FDV = Fµ.

Let PY (·|x) be the distribution of targets Rt + maxa′ Qm(St+1, a
′) when (St, At) = x, or when

St+1 ∼ T (·|(St, At) = x). As FDT = Fµ, we have:

11

||BDT
Qm − f ||2DT

=E(s,a,r,s′)∼Pµ

[(
r +max

a′
Qm(s′, a′)− f(s, a)

)2
]

=Ex∼Pµ
SA,y∼PY (·|x)

[
(y − f(x))2

]
This is just a population MSE loss function, and it is well-known that the function f minimizing
this expectation satisfies f(x) = Ey∼PY (·|x) [y] except possibly for some set XC such that Pµ

SA(x ∈
XC) = 0 (see for example [17]). However, as µ(a|s) > ϵ > 0 for all (s, a) ∈ S ×A, it is clear that
Pµ
SA(s, a) > 0 for all (s, a) ∈ S ×A, and as S × A is countable, this means that Pr(X = x) > 0

for any x ∈ S ×A, Therefore, the only such XC would be the empty set and f(x) = E [Y |X = x]
for all x ∈ S ×A.

As E [Y |X] = E [Rt +maxa′ Qm(St+1, a
′)|St, At] = B∗Qm, we thus have that B̂∗Qm = B∗Qm.

And as FDV = Fµ, ||Qm−B̂∗Qm||2DV
= ||Qm−B∗Qm||2

Pµ
SA

. It remains to show that argminQ||Q−
B̂∗Q||2DV

= Q∗, or that argminQ||Q − B∗Q||2Pµ = Q∗. It is easy to show that for any random
variable X with distribution P , Ex∼P [X

2] = 0 if and only if PrX∼P (X = 0) = 1. Therefore
||Q − B∗Q||2Pµ = 0 if and only if (Q − B∗Q)(s, a) = 0 for all (s, a) ∈ S × A except possibly
some subset XC such that Pr(s,a)∼Pµ((s, a) ∈ XC) = 0. However, as discussed before, under our
assumptions the only subset XC that would apply here is the empty set. Therefore ||Q−B∗Q||2Pµ = 0
if and only if (Q− B∗Q)(s, a) = 0 for all (s, a) ∈ S ×A. As Q∗ is the unique fixed point of B∗ in
L∞ space, this means that ||Q− B∗Q||2Pµ = 0 if and only if Q = Q∗. As ||Q− B∗Q||2Pµ ≥ 0 for
all Q-functions Q, it thus holds that any argminQ||Q− B∗Q||2Pµ = Q∗. This concludes the proof.

B Implementation Details of Q-Learning for Atari

RangeStandardize()

Conv2D(48, kernel_size=5x5) +
LeakyReLU()

Conv2D(48) + MaxPool2D() +
LeakyReLU()

ConvStack(72)

ConvStack(144)

ConvStack(248)

Output Shape: 84x84x4

Output Shape: 84x84x48

Output Shape: 42x42x48

Define

Conv2D(72) + LeakyReLU() +
Conv2D(72) + MaxPool2D()

Add() + LeakyReLU()

Input()

Conv2D(72) + LeakyReLU() +
Conv2D(72)

Add() + LeakyReLU()

Conv2D(72, kernel_size=1x1,
strides=2)

Output Shape: 21x21x72

Output Shape: 11x11x144

Output Shape: 6x6x248

Training Configuration
Optimizer: Adam(learning_rate=2.5e-5, loss=Huber,
batch_size=128, target_update_freq=128,000)
Early Stopping: Stop after 50 iterations (i.e. 32 million
training steps)

 GlobalAvgPool2D() +

Dense()

Output Shape:

Input()

Input: State

Input Shape: 84x84x4

Output: Action-Value
Estimates

Figure B.1: Network Graph of Q-Network [DDQN (L)]. Unlabeled arrows represent feed-forward
connections. Unless otherwise specified, all layers use the default parameters specified by Tensor-
Flow [1], with the following exceptions: 1) convolutional layers use 3x3 kernels and zero padding
(padding="SAME"); 2) max pooling layers use 3x3 kernels, a vertical and horizontal stride of 2 and
apply zero padding (padding="SAME").

12

There were two training configurations explored when running Q-learning: DQN (S) and DDQN
(L). DQN (S) uses the standard Nature DQN architecture and training algorithm [28] and the Adam
optimizer following Agarwal et al. [3]. Most of the details of this configuration can be found in
Agarwal et al. [3] (they call this configuration "Offline DQN (Adam)") and thus we do not repeat
them here. We did however change the batch size from 32 to 128 to speed-up training. We should
also mention that our definition of "training iteration" differs from that of Agarwal et al. [3] in that it
involves more weight updates to the Q-network overall (640,000 training steps instead of 250,000
training steps) as well as more frequent re-loading of data from disk into memory to reduce the
correlation of the mini-batches sampled for training (a new subset of data is loaded into memory
every 16,000 training steps instead of every 250,000 training steps). These changes apply to both
DQN (S) and DDQN (L).

DDQN (L) uses a deeper and more complex Q-Network architecture that features 16 convolution
layers as well max pooling layers, leaky ReLU activation layers [14] and residual connections [18].
The architecture here is simply the best-performing architecture for the Bellman network according to
validation Bellman backup MSE that doesn’t use batch normalization [20] and is described in more
detail below. While there were architectures that performed better as Bellman networks, these all used
batch normalization and we found that batch normalization greatly degraded Q-learning performance
when added to Q-Networks. We also used double Q-learning targets [16] to reduce overestimation
bias. Finally, we tweaked the learning rate and target update frequency so as to improve training
stability (though otherwise the optimizer remained unchanged from the DQN (S) configuration). In
theory, the learning rate and target update frequency could have been tuned by SBV as well, but to
simplify and reduce the computational burden of our experiments, we just fixed these value to 2.5e-5
and 128,000, respectively.

The network graph of the DDQN (L) architecture can be found in Figure B.1. We use Leaky ReLU
activation layers in place of the standard ReLU activation layers to fight issues with vanishing
gradients and dying ReLUs [14]. A pre-processing layer first scales the input state s ∈ S to the [0, 1]
range where S = {0, 1, ..., 255}84×84×4. After the pre-processing layer, the network starts with two
convolutional layers and a pooling layer, with the first convolutional layer having a kernel size of
5× 5 and both convolutional layers having a filter size of 48. After this is three units which we will
call (DDQN) convolutional stacks. Each DDQN convolutional stack consists of four convolution
layers, all of which have the same number of filters, with a pooling layer inserted after the first two
convolution layers. Moreover, the input to the stack is connected to the output of the pooling layer of
the stack via a skip connection similar to other ResNet architectures [6], and the input to the third
convolution layer is connected to the output of the final convolution layer of the stack via a skip
connection as well. The three convolution layers have filter sizes 72, 144 and 248, in ascending order.
After the three convolution stacks is a global average pooling layer and a dense layer with units
equal to the number of possible actions |A|. The output of this layer gives the Q-network estimates
Qθ(s, a), a ∈ A of the true optimal action-values Q∗(s, a), a ∈ A for the given input state s ∈ S.

C Implementation Details of SBV and WIS for Atari

C.1 Bellman Network Architecture, Optimizer and Regularizer

We used two training configurations for the Bellman network: A simpler configuration for Pong and a
more complex one for the other three games. The more complex architecture was tuned to minimize
validation MSE across the Breakout, Asterix and Seaquest datasets and performs significantly better
(in terms of validation MSE) than previously-used architectures and configurations such as Nature [28]
and IMPALA [9]. In theory, we could have used a different training configuration for every dataset,
or even for every Bellman backup function, but we avoided doing this to simplify the experiments.
It is more reminiscent of deep neural networks applied to modern image classification problems
such as ImageNet [33] than the small networks employed in deep RL and includes commonly-used
design choices in deep learning, such as batch normalization [20] and residual connections [18], to
maximize generalization. The simpler configuration applied to Pong was utilized because it achieved
almost the same performance as the more complex configuration while requiring significantly less
computational resources. The more complex configuration is described below. Details of the simpler
configuration are not as important and are not described in this version of the paper.

13

RangeStandardize()

Conv2D(48, kernel_size=5x5) +
BatchNorm() + LeakyReLU()

Conv2D(64) + BatchNorm() +
LeakyReLU()

Conv2D(64) + MaxPool2D() +
BatchNorm() + LeakyReLU()

ConvStack(64,96,96)

ConvStack(96,192,192)

ConvStack(192,240,240)

Output Shape: 84x84x4

Output Shape: 84x84x48

Output Shape: 84x84x64

Output Shape: 42x42x64

Define

Conv2D(64) + BatchNorm()() +
LeakyReLU()

Conv2D(96) + BatchNorm()() +
LeakyReLU()

Conv2D(96) + MaxPool2D() +
BatchNorm()

Input()

SENet()

Add() + LeakyReLU()

Conv2D(96, kernel_size=1x1,
strides=2) + BatchNorm()

Output Shape: 21x21x96

Output Shape: 11x11x192

Output Shape: 6x6x240

Dense()

Output Shape: 1x1x240

Output Shape:

Dot()

Output Shape: 1

Input: Action

Output Shape:

Training Configuration
Optimizer: Nadam(learning_rate=5e-4, loss=MSE,
batch_size=512. max_epochs=40, mixed_precision=True)
Scheduler: ReduceLROnPlateau(monitor='train_loss',
patience=2, min_delta=0.001*[sample variance of targets],
factor=0.33, cooldown=2)
Early Stopping: Stop one iter after lr==5e-4 * (0.33**2))

SeparableConv2D(240) +
BatchNorm() + LeakyReLU()

SeparableConv2D(240) +
BatchNorm()

Output Shape: 6x6x240

SENet()

Output Shape: 6x6x240

Add() + LeakyReLU() +
GlobalAvgPool2D()

Output Shape: 6x6x240

Input: State

Input Shape: 84x84x4

OneHot()

Input Shape: 1

Output: Bellman Backup
Estimate

Figure C.1: Network Graph of Bellman Network. Unlabeled arrows represent feed-forward con-
nections. Unless otherwise specified, all layers use the default parameters specified by Tensor-
Flow [1], with the following exceptions: 1) convolutional layers use 3x3 kernels, zero padding
(padding="SAME") and no bias; 2) max pooling layers use 3x3 kernels, a vertical and horizontal
stride of 2 and apply zero padding (padding="SAME"); 3) SENet() uses an identical architecture
to the squeeze-and-excitation units in [19], except the bottleneck layer uses a reduction factor of 4
instead of 16 and a leaky ReLU activation instead of the standard ReLU, and the output layer uses a
softplus activation instead of sigmoid.

14

The network graph can be found in Figure C.1. As is standard in supervised deep convolutional
neural networks, We follow every convolutional layer with a batch normalization layer except for
those preceding pooling layers: these convolutional layers are followed first by a pooling layer and
then by a batch normalization layer. We use Leaky ReLU activation layers in place of the standard
ReLU activation layers to fight vanishing gradient and dying ReLU problems [14].

A pre-processing layer first scales the input state s ∈ S to the [0, 1] range where S =
{0, 1, ..., 255}84×84×4. After the pre-processing layer, the network starts with three convolutional
layers and a pooling layer. After this is four units which we will call (Bellman) convolutional stacks.
Each Bellman convolutional stack consists of three convolutional layers, a pooling layer and an SE
block [19]. The SE block in this case consists of a global average pooling layer, a hidden dense
bottleneck layer with 1/4th as many hidden neurons as the input width (+ batch norm + leaky ReLU),
and an output layer with softplus activation. The input signal is connected to the output of the SE
block via a skip connection similar to other SE-ResNet architectures. After the four convolutional
stacks are two convolutional layers that use depthwise separable convolutions [6] followed by an SE
block. A skip connection connects the input of the first depthwise separable layer to the output of this
final SE block.

The number of feature maps per layer increases with depth, increasing from 48 feature maps for
the first convolutional layer to 240 for the final depthwise separable layers. Following the final SE
block is a global average pooling to reduce the number of parameters and a dense layer with units
equal to the number of possible actions |A|. The output of the network Bϕ(s, a) is the dot product
between the output of this dense layer and a one-hot transformation of the inputted action a ∈ A, and
is an estimate of the Bellman backup (B∗Qm)(s, a) where Qm is a candidate Q-function that we are
trying to evaluate.

The network weights are trained on DT to minimize mean square error via the NAdam optimization
algorithm [8]. To speed up computations, we enable the mixed precision feature of TensorFlow
[1] for the computations and use a batch size of 512. For the learning rate scheduler, we used
an initial learning rate of 5 × 10−4 and multiplied the learning rate by a factor of 0.33 whenever
training loss did not improve by at least 0.001× var(BDQm(st, at))) over 2 consecutive iterations
where var(BDQm(st, at)) is the sample variance of the targets within DT being used to train Bϕ.
Training was terminated after the first iteration with the learning rate equal to 5× 10−4 × 0.332. The
performance of the network after each epoch was evaluated by calculating the mean squared error
from validation set DV , and only the weights from the iteration with the lowest validation loss was
saved.

C.2 Other Implementation Details of SBV

Denote Qθk as the trained Q-network after the kth iteration for a particular configuration. We wish
to estimate the Bellman backup functions B∗Qθk , 1 ≤ k ≤ 50. Let Bϕk

denote the trained Bellman
network for estimating the B∗Qθk . We perform two additional tricks to speed up computations.
First, for most iterations, we initialize the trained weights of Bϕk+1

as ϕk before conducting training,
similar to Algorithm 2 in the main paper. This can be thought of as a kind of transfer learning and
greatly speeds up computation. We do, however, occasionally re-randomize initial weights for an
iteration via Hu and Xavier initialization schemes to avoid overfitting. The number of consecutive
iterations I where weights are transferred from previous iterations before re-randomizing the weights
is a hyperparameter that we tuned to minimize validation MSE. In our case, we set I = 3 for Seaquest
and Breakout datasets, and I = 1 for Asterix datasets. The second trick we apply is stopping training
once the top-5 policies according to SBV fails to change for five consecutive iterations. By stopping
after it is clear that the optimal iteration has been found, we avoid wasting computational resources
evaluating Q-functions that aren’t going to be selected anyway.

C.3 Implementation Details of WIS

As WIS requires knowledge of the unknown behavioral policy µ, we estimated it using a neural
network approximator µβ with trainable parameter vector β which we dub our propensity network. µβ

was trained on DT so as to maximize log-likelihood
∑

(a,s)∈D[logµθ(a|s)] while its log-likelihood
on DV was used to tune hyperparameters and evaluate performance. We ended up using the same
configuration for the propensity network as that of the Bellman network (Figure C.1), minus the

15

obvious changes (e.g. MSE loss replaced with categorical cross-entropy loss). We found that
this achieved higher validation log-likelihood than other custom configurations explored as well as
architectures and configurations used in previous literature such as IMPALA [9].

D Supplementary Details on Necessary Conditions for SBV Performance

Theorem 1 and our empirical investigations suggest that for the MSBE to select high-quality policies,
we require that our candidate set Q include estimators of Q∗ are sufficiently accurate (i.e. have
sufficiently small Bellman errors). To clarify, it is acceptable for Q to include mostly inaccurate
estimates, so long as at least some estimates in Q are accurate.

To investigate this condition, we tried analyzing only Q-functions generated from DQN (S) by SBV.
The result was that SBV failed to properly select high-quality policies for Breakout, Asterix and
Seaquest (results not shown). However, once Q-functions generated by DDQN (L) were included in
the candidate set, SBV not only correctly identified the Q-functions generated by DDQN (L) as better,
but it was also effective at tuning the number of training iterations for DDQN (L), as shown in Table
1 and Figure 1 of the main paper. The issue here is that the Q-network trained by DQN (S) had large
Bellman errors at every training iteration despite achieving decent returns from online interactions,
while the Q-network trained by DDQN (L) yields much smaller Bellman errors provided we stop
training early enough.

It is worth noting however that while Q needs to include value function estimates with reasonable
accuracy, the estimation does not have to be perfect either. For example, state-of-the-art online
RL methods have managed to achieve policies with returns of over 100,000 for Seaquest [22]. As
the Q-functions generated by DDQN (L) for Seaquest give values of less than 25,000, they must
have decent Bellman and estimation error. Despite this, they are good enough for SBV to select
high-performing policies.

16

	Introduction
	Preliminaries
	Related Work
	Supervised Bellman Validation
	Theoretical Results
	Experiments
	Discussion and Future Work
	Mathematical Proofs
	Implementation Details of Q-Learning for Atari
	Implementation Details of SBV and WIS for Atari
	Bellman Network Architecture, Optimizer and Regularizer
	Other Implementation Details of SBV
	Implementation Details of WIS

	Supplementary Details on Necessary Conditions for SBV Performance

